
HAL Id: hal-03910122
https://hal.science/hal-03910122v1

Submitted on 21 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Local Volatility
Marc Chataigner, Stéphane Crépey, Matthew Dixon

To cite this version:
Marc Chataigner, Stéphane Crépey, Matthew Dixon. Deep Local Volatility. Risks, 2020, 8,
�10.3390/risks8030082�. �hal-03910122�

https://hal.science/hal-03910122v1
https://hal.archives-ouvertes.fr

risks

Article

Deep Local Volatility †

Marc Chataigner 1,‡, Stéphane Crépey 1,* and Matthew Dixon 2,§

1 Department of Mathematics, University of Evry, Paris Saclay, 91100 Essonne, France;
marc.chataigner@univ-evry.fr

2 Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616-3793, USA;
mdixon7@stuart.iit.edu

* Correspondence: stephane.crepey@univ-evry.fr
† A Python notebook, compatible with Google Colab, and accompanying data are available in

https://github.com/mChataign/DupireNN. Due to file size constraints, the notebook must be run to
reproduce the figures and results in this article.

‡ Ph.D. student under the supervision of S. Crépey. The Ph.D. thesis of Marc Chataigner is co-funded by the
Research Initiative “Modélisation des marchés actions, obligations et dérivés”, financed by HSBC France
under the aegis of the Europlace Institute of Finance, and by a public grant as part of investissement
d’avenir project, reference ANR-11-LABX-0056-LLH LabEx LMH. The views and opinions expressed in this
paper are those of the authors alone and do not necessarily reflect the views or policies of HSBC Investment
Bank, its subsidiaries or affiliates.

§ The research of Matthew Dixon benefited from the support of Intel Corp.

Received: 26 June 2020; Accepted: 22 July 2020; Published: 3 August 2020
����������
�������

Abstract: Deep learning for option pricing has emerged as a novel methodology for fast computations
with applications in calibration and computation of Greeks. However, many of these approaches
do not enforce any no-arbitrage conditions, and the subsequent local volatility surface is never
considered. In this article, we develop a deep learning approach for interpolation of European vanilla
option prices which jointly yields the full surface of local volatilities. We demonstrate the modification
of the loss function or the feed forward network architecture to enforce (hard constraints approach) or
favor (soft constraints approach) the no-arbitrage conditions and we specify the experimental design
parameters that are needed for adequate performance. A novel component is the use of the Dupire
formula to enforce bounds on the local volatility associated with option prices, during the network
fitting. Our methodology is benchmarked numerically on real datasets of DAX vanilla options.

Keywords: option pricing; neural networks; no-arbitrage; local volatility

1. Introduction

A recent approach to option pricing involves reformulating the pricing problem as a surrogate
modeling problem. Once reformulated, the problem is amenable to standard supervised machine
learning methods such as Neural networks and Gaussian processes. This is particularly suitable in
situations with a need for fast computations and a tolerance to approximation error.

In their seminal paper, Hutchinson et al. (1994) use a radial basis function neural network for
delta-hedging. Their network is trained to Black–Scholes prices, using the time-to-maturity and
the moneyness as input variables, without ’shape constraints’, i.e., constraints on the derivatives
of the learned pricing function. They use the hedging performance of the ensuing delta-hedging
strategy as a performance criterion. Garcia and Gençay (2000) and Gençay and Qi (2001) improve the
stability of the previous approach by adding the outputs of two such neural networks, weighted by
respective moneyness and time-to-maturity functionals. Dugas et al. (2009) introduce the first neural
network architecture guaranteeing arbitrage-free vanilla option pricing on out-of-sample contracts.

Risks 2020, 8, 82; doi:10.3390/risks8030082 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://github.com/mChataign/DupireNN
http://www.mdpi.com/2227-9091/8/3/82?type=check_update&version=1
http://dx.doi.org/10.3390/risks8030082
http://www.mdpi.com/journal/risks

Risks 2020, 8, 82 2 of 18

In their setup, no-arbitrage is achieved through the choice of special architectures, an approach we
subsequently refer to as ’hard constraints’.

However, Ackerer et al. (2019) show that the corresponding hard constrained networks are
very difficult to train in practice, leading to unacceptably large errors in price estimation. Instead,
they advocate the learning of the implied volatility (rather than the prices) by a standard feedforward
neural network with ’soft-constraints’, i.e., regularization, which penalizes calendar spread and
butterfly arbitrages1. Regularization tends to reduce static arbitrage violation on the training set
but does not exclude violation on the testing set. This is a by product of using stochastic gradient
descent. Unlike interior point methods, which use barrier functions to avoid leaving the feasible set
(but are not applicable to neural networks), stochastic gradient descent does not ensure saturation of
the penalization (see Márquez-Neila et al. 2017).

We propose simple neural network architectures and training methodology which satisfy these
shape constraints. Moreover, in contrast to Dugas et al. (2009) and following Ackerer et al. (2019),
we also explore soft constraints alternatives to hard constraints in the network configuration, due to the
loss of representation power of the latter. However, our networks are trained to prices, versus implied
volatilities in Ackerer et al. (2019). The closest reference to our work is Itkin (2019), who introduces
penalty functions to enforce the positivity of the first and second derivatives w.r.t. maturity and strike
respectively in addition to the negativity of the first derivative w.r.t strike. Our main contribution
with respect to the latter is the extraction of a non-parametric representation of the local volatility
surface, intrinsically useful for exotic option pricing, but which also serves as a penalization device
in our soft constraints approach. The title of the paper emphasizes this difference. In fact, in a single
optimization, our approach jointly yields a shape-constrained valuation and the local volatility surface.
Using price interpolation, we shall use the Dupire formula to derive a local volatility surface. As we
explain later in the paper, such a local volatility surface shall in fact be jointly derived and, at the same
time, further regularized.

An additional contribution with respect to Ackerer et al. (2019), Itkin (2019) is that these authors
only use synthetic data with several thousands of prices, whereas we use real data. The latter is
significant as it is much more representative of the methodology in practice, where noise and a limited
number of observations are important aspects of the price interpolation problem.

An alternative machine learning approach to local volatility calibration is to use the Gatheral (2011)
formula (1.10) to extract the local volatility surface from the Black-Scholes implied volatilities
corresponding to the market prices. Figure 1 recasts the two approaches in the general option pricing
perspective. The second approach will be considered in a forthcoming paper.

Figure 1. Mathematical connections between option prices, implied, and local volatility, and the goal
of this paper, namely to use the Dupire formula with deep neural networks to jointly approximate the
vanilla price and local volatility surfaces.

1 The call and put prices must also be decreasing and increasing by strike respectively.

Risks 2020, 8, 82 3 of 18

2. Problem Statement

We consider European vanilla option prices on a stock or index S. We assume that a deterministic
short interest rate term structure r(t) of the corresponding economy has been bootstrapped from the
its zero coupon curve, and that a term structure of deterministic continuous-dividend-yields q(t) on S
has then been extracted from the prices of the forward contracts on S. The assumption of deterministic
rates and dividends is for consistency with local volatility models, in the perspective, later in the paper,
of numerical experiments on equity options (using Crépey 2002 as a benchmark).

Without restriction given the call-put parity relationship, we only consider put option prices.
We denote by P?(T, K) the market price of the put option with maturity T and strike K on S,
observed for a finite number of pairs (T, K) at a given day.

Our goal is to construct a nonarbitrable put price surface P : R+ ×R+ → R+ in C1,2((0,+∞)×
R?
+) ∩ C0(R+ ×R?

+), interpolating P? up to some error term. As is well known, the corresponding
local volatility surface, say σ(·, ·), is given by the Dupire (1994) formula

σ2(T, K)
2

=
∂T P(T, K) + (r− q)K∂KP(T, K) + qP(T, K)

K2∂2
K2 P(T, K)

.

In terms of p(T, k) = exp (
∫ T

0 q(t)dt)P(T, K), where k = K exp (−
∫ T

0 (r(t)− q(t))dt), the formula
reads (see Appendix A for a derivation)

σ2(T, K)
2

= dup(T, k) :=
∂T p(T, k)

k2∂2
k2 p(T, k)

. (1)

We then learn the modified market prices p? = p?(T, k). Given a rectangular domain of interest
in maturity and strike, we rescale further the inputs, T′ = (T−min(T))/(max(T)−min(T)) and k′ =
(k−min(k))/(max(k)−min(k), so that the domain of the pricing map is Ω := [0, 1]2. This rescaling
avoids any one independent variable dominating over another during the fitting. For ease of notation,
we shall hereon drop the ′ superscript.

For the Dupire Formula (1) to be meaningful, its output must be nonnegative. This holds,
in particular, whenever the interpolating map p exhibits nonnegative derivatives w.r.t. T and second
derivative w.r.t. k, i.e.,

∂T p(T, k) ≥ 0 , ∂2
k2 p(T, k) ≥ 0. (2)

In both networks considered in the paper, these derivatives are available analytically via the neural
network automatic differentiation capability. Hard or soft constraints can be used to enforce these
shape properties, exactly in the case of hard constraints and approximately (via regularization) in the
case of soft constraints. More generally, see (Roper 2010, Theorem 2.1) for a full and detailed statement
of the static non-arbitrage relationships conditions on European vanilla call (easily transposable to put)
option prices, also including, in particular, an initial condition at T = 0 given by the option payoffs.
This initial payoff condition will also be incorporated to our learning schemes, in a way described in
Section 4.2.

3. Shape Preserving Neural Networks

We consider parameterized maps p = pW,b

(T, k) 3 R2
+

p−→ pW,b(T, k) ∈ R+,

given as deep neural networks with two hidden layers. As detailed in Goodfellow et al. (2016),
these take the form of a composition of simpler functions:

pW,b(x) = f (3)
W(3),b(3)

◦ f (2)
W(2),b(2)

◦ f (1)
W(1),b(1)

(x),

Risks 2020, 8, 82 4 of 18

where
W = (W(1), W(2), W(3)) and b = (b(1), b(2), b(3))

are weight matrices and bias vectors, and the f (l) := ς(l)(W(l)x + b(l)) are semi-affine,
for nondecreasing activation functions ς(l) applied to their (vector-valued) argument componentwise.
Any weight matrix W(`) ∈ Rm×n can be expressed as an n column W(`) = [w(`)

1 , . . . , w(`)
n] of m-vectors,

for successively chained pairs (n, m) of dimensions varying with l = 1, 2, 3, starting from n = 2,
the number of inputs, for l = 1, and ending up with m = 1, the number of outputs, for l = 3.

3.1. Hard Constraints Approach

In the hard constraints case, our network is sparsely connected in the sense that, with x = (T, k)
as above,

f (1)
W(1),b(1)

(x) = [f (1,T)
W(1,T),b(1,T)(T), f (1,k)

W(1,k),b(1,k)(k)],

where W(1,T), b(1,T) and W(1,k), b(1,k) correspond to parameters of sub-graphs for each input, and

f (1,T)(T) := ς(1,T)(W(1,T)T + b(1,T)) , f (1,k)(k) := ς(1,k)(W(1,k)k + b(1,k)).

To impose the shape constraints relevant for put options, it is then enough to restrict ourselves to
nonnegative weights, and to convex (and nondecreasing) activation functions, namely

softplus(x) := ln(1 + ex),

except for ς(1,T), which will be taken as an S-shaped sigmoid (1 + e−x)−1. Imposing non-negative
constraints on weights can be achieved in back-propagation using projection functions applied to each
weight after each gradient update.

Hence, the network is convex and nondecreasing in k, as a composition (restricted to the k variable)
of convex and nondecreasing functions of k. In T, the network is nondecreasing, but not necessarily
convex, because the activation function for the maturity subnetwork hidden layer is not required to be
convex—in fact, we choose a sigmoid function.

Figure 2 illustrates the shape preserving feed forward architecture with two hidden layers
containing 10 hidden nodes. For avoidance of doubt, the figure is not representative of the number
of hidden neurons used in our experiments. However, the connectivity is representative. The first
input variable, T, is only connected to the first five hidden nodes and the second input variable, k,
is only connected to the last five hidden nodes. Effectively, two sub-networks have been created where
no information from the input layer crosses the sub-networks until the second hidden layer. In other
words, each sub-network is a function of only one input variable. This property is the key to imposing
different hard shape constraints w.r.t. each input variable.

Risks 2020, 8, 82 5 of 18

T k

p(T, k)

Figure 2. A shape preserving (sparse) feed forward architecture with one hidden layer containing
10 hidden nodes. The first input variable, T, is only connected to the five left most hidden nodes and
the second input variable, k, is only connected to the five right most hidden nodes.

3.2. Soft Constraints Approach

However, Theorem 4.1 in Ohn and Kim (2019), which is stated for the reader’s convenience
in Appendix B, provides support for our observation, presented in Section 5, that sparsening the
network (i.e., splitting) increases the approximation error. Hence, in what follows, we also consider
the so called soft constraints approach using a fully connected network, where the static no arbitrage
conditions (2) are favored by penalization, as opposed to imposed to hold exactly in the previous hard
constraint approach.

Note that only the “hard constraints” approach theoretically guarantees that the associated Dupire
formula (1) returns a positive function. While soft constraints reduce the risk of static arbitrage in the
sense of mismatch between model and market prices, they do not however fully prevent arbitrages in
the sense of violations of the shape conditions (2) in the predicted price surface, especially far from the
grid nodes of the training set.

In particular, the penalties only control the corresponding derivatives at the training points.
Compliance with the no-arbitrage constraints on the majority of the points in the test set is due only
to the regularity of these derivatives. This is not a novel idea. Aubin-Frankowski and Szabo (2020)
exploit RKHS regularity to ensure conditions on derivatives in a hard constraint manner with a second
order cone optimization. They add a margin to the penalizations so that these derivative conditions
are ensured over a targeted neighbourhood of training points. In our case we do not add such a
margin to our penalizations. Instead, we add a further half-variance bounds penalization, which both
favors even more the shape constraints (without guaranteeing them in theory) and stabilizes the local
volatility function calibration, as detailed below.

4. Numerical Methodology

4.1. Training

In general, to fit our fully connected or sparse networks to the available option market prices
at a given time, we solve a loss minimization problem of the following form (with λ = 0 in the

Risks 2020, 8, 82 6 of 18

non-penalized cases), using observations {xi = (Ti, ki), p?(xi)}n
i=1 of n maturity-strike pairs and the

corresponding market put prices:

min
W,b

1
n

n

∑
i=1

(
|p?(xi)− p(xi)|+ λTφ(xi)

)
. (3)

here p = pW,b, φ = φW,b is a regularization penalty vector

φ := [(∂T p)−, (∂2
k2 p)−, (dup− a)+ + (dup− a)−],

and dup is related to p through (1). The choice to measure the error p? − p under the L1 norm,
rather than L2 norm, in (3) is motivated by a need to avoid allocating too much weight to the deepest
in-the-money options. Note that Ackerer et al. (2019) consider a combination of L1 and L2 norms. In a
separate experiment, not reported here, we additionally investigated using the market convention of
vega weighted option prices, albeit to no effect beyond simply using L1 regularization.

The loss function is non-convex, possessing many local minima and it is generally difficult to
find a global minimum. The first two elements in the penalty vector favor the shape conditions (2)
and the third element favors lower and upper bounds a and a on the estimated half-variance, dup,
where constants (which could also be functions of time) 0 < a < a respectively denote desired lower
and upper bounds on the surface (at each point in time). Of course, as soon as penalizations are
effectively used (i.e., for λ 6= 0), a further difficulty, typically involving grid search, is the need to
determine suitable values of the corresponding “Lagrange multipliers”

λ = (λ1, λ2, λ3) ∈ R3
+, (4)

ensuring the right balance between fit to the market prices and the targeted constraints.

4.2. Experimental Design

As a benchmark, reference method for assessing the performance of our neural network
approaches, we use the Tikhonov regularization approach surveyed Section 9.1 of Crépey (2013),
i.e., nonlinear least square minimization of the squared distance to market prices plus a penalisation
proportional to the H1 squared norm of the local volatility function over the (time, space) surface
(or, equivalently, to the L2 norm of the gradient of the local volatility). Our motivation for this
choice as a benchmark is, first, the theoretical, mathematical justification for this method provided
by Theorems 6.2 and 6.3 in Crépey (2003). Second, it is price (as opposed to implied volatility)
based, which makes it at par with our focus on price based neural network local volatility calibration
schemes in this paper. Third, it is non parametric (’model free’ in this sense), like our neural network
schemes again, and as opposed to various parameterizations such as SABR or SSVI that are used as
standard in various segments of the industry, but come without theoretical justification for robustness,
are restricted to specific industry segments on which they play the role of a market consensus, and are
all implied volatility based. Fourth, an efficient numerical implementation of the Tikhonov method
(as we call it for brevity hereafter), already put to the test of hundreds of real datasets in the context
of Crépey (2004), is available through Crépey (2002). Fifth, this method is itself benchmarked to other
(spline interpolation and constrained stochastic control) approaches Section 7 of Crépey (2002).

Our training sets were prepared using daily datasets of DAX index European vanilla options of
different available strikes and maturities, listed on the 7th, 8th (by default below), and 9th, August 2001,
i.e., same datasets as already used in previous work Crépey (2002, 2004), for benchmarking purposes.
The corresponding values of the underlying were S = 5752.51, 5614.51 and 5512.28. The associated
interest rate and dividend yield curves were constructed from zero-coupon and forward curves,
themselves obtained from quotations of standard fixed income linear instruments and from call/put
parity applied to the option market prices. Each training set was composed of about 200 option

Risks 2020, 8, 82 7 of 18

market prices plus the put payoffs for all strikes present in the training grid. For each day of data
(see e.g., Figures 3 and 4), a test set of about 350 points was generated by computing, thanks to
a trinomial tree, option prices for a regular grid of strikes and maturities, in the local volatility
model calibrated to the corresponding training set by the benchmark Tikhonov calibration method of
Crépey (2002).

Each network had two hidden layers, each with 200 neurons per hidden layer. Note that
Dugas et al. (2009) only used one hidden layer. Using two was found important in practice in our case.
All networks were fitted with an ADAM optimizer. In order to achieve the convergence of the training
procedure toward a local minimum of the loss criterion, the learning rate was divided by 10 whenever
no improvement in the error on the training set was observed during 100 consecutive epochs. The total
number of epochs was limited to 10,000 because of the limited number of market prices. Thus we
opted for a batch learning with numerous epochs.

After training, a local volatility surface was extracted from the interpolated prices by application
of the Dupire Formula (1), leveraging on the availability of the corresponding exact sensitivities,
i.e., using automatic algorithmic differentiation (AAD) and not finite differences. This local volatility
surface was then compared with the one obtained in Crépey (2002).

Figure 3. DAX put prices from training grid (red points) and testing grid (blue points), 8 August 2001.

Figure 4. Same as Figure 3 in implied volatility scale.

Risks 2020, 8, 82 8 of 18

Moreover, we assessed numerically four different combinations of network architectures and
optimization criteria, i.e.,

• sparse (i.e., split) network and hard constraints, so λ1 = λ2 = 0 in (3) and (4),
• sparse network but soft constraints, i.e., ignoring the non-negative weight restriction in Section 3.1,

but using λ1, λ2 > 0 in (3) and (4),
• dense network and soft constraints, i.e., for λ1, λ2 > 0 in (3) and (4),
• dense network and no shape constraints, i.e., λ1 = λ2 = 0 in (3) and (4).

Moreover, these four configurations were tried both without (Section 5) and with (Section 6)
half-variance bounds penalization, i.e., for λ3 = 0 vs. λ3 > 0 in (3) and (4), cases referred to hereafter
as without/with Dupire penalization.

In each case the error between the prices of the calibrated model and the market data were
evaluated on both the training and an out-of-sample test set. Unless reported otherwise, all numerical
results shown below correspond to test sets.

All our numerical experiments were run under Google Colab with 13 GB of RAM and a dual core
CPU of 2.2 GHz.

5. Numerical Results without Dupire Penalization

Table 1 shows the pricing RMSEs for four different combinations of architecture and optimization
criteria without half-variance bounds, i.e., for λ3 = 0 (3) and (4). For the sparse network with
hard constraints, we thus have λ = 0. For the sparse and dense networks with soft constraints
(i.e., penalization but without the conditions on the weights of Section 3), we set λ = [1.0× 105, 1.0×
103, 0].

The sparse network with hard constraints is observed to exhibit significant pricing error,
which suggests that this approach is too limited in practice to approach market prices. This conclusion
is consistent with Ackerer et al. (2019), who choose a soft-constraints approach in the implied volatility
approximation (in contrast to our approach which approximates prices).

Table 1. Pricing RMSE (absolute pricing errors) and training times without Dupire penalization.

Sparse Network Dense Network

Hard Constraints Soft Constraints Soft Constraints No Constraints

Training dataset 28.13 6.87 2.28 2.56
Testing dataset 28.91 4.09 3.53 3.77
Indicative training times 200 s 400 s 200 s 120 s

Figure 5 compares the percentage errors in implied volatilities using the sparse network with hard
constraints and the dense network with soft constraints approaches, corresponding to the columns 1
and 3 of Table 1. Relative errors with hard constraints exceeded 10% on most the training grid
oppositely to dense network with soft constraints. This confirms that the error levels of the hard
constraints approach were too high to imagine a practical use of this approach: the corresponding
model would be immediately arbitrable in relation to the market. Those of the soft constraint approach
were much more acceptable, with high errors confined to short maturities or far from the money, i.e.,
in the region where prices provide little information on volatility.

Table 2 shows the fraction of points in the neural network price surface which violate the static
arbitrage conditions. The table compares the same four methods listed in Table 3 applied to training
and testing sets. We recall that, in theory, only the sparse network with hard constraints guarantees
zero arbitrages. However, we observe that the inclusion of soft constraints reduced the number of
arbitrage constraints on the training set when compared with no constraints. The trend was less
pronounced for the test set. However, in the absence of hard constraints, the effect of adding soft
constraints was always preferable than excluding them entirely.

Risks 2020, 8, 82 9 of 18

Table 2. The fraction of static arbitrage violations without Dupire penalization.

Sparse Network Dense Network

Hard Constraints Soft Constraints Soft Constraints No Constraints

Training dataset 0 1/254 0 63/254
Testing dataset 0 2/360 0 44/360

Table 3. Price RMSE (absolute pricing errors) and training times with Dupire penalization.

Sparse Network Dense Network

Hard Constraints Soft Constraints Soft Constraints No Constraints

Training dataset 28.04 3.44 2.48 3.48
Testing dataset 27.07 3.33 3.36 4.31
Indicative training times 400 s 600 s 300 s 250 s

Figure 5. Percentage relative error in the implied volatilities using (top) hard constraints (bottom) dense
networks with soft constraints.

6. Numerical Results with Dupire Penalization

We now introduce half-variance bounds into the penalization to improve the overall fit in prices
and stabilize the local volatility surface. Table 3 shows the RMSEs in absolute pricing resulting
from repeating the same set of experiments reported in Table 1, but with the half-variance bounds

Risks 2020, 8, 82 10 of 18

included in the penalization. For the sparse network with hard constraints, we set λ = [0, 0, 10] and
choose a = 0.052/2 and a = 0.42/2. For the sparse and dense networks with soft constraints, we set
λ = [1.0× 105, 1.0× 103, 10]. Compared to Table 1, we observed improvement in the test error for
the hard and soft constraints approaches when including the additional local volatility penalty term.
Table 4 is the analog of Table 2, with similar conclusions. Note that, here as above, the arbitrage
opportunities that arose were not only very few (except in the unconstrained case), but also very
far from the money and, in fact, mainly regarded the learning of the payoff function, corresponding
to the horizon T = 0. See for instance Figure 6 for the location of the violations that arose in the
unconstrained case with Dupire penalization. Hence such apparent ‘arbitrage opportunities’ could not
necessarily be monetized once liquidity was accounted for.

Table 4. The fraction of static arbitrage violations with Dupire penalization.

Sparse Network Dense Network

Hard Constraints Soft Constraints Soft Constraints No Constraints

Training dataset 0 0 0 30/254
Testing dataset 0 2/360 0 5/360

Figure 6. Location of the violations, denoted by black crosses, corresponding to the right column in
Table 4.

Figure 7 is the analog of Figure 3, with test (i.e., Tikhonov trinomial tree) prices in blue replaced
by the prices predicted by the dense network with soft constraints and Dupire penalization. The (blue)
prices predicted by the neural network in Figure 7, and the corresponding implied volatilities
in Figure 8, did not exhibit any visible inter-extrapolation pathologies, they were in fact visually
indistinguishable from the respective (blue) testing prices and implied volatilities of Figures 3 and 4.

For completeness, we additionally provide further diagnostic results. Figure 9 shows the
convergence of the loss function against the number of epochs using either hard constraints or soft
constraints. The spikes triggered decays of the learning rates so that the training procedure could
converge toward a local minimum of the loss criterion (cf. Section 4.2). We observed that the loss
function converged to a much smaller value using a dense network with soft constraints and that
either approach converged in at most 2000 epochs.

Table 5 provides some further insight into the effect of architectural parameters, although it is
not intended to be an exhaustive study. Here, only the number of units in the hidden layers was
varied, while keeping all other parameters except the learning rate fixed, to study the effect on error
in the price and implied volatility surfaces. The price RMSE for the testing set primarily provided

Risks 2020, 8, 82 11 of 18

justification for the choice of 200 hidden units per layer: the RMSE was 3.55. We further observed the
effect of reduced pricing error on the implied volatility surface: 0.0036 was the lowest RMSE of the
implied volatility test surface across all parameter values.

Figure 7. Put prices from training grid (red points) and NN predicted prices at testing grid nodes
(blue points), DAX 8 August 2001.

Table 6 shows the pricing RMSEs resulting from the application of different stochastic gradient
descent algorithms under the soft constraints approach with dense network and Dupire penalization.
ADAM (our choice everywhere else in the paper, cf. the next-to-last column in Table 3) and root
mean square propagation (RMSProp, another well known SGD procedure) exhibited a comparable
performance. A Nesterov accelerated gradient procedure, with momentum parameter set to 0.9 as
standard, obtained much less favorable results. As opposed to ADAM and RMSProp, Nesterov
accelerated momentum did not reduce the learning rate during the optimization.

Figure 8. Same as Figure 7 in implied volatility scale.

Risks 2020, 8, 82 12 of 18

Figure 9. Logarithmic RMSE through epochs (top) hard constraints (bottom) dense networks with
soft constraints.

Table 5. Sensitivity of the errors to the number of hidden units. Note that these results are generated
using the dense network with soft constraints and Dupire penalization.

Hidden Units Surface RMSE

Training Testing

50 Price 3.01 3.60
Impl. Vol. 0.0173 0.0046

100 Price 3.14 3.66
Impl. Vol. 0.0304 0.0049

200 Price 2.73 3.55
Impl. Vol. 0.0181 0.0036

300 Price 2.84 3.88
Impl. Vol. 0.0180 0.0050

400 Price 2.88 3.56
Impl. Vol. 0.0660 0.0798

Risks 2020, 8, 82 13 of 18

Table 6. Pricing RMSEs corresponding to different stochastic gradient descents (soft constraints
approach with dense network and Dupire penalization).

Train RMSE Test RMSE

ADAM 2.48 3.36
Nesterov accelerated gradient 5.67 6.92

RMSProp 2.76 3.66

7. Robustness

In this concluding section of the paper, we assess the robustness of the different approaches in
terms of, first, the numerical stability of the local volatility function recalibrated across successive
calendar days, and second, of a Monte Carlo backtesting repricing error.

7.1. Numerical Stability through Recalibration

Figures 10–12 show the comparison of the local volatility surfaces obtained using hard constraints
(sparse network) without Dupire penalization, dense network and soft constraints without and with
Dupire penalization, as well as the Tikhonov regularization approach of Crépey (2002), on price quotes
listed on August 7th, 8th, and 9th, 2001, respectively. The soft constraint approach without Dupire
penalization is both irregular (exhibiting outliers on a given day) and unstable (from day to day).
In contrast, the soft constraint approach with Dupire penalization yields a more regular (at least,
less spiky) local volatility surface, both at fixed calendar time and in terms of stability across calendar
time. From this point of view the results are then qualitatively comparable to those obtained by
Tikhonov regularization (which is however quicker, taking of the order of 30 s to run).

(a) Hard constraints (b) Soft constraints (w/o local vol. constraints)

(c) Soft constraints (with local vol. constraints) (d) Tikhonov local volatility

Figure 10. Local volatility for 7 August 2001.

Risks 2020, 8, 82 14 of 18

(a) Hard Constraints (b) Soft constraints (w/o local vol. constraints)

(c) Soft constraints (with local vol. constraints) (d) Tikhonov local volatility

Figure 11. Local volatility for 8 August 2001.

(a) Hard Constraints (b) Soft constraints (w/o local vol. constraints)

(c) Soft constraints (with local vol. constraints) (d) Tikhonov local volatility

Figure 12. Local volatility for 9 August 2001.

7.2. Monte Carlo Backtesting Repricing Error

Finally, we evaluate the performance of the models in a backtesting Monte Carlo exercise. Namely,
the options in each testing grid are repriced by Monte Carlo with 105 paths of 100 time steps in
the model

dSt

St
= (r(t)− q(t)) dt + σ(t, St)dWt, (5)

using differently calibrated local volatility functions σ(·, ·) in (5), for each of the 7th, 8th, and 9th August
dataset. Table 7 shows the corresponding Monte Carlo backtesting repricing errors, using the option
market prices from the training grids as reference values in the corresponding RMSEs. The neural
network approaches provide a full surface of prices and local volatilities, as opposed to values at the
calibration trinomial tree nodes only in the case of Tikhonov, for which the Monte Carlo backtesting

Risks 2020, 8, 82 15 of 18

exercise thus requires an additional layer of local volatility inter-extrapolation, here achieved by a
nearest neighbors algorithm. We see from the table that both the benchmark Tikhonov method and
the dense network soft constraints approach with Dupire penalization yield very reasonable and
acceptable repricing errors (with still a certain advantage to the Tikhonov method), unlike the hard
constraints approaches. Moreover, the Dupire penalization is essential for extracting a decent local
volatility function: The dense network with soft constraint but without this penalization yields very
poor Monte Carlo repricing RMSEs.

Table 7. Monte Carlo backtesting repricing RMSEs on training grid against market prices.

σ(·, ·) Tikhonov
Monte Carlo

Dense Network
with Soft Constraints

and Dup. penal.

Dense Network
with Soft Constraints

Hard Constraint
with Dup. Penal.

Hard Constraint
w/o Dup. Pen.

7 August 2001 5.42 10.18 68.48 48.57 50.44
8 August 2001 5.55 7.44 50.82 56.63 56.98
9 August 2001 4.60 8.18 59.39 66.23 65.50

The residual gap between the Monte Carlo RMSEs of the (even best) neural network local volatility
and of the Tikhonov local volatility can seem disappointing. However we should keep in mind that
the neural network can evaluate quickly a local volatility on any node outside the training grid,
whereas Tikhonov then requires a further layer of interpolation (or a new calibration). Furthermore,
any vanilla option price can be accurately and quickly obtained by neural prediction (better than by
Monte Carlo repricing as above). Table 8 shows training set RMSEs of thus predicted prices against
markets prices equivalent to (in fact, slightly better than) RMSEs of Tikhonov trinomial tree prices
against the same markets prices. These are of course only in-sample errors, but the additional findings
of Table 7 suggest that these good results are not just overfitting.

Table 8. Training set RMSEs of Tikhonov trinomial tree vs. NN predicted prices against market prices.

σ(·, ·) Tikhonov Trin. Tree NN Pred. (Dense Network with
Soft Constraints and Dup. Penal).

7 August 2001 2.42 2.66
8 August 2001 2.67 2.48
9 August 2001 2.45 2.34

8. Conclusions

We introduced three variations of deep learning methodology to enforce no-arbitrage interpolation
of European vanilla put option prices: (i) modification of the network architecture to embed shape
conditions (hard constraints), (ii) use of shape penalization to favor these conditions (soft constraints),
and (iii) additional use of local half-variance bounds in the penalization via the Dupire formula.

Our experimental results confirm that hard constraints, although providing the only fail-safe
approach to no-arbitrage approximation, reduce too much the representational power of the network
numerically. Soft constraints provide much more accurate prices and implied volatilities, while only
leaving space for sporadic arbitrage opportunities, which are not only occasional but also very far from
the money, hence do not necessarily correspond to monetizable arbitrage opportunities once liquidity
is accounted for. Once the Dupire formula is included in the penalization, the corresponding local
volatility surface is also reasonably regular, at fixed day, and stable, in terms of both out-of-sample
performance at fixed day and dynamically from day to day. The performance of the neural network
local volatility calibration method then gets close to the one of the classical Tikhonov regularization
method of Crépey (2002), but not better. It is also slower. However, the neural network provides the
full surface of prices and local volatilities, as opposed to values at the nodes of a trinomial tree only
under the approach of Crépey (2002).

Risks 2020, 8, 82 16 of 18

We thus enrich the machine learning literature on neural networks metamodeling of vanilla
option prices in three respects: first, by considering the associated local volatility, which is interesting
both in itself and as a tool for improving the learning of the option prices in the first place; second,
by working with real data; third, by systematically benchmarking our results with the help of a
proven (both mathematically and numerically) classical, non machine learning calibration procedure,
i.e., Tikhonov regularization. In this article, we focused on machine learning schemes for extracting
the local volatility from option prices. The use of option implied volatilities will be considered in a
further paper.

Author Contributions: Authors M.C., S.C., M.D. contributed equally to each section of this paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Change of Variables in the Dupire Equation

Letting g(T, K) = P(T, K) exp
(∫ T

0 qdt
)

, note that

∂KP(T, K) = exp
(
−
∫ T

0
qdt
)

∂Kg(T, K) , ∂2
K2 P(T, K) = exp

(
−
∫ T

0
qdt
)

∂2
K2 g(T, K)

∂T P(T, K) = exp
(
−
∫ T

0
qdt
)
(∂T g(T, K)− qg(T, K)) .

The Dupire formula is then rewritten in terms of g as

∂T g(T, K) =
1
2

σ2(T, K)K2∂2
K2 g(T, K)− (r− q)K∂Kg(T, K).

Through the additional change of variables p(T, k) = g(T, K), where k = exp
(
−
∫ T

0 (r− q)dt
)

K,
we obtain

∂Kg(T, K) = ∂K p(T, k) = ∂k p(T, k)∂Kk = exp
(
−
∫ T

0
(r− q)dt

)
∂k p(T, k)

∂2
K2 g(T, K) = ∂2

K2 p(T, k) = ∂k∂K p(T, k)∂Kk = exp
(
−2

∫ T

0
(r− q)dt

)
∂2

k2 p(T, k)

∂T g(T, K) = ∂T p(T, k) + ∂Tk∂k p(T, k) = ∂T p(T, k)− (r− q)k∂k p(T, k)

and arrive at the modified Dupire equation:

∂T p(T, k) =
1
2

σ2(T, K)k2∂2
k2 p(T, k)

conveniently written as the Dupire half-variance Formula (1).

Appendix B. Network Sparsity and Approximation Error Bound

We recall a result from Ohn and Kim (2019) which describes how the sparsity in a neural network
affects its approximation error.

Let us denote the network parameters θ := (W, b). We define the network parameter space in
terms of the layers width L and depth N, and numbers of inputs and outputs,

Θi,o(L, N) := {θ : L(θ) ≤ L, nmax(θ) ≤ N, in(θ) = i, out(θ) = o}.

Risks 2020, 8, 82 17 of 18

We also define the restricted parameter space

Θi,o(L, N, Σ, B) := {θ ∈ Θi,o(L, N) : |θ|0 ≤ Σ, |θ|∞ ≤ B},

where |θ|0 is the number of nonzero components in θ and |θ|∞ is the largest absolute value of elements
of θ. Let the activation ς be either piecewise continuous or locally quadratic2. For example, softplus
and sigmoid functions are locally quadratic. Let the function being approximated, p ∈ Hα,R([0, 1]i)
be Hölder smooth with parameters α > 0 and R > 0, where Hα,R(Ω) := {p ∈ Hα(Ω) :
||p||Hα(Ω) ≤ R}. Then Theorem 4.1 in Ohn and Kim (2019) states the existence of positive constants
L0, N0, Σ0, B0 depending only on i, α, R and ς s.t. for any ε > 0, the neural network

θε ∈ Θi,1

(
L0log(1/ε), N0ε−i/α, Σ0ε−i/αlog(1/ε), B0ε−4(i/α+1)

)
satisfies supx∈[0,1]i |p(x)− pθε

(x)| ≤ ε. Figure A1 shows the upper bound Σ on the network sparsity,
|θ|0 ≤ Σ, as a function of the error tolerance ε and Hölder smoothness, α, of the function being
approximated. Keeping the number of neurons in each layer fixed, the graph shows that a denser
network, with a higher upper bound, results in a lower approximation error. Conversely, networks with
a low number of non-zero parameters, due to zero weight edges, exhibit larger approximation error.
In the context of no-arbitrage pricing, the theorem suggests a tradeoff between using a sparse network
to enforce the shape constraints, yet increasing the approximation error. The adverse effect of using a
sparse network should also diminish with increasing smoothness in the function being approximated.

Figure A1. The upper bound on the network sparsity, |θ|0 ≤ Σ, as a function of the error tolerance ε

and Hölder smoothness, α, of the function being approximated. As ε or α decrease, the value of Σ is
observed to increase. The plot is shown for i = 2 and Σ0 = 10.

2 A function ς : R → R is locally quadratic if ∃ an open interval (a, b) ⊂ R over which ς is three times continuously
differentiable with bounded derivatives and ∃t ∈ (a, b) s.t. ς′(t) 6= 0 and ς′′(t) 6= 0.

Risks 2020, 8, 82 18 of 18

References

Ackerer, Damien, Natasa Tagasovska, and Thibault Vatter. 2019. Deep Smoothing of the Implied Volatility Surface.
Available online: https://ssrn.com/abstract=3402942 (accessed on 29 July 2020).

Aubin-Frankowski, Pierre-Cyril, and Zoltan Szabo. 2020. Hard shape-constrained kernel machines. arXiv
arXiv:2005.12636.

Crépey, Stéphane. 2002. Calibration of the local volatility in a trinomial tree using Tikhonov regularization.
Inverse Problems 19: 91. [CrossRef]

Crépey, Stéphane. 2003. Calibration of the local volatility in a generalized Black–Scholes model using Tikhonov
regularization. SIAM Journal on Mathematical Analysis 34: 1183–206. [CrossRef]

Crépey, Stéphane. 2004. Delta-hedging vega risk? Quantitative Finance 4: 559–79. [CrossRef]
Crépey, Stéphane. 2013. Financial Modeling: A Backward Stochastic Differential Equations Perspective. Springer

Finance Textbooks. Berlin: Springer.
Dugas, Charles, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. 2009. Incorporating functional

knowledge in neural networks. Journal of Machine Learning Research 10: 1239–62.
Dupire, Bruno. 1994. Pricing with a smile. Risk 7: 18–20.
Garcia, René, and Ramazan Gençay. 2000. Pricing and hedging derivative securities with neural networks and a

homogeneity hint. Journal of Econometrics 94: 93–115. [CrossRef]
Gatheral, Jim. 2011. The Volatility Surface: A Practitioner’s Guide. Hoboken: Wiley.
Gençay, Ramazan, and Min Qi. 2001. Pricing and hedging derivative securities with neural networks:

Bayesian regularization, early stopping, and bagging. IEEE Transactions on Neural Networks 12: 726–34.
[CrossRef] [PubMed]

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. Cambridge: MIT Press.
Hutchinson, James M., Andrew W. Lo, and Tomaso Poggio. 1994. A nonparametric approach to pricing and

hedging derivative securities via learning networks. The Journal of Finance 49: 851–89. [CrossRef]
Itkin, A. 2019. Deep learning calibration of option pricing models: Some pitfalls and solutions. arXiv

arXiv:1906.03507.
Márquez-Neila, Pablo, Mathieu Salzmann, and Pascal Fua. 2017. Imposing hard constraints on deep networks:

Promises and limitations. arXiv arXiv:1706.02025.
Ohn, Ilsang, and Yongdai Kim. 2019. Smooth Function Approximation by Deep Neural Networks with General

Activation Functions. Entropy 21: 627. [CrossRef]
Roper, Michael. 2010. Arbitrage Free Implied Volatility Surfaces. Available online: https://talus.maths.usyd.edu.

au/u/pubs/publist/preprints/2010/roper-9.pdf (accessed on 29 July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://ssrn.com/abstract=3402942
http://dx.doi.org/10.1088/0266-5611/19/1/306
http://dx.doi.org/10.1137/S0036141001400202
http://dx.doi.org/10.1080/14697680400000038
http://dx.doi.org/10.1016/S0304-4076(99)00018-4
http://dx.doi.org/10.1109/72.935086
http://www.ncbi.nlm.nih.gov/pubmed/18249908
http://dx.doi.org/10.1111/j.1540-6261.1994.tb00081.x
http://dx.doi.org/10.3390/e21070627
https://talus.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-9.pdf
https://talus.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-9.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Shape Preserving Neural Networks
	Hard Constraints Approach
	Soft Constraints Approach

	Numerical Methodology
	Training
	Experimental Design

	Numerical Results without Dupire Penalization
	Numerical Results with Dupire Penalization
	Robustness
	Numerical Stability through Recalibration
	Monte Carlo Backtesting Repricing Error

	Conclusions
	Change of Variables in the Dupire Equation
	Network Sparsity and Approximation Error Bound
	References

