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Abstract

XVAs denote various counterparty risk related valuation adjustments that are applied
to financial derivatives since the 2007–09 crisis. We root a cost-of-capital XVA strategy
in a balance sheet perspective which is key in identifying the economic meaning of the
XVA terms. Our approach is first detailed in a static setup that is solved explicitly. It is
then plugged in the dynamic and trade incremental context of a real derivative banking
portfolio. The corresponding cost-of-capital XVA strategy ensures to bank shareholders
a submartingale equity process corresponding to a target hurdle rate on their capital
at risk, consistently between and throughout deals. Set on a forward/backward SDE
formulation, this strategy can be solved efficiently using GPU computing combined with
deep learning regression methods in a whole bank balance sheet context. A numerical
case study emphasizes the workability and added value of the ensuing pathwise XVA
computations.

Keywords: Counterparty risk, balance sheet of a bank, market incompleteness, wealth trans-
fer, X-valuation adjustment (XVA), deep learning, quantile regression.
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1 Introduction

XVAs, with X as C for credit, D for debt, F for funding, M for margin, or K for capital, are post-
2007–09 crisis valuation adjustments for financial derivatives. In broad terms to be detailed
later in the paper (cf. Table 1 in Section 2), CVA is what the bank expects to lose due to
counterparty defaults in the future; DVA (irrelevant for pricing but material to bank creditors
as we will see) is what the bank expects to gain due to its own default; FVA is the expected
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3 ANZ Banking Group, Singapore
4 Quantitative Research GMD/GMT Credit Agricole CIB, Paris
Acknowledgement: We are grateful for useful discussions to Lokman Abbas-Turki, Agostino Capponi, Karl-

Theodor Eisele, Chris Kenyon, Marek Rutkowski, and Michael Schmutz. The PhD thesis of Bouazza Saadeddine
is funded by a CIFRE grant from CA-CIB and French ANRT.

Disclaimers: The views expressed herein by Rodney Hoskinson are his personal views and do not reflect
the views of ANZ Banking Group Limited (”ANZ”). No liability shall be accepted by ANZ whatsoever for any
direct or consequential loss from any use of this paper and the information, opinions and materials contained
herein.

Email addresses: claudio.albanese@global-valuation.com, stephane.crepey@univ-evry.fr, rod-
ney.hoskinson@edhec.com, bouazza.saadeddine@univ-evry.fr

1



cost for the bank of having to raise variation margin (re-hypothecable collateral) ; MVA is the
expected cost for the bank of having to raise initial margin (segregated collateral); KVA is the
expected cost for the bank of having to remunerate its shareholders through dividends for their
capital at risk.

XVAs deeply affect the derivative pricing task by making it global, nonlinear, and entity
dependent. However, before these technical implications, the fundamental point is to under-
stand what really deserves to be priced and what does not, by rooting the pricing approach in
a corresponding collateralization, accounting, and dividend policy of the bank.

Coming after several papers on the valuation of defaultable assets in the 90’s, such as Duffie
and Huang (1996), Bielecki and Rutkowski (2002, Eq. (14.25) p. 448) obtained the formula

CVA−DVA (1)

for the valuation of bilateral counterparty risk on a swap, assuming risk-free funding. This
formula, rediscovered and generalized by others since the 2008–09 financial crisis (cf. e.g. Brigo
and Capponi (2010)), is symmetrical, i.e. it is the negative of the analogous quantity consid-
ered from the point of view of the counterparty, consistent with the law of one price and the
Modigliani and Miller (1958) theorem.

Around 2010, the materiality of the DVA windfall benefit of a bank at its own default time
became the topic of intense debates in the quant and academic communities. At least, it seemed
reasonable to admit that, if the own default risk of the bank was accounted for in the modeling,
in the form of a DVA benefit, then the cost of funding (FVA) implication of this risk should
be included as well, leading to the modified formula (CVA − DVA + FVA). See for instance
Burgard and Kjaer (2011, 2013, 2017), Crépey (2015), Brigo and Pallavicini (2014), or Bichuch,
Capponi, and Sturm (2018). See also Bielecki and Rutkowski (2015) for an abstract funding
framework (without explicit reference to XVAs), generalizing Piterbarg (2010) to a nonlinear
setup.

Then Hull and White (2012) objected that the FVA was only the compensator of another
windfall benefit of the bank at its own default, corresponding to the non-reimbursement by the
bank of its funding debt. Accounting for the corresponding “DVA2” (akin to the FDA in this
paper) brings back to the original firm valuation formula:

CVA−DVA + FVA− FDA = CVA−DVA,

as FVA = FDA (assuming risky funding fairly priced as we will see).
However, their argument implicitly assumes that the bank can perfectly hedge its own

default: cf. Burgard and Kjaer (2013, end of Section 3.1) and see Section 3.5 below. As a
bank is an intrinsically leveraged entity, this is not the case in practice. One can mention the
related corporate finance notion of debt overhang in Myers (1977), by which a project valuable
for the firm as a whole may be rejected by shareholders because the project is mainly valuable
to bondholders. But, until recently, such considerations were hardly considered in the field of
derivative pricing.

The first ones to recast the XVA debate in the perspective of the balance sheet of the bank
were Burgard and Kjaer (2011), to explain that an appropriately hedged derivative position has
no impact on the dealer’s funding costs. Also relying on balance sheet models of a dealer bank,
Castagna (2014) and Andersen, Duffie, and Song (2019) end up with conflicting conclusions,
namely that the FVA should, respectively should not, be included in the valuation of financial
derivatives. Adding the KVA, but in a replication framework, Green, Kenyon, and Dennis
(2014) conclude that both the FVA and the KVA should be included as add-ons in entry prices
and as liabilities in the balance sheet.
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1.1 Contents

Our key premise is that counterparty risk entails two distinct but intertwined sources of market
incompleteness:

� A bank cannot perfectly hedge counterparty default losses, by lack of sufficiently liquid
CDS markets;

� A bank can even less hedge its own jump-to-default exposure, because this would mean
selling protection on its own default, which is nonpractical and, under certain juridictions,
even legally forbidden (see Section 2).

We specify the banking XVA metrics that align derivative entry prices to shareholder interest,
given this impossibility for a bank to replicate the jump-to-default related cash flows. We de-
velop a cost-of-capital XVA approach consistent with the accounting standards set out in IFRS
4 Phase II (see International Financial Reporting Standards (2013)), inspired from the Swiss
solvency test and Solvency II insurance regulatory frameworks (see Swiss Federal Office of Pri-
vate Insurance (2006) and Committee of European Insurance and Occupational Pensions Su-
pervisors (2010)), which so far has no analogue in the banking domain. Under this approach,
the valuation (CL) of the so-called contra-liabilities and the cost of capital (KVA) are sourced
from clients at trade inceptions, on top of the (CVA − DVA) complete market valuation of
counterparty risk, in order to compensate bank shareholders for wealth transfer and risk on
their capital.

The cost of the corresponding collateralization, accounting, and dividend policy is, by con-
trast with the complete market valuation (CVA−DVA) of counterparty risk,

CVA + FVA + KVA, (2)

computed unilaterally in a certain sense (even though we do crucially include the default of the
bank itself in our modeling), and charged to clients on an incremental run-off basis at every
new deal1.

All in one, our cost-of-capital XVA strategy makes shareholder equity a submartingale with
drift corresponding to a hurdle rate h on shareholder capital at risk, consistently between and
throughout deals. Thus we arrive at a sustainable strategy for profits retention, much like in
the above-mentioned insurance regulation, but in a consistent continuous-time and banking
framework.

Last but not least, our approach can be solved efficiently using GPU computing combined
with deep learning regression methods in a whole bank balance sheet context.

1.2 Outline and Contributions

Section 2 sets a financial stage where a bank is split across several trading desks and entails
different stakeholders. Section 3 develops our cost-of-capital XVA approach in a one-period
static setup. Section 4 revisits the approach at the dynamic and trade incremental level.
Section 5 is a numerical case study on large, multi-counterparty portfolios of interest rate
swaps, based on the continuous-time XVA equations for bilateral trade portfolios recalled in
Section A.

The main contributions of the paper are:

� The one-period static XVA model of Section 3, with explicit formulas for all the quantities
at hand, offering a concrete grasp on the related wealth transfer and risk premium issues;

1See also Remark 2.1 regarding the meaning of the FVA in (2).
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� Proposition 4.1, which establishes the connections between XVAs and the core equity tier
1 capital of the bank, respectively bank shareholder equity;

� Proposition 4.2, which establishes that, under the XVA policy represented by the balance
conditions (4) between deals and the counterparty risk add-on (43) throughout deals,
bank shareholder equity is a submartingale with drift corresponding to a target hurdle
rate h on shareholder capital at risk. This perspective solves the puzzle according to
which, on the one hand, XVA computations are performed on a run-off portfolio basis,
while, on the other hand, they are used for computing pricing add-ons to new deals;

� The XVA deep learning (quantile) regression computational strategy of Section 4.4;

� The numerical case study of Section 5, which emphasizes the materiality of refined, path-
wise XVA computations, as compared to more simplistic XVA approaches.

From a broader point of view, this paper reflects a shift of paradigm regarding the pricing
and risk management of financial derivatives, from hedging to balance sheet optimization, as
quantified by relevant XVA metrics. In particular (compare with the last paragraph before
Section 1.1), our approach implies that the FVA (and also the MVA, see Remark 2.1) should
be included as an add-on in entry prices and as a liability in the balance sheet; the KVA should
be included as an add-on in entry prices, but not as a liability in the balance sheet.

From a computational point of view, this paper opens the way to second generation XVA
GPU implementation. The first generation consisted of nested Monte Carlo implemented by
explicit CUDA programming on GPUs (see Albanese, Caenazzo, and Crépey (2017), Abbas-
Turki, Diallo, and Crépey (2018)). The second generation takes advantage of GPUs leveraging
via pre-coded CUDA/AAD deep learning packages that are used for the XVA embedded re-
gression and quantile regression task. Compared to a regulatory capital based KVA approach,
an economic capital based KVA approach is then not only conceptually more satisfying, but
also simpler to implement.

2 Balance Sheet and Capital Structure Model of the Bank

We consider a dealer bank, which is a market maker involved in bilateral derivative portfolios.
For simplicity, we only consider European derivatives. The bank has two kinds of stakeholders,
shareholders and bondholders. The shareholders have the control of the bank and are
solely responsible for investment decisions before bank default. The bondholders represent the
senior creditors of the bank, who have no decision power until bank default, but are protected
by laws, of the pari-passu type, forbidding trades that would trigger value away from them
to shareholders during the default resolution process of the bank. The bank also has junior
creditors, represented in our framework by an external funder, who can lend unsecured to
the bank and is assumed to suffer an exogenously given loss-given-default in case of default of
the bank.

We consider three kinds of business units within the bank (see Figure 1 for the corresponding
picture of the bank balance sheet and refer to Table 1 for a list of the main financial acronyms
used in the paper): the CA desks, i.e. the CVA desk and the FVA desk (or Treasury) of
the bank, in charge of contra-assets, i.e. of counterparty risk and its funding implications for
the bank; the clean desks, who focus on the market risk of the contracts in their respective
business lines; the management of the bank, in charge of the dividend release policy of the
bank.
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Amounts on dedicated cash accounts of the bank:
CM Clean margin Definition 2.1 and Assumption 2.1
RC Reserve capital Definition 2.1 and Assumption 2.1
RM Risk margin Definition 2.1 and Assumption 2.1
UC Uninvested capital Definition 2.1 and Assumption 2.1

Valuations:
CA Contra-assets valuation (3), (16), and (51)
CL Contra-liabilities valuation Definition 2.1 and (18), (35), and (43)
CVA Credit valuation adjustment (17), (16), (52), and (60)–(61)
DVA Debt valuation adjustment (18) and (17)
FDA Funding debt adjustment (18) and (23)
FV Firm valuation of counterparty risk (21) and (23)
FVA Funding valuation adjustment Remark 2.1, (17), (16), and (52)
KVA Capital valuation adjustment (4), (26), and (56)
MtM Mark-to-market (4) and (15)
MVA Margin valuation adjustment Remark 2.1, (33), (52), and (62)
XVA Generic “X” valuation adjustment First paragraph

Also:
CR Capital at risk (54)
CET1 Core equity tier I capital (3) and (40)
EC Economic capital Definitions 3.2 and A.1
FTP Funds transfer price (43)
SHC Shareholder capital (or equity) (3) and (41)
SCR Shareholder capital at risk Assumption 2.1 and (25)

Table 1: Main financial acronyms and place where they are introduced conceptually and/or
specified mathematically in the paper, as relevant.
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Reserve capital (RC)

Shareholder capital at risk (SCR)

yr1

Uninvested capital (UC)

ASSETS

LIABILITIES

yr39 yr40

Core equity tier I capital (CET1)

Mark-to-market of the

portfolio receivables

Mark-to-market of the

portfolio payables

Contra-liabilities (CL)

yr1 yr39 yr40

Contra-assets (CA)

Accounting equity

Capital at risk (CR)

CVA

Collateral posted by the

clean desks

Collateral received by the

clean desks

FVA

DVA

FVA desk

(Treasury)CA desks

Clean desks

KVA desk

(management)

CVA desk

Risk Margin (RM=KVA)

(MtM+) (CM+)

(CM−) (MtM−)

FDA = FVA

Figure 1: Balance sheet of a dealer bank. Contra-liability valuation (CL) at the top is shown
in dotted boxes because it is only value to the bondholders (see Section 3.5). Mark-to-market
valuation (MtM) of the derivative portfolio of the bank by the clean desks, as well as the
corresponding collateral (clean margin CM), are shown in dashed boxes at the bottom. Their
role will essentially vanish in our setup, where we assume a perfect clean hedge by the bank.
The arrows in the left column represent trading losses of the CA desks in “normal years 1 to
39” and in an “exceptional year 40” with full depletion (i.e. refill via UC, under Assumption
2.1.ii) of RC, RM, and SCR. The numberings yr1 to yr40 are fictitious yearly scenarios in
line with a 97.5% expected shortfall of the one-year-ahead trading losses of the bank that we
use for defining its economic capital. The arrows in the right column symbolize the average
depreciation in time of contra-assets between deals. The collateral between the bank and its
counterparties is not shown to alleviate the picture.

Collateral means cash or liquid assets that are posted to guarantee a netted set of transac-
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tions against defaults. It comes in two forms: variation margin, which is re-hypothecableotecable,
i.e. fungible across netting sets, and initial margin, which is segregated. We assume cash only
collateral. Posted collateral is supposed to be remunerated at the risk-free rate (assumed to
exist, with overnight index swap rates as a best market proxy).

Remark 2.1 To alleviate the notation, in this conceptual section of the paper, we only consider
an FVA as the global cost of raising collateral for the bank, as opposed to a distinction, in the
industry and in later sections in the paper, between an FVA, in the strict sense of the cost of
raising variation margin, and an MVA for the cost of raising initial margin.

The CA desks guarantee the trading of the clean desks against counterparty defaults,
through a clean margin account, which can be seen as (re-hypothecable) collateral exchanged
between the CA desks and the clean desks. The corresponding clean margin amount (CM) also
plays the role of the funding debt of the clean desks put at their disposal at a risk-free cost by
the Treasury of the bank. This is at least the case when CM > 0 (clean desks clean margin
receivers). In the case when CM < 0 (clean desks clean margin posters), (−CM) corresponds
to excess cash generated by the trading of the clean desks, usable by the Treasury for its other
funding purposes. See the bottom, dashed boxes in Figure 1.

In addition, the CA desks value the contra-assets (future counterparty default losses and
funding expenditures), charge them to the (corporate) clients at deal inception, deposit the
corresponding payments in a reserve capital account, and then are exposed to the corre-
sponding payoffs. As time proceeds, contra-assets realize and are covered by the CA desks with
the reserve capital account.

On top of reserve capital, the so-called risk margin is sourced by the management of the
bank from the clients at deal inception, deposited into a risk margin account, and then
gradually released as KVA payments into the shareholder dividend stream.

Another account contains the shareholder capital at risk earmarked by the bank to deal
with exceptional trading losses (beyond the expected losses that are already accounted for by
reserve capital).

Last, there is one more bank account with shareholder uninvested capital.
All cash accounts are remunerated at the risk-free rate.

Definition 2.1 We write CM, RC, RM, SCR, and UC for the respective (risk-free discounted)
amounts on the clean margin, reserve capital, risk margin, shareholder capital at risk, and
uninvested capital accounts of the bank. We also define

SHC = SCR + UC , CET1 = RM + SCR + UC. (3)

From a financial interpretation point of view, before bank default, SHC corresponds to share-
holder capital (or equity); CET1 is the core equity tier I capital of the bank, representing
the financial strength of the bank assessed from a regulatory, structural solvency point of view,
i.e. the sum between shareholder capital and the risk margin (which is also loss-absorbing),
but excluding the value CL of the so-called contra-liabilities (see Figure 1). Indeed, the latter
only benefits the bondholders (cf. Section 3.5), hence it only enters accounting equity. Before
the default of the bank, shareholder wealth and bondholder wealth are respectively given
by SHC + RMsh and CL + RMbh, for shareholder and bondholder components of RM to be
detailed in Remark 3.3; shareholder and bondholder wealths sum up to the accounting equity
RM + SCR + UC + CL, i.e. the wealth of the firm as a whole (see Figure 1).

Remark 2.2 The purpose of our capital structure model of the bank is not to model the default
of the bank, like in a Merton (1974) model, as the point of negative equity (i.e. CET1 < 0). In
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the case of a bank, such a default model would be unrealistic. For instance, at the time of its
collapse in April 2008, Bear Stearns had billions of capital. In fact, the legal definition of default
is an unpaid coupon or cash flow, which is a liquidity (as opposed to solvency) issue. Eventually
we will model the default of the bank as a totally unpredictable event at some exogenous time
τ calibrated to the credit default swap (CDS) curve referencing the bank. Indeed we view
the latter as the most reliable and informative credit data regarding anticipations of markets
participants about future recapitalization, government intervention, bail-in, and other bank
failure resolution policies.

The aim of our capital structure model, instead, is to put in a balance sheet perspective the
contra-assets and contra-liabilities of a dealer bank, items which are not present in the Merton
model and play a key role in our XVA analysis.

In line with the Volcker rule banning proprietary trading for a bank, we assume a perfect
market hedge of the derivative portfolio of the bank by the clean desks, in a sense to be
specified below in the respective static and continuous-time setups. By contrast, as jump-to-
default exposures (own jump-to-default exposure, in particular) cannot be hedged by the bank
(cf. Section 1.1), we conservatively assume no XVA hedge.

We work on a measurable space (Ω,A) endowed with a probability measure Q∗, with Q∗
expectation denoted by E∗, which is used for the linear valuation task, using the risk-free asset
as our numéraire everywhere.

Remark 2.3 Regarding the nature of our reference probability measure Q∗, “physical or risk-
neutral”, one should view it as a blend between the two. For instance, even if we do not use
this explicitly in the paper, one could conceptually think of Q∗ as the probability measure
introduced by Dybvig (1992) to deal with incomplete markets that are a mix of financial
traded risk factors and unhedgeable ones (jumps to default, in our setup), recently revisited
in a finance and insurance context by Artzner, Eisele, and Schmidt (2020). Namely, one could
think of Q∗ as the unique probability measure on A2 that coincides (i) with a given risk-neutral
pricing measure on the financial σ algebra ⊆ A, and (ii) with the physical probability measure
conditional on the financial σ algebra (the risk-neutral and physical measures being assumed
equivalent on the financial σ algebra). The risk-neutral pricing measure (hence, in view of (i),
Q∗ itself) is calibrated to prices of fully collateralized transaction for which counterparty risk
is immaterial. The physical probability measure expresses user views on the unhedgeable risk
factors. The uncertainty about Q∗ can be dealt with by a Bayesian variation on our baseline
XVA approach, whereby paths of alternative, co-calibrated models are combined in a global
simulation (cf. Hoeting, Madigan, Raftery, and Volinsky (1999)).

2.1 Run-Off Portfolio

Until Section 4.2, we consider the case of a portfolio held on a run-off basis, i.e. set up at time
0 and such that no new unplanned trades enter the portfolio in the future.

The trading cash flows of the bank (cumulative cash flow streams starting from 0 at time
0) then consist of

� the contractually promised cash flows P from counterparties,

� the counterparty credit cash flows C to counterparties (i.e., because of counterparty risk,
the effective cash flows from counterparties are P − C),

� the risky funding cash flows F to the external funder, and

2See Artzner, Eisele, and Schmidt (2020, Proposition 2.1) for a proof.
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� the hedging cash flows H of the clean desks to financial hedging markets

(note that all cash flow differentials can be positive or negative). See Section 3.1 and (49)–(50)
for concrete specifications in respective one-period and continuous-time setups.

Assumption 2.1 i. (Self-financing condition) RC + RM + SCR + UC − CM evolves
like the received trading cash flows P − C − F −H.

ii. (Mark-to-model) The amounts on all the accounts but UC are marked-to-model (hence
the last, residual amount, UC, plays the role of an adjustment variable). Specifically, we
assume that the following shareholder balance conditions hold at all times:

CM = MtM , RC = CA , RM = KVA, (4)

for theoretical target levels MtM, CA, and KVA to be specified in later sections of the
paper (which will also determine the theoretical target level for SCR).

iii. (Agents) The initial amounts MtM0, CA0, and KVA0 are provided by the clients at
portfolio inception time 0. Resets between time 0 and the bank default time τ (excluded)
are on bank shareholders. At the (positive) bank default time τ , the property of the
residual amount on the reserve capital and risk margin accounts is transferred from the
shareholders to the bondholders of the bank.

Remark 2.4 In an asymmetric setup with a price maker and a price taker, the price maker
passes his costs to the price taker. Accordingly, in our setup, the (corporate) clients provide all
the amounts to the clean margin, reserve capital, and risk margin accounts of the bank required
for resetting the accounts to their theoretical target levels (4) corresponding to the updated
portfolio.

Under a cost-of-capital XVA approach, we define valuation so as to make shareholder trading
losses (that include marked-to-model liability fluctuations) centered, then we add a KVA risk
premium in order to ensure to bank shareholders some positive hurdle rate h on their capital
at risk.

In what follows, such an approach is developed, first, in a static setup, which can be solved
explicitly, and then, in a dynamic and trade incremental setup, as suitable for dealing with a
real derivative banking portfolio.

3 XVA Analysis in a Static Setup

In this section, we apply the cost-of-capital XVA approach to a portfolio made of a single
deal, P (random variable promised to the bank), between a bank and a client, without prior
endowment, in an elementary one-period (one year) setup. All the trading cash flows P, C,
F , and H are then random variables (as opposed to processes in a multi-period setup later in
the paper). We first assume no collateral exchanged between the bank and its client. Risky
funding assets are assumed fairly priced by the market, in the sense that E∗F = 0.

The bank and client are both default prone with zero recovery to each other. The bank also
has zero recovery to its external funder. We denote by J and J1 the survival indicators (random
variables) of the bank and client at time 1, with default probability of the bank Q∗(J = 0) = γ.

Since prices and XVAs only matter at time 0 in a one-period setup, we identify all the XVA
processes, as well as the mark-to-market (valuation by the clean desks) MtM of the deal, with
their values at time 0.
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For any random variable Y, we define

Y◦ = JY and Y• = −(1− J)Y , hence Y = Y◦ − Y•. (5)

Let E denote the expectation with respect to the bank survival measure, say Q, associated with
Q∗, i.e., for any random variable Y,

EY = (1− γ)−1E∗(Y◦) (6)

(which is also equal to EY◦). The notion of bank survival measure was introduced in greater
generality by Schönbucher (2004). In the present static setup, (6) is nothing but the Q∗
expectation of Y conditional on the survival of the bank (note that, whenever Y is independent
from J , the right-hand-side in (6) coincides with E∗Y).

Lemma 3.1 For any random variable Y and constant Y , we have

Y = E∗(Y◦ + (1− J)Y )⇐⇒ Y = EY. (7)

Proof. Indeed,

Y = E∗(JY + (1− J)Y )⇐⇒ E∗(J(Y − Y )) = 0⇐⇒ E(Y − Y ) = 0⇐⇒ Y = EY, (8)

where the equivalence in the middle is justified by (6).

Remark 3.1 For simplicity in a first stage, we will ignore the possibility of using capital at
risk for funding purposes, only considering in this respect reserve capital RC = CA (cf. (4)).
The additional free funding source provided by capital at risk will be introduced later, as well
as collateral between bank and clients, in Section 3.4.

3.1 Cash Flows

Lemma 3.2 Given the (to be specified) MtM and CA amounts (cf. Assumption 2.1.ii), the
credit and funding cash flows C and F of the bank and its trading loss (and profit) L are such
that

C◦ = J(1− J1)P+ , F◦ = Jγ(MtM− CA)+

C• = (1− J)
(
P− − (1− J1)P+

)
, F• = (1− J)

(
(MtM− CA)+ − γ(MtM− CA)+

)

L◦ = C◦ + F◦ − JCA , L• = C• + F• + (1− J)CA , L = C + F − CA.

(9)

Proof. For the deal to occur, the bank needs to borrow (MtM − CA)+ unsecured or invest
(MtM−CA)− risk-free (cf. Remark 3.1). Having assumed zero recovery to the external funder,
unsecured borrowing is fairly priced as γ × the amount borrowed by the bank (in line with our
assumption that E∗F = 0), i.e. the bank must pay for its risky funding the amount

γ(MtM− CA)+.

Moreover, at time 1, under zero recovery upon defaults:

� If the bank is not in default (i.e. J = 1), then the bank closes its position with the client
while receiving P from its client if the latter is not in default (i.e. J1 = 1), whereas the
bank pays P− to its client if the latter is in default (i.e. J1 = 0). In addition, the bank
reimburses its funding debt (MtM−CA)+ or receives back the amount (MtM−CA)− it
had lent at time 0;
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� If the bank is in default (i.e. J = 0), then the bank receives back J1P+ on the derivative
as well as the amount (MtM− CA)− it had lent at time 0.

Also accounting for the perfect market hedge by the bank, which in the static setup amounts
to an additional cash-flow (P −MtM) (viewed as a swapped payment by the bank of P against
MtM at time 1, irrespective of the default status of the bank and, of course, of the client), the
trading loss of the bank over the year is

L = γ(MtM− CA)+ − J
(
J1P − (1− J1)P− − (MtM− CA)+ + (MtM− CA)−

)

− (1− J)
(
J1P+ + (MtM− CA)−

)
+ (P −MtM).

(10)

That is, as easily checked for each of the four possible values of the pair (J, J1),

L = (1− J1)P+ + γ(MtM− CA)+ − CA− (1− J)(P− + (MtM− CA)+), (11)

i.e.

L◦ = J(1− J1)P+

︸ ︷︷ ︸
C◦

+ Jγ(MtM− CA)+︸ ︷︷ ︸
F◦

−JCA

L• = (1− J)
(
P− − (1− J1)P+

)
︸ ︷︷ ︸

C•

+ (1− J)
(
(MtM− CA)+ − γ(MtM− CA)+

)
︸ ︷︷ ︸

F•

+(1− J)CA,
(12)

where the identification of the different terms as part of C or F follows from their financial
interpretation.

Remark 3.2 The derivation (10) implicitly allows for negative equity (that arises whenever
L◦ > CET1, cf. (3)), which is interpreted as recapitalization. In a variant of the model excluding
both recapitalization and negative equity, the default of the bank would be modeled in a
structural fashion as the event {L = CET1}, where

L =
(
(1− J1)P+ + γ(MtM− CA)+ − CA

)
∧ CET1, (13)

and we would obtain, instead of (11), the following trading loss for the bank:

1{CET1>L}L+ 1{CET1=L}
(
CET1− P− − (MtM− CA)+

)
. (14)

In this paper we consider a model with recapitalization for the reasons explained in Remark
2.2.

Structural XVA approaches in a static setup have been proposed in Andersen, Duffie, and
Song (2019) (without KVA) and Kjaer (2019) (including the KVA). Their marginal, limiting
results as a new deal size goes to zero are comparable to some of the results that we have here.
But then, instead of developing a continuous time version of their corporate finance model and
taking the small trade limit, these papers start the development of the continuous time model
from the single period small trade limit model. By contrast, in our framework, we have end
to end development in the continuous time model of Section 4 and in the present single period
model.

3.2 Contra-assets and Contra-liabilities

To make shareholder trading losses centered (cf. the next-to-last paragraph of Section 2), clean
and CA desks value by Q∗ expectation their shareholder sensitive cash flows. These include,
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in case of default of the bank, the transfer of property from the CA desks to the clean desks
of the collateral amount MTM on the clean margin account, as well as (cf. Assumptions 2.1.ii
and iii) the transfer from shareholders to bondholders of the residual value RC = CA on the
reserve capital account. Accordingly:

Definition 3.1 We let

MtM = E∗
(
P◦ + (1− J)MtM

)
(15)

and

CA = CVA + FVA, (16)

where

CVA = E∗
(
C◦ + (1− J)CVA

)

FVA = E∗
(
F◦ + (1− J)FVA

)
,

(17)

hence CA = E∗
(
C◦ + F◦ + (1− J)CA

)
. We also define the contra-liabilities value

CL = DVA + FDA, (18)

where

DVA = E∗
(
C• + (1− J)CVA

)
(19)

FDA = E∗
(
F• + (1− J)FVA

)
. (20)

Finally we define the firm valuation of counterparty risk,

FV = E∗(C + F). (21)

The definitions of MtM,CVA, and FVA are in fact fix-point equations. However, the fol-
lowing result shows that these equations are well-posed and yields explicit formulas for all the
quantities at hand.

Proposition 3.1 We have

MtM = EP◦

CVA = E
(
(1− J1)P+

)

FVA = γ(MtM− CA)+ =
γ

1 + γ
(MtM− CVA)+

(22)

and

E∗L◦ = EL = 0

FDA = FVA

FV = E∗C = CVA−DVA = CA− CL.

(23)

Proof. The first identities in each line of (22) follow from Definition 3.1 by Lemma 3.1
and definition of the involved cash flows in Lemma 3.2. Given (16), the formula FVA =
γ(MtM− CA)+ in (22) is in fact a semi-linear equation

FVA = γ(MtM− CVA− FVA)+. (24)
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But, as γ (a probability) is nonnegative, this equation has the unique solution given by the
right-hand side in the third line of (22).

Regarding (23), we have

E∗L◦ = (1− γ)E
(
(1− J1)P+ + γ(MtM− CA)+ − CA

)
= 0,

by application of (6), the first line in (12), (22), and (16). Hence, using (6) again,

EL = (1− γ)−1E∗L◦ = 0.

This is the first line in (23), which implies the following ones by definition of the involved
quantities and from the assumption that E∗F = 0.

Note that MtM = EP◦ also coincides with EP (cf. (22) and the parenthesis following (6)). In
practice P◦ has less terms than P (that also includes cash flows from bank default onward),
which is why we favor the formulation EP◦ in (22). The alternative formulation EP may seem
more in line with the intuition of MtM as value deprived from any credit/funding considerations.
However, as the measure underlying E is the survival one (see before Lemma 3.1), this intuition
is in fact simplistic and only strictly correct in the case without wrong way risk between credit
and market (cf. the parenthesis preceding Lemma 3.1).

3.3 Capital Valuation Adjustment

Economic capital (EC) is the level of capital at risk that a regulator would like to see on an
economic, structural basis. Risk calculations are typically performed by banks “on a going
concern”, i.e. assuming that the bank itself does not default. Accordingly:

Definition 3.2 The economic capital (EC) of the bank is given by the 97.5% expected short-
fall3 of the bank trading loss L under Q, which we denote by4 ES(L◦).

The risk margin (sized by the to-be-defined KVA in our setup) is also loss-absorbing, i.e. part
of capital at risk, and the KVA is originally sourced from the client (see Assumption 2.1.iii).
Hence, shareholder capital at risk only consists of the difference between the (total) capital
at risk and the KVA. Accordingly (and also accounting, regarding (26), for the last part in
Assumption 2.1.iii):

Definition 3.3 The capital at the risk (CR) of the bank is given by max(EC,KVA) and the
ensuing shareholder capital at risk (SCR) by

SCR = max(EC,KVA)−KVA = (EC−KVA)+, (25)

where, given some hurdle rate (target return-on-equity) h,

KVA = E∗
(
hSCR◦ + (1− J)KVA

)
. (26)

Remark 3.3 In view of (26) and of the last balance condition in (4), we have

RMsh = E∗
(
hSCR◦) , RMbh = E∗

(
(1− J)KVA

)
. (27)

We refer the reader to the last bullet point in Albanese and Crépey (2020, Definition A.1) for the
analogous split of RM between shareholder and bondholder wealth in a dynamic, continuous-
time setup.

3See e.g. Föllmer and Schied (2016, Section 4.4).
4Note that, by definition of Q, this quantity does not depend on L•.
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Proposition 3.2 We have

KVA = hSCR =
h

1 + h
EC =

h

1 + h
ES(L◦), (28)

hence 0 ≤ KVA ≤ ES(L◦).

Proof. The first identity follows from Lemma 3.1. The resulting KVA semi-linear equation
(in view of (25)) is solved similarly to the FVA equation (24). The last statement follows from
the nonnegativity of the expected shortfall of a centered random variable.

The KVA formula (28) (as well as its continuous-time analog (56)) can be used either in the
direct mode, for computing the KVA corresponding to a given h, or in the reverse-engineering
mode, for defining the “implied hurdle rate” associated with the actual level on the risk margin
account of the bank. Cost of capital proxies have always been used to estimate return-on-equity.
The KVA is a refinement, fine-tuned for derivative portfolios, but the base return-on-equity
concept itself is far older than even the CVA. In particular, the KVA is very useful in the
context of collateral and capital optimization.

KVA Risk Premium and Indifference Pricing Interpretation The CA component of
the FTP corresponds to the expected costs for the shareholders of concluding the deal. This CA
component makes the shareholder trading loss L◦ centered (cf. the first line in (23)). On top
of expected shareholder costs, the bank charges to the clients a risk margin (RM). Assume the
bank shareholders endowed with a utility function U on R such that U(0) = 0. In a shareholder
indifference pricing framework, the risk margin arises as per the following equation:

E∗U(J(RM− L)) = E∗U(0) = 0 (29)

(the expected utility of the bank shareholders without the deal), where

E∗U(J(RM− L)) = E∗
(
JU(RM− L)

)
= (1− γ)EU(RM− L),

by (6). Hence

EU(RM− L) = 0. (30)

The corresponding RM is interpreted as the minimal admissible risk margin for the deal to
occur, seen from bank shareholders’ perspective.

Taking for concreteness U(−`) = 1−eρ`
ρ , for some risk aversion parameter ρ, (30) yields

RM = ρ−1 lnEeρL = ρ−1 lnEeρL◦
, by the observation following (6). In the limiting case where

the shareholder risk aversion parameter ρ→ 0 and EU(−L)→ −E(L) = 0 (by the first line in
(23)), then RM→ 0.

In view of (4) and (28), the corresponding implied KVA and hurdle rate h are such that

KVA = ρ−1 lnEeρL
◦
,

h

1 + h
=
ρ−1 lnEeρL◦

ES(L◦)
. (31)

Hence, “for h and ρ small”,

h ≈ Var(L◦)

2ES(L◦)
ρ (32)
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(as E(L◦) = 0), where Var is the Q variance operator. The hurdle rate h in our KVA setup
plays the role of a risk aversion parameter, like ρ in the exponential utility framework.

An indifference price has a competitive interpretation. Assume that the bank is competing
for the client with other banks. Then, in the limit of a continuum of competing banks with
a continuum of indifference prices, whenever a bank makes a deal, this can only be at its
indifference price. Our stylized indifference pricing model of a KVA defined by a constant
hurdle rate h exogenizes (by comparison with the endogenous hurdle rate h in (31)) the impact
on pricing of the competition between banks. It does so in a way that generalizes smoothly to
a dynamic setup (see Section 4), as required to deal with a real derivative banking portfolio. It
then provides a refined notion of return-on-equity for derivative portfolios, where a full-fledged
optimization approach would be impractical.

3.4 Initial Margin and Fungibility of Capital at Risk as a Funding
Source

In case of variation margin (VM) that would be exchanged between the bank and its client,
and of initial margin that would be received (RIM) and posted (PIM) by the bank, at the level
of, say, some Q value-at-risk of ±(P −VM), then

� P+ needs be replaced by (P−VM−RIM)+ in C◦ (cf. (9)) whence an accordingly modified
(in principle: diminished) CVA,

� an additional initial margin related cash flow in F◦ given as JγPIM, triggering an addi-
tional adjustment MVA in CA, where

MVA = E∗
(
JγPIM + (1− J)MVA

)
= γPIM; (33)

� additional initial margin related cash flows in F• given as (1 − J)(PIM − γPIM) and
(1− J)MVA, triggering an additional adjustment MDA = MVA in CL;

� the second FVA formula in (22) modified into FVA = γ
1+γ (MtM−VM−CVA−MVA)+.

Accounting further for the additional free funding source provided by capital at risk (cf. Re-
mark 3.1), then, in view of the specification given in the first sentence of Definition 3.3 for
the latter, one needs replace (MtM − CA)± by (MtM − VM − CA −max(EC,KVA))± every-
where before. This results in the same CVA and MVA as in the bullet points above, but in
the following system for the random variable L◦ and the FVA and the KVA numbers (cf. the
corresponding lines in (12), (22), (28), and recall (16)):

L◦ = J(1− J1)(P−VM− RIM)+ − JCVA

KVA =
h

1 + h
ES(L◦) ≤ ES(L◦)

FVA = γ(MtM−VM− CA− EC)+ =
γ

1 + γ
(MtM−VM− CVA−MVA− ES(L◦))+,

(34)

Remark 3.4 The rationale for funding FVA but not MVA from CA + max(EC,KVA) is set
out before Equation (15) in Albanese, Caenazzo, and Crépey (2017).
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3.5 Funds Transfer Price

The funds transfer price (all-inclusive XVA rebate to MtM) aligning the deal to shareholder
interest (in the sense of a given hurdle rate h, cf. the next-to-last paragraph of Section 2) is

FTP = CVA + FVA︸ ︷︷ ︸
Expected shareholder costs CA

+ KVA︸ ︷︷ ︸
Shareholder risk premium

= CVA−DVA︸ ︷︷ ︸
Firm valuation FV

+ DVA + FDA︸ ︷︷ ︸
Wealth transfer CL

+ KVA︸ ︷︷ ︸
Shareholder Risk premium

,
(35)

where all terms are explicitly given in Propositions 3.1 and 3.2 (or the corresponding variants
of Section 3.4 in the refined setup considered there).

Wealth Transfer Analysis The above results implicitly assumed that the bank cannot hedge
jump-to-default cash flows (cf. Section 1.1). To understand this, let us temporarily suppose,
for the sake of the argument, that the bank would be able to hedge its own jump-to-default
through a further deal, whereby the bank would deliver a payment L• at time 1 in exchange of
a fee fairly valued as

CL = E∗L• = DVA + FDA, (36)

deposited in the reserve capital account of the bank at time 0.
We include this hedge and assume that the client would now contribute at the level of

FV = CA − CL (cf. (23)), instead of CA before, to the reserve capital account of the bank at
time 0. Then the amount that needs be borrowed by the bank for implementing its strategy
is still γ(MtM − CA)+ as before (back to the baseline funding setup of Remark 3.1). But the
trading loss of the bank becomes, instead of L before,

C + F − FV + (L• − CL) = C + F − CA + L• = L+ L• = L◦, (37)

where the last line in (23) and the last identity in (9) were used in the first and second equality.
By comparison with the situation from previous sections without own-default hedge by the
bank:

� the shareholders are still indifferent to the deal in expected counterparty default and
funding expenses terms,

� the recovery of the bondholders becomes zero,

� the client is better off by the amount CA− FV = CL.

The CL originating cash flow L• has been hedged and monetized by the shareholders, who have
passed the corresponding benefit to the client.

Under a cost-of-capital pricing approach, the bank would still charge to its client a KVA
add-on h

1+hES(L◦), as risk compensation for the nonvanishing shareholder trading loss L◦ still
triggered by the deal. If, however, the bank could also hedge the (zero-valued, by the first line
in (23)) loss L◦, hence the totality of L = L◦ − L• (instead of L• only in the above), then the
trading loss and the KVA would vanish. As a result, the all-inclusive XVA add-on (rebate from
MtM valuation) would boil down to

FV = CVA−DVA

(cf. (1)), the value of counterparty risk and funding to the bank as a whole.
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Connection With the Modigliani-Miller Theory The Modigliani-Miller invariance re-
sult, with Modigliani and Miller (1958) as a seminal reference, consists in various facets of a
broad statement that the funding and capital structure policies of a firm are irrelevant to the
profitability of its investment decisions. Modigliani-Miller (MM) irrelevance, as we put it for
brevity hereafter, was initially seen as a pure arbitrage result. However, it was later understood
that there may be market incompleteness issues with it. So quoting Duffie and Sharer (1986,
page 9), “generically, shareholders find the span of incomplete markets a binding constraint
[...] shareholders are not indifferent to the financial policy of the firm if it can change the span
of markets (which is typically the case in incomplete markets)”; or Gottardi (1995, page 197):
“When there are derivative securities and markets are incomplete the financial decisions of the
firm have generally real effects”.

A situation where shareholders may “find the span of incomplete markets a binding con-
straint” is when market completion is legally forbidden. This corresponds to the XVA case,
which is also at the crossing between market incompleteness and the presence of derivatives
pointed out above as the MM non irrelevance case in Gottardi (1995). Specifically, the contra-
assets and contra-liabilities that emerge endogenously from the impact of counterparty risk on
the derivative portfolio of a bank cannot be “undone” by shareholders, because jump-to-default
risk cannot be replicated by a bank.

As a consequence, MM irrelevance is expected to break down in the XVA setup. In fact,
as visible on the trade incremental FTP (counterparty risk pricing) formula (35) (cf. also (43)
and Proposition 4.2 in a dynamic and trade incremental setup below), cost of funding and cost
of capital are material to banks and need be reflected in entry prices for ensuring shareholder
indifference to the trades, i.e. preserving their hurdle rate throughout trades.

4 XVA Analysis in a Dynamic Setup

We now consider a dynamic, continuous-time setup, with model filtration G and a (positive)
bank default time τ endowed with an intensity γ. The bank survival probability measure
associated with the measure Q∗ is then the probability measure Q with (G,Q∗) density pro-
cess Je

∫ ·
0
γsds (assumed integrable), where J = 1[0,τ) is the bank survival indicator process

(cf. Schönbucher (2004) and Collin-Dufresne, Goldstein, and Hugonnier (2004)). In particular,
writing Y ◦ = JY + (1 − J)Yτ−, for any left-limited process Y , we have by application of the
results of Crépey and Song (2017) (cf. the condition (A) there):

Lemma 4.1 For every Q (resp. sub-, resp. resp. super-) martingale Y , the process Y ◦ is a
Q∗ (resp. sub-, resp. resp. super-) martingale.

Remark 4.1 In the dynamic setup, the survival measure formulation is a light presentation,
sufficient for the purpose of the present paper (skipping the related integrability issues), of
an underlying reduction of filtration setup, which is detailed in the above-mentioned reference
(regarding Lemma 4.1, cf. also Collin-Dufresne, Goldstein, and Hugonnier (2004, Lemma 1)).

4.1 Case of a Run-Off Portfolio

First, we consider the case of a portfolio held on a run-off basis (cf. Section 2.1). We denote by
T the final maturity of the portfolio and we assume that all prices and XVAs vanish at time T
if T < τ . Then the results of Albanese and Crépey (2020) show that all the qualitative insights
provided by the one-period XVA analysis of Section 3 are still valid. The trading loss of the
bank is now given by the process

L = C + F + CA− CA0 (38)
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and the bank shareholder trading loss by the Q (hence Q∗, by Lemma 4.1) martingale

L◦ = C◦ + F◦ + CA◦ − CA0. (39)

In (38)-(39), we have CA = CVA + FVA as in (16); the processes C, F , CVA, and FVA
are continuous-time processes analogs, detailed in the case of bilateral trade portfolios in Sec-
tion A.1-A.2, of the eponymous quantities in Section 3 (which were constants or random vari-
ables there).

Proposition 4.1 The core equity tier 1 capital of the bank is given by

CET1 = CET10 − L. (40)

Shareholder equity is given by

SHC = SHC0 − (L+ KVA−KVA0). (41)

Proof. In the continuous-time setup, Assumption 2.1.i is written as

RC + RM + SCR + UC− CM− (RC + RM + SCR + UC− CM)0 = P − (C + F +H).

Given the definition of CET1 in (3), the perfect clean hedge condition (see after Remark 2.2)
written in the dynamic setup as P + MtM −MtM0 − H = 0, and the balance conditions (4),
this is equivalent to

CA + CET1− (CA + CET1)0 = −(C + F).

In view of (38), we obtain (40).
As SHC = CET1− RM (cf. (3)), we have by (40):

SHC = CET10 − L− RM = CET10 − RM0 − (L+ RM− RM0),

which, by the third balance condition in (4), yields (41).

Moreover, by Lemma 4.1, the continuous-time process KVA◦ that stems from (54)-(55) is a
Q∗ supermartingale with terminal condition KVA◦T = 0 on {T < τ} and drift coefficient hSCR,
where SCR is given as in (25), but for EC there dynamically defined as the time-t conditional,
97.5% expected shortfall of (L◦t+1 − L◦t ) under Q, killed at τ .

Remark 4.2 It is only before τ that the right-hand-sides in the definitions (3) really deserve
the respective interpretations of shareholder equity of the bank and core equity tier 1 capital.
Hence, it is only the parts of (40) and (41) stopped before τ , i.e.

CET1◦ = CET10 − L◦ , SHC◦ = SHC0 − (L◦ + KVA◦ −KVA0), (42)

which are interesting financially.

4.2 Trade Incremental Cost-of-Capital XVA Strategy

In Albanese and Crépey (2020) and in Section 4.1 above, the derivative portfolio of the bank
is assumed held on a run-off basis. By contrast, real-life derivative portfolios are incremental.

Assume a new deal shows up at time θ ∈ (0, τ). We denote by ∆·, for any portfolio related
process, the difference between the time θ values of this process for the run-off versions of the
portfolio with and without the new deal.
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Definition 4.1 We apply the following trade incremental pricing and accounting policy:

� The clean desks pay ∆MtM to the client and the CA desks add an amount ∆MtM on5

the clean margin account;

� The CA desks charge to the client an amount ∆CA and add it on6 the reserve capital
account;

� The management of the bank charges the amount ∆KVA to the client and adds it on7

the risk margin account.

The funds transfer price of a deal is the all-inclusive XVA add-on charged by the bank to
the client in the form of a rebate with respect to the mark-to-market ∆MtM of the deal. Under
the above scheme, the overall price charged to the client for the deal is ∆MtM−∆CA−∆KVA,
i.e.

FTP = ∆CA + ∆KVA = ∆CVA + ∆FVA + ∆KVA

= ∆FV + ∆CL + ∆KVA,
(43)

by (16) and the last line in (23) (which still hold in continuous time, see Albanese and Crépey
(2020, Equations (1) and (66))) applied to the portfolios with and without the new deal.

Remark 4.3 As opposed to the ∆XVA terms, which entail portfolio-wide computations, ∆MtM
reduces to the so-called clean valuation of the new deal, by trade-additivity of MtM (as follows
from Albanese and Crépey (2020, Equations (25) and (37))).

Obviously, the legacy portfolio of the bank has a key impact on the FTP. It may very
well happen that the new deal is risk-reducing with respect to the portfolio, in which case
FTP < 0, i.e. the overall, XVA-inclusive price charged by the bank to the client would be
∆MtM − FTP > ∆MtM (subject of course to the commercial attitude adopted by the bank
under such circumstance).

In order to exclude for simplicity jumps of our L and KVA processes at θ (the ones related
to the initial portfolio, but also those, starting at time θ, corresponding to the augmented
portfolio), we assume a quasi-left continuous model filtration G and a G predictable stopping
time θ. The first assumption excludes that martingales can jump at predictable times. It is
satisfied in all practical models and, in particular, in all models with Lévy or Markov chain
driven jumps. The second assumption is reasonable regarding the time at which a financial
contract is concluded. Note that it was actually already assumed regarding the (fixed) time 0
at which the portfolio of the bank is supposed to have been set up in the first place.

Lemma 4.2 Assuming the new trade at time θ handled by the trade incremental policy of
Definition 4.1 after that the balance conditions (4) have been held before θ, then shareholder
equity SHC◦ (see Remark 4.2) is a Q∗ submartingale on [0, θ]∩R+, with drift coefficient hSCR
killed at τ .

Proof. In the case of a trade incremental portfolio, a priori, the second identity in (42) is
only guaranteed to hold before θ. However, in view of the observation made in Remark 2.4
and because, under our (harmless) technical assumptions, there can be no dividends arising
from the portfolio expanded with the new deal (i.e. jumps in the related processes L and KVA,

5i.e. remove (−∆MtM) from, if ∆MtM < 0.
6i.e. remove (−∆CA) from, if ∆CA < 0.
7i.e. removes (−∆KVA) from, if ∆KVA < 0.
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defined on [θ,+∞)) at time θ itself, the process SHC does not jump at θ. The process L and
KVA related to the legacy portfolio cannot jump at θ either. As a result, the second identity
in (42) still holds at θ. It is therefore valid on [0, θ] ∩ R+. The result then follows from the
respective martingale and supermartingale properties of the (original) processes L◦ and KVA◦

recalled before and after Proposition 4.1.

The above XVA strategy can be iterated between and throughout every new trade. We
call this approach the trade incremental cost-of-capital XVA strategy. By an iterated
application of Lemma 4.2 at every new trade, we obtain the following:

Proposition 4.2 Under a dynamic and trade incremental cost-of-capital XVA strategy, share-
holder equity SHC◦ is a Q∗ submartingale on R+, with drift coefficient hSCR killed at τ .

Thus, a trade incremental cost-of-capital XVA strategy results in a sustainable strategy for
profits retention, both between and throughout deals, which was already the key principle
behind Solvency II (see Section 1.1). Note that, without the KVA (i.e. for h = 0), the (risk-free
discounted) shareholder equity process SHC◦ would only be a Q∗ martingale, which could only
be acceptable to shareholders without risk aversion (cf. Section 3.3).

4.3 Computational Challenges

Figure 2 yields a picturesque representation, in the form of a corresponding XVA dependence
tree, of the continuous-time XVA equations.

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

  , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

  , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

  , MtMv=u,...,T

IMv

  , MtMw=v,...,v+

   , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 . 

. .

. .
 . 

.

. .
 . 

.

. .
 .

. .
 .

. .

Figure 2: The XVA equations dependence tree (Source: Abbas-Turki, Diallo, and Crépey
(2018)).

For concreteness, we restrict ourselves to the case of bilateral trading in what follows,
referring the reader to Albanese, Armenti, and Crépey (2020, Section 6.2) for the more general
and realistic situation of a bank also involved in centrally cleared trading. As visible from
the corresponding equations in Section A, the CVA of the bank can then be computed as the
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sum of its CVAs restricted to each netting set (or counterparty i of the bank, with default
time denoted by τi in Figure 2). The initial margins and the MVA are also most accurately
calculated at each netting set level. By contrast, the FVA is defined in terms of a semilinear
equation that can only be solved at the level of the overall derivative portfolio of the bank. The
KVA can only be computed at the level of the overall portfolio and relies on conditional risk
measures of future fluctuations of the shareholder trading loss process L◦, which itself involves
future fluctuations of the other XVA processes (as these are part of the bank liabilities).

Moreover, the fungibility of capital at risk with variation margin (cf. Remark 3.4) induces a
coupling between, on the one hand, the “backward” FVA and KVA processes and, on the other
hand, the “forward” shareholder loss process L◦. As in the static case of Section 3.4 (cf. the last
paragraph there), the ensuing forward backward system can be decoupled by Picard iteration.

These are heavy computations encompassing all the derivative contracts of the bank. Yet
these computations require accuracy so that trade incremental XVA computations, which are
required as XVA add-ons to derivative entry prices (cf. Section 4.2), are not in the numerical
noise of the machinery.

As developed in Abbas-Turki, Diallo, and Crépey (2018, Section 3.2), computational strate-
gies for (each Picard iteration of) the XVA equations involve a mix of nested Monte Carlo
(NMC) and of simulation/regression schemes, optimally implemented on GPUs. In view of
Figure 2, a pure NMC approach would involve five nested layers of simulation (with respec-
tive numbers of paths Mxva ∼

√
Mmtm, see Abbas-Turki, Diallo, and Crépey (2018, Section

3.3)). Moreover, nested Monte Carlo implies intensive repricing of the mark-to-market cube,
i.e. pathwise MtM valuation for each netting set, or/and high dimensional interpolation. In
this work, we use no nested Monte Carlo or conditional repricing of future MtM cubes: beyond
the base MtM layer in the XVA dependence tree, each successive layer (from right to left in
Figure 2, at each Picard iteration) will be “learned” instead.

4.4 Deep (Quantile) Regression XVA Framework

We denote by Et, VaRt, and ESt (and simply, in case t = 0, E, VaR, and ES) the time-t
conditional expectation, value-at-risk, and expected shortfall with respect to the bank survival
measure Q.

We compute the mark-to-market cube using CUDA routines. The pathwise XVAs are
obtained by deep learning regression, i.e. extension of ?) kind of schemes to deep neural
network regression bases as also considered in Huré, Pham, and Warin (2020) or Beck, Becker,
Cheridito, Jentzen, and Neufeld (2019), based on the classical quadratic (also known as mean
square error, MSE) loss function. The conditional value-at-risks and expected shortfalls involved
in the embedded pathwise EC and IM computations are obtained by deep quantile regression,
as follows.

Given features X and labels Y (random variables), we want to compute the conditional
value-at-risk and expected shortfall functions q(·) and s(·) such that VaR(Y |X) = q(X) and
ES(Y |X) = s(X). Recall from Fissler, Ziegel, and Gneiting (2016) and Fissler and Ziegel
(2016) that value-at-risk is elicitable, expected shortfall is not, but their pair is jointly elicitable.
Specifically, we consider loss functions ρ of the form (where in our notation Y is a signed loss,
whereas it is a signed gain in their paper)

ρα(q(·), s(·);X,Y ) = (1− α)−1 (f(Y )− f(q(X)))
+

+ f(q(X))+

g(s(X))− ġ(s(X))
(
s(X)− q(X)− (1− α)−1(Y − q(X))+

)
.

(44)

One can show (cf. also Dimitriadis and Bayer (2019)) that, for a suitable choice of the
functions f , g including f(z) = z and g = − ln(1 + e−z) (our choice in our numerics), the
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pair of the conditional value-at-risk and expected shortfall functions is the minimizer, over all
measurable pair-functions (q(·), s(·)), of the error

Eρ(q(·), s(·);X,Y ). (45)

In practice, one minimizes numerically the error (45), based on m independent simulated
values of (X,Y ), over a parametrized family of functions (q, s)(x) ≡ (q, s)θ(x). Dimitriadis
and Bayer (2019) restrict themselves to multilinear functions. In our case we use a feedforward
neural network parameterization (see e.g. Goodfellow, Bengio, and Courville (2016)). The
minimizing pair (q, s)θ̂ then represents the two scalar neural network approximations of the
conditional value-at-risk and expected shortfall functions pair.

The left and right panels of Figure 3 show the respective deep neural networks for pathwise
value-at-risk/expected shortfall (with error (45)) and pathwise XVAs (with classical quadratic
norm error). Deep learning methods often show particularly good generalization and scalability
performances (cf. Section 5.5). In the case of conditional value-at-risk and expected shortfall
computations, deep learning quantile regression is also easier to implement than more naive
methods, such as the resimulation and sort-based scheme of Barrera, Crépey, Diallo, Fort,
Gobet, and Stazhynski (2019) for the value-at-risk and expected shorfall at each outer node of
a nested Monte Carlo simulation.
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H.,1
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ESt

VaRt

RFnt

RF1t

Input Layer 3 by 20 Hidden layers Output Layer

H.,2

H20,1 H20,2

H1,1

H.,1

H1,2 H1,3

H.,3

H20,3

XVAt

RFnt

RF1t

Input Layer 3 by 20 Hidden layers Output Layer

Figure 3: Neural networks with state variables (realizations of the risk factors at the considered
pricing time) as features. (Left) Joint value-at-risk/expected shortfall neural network: out-
put is joint estimate of pathwise conditional value-at-risk and expected shorfall, at a selected
confidence level, of the label (inputs to initial margin or economic capital) given the features.
(Right) XVAs neural network: output is estimate of pathwise conditional mean of the label
(XVA generating cash flows) given the features.

The neural network topology and hyper-parameters used by default in our examples are
detailed in Table 2. We use hyperbolic tangent activation functions in all cases. Algorithm 1
yields our fully (time and space) discrete scheme for simulating the Picard iteration (58) until
numerical convergence to the XVA processes. Note that, as opposed to more rudimentary,
expected exposure based XVA computational approaches (see Section 1 in Abbas-Turki, Diallo,
and Crépey (2018)), this algorithm requires the simulation of the counterparty defaults.

5 Swap Portfolio Case Study

We consider an interest rate swap portfolio case study with counterparties in different economies,
first involving 10 one-factor Hull White interest-rates, 9 Black-Scholes exchange rates, and 11

8See Section 5.
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CVA FVA IM MVA Gap CVA8 EC KVA

Hidden Layers 3 5 3 3 3 3 3
Hidden Layer Size 20 6 20 20 20 20 20
Learning Rate 0.025 0.025 0.05 0.1 0.1 0.025 0.1
Momentum 0.95 0.95 0.5 0.5 0.5 0.95 0.5
Iterations 100 50 150 100 100 100 100
Loss Function MSE MSE (44) MSE (44) (44) MSE
Application netting set portf. netting set netting set netting set portf. portf.

Table 2: Neural network topology and learning parameters used by default in our numerics
(portf. ≡ overall derivative portfolio of the bank).

Algorithm 1 Deep XVAs algorithm.

� Simulate forward m realizations (Euler paths) of the market risk factor processes and of
the counterparty survival indicator processes (i.e. default times) on a refined time grid;

� For each pricing time t = ti of a pricing time grid, with coarser time step denoted by h,
and for each counterparty c:

– Learn the corresponding VaRt and ESt terms visible in (59) or (under the time-
discretized outer integral in) (61);

– Learn the corresponding Et terms visible in (60) through (62);

– Compute the ensuing pathwise CVA and MVA as per (60)–(62);

� For FVA(0), consider the following time discretization of (57) (in which λ is the risky
funding spread process of the bank) with time step h:

FVA
(0)
t ≈ Et[FVA

(0)
t+h] + hλt

(∑

c

Jct (P ct −VMc
t)− CVAt −MVAt − FVA

(0)
t

)+
(46)

and, for each t = ti, learn the corresponding Et in (46), then solve the semi-linear equation

for FVA
(0)
t ;

� For each Picard iteration k (until numerical convergence), simulate forward L(k) as per
the first line in (58) (which only uses known or already learned quantities), and:

– For economic capital EC(k), for each t = ti, learn ESt
(
(L(k))◦t+1 − (L(k))◦t

)
(cf. Defi-

nition A.1);

– KVA(k) and FVA(k) then require a backward recursion solved by deep learning ap-
proximation much like the one for FVA(0) above.

Cox-Ingersoll-Ross default intensity processes. The default times of the counterparties and the
bank itself are jointly modeled by a “common shock” or dynamic Marshall-Olkin copula model
as per Crépey, Bielecki, and Brigo (2014, Chapt. 8–10) and Crépey and Song (2016) (see also
Elouerkhaoui (2007, 2017)). This whole setup results in about 40 risk factors used as deep
learning features (including the counterparty default indicators).

In this model we consider a bank portfolio of 10K randomly generated swap trades, with

� trade currency and counterparty both uniform on [1, 2, 3 . . . , 10],
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� notional uniform on [10K, 20K, . . . , 100K],

� collateralization (cf. Section A.4): either “no CSA counterparty” without initial margin
(IM) nor variation margin (VM), or “CSA counterparty” with VM = MtM and posted
initial margin (PIM) pledged at 99% gap risk value-at-risk, received initial margin (RIM)
covering 75% gap risk and leaving excess as residual gap CVA,

� for economic capital, 97.5% expected shortfall of 1-year ahead trading loss of the bank
shareholders.

By default we use Monte Carlo simulation with 50K paths of 16 coarse (pricing) and 32 fine
(risk factors) time steps per year.

5.1 Validation Results

The validation of our deep learning methodology is done in the setup of a portfolio of swaps
issued at par, with final maturity T = 10 years, without initial margin (IM) nor variation
margin (VM).

We first focus on the CVA, as the latter is amenable to validation by a standard nested Monte
Carlo (“NMC”) methodology. Figures 4, 5 and 6 show that the learned CVA is consistent with
that obtained from a nested Monte Carlo simulation. Regarding Figure 6 (and also later below),
note the equivalence of optimising the mean quadratic error

� between the ANN learned estimator h (X) and the labels Y (“MSE”), E
[
(h (X)− Y )

2
]
,

and

� between the ANN learned estimator and the conditional expectation E [Y |X ] (in our case

estimated by NMC), E
[
(h (X)− E [Y |X ])

2
]
.

The equivalence stems from the following identities, which hold for any random variables X, Y
and hypothesis function h such that Y and h (X) are square integrable:

E
[
(h (X)− Y )

2
]

= E
[
(h (X)− E [Y |X ])

2
]

+ E
[
(E [Y |X ]− Y )

2
]

+ 2E
[

(h (X)− E [Y |X ]) (E [Y |X ]− Y )
]

= E
[
(h (X)− E [Y |X ])

2
]

+ E [Var (Y |X )] + 0,

(47)

where E [Var (Y |X )] does not depend on h.
The CVA error profile on Figure 6 reveals slightly more difficulty in learning the earlier

CVAs. This is because of a higher variance of the corresponding cash flows (integrated over
longer time frames) in conjunction with a lower variance of the features (risk factors diffused
over shorter time horizons).

Table 3 shows the computational cost and accuracy of the nested Monte Carlo method for
different number of inner paths, using 32768 outer paths. The convergence is already achieved
for approximately 128 inner paths, in line with the NMC square root rule that is recalled in
an XVA setup in Abbas-Turki, Diallo, and Crépey (2018, Section 3.3). Figure 7 and Table
4 show that a good accuracy can be achieved through learning at a lower computational cost
than through nested Monte Carlo, while also enjoying the advantages of the approach being
parametric. Indeed, once the CVA is learned, one would pay only the cost of inference later
on, which is generally negligible compared to training time. By contrast, a nested Monte Carlo
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Figure 4: Random variables CVAc
1 and CVAc

7 (in the case of a no CSA netting set c, respectively
observed after 1 and 7 years) obtained by learning (blue histogram) versus nested Monte Carlo
(orange histogram). All histograms are based on out-of-sample paths.
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Figure 5: QQ-plot of learned versus nested Monte Carlo CVA for the random variables CVAc
1

(left) and CVAc
7 (right). Paths are out-of-sample.
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Figure 6: Empirical quadratic loss of each CVA estimator at all coarse time-steps. The lower,
the closer to the true conditional expectation (cf. (47)). Since the nested Monte Carlo method
is computationally expensive, it was carried out only once every 10 coarse time-steps.

approach would require to relaunch the nested simulations every time the CVA estimator is
needed on new paths. Early stopping could be used to help reduce training time further while
improving regularization.

# of inner paths MSE (vs labels) Computational time (seconds)

2 0.523 37.562
4 0.427 37.815
8 0.393 37.819

16 0.370 38.988
32 0.360 40.707
64 0.353 57.875

128 0.348 157.536
256 0.349 301.406
512 0.348 584.475

1024 0.348 1213.756

Table 3: Accuracy and computation times for the estimation of a CVA at a given coarse time-
step using the nested Monte Carlo procedure. The MSE here is the mean quadratic error
between the nested Monte Carlo estimator and the labels, and hence quantifies how well it is
doing as a projection.

More generally, in the presence of a multiple number of XVA layers (cf. Figure 2), a purely
nested Monte Carlo approach would require multiple layers of nested simulations, which would
amount to a computational time that is exponential in the number of XVA layers, while the
computational complexity for the learning approach is linear.

As with mainstream interpolation (as opposed to regression in our case) learning problems,
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Figure 7: Speed versus accuracy in the case of a CVA at a given pricing time. We kept varying
the number of inner paths for the nested Monte Carlo estimator and the number of epochs for
the learning approach and recorded the computation time and the empirical quadratic loss.

MSE (vs NMC CVA) MSE (vs labels) Simulation time Training time
# of epochs

1 0.977 0.979 21.992 0.880
2 0.729 0.729 21.992 0.434
4 0.423 0.425 21.992 0.524
8 0.399 0.401 21.992 0.719
16 0.371 0.369 21.992 1.088
32 0.369 0.365 21.992 1.800
64 0.370 0.363 21.992 3.243
128 0.371 0.363 21.992 6.227
256 0.370 0.361 21.992 10.883
512 0.370 0.362 21.992 20.096
1024 0.371 0.362 21.992 39.338

Table 4: Accuracy and computation times (in sec) for the calculation of a CVA at a given
coarse time-step using the learning approach. MSE against NMC CVA is the mean quadratic
error between the learned CVA and a CVA obtained using a nested Monte Carlo with 512 inner
paths, while MSE against labels designates the mean quadratic error between the learned CVA
and the labels that were used during training and thus quantifies how well it is doing as a
projection. Both errors are respectively normalized by the variances of the nested Monte Carlo
estimator and of the labels. The paths used here are out-of-sample.
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a good architecture is key to better learning and hence better approximation of our XVA
metrics. As expected, increasing the model capacity reduces the in-sample error as shown in
the bottom panel of Figure 8. Although fine-tuning in our case suggests a single layer yields
the best out-of-sample performance for the CVA, a standard guess such as 3 layers can also be
considered good enough as shown in the top panel. Of course such conclusions may depend on
the complexity of the portfolio and the number of counterparties and risk factors.

Figure 9 shows the learned FVA(0) profile as per (46). The orange FVA curve represents
the mean FVA originating cash flows, which, in principle as on the picture, matches the blue
mean FVA itself learned from these cash flows. The 5th and 95th percentiles FVA estimates
are a bit less smooth in time then the mean profiles, as expected.

Figure 10 (left) is a sanity check that the profiles of the successives iterates L(k) of the
shareholder trading loss process L◦ in Algorithm 1 converge rapidly with k. Figure 10 (right)
shows the loss process L(3), displayed as its mean and mean ± 2 stdev profiles. Consistent with
its martingale property, the loss process L(3) appears numerically centered around zero. The
latter holds, at least, beyond t ∼ 5 years. For earlier times, the regression errors, accumulated
backward across pricing times since the final maturity of the portfolio, induce a non negligible
bias (the corresponding confidence intervals no longer contains 0). This is the reason why we
use a coarser pricing time step than simulation time step in Algorithm 1.

5.2 Portfolio-wide XVA Profiles

For the financial case study that follows, we consider

� swap rates uniformly distributed on [0.005, 0.05] (hence swaps already in-the-money or
out-of-the-money at time 0),

� number of six-monthly coupon resets uniform on [5 . . . 60] (final maturity of the portfolio
T = 30 years),

� portfolio direction: either “asset heavy” bank mostly in the receivables in the future, or
“liability-heavy” bank mostly in the payables in the future (respectively corresponding,
with our data, to a bank 75% likely to pay fixed in the swaps, or 75% likely to receive
fixed).

The figures that follow only display profiles, i.e. term structures, that is, expectations as a
function of time of the corresponding processes. But all these processes are computed pathwise,
based on the deep learning regression and quantile regression methodology of Section 4.4,
allowing for all XVA inter-dependencies. Of course, XVA profiles (or pathwise XVAs if wished)
are much more informative for traders than the spot XVA values (or time 0 confidence intervals)
returned by most XVA systems.

Assuming 10 counterparties, Figure 11 shows the GPU generated profiles of

MtM =
∑

c

P c1[0,τδc ) (48)

in the case of the asset-heavy portfolio and of the liability-heavy portfolio.
Figure 12 shows the porftolio-wide XVA profiles of the asset-heavy (top) vs. liability–heavy

(bottom) portfolio and of the no CSA (left) vs. CSA portfolio (right). Obviously, asset–heavy or
no CSA means more CVA. The correponding curves also emphasize the transfer from counter-
party credit into liquidity funding risk prompted by extensive collateralisation. Yet FVA/MVA
risk is ignored in current derivatives capital regulation.
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Figure 8: Empirical quadratic loss during CVA learning at time-step t = 5 years, standardized
by the variance of the labels. (Bottom) Paths are in-sample. (Top) Paths are out-of-sample.
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Figure 10: (Left) Profiles of the processes L(k), for k = 1, 2, 3; (Right) Mean ± 2 stdev profiles
of the process L(3).

Figure 13 shows that (top left) capital at risk as funding (cf. Section 3.4) has a material
impact on the already (reserve capital as funding) reduced FVA, (top right) treating KVA as
a risk margin (cf. (26)) gives a huge discounting impact, (bottom left) deep learning detects
material initial margin convexity in the asset-heavy CSA portfolio, and (bottom right) deep
learning detects material economic capital convexity in the asset-heavy no CSA portfolio.

The above findings demonstrate the necessity of pathwise capital and margin calculations
for accurate FVA, MVA, and KVA calculations.
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Figure 12: (Top left) Asset-heavy portfolio, no CSA. (Top right) Asset-heavy portfolio under
CSA. (Bottom left) Liability–heavy portfolio, no CSA. (Bottom right) Liability-heavy portfolio
under CSA.
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Figure 13: (Top left) FVA ignoring the off-setting impact of reserve capital and capital at risk,
cf. Section 3.4 (blue), FVA as per (57) accounting for the off-setting impact of reserve capital
but ignoring the one of capital at risk (green), refined FVA as per (52) accounting for both
impacts (red). (Top right) KVA ignoring the off-setting impact of the risk margin, i.e. with CR
instead of (CR−KVA) in (56) (red), refined KVA as per (54)–(55) (blue). (Bottom left) In the
case of the asset-heavy portfolio under CSA, unconditional PIM profile, i.e. with VaRt replaced
by VaR in (59) (blue), vs. pathwise PIM profile, i.e. mean of the pathwise PIM process as per
(59) (red). (Bottom right) In the asset-heavy portfolio no CSA case, unconditional economic
capital profile, i.e. EC profile ignoring the words “time-t conditional” in Definition A.1 (blue),
vs. pathwise economic capital profile, i.e. mean of the pathwise EC process as per Definition
A.1 (red).

5.3 Trade Incremental XVA Profiles

Next, we consider, on top of the previous portfolios, an incremental trade given as a par 30
year (receive fix or pay fix) swap with 100K notional. Figure 14 shows the trade incremental
XVA profiles produced by our deep learning approach. Note that, for obtaining such smooth
incremental profiles, it has been key to use common random numbers, as much as possible,
between the original portfolio XVA computations and the ones regarding the portfolio expanded
with the new trade.

5.4 Trade and Hedge Incremental XVA Profiles

Our model assumes the market risk of trades to be fully hedged (see the paragraph following
Remark 2.2 and the proofs of Lemma 3.2 and Proposition 4.1). In the previous subsection,
the new swap was implicitly meant to be hedged, in terms of market risk, by the clean desks,
through an accordingly modified hedging loss process H (see Section 2.1). Here we consider
an alternative situation where the market risk of the new swap is back-to-back hedged via a
financial, hedge counterparty. Specifically, we deal with

� 10 counterparties: 8 no CSA clients and 2 bilateral VM/IM CSA hedge counterparties,
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Figure 14: (Top left) Asset-heavy portfolio, no CSA. Incremental receive fix trade. (Top right)
Liability-heavy portfolio, no CSA. Incremental pay fix trade. (Bottom left) Asset-heavy port-
folio under CSA. Incremental Pay Fix Trade. (Bottom right) Liability-heavy portfolio under
CSA. Incremental receive fix trade.

� portfolios of 5K randomly generated swap trades as before, plus 5K corresponding hedge
trades,

� an incremental trade given as a par 30 year swap with 100K notional, along with the
corresponding hedge trade.

In particular, MtM0 = 0 (cf. (48)), in both portfolios excluding or including the new swap. In
case a client or hedge counterparty defaults, the corresponding market hedge is assumed to be
rewired through the clean desks via an accordingly modified hedging loss process H.

The 8 no CSA counterparties are primarily asset or liability heavy. One bilateral CSA hedge
counterparty is asset-heavy and one liability-heavy. Figure 15 provides the trade incremental
XVA profiles of the bilateral hedge alternatives in combination with those for the initial coun-
terparty trade. The main XVA impact of the hedge is then a corresponding incremental MVA
term, which can contribute to make the global FTP related to the trade+hedge package more
or less positive or negative, depending on the data (cf. the four panels in Figure 15), as can
only be inferred by a refined XVA computation.

Remark 5.1 In the above, we do not include the XVA costs/benefits of the bilateral hedge
counterparty itself. Given Remark 2.4, in different circumstances it may be possible to attribute
them to client trades of the original or hedge bank. Space is lacking for a fuller discussion of
economics of XVA trading in different setups. In particular, many hedge trades now face
central instead of bilateral counterparties. This occurs at additional XVA costs for the client
of the initial swap that can be computed the way explained in Albanese, Armenti, and Crépey
(2020).
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Figure 15: (Top left) XVA-reducing trade + XVA-increasing bilateral hedge (Top right) XVA-
increasing trade + XVA-increasing bilateral hedge. (Bottom left) XVA-reducing trade + xva-
reducing bilateral hedge (Bottom right) XVA-increasing trade + XVA-reducing bilateral hedge.

5.5 Scalability

Our deep learning XVA implementation uses CNTK, the Microsoft Cognitive Toolkit. CNTK
is written in core C++/CUDA (with wrappers for Python, C#, and Java). This is convenient
for XVA applications, which are usually developed in C++: CNTK automatic differentiation
in C++/CUDA enables C++ in-process training. This allows embedding the deep learning
task within XVA processing.

Table 5 sets out computation times, including additional results obtained by doubling the
numbers of counterparties and risk factors (to 20 counterparties and 80 risk factors).

10 CP 40 risk factors 20 CP 80 risk factors
No CSA IM CSA No CSA IM CSA

Initial risk factor & trade pricing simulation Cuda 352 352 426 426
Counterparty and bank level learning calculations 4,529 13,466 19,154 59,342

Total initial batch 4,881 13,818 19,580 59,768

Re-simulate 1 counterparty trade pricing Cuda 40 40 51 51
Counterparty and bank level learning calculations 2,785 2,736 7,694 6,628

Total incremental trade 2,825 2,776 7,745 6,679

Table 5: XVA deep learning computation timings (seconds).

All these results were based on 50K simulation paths, 32 time steps per year for risk factor
simulation, and 16 time steps per year for all XVA calculations and deep learning. They were
computed on a Lenovo P52 laptop with NVidia Quadro P3200 GPU @ 5.5 Teraflops peak FP32
performance, and 14 streaming multiprocessors.

The computations for 20 counterparties took more than twice as long as those for 10 counter-
parties. However, our deep learning calculations achieved around 80 to 90% Cuda occupancy for
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10 counterparties and at times fell to half that level for 20 counterparties. Scaling to realistically
high dimensions should be achievable, but acceptable trade incremental pricing performance
in production would require server-grade GPU hardware, performance tuning for high GPU
utilisation, and, possibly, caching computations.
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A Continuous-Time XVA Equations

We recall from Crépey, Sabbagh, and Song (2020) the continuous-time XVA equations for
bilateral trade portfolios when capital at risk is deemed fungible with variation margin, also
adding here initial margin and MVA as in the refined static setup of Section 3.4.

We write δη(dt) = d1{η≤t} for the Dirac measure at a random time η.

A.1 Cash Flows

We suppose that the derivative portfolio of the bank is partitioned into bilateral netting sets of
contracts which are jointly collateralized and liquidated upon bank or counterparties (whether
these are clients or market hedge counterparties) default. Given a netting set c of the bank
portfolio, we denote by:

� Pc and P c, the corresponding contractually promised cash flows and clean value processes;

� τc, J
c, and Rc, the corresponding default times, survival indicators, and recovery rates,

whereas τ , J , and R are the analogous data regarding the bank itself, with bank credit
spread process λ = (1−R)γ taken as a proxy of its risky funding spread process9;

� τ δc = τc + δ and τ δ = τ + δ, where δ is a positive margin period of risk, in the sense that
the liquidation of the netting set c happens at time τ δc ∧ τ δ;

� VMc, the variation margin (re-hypothecable collateral) exchanged between the bank and
counterparty c, counted positively when received by the bank;

� PIMc and RIMc, the related initial margin (segregated collateral) posted and received by
the bank;

� RC and CR, the reserve capital and capital at risk of the bank.

The contractually promised cash flows are supposed to be hedged out by the bank but one
conservatively assumes no XVA hedge, so that the bank is left with the following trading cash
flows C and F (cf. (38) and see Albanese and Crépey (2020, Lemmas 5.1 and 5.2) for detailed
derivations of analogous equations in a slightly simplified setup):

� The (counterparty) credit cash flows

dCt =
∑

c;τc≤τδ
(1−Rc)

(
(P c + Pc)τδc∧τδ − (Pc + VMc + RIMc)(τc∧τ)−

)+
δτδc∧τδ(dt)

− (1−R)
∑

c;τ≤τδc

(
(P c + Pc)τδ∧τδc − (Pc + VMc − PIMc)(τ∧τc)−

)−
δτδ∧τδc (dt);

(49)

9See Albanese, Armenti, and Crépey (2020, Section 5) for the discussion of cheaper funding schemes for
initial margin.
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� The (risky) funding cash flows

dFt = Jtλt

(∑

c

Jc(P c −VMc)− RC−CR
)+
t
dt

− (1−R)
(∑

c

Jc(P c −VMc)− RC−CR
)+
τ−

δτ (dt)

+ Jtλt
∑

c

JctPIMc
tdt− (1−R)

∑

c

Jcτ−PIMc
τ−δτ (dt),

(50)

where the RC and CR terms account for the fungibility of reserve capital and capital at
risk with variation margin.

A.2 Valuation

Here (as in our numerics) we distinguish between a (strict) FVA, in the strict sense of the cost
of raising variation margin, and an MVA for the cost of raising initial margin (see Remark 2.1).
The (other than K)VA equations are then

RC = CA = CVA + FVA + MVA, (51)

the so-called “contra-assets valuation” sourced from the clients and deposited in the reserve
capital account of the bank, where, for t < τ ,

CVAt = Et
∑

t<τδc

(1−Rc)
(

(P c + Pc)τδc − (Pc + VMc + RIMc)τc−

)+

FVAt = Et
∫ T

t

λs

(∑

c

Jc(P c −VMc)− CA− CR
)+
s
ds

MVAt = Et
∫ T

t

λs
∑

c

JcsPIMc
sds.

(52)

The corresponding trading loss and profit process L of the bank is such that

L0 = 0 and, for t < τ,

dLt =
∑

c

(1−Rc)
(

(P c + Pc)τδc − (Pc + VMc + RIMc)τc−

)+
δτδc (dt)

+ λt

(∑

c

Jc(P c −VMc)− CA− CR
)+
t
dt

+ λt
∑

c

JctPIMc
tdt

+ dCAt,

(53)

so that L is a Q martingale, hence (by Lemma 4.1) L◦ is a Q∗ martingale.
By the same rationale as Definitions 3.2 and 3.3 in the static setup:

Definition A.1 ECt is the time-t conditional 97.5% expected shortfall of (L◦t+1 − L◦t ) under
Q.

Given a positive target hurdle rate h:
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Definition A.2 We set

CR = max(EC,KVA), (54)

for a KVA process such that, for t < τ ,

KVAt = Et
[ ∫ T

t

h
(
CRs −KVAs

)
ds
]
. (55)

Hence, for t < τ ,

KVAt = Et
[ ∫ T

t

he−h(s−t)CRsds
]

= Et
[ ∫ T

t

he−h(s−t) max(ECs,KVAs

)
ds
]
.

(56)

The next-to-last identity is the continuous-time analog of the risk margin formula under the
Swiss solvency test cost of capital methodology: see Swiss Federal Office of Private Insurance
(2006, Section 6, middle of page 86 and top of page 88).

A.3 The XVA Equations are Well-Posed

In view of (51), the second line in (52) is in fact an FVA equation. Likewise, the second
line in (56) is a KVA equation. Moreover, as capital at risk is fungible with variation margin
(cf. Section 3.4), i.e. in consideration of the CR term in (52)-(53), where CR = max(EC,KVA),
we actually deal with an (FVA,KVA) system, and even, as EC depends on L (cf. Definition
A.1), with a forward backward system for the forward loss process L and the backward pair
(FVA,KVA).

However, as in the refined static setup of Section 3.4, the coupling between (FVA,KVA)
and L can be disentangled by the following Picard iteration:

� Let CVA and MVA be as in (52), L(0) = KVA(0) = 0, and , for t < τ ,

FVA
(0)
t = Et

∫ T

t

λs

(∑

c

Jc(P c −VMc)− CA(0)
)+
s
ds, (57)

where CA(0) = CVA + FVA(0) + MVA;

� For k ≥ 1, writing explicitly EC = EC(L) to emphasize the dependence of EC on L, let

L
(k)
0 = 0 and, for t < τ ,

dL
(k)
t =

∑

c

(1−Rc)
(

(P c + Pc)τδc − (Pc + VMc + RIMc)τc−

)+
δτδc (dt)

+ λt

(∑

c

Jc(P c −VMc)− CA(k−1)−max
(
EC(L(k−1)),KVA(k−1)))+

t
dt

+ λt
∑

c

JctPIMc
tdt+ dCA

(k−1)
t ,

KVA
(k)
t = hEt

∫ T

t

e−h(s−t)max
(
ECs(L

(k)),KVA(k)
s

)
ds,

CA
(k)
t = CVAt + FVA

(k)
t + MVAt where FVA

(k)
t =

Et
∫ T

t

λs

(∑

c

Jc(P c −VMc)− CA(k) −max
(
EC(L(k)),KVA(k)

))+
s
ds.

(58)
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Theorem 4.1 in Crépey, Sabbagh, and Song (2020) Assuming square integrable data,
the XVA equations are well-posed within square integrable solution (including when one ac-
counts for the fact that capital at risk can be used for funding variation margin). Moreover, the
above Picard iteration converges to the unique square integrable solution of the XVA equations.

A.4 Collateralization Schemes

We denote by ∆c
t = Pct −Pc(t−δ)− the cumulative contractual cash flows with the counterparty

c accumulated over a past period of length δ. In our case study, we consider both “no CSA”
netting sets c, with VM = RIM = PIM = 0, and “(VM/IM) CSA” netting sets c, with
VMc

t = P ct and, for t ≤ τc,

RIMc
t = VaRt

(
(P ctδ + ∆c

tδ)− P ct
)
, PIMc

t = VaRt
(
− (P ctδ + ∆c

tδ) + P ct

)
(59)

(assumed nonnegative), for some PIM and RIM quantile levels apim and arim (and tδ = t+ δ).
The following result can be derived by similar computations as the ones in Albanese, Ar-

menti, and Crépey (2020, Section A).

Proposition A.1 In a common shock default model of the counterparties and the bank itself
(see the beginning of Section 5), with pre-default intensity processes γc of the counterparties
and γ of the bank, then CVA = CVAnocsa + CVAcsa, where, for t < τ,

CVAnocsa
t =

∑

c nocsa

1t<τc(1−Rc)Et
∫ T

t

(P csδ + ∆c
sδ)

+γcse
−

∫ s
t
γcududs

+
∑

c nosca

1τc<t<τδc (1−Rc)Et(P cτδc + ∆c
τδc

)+, (60)

CVAcsa
t =

∑

c csa

1t<τc(1−Rc)(1− arim)×

Et
∫ T

t

(ESs − VaRs) ((P csδ + ∆c
sδ)− P cs ) γcse

−
∫ s
t
γcududs (61)

+
∑

c csa

1τc<t<τδc (1−Rc)Et
(

(P cτδc + ∆c
τδc

)− (P cτc + RIMc
τc)
)+

,

where (ESs−VaRs) in (61) is computed at the arim confidence level. Assuming its posted initial
margin borrowed unsecured by the bank, then MVA = MVAcsa, where, for t < τ,

MVAcsa
t =

∑

c csa

Jct Et
∫ T

t

(1−R)γsPIMc
se
−

∫ s
t
γcududs. (62)
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Crépey, S. and S. Song (2016). Counterparty risk and funding: Immersion and beyond.
Finance and Stochastics 20 (4), 901–930.
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