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When Capital Is a Funding Source: The Anticipated Backward Stochastic
Differential Equations of X-Value Adjustments\ast 

St\'ephane Cr\'epey\dagger , Wissal Sabbagh\dagger , and Shiqi Song\dagger 

Abstract. X-value adjustments (XVAs) refer to various financial derivative pricing adjustments accounting for
counterparty risk and its funding (FVA) and capital (KVA) implications for a bank. In this paper we
show that the XVA equations are well-posed, including in the realistic case where capital is deemed
fungible as a source of funding for variation margin. This intertwining of capital at risk and the
FVA, added to the fact that the KVA is part of capital at risk, leads to a system of backward SDEs
(BSDEs) of the McKean type (anticipated BSDEs) for the FVA and the KVA, with coefficients
entailing a conditional risk measure of the one-year-ahead increment of the martingale part of the
FVA. This is first considered in the case of a hypothetical bank without debt. In the practical case
of a defaultable bank, the resulting anticipated BSDEs, which are stopped before the default of the
bank, are solved likewise after reduction to a reference market filtration.

Key words. credit valuation adjustment (CVA), funding valuation adjustment (FVA), capital valuation ad-
justment (KVA), anticipated (or McKean) BSDE, progressive enlargement of filtration, invariance
time

AMS subject classifications. 91B30, 91G20, 91G40, 60G07, 60G44

DOI. 10.1137/19M1242781

1. Introduction. XVAs, where VA stands for valuation adjustment and X is a catch-all
letter to be replaced by C for credit, D for debt, F for funding, M for margin, or K for capital,
denote various pricing adjustments applied to financial derivatives since the 2008 crisis, in
order to account for counterparty risk and its capital and funding implications for a bank.

The valuation of securities in a defaultable environment has started with the pricing of
risky bonds or credit default swaps (CDS). These only involve a single default time, the one
of the issuer of the bond or of the reference firm in a CDS; see Pykhtin (2005) for a collection
of early CVA papers. But the 2008 crisis clearly showed that banks are themselves risky. As a
consequence, new regulations have been established on the functioning of financial institutions
(see Basel Committee on Banking Supervision (2011)), with a great impact on capital, margin,
and clearing requirements for investment banks, making it vital for them to understand how
they should operate in this new environment.
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The question has first been studied in a setup where the default risk of the bank and a
counterparty are treated symmetrically, in a CVA/DVA mindset (see, e.g., Brigo and Capponi
(2010) and cf. previously Duffie and Huang (1996) or Bielecki and Rutkowski (2002, (14.25)
p. 448)). However, the view of the industry evolved quite dramatically, banks reacting to the
Basel III regulatory changes by pricing further the FVA, the MVA, and the KVA, which are
the respective costs of funding the so called variation margin (VM), initial margin (IM), and of
capital; see Brigo and Pallavicini (2014), Bichuch, Capponi, and Sturm (2018), and Burgard
and Kjaer (2011, 2013, 2017) (without KVA) or, with a KVA meant as a liability like the
CVA and the FVA (as opposed to a risk premium in our case), Green, Kenyon, and Dennis
(2014) and Elouerkhaoui (2016). See also Andersen, Duffie, and Song (2019) and Bielecki
and Rutkowski (2015) for different focuses on the funding side of the problem, with respective
emphases on the related wealth transfer and nonlinear arbitrage issues.

The main dividing line in this literature is between an XVA replication approach and a
cost-of-capital, incomplete market approach. Following up on the Hull and White (2012a),
Hull and White (2012b) prompted FVA debate, Albanese and Andersen (2015), Albanese,
Caenazzo, and Cr\'epey (2016), and Albanese and Cr\'epey (2019) have delineated the specific
implications of the default risk of the bank itself, providing a better insight on counterparty
risk considered not only in the strict sense, but also through its consequences in terms of
capital and funding. A key point in Albanese and Cr\'epey (2019) is that, in order to account
for the defaultability of the bank itself, all the cumulative cash flow and value processes
must be stopped before the bank default time \tau in the XVA equations. Indeed, given the
impossibility for bank shareholders to hedge these cash flows and monetize them before \tau ,
later cash flows only benefit bank bondholders.

In Albanese and Cr\'epey (2019, section 5, Remark 4.3), the XVA equations are studied in
the base case where capital at risk is not used by the bank for its funding purposes. Then,
in the context of partially or uncollateralized transactions, the FVA can seem very large.
For instance, in January 2014, JP Morgan has recorded a \$1.5 billion FVA loss.1 However,
in practice, capital at risk can be used for funding the so called VM (cf. the parameter \phi 
representing ``the fraction of capital used for funding"" in Green, Kenyon, and Dennis (2014)).
This may cause a material FVA reduction, as high as one-half or more on a real banking
portfolio, as demonstrated numerically in Albanese, Caenazzo, and Cr\'epey (2017, section 5.2)
(see also Albanese et al. (2019, section 5.2)).

In this paper, we provide a mathematical analysis of the FVA and its KVA implications
when capital at risk is a possible funding source. Our results thus complement the XVA
analysis of Albanese and Cr\'epey (2019, section 5), which had been made under the assumption
that capital at risk is not used for funding purposes, as well as the numerical studies of
Albanese, Caenazzo, and Cr\'epey (2017, section 5.2) and Albanese et al. (2019, section 5)
which are based on the equations of the present paper.

The fungibility of capital at risk as a source of funding for VM leads to a system of antici-
pated backward stochastic differential equations (ABSDEs, or BSDEs ``of the McKean type"").
Peng and Yang (2009) have introduced ABSDEs in relation to a problem of SDEs with delay.
They established the well-posedness of a multivariate ABSDE on a fixed time horizon with
Lipschitz coefficients in a Brownian setup. As usual, in the univariate case, the Lipschitz

1See https://www.risk.net/derivatives/2322843/jp-morgan-takes-15-billion-fva-loss.
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condition can be relaxed into continuous coefficients with linear growth, which was done in
Elliot and Yang (2013). In parallel to our work, an ABSDE involving a conditional expected
shortfall as anticipated term (by contrast with a conditional expectation in the previous AB-
SDE literature) has been considered in Agarwal et al. (2019) to study the cost of IM, in a
univariate, Brownian, and Lipschitz setup, over a fixed time horizon. In this paper, we solve a
system of ABSDEs with jumps (because of the counterparty defaults), monotone coefficients
(this is in fact for the sake of generality; our XVA coefficients are even Lipschitz), a more gen-
eral anticipated dependence of the coefficient (on the integrand components of the solution),
and stopped before a random time (the default time of the bank itself, in the XVA context).

The outline of the paper is as follows. Section 2 revisits the XVA equations from Albanese
and Cr\'epey (2019) when capital is deemed fungible as a source of funding for VM, first assum-
ing the bank default free. Section 3 establishes a general ABSDE well-posedness result, which
is applied in section 4 to show the well-posedness of the XVA ABSDEs in the theoretical case of
a default-free bank. Section 5, which is of independent interest, extends beyond the basic im-
mersion setup the classical credit risk intensity pricing formulas (see, e.g., Bielecki, Jeanblanc,
and Rutkowski (2009, Chapter 3)). This framework is used in section 6 for stating and solving
the XVA ABSDEs in the realistic case of a defaultable bank. Section 7 wraps up the paper.

Themain contributions of the paper are Theorems 3.1 (an extension with jumps, monotone
coefficient, and a more general anticipated dependence, of the ABSDE result of Peng and Yang
(2009)), 4.1 (well-posedness of the XVA ABSDEs in the theoretical case of a default-free bank),
5.1 (extension to the invariance time setup of the classical credit risk intensity pricing formu-
las), and 6.1 (well-posedness of the XVA ABSDEs in the realistic case of a defaultable bank).

1.1. Mathematical setup. We denote by
\bullet \cdot T, vector or matrix transpose;
\bullet | \cdot | and \langle \cdot , \cdot \rangle , Euclidean norms and scalar products in the dimension of their arguments
(vectors or vectorized matrices);
\bullet (\Omega ,\frakA ,\BbbF ,\BbbP ), a filtered probability space, for a complete and right continuous filtration
\BbbF = (\frakF t)t\geq 0 of sub-\sigma fields of a reference \sigma field \frakA and for a probability measure \BbbP ;
\bullet \BbbE and \BbbE t, the \BbbP expectation and the (\frakF t,\BbbP ) conditional expectation;
\bullet \frakP , the \BbbF predictable sigma-field;
\bullet \frakB (E), the Borel \sigma field on any metrizable space E;
\bullet m(S), the (\BbbF ,\BbbP ) canonical Doob--Meyer local martingale component of an (\BbbF ,\BbbP ) special
semimartingale S (with m(S0) = S0);
\bullet C, a positive constant, the value of which may change from line to line.

Stochastic integrals of \frakP measurable (\BbbF predictable) processes against semimartingales and
stochastic integrals of \widehat \frakP measurable random functions with respect to jump measures or their
compensations are defined as in Jacod (1979). Stochastic integrals are sometimes written in
\dotp notation, using the precedence convention KL \dotp X = (KL) \dotp X.

As can be classically established by section theorem, for any progressive process (Lebesgue
integrand) X such that the predictable projection pX exists,2 the indistinguishable equality\int \cdot 
0
pXsds =

\int \cdot 
0 Xsds holds. As a consequence, we only consider predictable Lebesgue inte-

grands (even if this means replacing X by pX).

2For which \sigma integrability of X valued at any stopping time, e.g., X bounded or c\`adl\`ag, is enough.
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We denote by B an (\BbbF ,\BbbP ) standard d variate Brownian motion for some nonnegative
integer d. We denote by E an Euclidean space, by \pi a \sigma finite measure on (E,\frakB (E)) such
that

\int 
E(1 \wedge | e| 

2)\pi (de) < \infty , and we write \widehat \frakP = \frakP \otimes \frakB (E). We consider an \BbbF optional
integer valued random measure j(dt, de) on \BbbR + \times E, with \BbbP compensator \eta (t, e)\pi (de)dt and
compensated martingale measure M(dt, de), for some nonnegative and bounded \widehat \frakP measurable
random function \eta .

Given a positive integer l, we introduce
\bullet \scrS l2, the space of \BbbR l valued \BbbF adapted c\`adl\`ag processes Y such that

\| Y \| 2\scrS l
2
= \BbbE 

\biggl[ 
sup

0\leq t\leq T
| Yt| 2

\biggr] 
< +\infty ,(1)

and\scrM l
2, the space of martingales (componentwise) in \scrS l2;

\bullet \scrH l
2, the space of \BbbR l\otimes d valued \BbbF predictable processes Z such that

\| Z\| 2\scrH l
2
= \BbbE 

\biggl[ \int T

0
| Zt| 2dt

\biggr] 
< +\infty ;

\bullet \scrL l0, the space of l-variate \frakB (E) measurable functions endowed with the topology of
convergence in measure induced by \pi and we write, for any time t and u \in \scrL l0,

| u| t =
\biggl( \int 

E
| u(e)| 2\eta (t, e)\pi (de)

\biggr) 1/2

;

\bullet \widehat \scrH l
2, the space of l-variate \widehat \frakP measurable random functions U such that

\| U\| 2\widehat \scrH l
2

= \BbbE 
\biggl[ \int T

0

\int 
E
| Ut(e)| 2\eta (t, e)\pi (de)dt

\biggr] 
= \BbbE 

\biggl[ \int T

0
| Ut| 2tdt

\biggr] 
<\infty .

In the case where l = 1 we drop the index l, e.g., we write \scrS 2 instead of \scrS 12 . We introduce
likewise the space \scrH 1 of real valued \BbbF predictable processes X such that

\| X\| \scrH 1 = \BbbE 
\biggl[ \int T

0
| Xt| dt

\biggr] 
< +\infty .(2)

We assume that every (\BbbF ,\BbbP ) square integrable martingale null at time 0 has a representation
of the form \int t

0
ZsdBs +

\int t

0

\int 
E
Us(e)M(ds, de), 0 \leq t \leq T,(3)

for suitable integrands Z \in \scrH 2 and U \in \widehat \scrH 2, uniquely defined modulo d[B,B] and \eta (t, e)\pi (de)dt
negligible sets, respectively. The left and right terms in (3) represent the corresponding vector
and random measure stochastic integrals.

Given this square integrable martingale representation assumption, one can readily check
that all the results in Kruse and Popier (2016, section 4)3 derived there in the case of a Poisson
random measure, are valid in our setup.

3At least, the part of their results derived under square integrable assumptions, including their Theorem 1,
which we use in the paper.
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2. The XVA equations in the case of a default-free bank. Let there be given
\bullet r, an \BbbF progressive risk-free interest rate process, with related risk-free discount factor

\beta = e - 
\int \cdot 
0 rtdt;

\bullet \lambda , an \BbbF progressive bank funding (borrowing) spread process,
both assumed bounded (possibly after truncation by a large positive constant of standard
interest rate or credit spread models).

We consider a derivative portfolio with final maturity T between a bank and a client. In
order to focus on counterparty risk and XVA analysis, we assume that the bank has set up
a perfectly collateralized market hedge of its client portfolio (see section 3.2 in Albanese and
Cr\'epey (2019) for a more detailed description). Hence only the counterparty risk related cash
flows remain.

In this section, we assume that only the client is default prone (the defaultability of the
bank itself will be added in section 6). The probability measure \BbbP is then interpreted as a risk-
neutral pricing measure, calibrated to prices of liquid derivatives as standard. In the context
of a cost-of-capital XVA approach, the historical probability measure required for capital at
risk computations is then taken equal to \BbbP (see Remark 3.5 in Albanese and Cr\'epey (2019)),
leaving the discrepancy between the two to model risk.

Remark 2.1. In the hypothetical case of a default-free bank, the bank borrowing spread
\lambda is interpreted as a liquidity spread. However, in reality, banks are defaultable and \lambda is,
essentially, a credit spread process (liquidity spreads are typically on the order of a handful
of basis points while banks funding spreads can run into the hundreds of basis points).

Collateral means cash or liquid assets that are posted to guarantee a netted set of trans-
actions against defaults of the counterparties. Collateral may include VM, which tracks the
mark-to-market of the client portfolio and is typically rehypothecable, and IM set as a cushion
against gap risk, i.e., the risk of slippage between the mark-to-market of the portfolio and its
VM during the liquidation period that follows a default. Moreover, by regulation, the bank
needs to earmark capital at risk (CR \geq 0) devoted to coping with unexpected losses. For
simplicity, we assume cash only collateral and CR. Posted collateral is remunerated at the
risk-free rate r by the receiving party.

As explained in section 3.2 in Albanese, Caenazzo, and Cr\'epey (2017), the bank can use
reserve capital and CR as VM, but not as IM. As CR can only be used for funding VM and
because this feature is our main funding focus in this paper, we assume no IM in the following.
IM can be added without harm as done in Albanese et al. (2019, section A) (see also Albanese,
Caenazzo, and Cr\'epey (2017)).

Remark 2.2. Bilateral transactions under SIMM, which is the IM standard for noncleared
(vanilla) derivatives, are subject to even higher levels of initial margining than centrally cleared
transactions. For such transactions, the MVA issue dominates the FVA one. The FVA is
dominant in the case of deals with clients subject to little or partial collateralization, so that
the bank needs to borrow in order to fund the VM required on its hedge.

We denote by P the difference between the VM posted by the bank on its market hedge
and the VM received by the bank on its client portfolio. The market exposure of the bank to
the default of its client is modeled as Qt\bfitdelta (dt), where \bfitdelta is a Dirac measure at the (positive)



104 ST\'EPHANE CR\'EPEY, WISSAL SABBAGH, AND SHIQI SONG

default time of the client and where Q is some \BbbF optional nonnegative loss process of the bank
given the client default.

Example 2.1. Let MtM (for mark-to-market) denote the value process of the client port-
folio ignoring counterparty risk and risky funding costs, i.e., the conditional expectation of
the future contractual cash flows D promised by the client to the bank, discounted at the
risk-free rate. In line with our assumption of a perfectly collateralized market hedge of its
client portfolio by the bank, the bank posts MtM as VM on its hedge. Let VM denote the VM
exchanged between the client and the bank, counted positively when received by the bank.
Let R denote the recovery rate of the client. Then, assuming instantaneous liquidation of the
bank portfolio in case the client defaults (and no IMs), we have4

P = (MtM - VM) killed at the default time of the client,

Q = (1 - R)
\bigl( 
MtM+D  - D -  - VM

\bigr) +
.

The jump (D  - D - ) of the contractual cash flows contributes to the exposure Q of the bank
to the default of its client, consistent with the fact that it fails to be paid by the client if the
latter defaults.

Remark 2.3. The XVA setup of this paper can be readily extended to a bank engaged
in bilateral trade portfolios with several clients, as considered in Albanese, Caenazzo, and
Cr\'epey (2017) and Albanese et al. (2019, section A), by summing the Q\bfitdelta and P processes
over the different clients of the bank in all equations.

All our XVA processes are a priori sought for as semimartingales (meant componentwise
in the multivariate case), which will all happen to be nonnegative special semimartingales.

2.1. Contra-assets valuation. We assume that the process \lambda P+ is in \scrH 1 and that\int T
0 Qs\bfitdelta (ds) is \BbbP integrable. We define

CVAt = \BbbE t

\biggl[ \int T

t
\beta  - 1
t \beta sQs\bfitdelta (ds)

\biggr] 
, t \in [0, T ],(4)

which is a nonnegative special semimartingale, like
\int \cdot 
0 \beta 

 - 1
t \beta sQs\bfitdelta (ds) (cf. He, Wang, and Yan

(1992, Corollary 11.26)). We define the local martingale

(5) \mu = m(CVA) +m(Q \dotp \bfitdelta ).

Hence, for t \in [0, T ],

CVA0 + \beta \dotp \mu t = m(\beta CVA) +m(\beta Q \dotp \bfitdelta ) = \beta CVA+ \beta Q \dotp \bfitdelta = \BbbE t

\biggl[ \int T

0
\beta sQs\bfitdelta (ds)

\biggr] 
,

by (4). That is, \mu 0 = CVA0 (recall that the client default time is positive, hence, Q \dotp \bfitdelta 0 = 0)
and, for t \in [0, T ],

\beta td\mu t = d(\beta CVA)t + \beta tQt\bfitdelta (dt),

i.e.,

d\mu t = dCVAt  - rtCVAtdt+Qt\bfitdelta (dt).(6)

4See Lemmas 5.2--5.3 in Albanese and Cr\'epey (2019) for detailed derivations.
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Remark 2.4. If
\int T
0 Qs\bfitdelta (ds) is \BbbP square integrable, then CVA is in \scrS 2, by (4), and so is \mu ,

by (6) (having assumed r bounded).

The nonnegative contra-asset value process (CA \geq 0) corresponds to the conditionally
expected future counterparty default and risky funding losses, i.e., CA = CVA + FVA, com-
puted under the risk-neutral pricing measure \BbbP . A well-grounded, refined specification of the
FVA is in fact part of the objectives of the paper. The ensuing CA amount is assumed to be
charged to the client at time 0 by the CVA desk and the FVA desk (or Treasury) of the bank,
which put it into a reserve capital (RC) account dedicated to cope with these expected losses
as time goes on. From an accounting perspective, the CVA and the FVA represent special
liabilities, which arise from the feedback impact of counterparty risk on financial receivables
to the bank, hence the name of contra-assets for the cash flows valued by CA (cf. Figure 1 in
Albanese et al. (2019, section 2)).

We assume that all the losses and earnings of the bank are marked to the model and
realize immediately. In particular, the RC amount is reset to its theoretical CA value at all
times. RC can also be used as VM. Accounting for this feature and since RC = CA, the VM
borrowing needs of the bank are reduced from P+ otherwise to (P  - CA)+.

Remark 2.5. The identity RC = CA does of course not mean that RC and contra-assets
are one and the same thing: RC is the amount on a cash account which is part of the assets
of the bank (and can, in particular, be pledged as VM), whereas the contra-assets valuation
CA is the matching liability in the bank balance sheet (cf. again Figure 1 in Albanese et al.
(2019, section 2)).

On top of RC, CR (CR \geq 0) can also be used by the bank for its funding purposes (provided
the bank pays to its shareholders a risk-free rate on CR that they would gain by depositing
it otherwise). The funding needs of the bank are then reduced further from (P  - CA)+ to
(P  - CA - CR)+.

Rephrasing the above qualitative descriptions in mathematical terms, the trading loss
process L of the bank satisfies

L0 = z and, for t \in (0, T,

dLt = Qt\bfitdelta (dt)\underbrace{}  \underbrace{}  
\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{s} \mathrm{i}\mathrm{n} \mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{c}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{a}\mathrm{u}\mathrm{l}\mathrm{t}

+ (rt + \lambda t)
\bigl( 
Pt  - CAt  - CRt

\bigr) +
dt\underbrace{}  \underbrace{}  

\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{o} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{c}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{s}

 - rt
\bigl( 
Pt  - CAt  - CRt

\bigr)  - 
dt\underbrace{}  \underbrace{}  

\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{o} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{b}\mathrm{e}\mathrm{n}\mathrm{e}fi\mathrm{t}\mathrm{s}

+ rtCRtdt\underbrace{}  \underbrace{}  
\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{t}\mathrm{o} \mathrm{s}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{e}\mathrm{r}\mathrm{s} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{C}\mathrm{R} \mathrm{f}\mathrm{u}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{r}\mathrm{e}\mathrm{s}\mathrm{o}\mathrm{u}\mathrm{r}\mathrm{c}\mathrm{e}

 - rtPtdt\underbrace{}  \underbrace{}  
\mathrm{r}\mathrm{e}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l} \mathrm{b}\mathrm{e}\mathrm{t}\mathrm{w}\mathrm{e}\mathrm{e}\mathrm{n} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{b}\mathrm{a}\mathrm{n}\mathrm{k} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t}

+ dCAt\underbrace{}  \underbrace{}  
\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{i}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{a}-\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{e}\mathrm{t}\mathrm{s} \mathrm{o}\mathrm{f} \mathrm{t}\mathrm{h}\mathrm{e} \mathrm{b}\mathrm{a}\mathrm{n}\mathrm{k}

= dCAt  - rtCAtdt+Qt\bfitdelta (dt) + \lambda t

\bigl( 
Pt  - CAt  - CRt

\bigr) +
dt

(7)
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or, equivalently (recall \beta = e - 
\int \cdot 
0 rtdt),

\beta tdLt = d(\beta tCAt) + \beta tQt\bfitdelta (dt) + \beta t\lambda t

\bigl( 
Pt  - CAt  - CRt

\bigr) +
dt(8)

(and L is constant beyond T ). Note that the above dynamics for L are well-defined under the
postulated integrability conditions on P and Q, as well as CA \geq 0,CR \geq 0. In the case where
the stochastic integral

\int \cdot 
0 \beta tdLt is a uniformly integrable martingale, formula (8), together

with our integrability conditions on P and Q and a terminal condition CAT = 0, lead to the
following equation for the CA process: For t \in [0, T ],

CAt = \BbbE t

\biggl[ \int T

t
\beta  - 1
t \beta sQs\bfitdelta (ds)

\biggr] 
\underbrace{}  \underbrace{}  

\mathrm{C}\mathrm{V}\mathrm{A}t

+\BbbE t

\biggl[ \int T

t
\beta  - 1
t \beta s\lambda s

\bigl( 
Ps  - CAs  - CRs

\bigr) +
ds

\biggr] 
\underbrace{}  \underbrace{}  

\mathrm{F}\mathrm{V}\mathrm{A}t

.
(9)

2.2. KVA. As visible in (9), CR is FVA reducing. However, under a cost-of-capital XVA
approach, before being FVA reducing as a side effect, CR entails a charge for the bank, which
is the cost, called KVA, of remunerating shareholders at some hurdle rate (dividend rate) for
their CR. This cost is sourced from the client at time 0 and put into the so-called risk margin
(RM) account, from where it is gradually released, as dividends, to bank shareholders.

Under our continuous reset assumption on all bank accounts, the RM amount is reset to
its theoretical KVA value at all times. Moreover, under our XVA approach, the RM is loss
absorbing (see sections 3.6 and 6.2 in Albanese and Cr\'epey (2019)), so that it is part of CR.
Hence, the inequality

KVA \leq CR(10)

holds and shareholder CR only corresponds to the difference (CR - KVA). Assuming a con-
stant hurdle rate h \geq 0 (including a risk-free remuneration of the RM account to shareholders),
this leads to the KVA equation

 - dKVAt + rtKVAtdt = h(CRt  - KVAt)dt - d\nu t, 0 \leq t \leq T,

for some local martingale \nu or, equivalently,5

 - d(\beta tKVAt) = h\beta t(CRt  - KVAt)dt - \beta td\nu t, 0 \leq t \leq T.

In the case where the stochastic integral
\int \cdot 
0 \beta td\nu t is a uniformly integrable martingale, the

above formula, together with the terminal condition KVAT = 0 (as the portfolio expires at
time T ), leads to

(11) 0 \leq \beta tKVAt = h\BbbE t

\biggl[ \int T

t
\beta s(CRs  - KVAs)ds

\biggr] 
, 0 \leq t \leq T.

5All the Lebesgue integrals that appear in these expressions are well defined over [0, T ], having assumed
semimartingale XVAs.
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2.3. Economic capital and CR specifications. Economic capital is the (minimum) level
of CR that a regulator would like to see on an economic, structural basis. We use the following
dynamic specification of economical capital:

(12) \BbbE \BbbS t
\biggl( \int t+1

t
\beta  - 1
t \beta sdLs

\biggr) 
, t \in [0, T ],

where L is the trading loss and profit process of the bank in (8) and where \BbbE \BbbS t(\ell ) denotes the
\frakF t conditional expected shortfall, at some level \alpha (e.g., \alpha = 97.5\%), of an \frakF T measurable, \BbbP 
integrable random variable \ell . That is, denoting by qat (\ell ) the (\frakF t,\BbbP ) conditional value at risk
(left quantile) of level a of \ell (cf. Artzner et al. (1999)): For t \leq T ,

\BbbE \BbbS t(\ell ) = (1 - \alpha ) - 1

\int 1

\alpha 
qat (\ell )da

= inf
x\in \BbbR 

\Bigl( 
x+ (1 - \alpha ) - 1\BbbE t

\bigl[ 
(\ell  - x)+

\bigr] \Bigr) 
= sup

\bigl\{ 
\BbbE t[\ell \chi ] ; \chi is \frakF T measurable, 0 \leq \chi \leq (1 - \alpha ) - 1, and \BbbE t[\chi ] = 1

\bigr\} 
.

(13)

Note that we will only deal with martingale loss and profit processes L and therefore centered
loss variables \ell fer which \BbbE \BbbS t(\ell ) \geq 0 holds in view of the third line in (13). Moreover, for
any \frakF T measurable, \BbbP integrable random variables \ell and \ell \prime , we have (cf. Barrera et al. (2019,
Lemma 6.10, eq. (6.20)) and its proof)

| \BbbE \BbbS t(\ell ) - \BbbE \BbbS t(\ell \prime )| \leq (1 - \alpha ) - 1\BbbE t[| \ell  - \ell \prime | ], 0 \leq t \leq T.(14)

We will need to plug economic capital processes such as (12) into the coefficient of BSDEs.
Before doing so (see, e.g., (27)), let us show that any such economic capital process is the image,
in the sense of (16) below, of a predictable process. Namely, for every (raw, nonnecessarily
adapted) process \Lambda admitting6 an (\BbbF ,\BbbP ) predictable projection p\Lambda , let

EC(\Lambda ) = inf
\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{s} k

\Bigl( 
k + (1 - \alpha ) - 1 p

\bigl[ 
(\Lambda  - k)+

\bigr] \Bigr) 
.(15)

Lemma 2.1. For every raw process \Lambda endowed with an (\BbbF ,\BbbP ) predictable projection, we
have, for every constant t \geq 0,

EC(\Lambda )t = \BbbE \BbbS t(\Lambda t).(16)

Proof. By definition,

EC(\Lambda )t = inf
\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{s} k

\Bigl( 
k + (1 - \alpha ) - 1\BbbE t - [(\Lambda t  - k)+]

\Bigr) 
.

By Jacod (1979, Lemma 4.48),

\frakF t = \frakF t - \vee \sigma (\Delta tX : all uniformly integrable martingale X).

6For which having \Lambda c\`adl\`ag is enough.
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By the martingale representation property (3), the martingales can have no jump at the
predictable stopping time t. Consequently, \frakF t = \frakF t - and

EC(\Lambda )t = inf
\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}\mathrm{s} k

\Bigl( 
k + (1 - \alpha ) - 1\BbbE t[(\Lambda t  - k)+]

\Bigr) 
= \BbbE \BbbS t(\Lambda t),

by the second line in (13).

Hence, by application of Lemma 2.1 (to \Lambda =
\int \cdot +1
\cdot \beta  - 1

\cdot \beta sdLs in (16)), it is harmless to

use processes such as \BbbE \BbbS \cdot 
\bigl( \int \cdot +1

\cdot \beta  - 1
\cdot \beta sdLs

\bigr) 
(cf. (12)) instead of the corresponding predictable

expression EC(
\int \cdot +1
\cdot \beta  - 1

\cdot \beta sdLs) in our XVA equations below (where L is a local martingale, as
implied by the requirements for a solution to these XVA equations).

In view of inequality (10) and of the risk admissibility condition

CR \geq \BbbE \BbbS \cdot 
\biggl( \int \cdot +1

\cdot 
\beta  - 1
\cdot \beta sdLs

\biggr) 
(see before (12)), we adopt the following ``minimal"" specification of CR:

CR = max

\biggl( 
\BbbE \BbbS \cdot 
\biggl( \int \cdot +1

\cdot 
\beta  - 1
\cdot \beta sdLs

\biggr) 
,KVA

\biggr) 
.(17)

Table 1 reviews the main protagonists of the cost-of-capital XVA approach.

Table 1
Main financial acronyms and place where they are introduced conceptually and/or specified mathematically

in the paper, as relevant.

\bfC \bfA Contra-assets valuation Section 2.1 and (27)
\bfC \bfR Capital at risk Paragraph following Remark 2.1 and (17)
\bfC \bfV \bfA Credit valuation adjustment First paragraph of section 1 and (4)
\bfE \bfC Economic capital (12) and preceding lines
\bfF \bfV \bfA Funding valuation adjustment First paragraph of section 1 and (9), (27)
\bfK \bfV \bfA Capital valuation adjustment Section 2.2 and (11), (27)
\bfM \bft \bfM Mark-to-market Example 2.1
\bfR \bfC Reserve capital Section 2.1, Remark 2.5 in particular
\bfR \bfM Risk margin Section 2.2
\bfX \bfV \bfA Generic ``X"" valuation adjustment First paragraph of section 1

3. A general ABSDE well-posedness result. In this section, we extend to ABSDEs the
(square integrable part of the) monotone coefficient BSDE results in Kruse and Popier (2016).

Let there be given a map \rho from \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 into the space of \BbbF predictable processes
satisfying the following.

Assumption 3.1. There exists a constant c\rho such that, for any (Y,Z, U), (Y \prime , Z \prime , U \prime ) in

\scrS l2 \times \scrH l
2 \times \widehat \scrH l

2, for any t \in [0, T ],

| \rho t(Y,Z, U) - \rho t(Y
\prime , Z \prime , U \prime )| 2

\leq c2\rho \BbbE t

\biggl[ 
sup

t\leq s\leq T
| Ys  - Y \prime 

s | 
2
+

\int T

t

\bigl( 
| Zs  - Z \prime 

s| 2 + | Us  - U \prime 
s| 2s
\bigr) 
ds

\biggr] 
.

(18)
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Let there additionally be given an \frakF T measurable terminal condition \xi \in \BbbR l and a \frakP \otimes 
\frakB (\BbbR l)\otimes \frakB (\BbbR l\otimes d)\otimes \frakB (\scrL l0)\otimes \frakB (\BbbR ) measurable coefficient f , such that we have the following.

Assumption 3.2.
(i) The function y \mapsto \rightarrow f(t, y, z, u, \varrho ) is continuous. Moreover, there exists a positive con-

stant cm such that

\langle f(t, y, z, u, \varrho ) - f(t, y\prime , z, u, \varrho ), y  - y\prime \rangle \leq cm| y  - y\prime | 2.

(ii) There exists a positive constant cf such that

| f(t, y, z, u, \varrho ) - f(t, y, z\prime , u\prime , \varrho \prime )| \leq cf (| z  - z\prime | + | u - u\prime | t + | \varrho  - \varrho \prime | ).

(iii) The processes sup| y| \leq c | f(\cdot , y, 0, 0, \rho \cdot (0, 0, 0)) - f(\cdot , 0, 0, 0, \rho \cdot (0, 0, 0))| (for every c > 0),

as well as | f(\cdot , 0, 0, 0, \rho \cdot (0, 0, 0))| 2, are in \scrH 1.
(iv) \BbbE 

\bigl[ 
| \xi | 2
\bigr] 
< +\infty .

We consider the following l-variate ABSDE with data \xi , f, \rho :

(19)

\left\{   
YT = \xi and, for t \leq T,

 - dYt = f (t, Yt, Zt, Ut, \rho t(Y,Z, U)) dt - ZtdBt  - 
\int 
E
Ut(e)M(dt, de),

to be solved for (Y,Z, U) in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 .

Lemma 3.1. If (Y,Z, U) is a solution in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 to the ABSDE (19), then

\| Y \| 2\scrS l
2
+ \| Z\| 2\scrH l

2
+ \| U\| 2\widehat \scrH l

2

\leq C \BbbE 
\biggl[ 
| \xi | 2 +

\int T

0
| f(s, 0, 0, 0, \rho \cdot (0, 0, 0))| 2ds

\biggr] 
.(20)

Proof. See section A.1.

Lemma 3.2. For any given (X,V,W ) in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2, the BSDE

(21)

\left\{   
YT = \xi and, for t \leq T,

 - dYt = f (t, Yt, Zt, Ut, \rho t(X,V,W )) dt - ZtdBt  - 
\int 
E
Ut(e)M(dt, de)

has a unique solution (Y, Z, U) in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2.

Proof. Given (X,V,W ) in \scrS l2\times \scrH l
2\times \widehat \scrH l

2, (21) for (Y,Z, U) is a monotone BSDE, which is

well-posed in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2, by Kruse and Popier (2016, Theorem 1).

Theorem 3.1. The ABSDE (19) has a unique solution (Y,Z, U) in \scrS l2\times \scrH l
2\times \widehat \scrH l

2, which is

the limit in \scrS l2\times \scrH l
2\times \widehat \scrH l

2, with a geometrical convergence rate, of the Picard iteration defined
by (Y (0), Z(0), U (0)) = (0, 0, 0) and, for n \geq 1,

(22)

\left\{           
Y

(n)
T = \xi and, for t \leq T,

 - dY
(n)
t = f

\bigl( 
t, Y

(n)
t , Z

(n)
t , U

(n)
t , \rho t(Y

(n - 1), Z(n - 1), U (n - 1))
\bigr) 
dt

 - Z
(n)
t dBt  - 

\int 
E
U

(n)
t (e)M(dt, de).
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Proof. Lemma 3.2 allows defining a map \Phi from \scrS l2\times \scrH l
2\times \widehat \scrH l

2 into itself by \Phi (X,V,W ) =
(Y,Z, U). Classical BSDE computations detailed in section A.2 show that \Phi is a contraction
on the space \scrS l2\times \scrH l

2 \times \widehat \scrH l
2 (endowed with a suitably weighted norm still making it a Banach

space), so that \Phi has a unique fix-point (Y,Z, U) in \scrS l2\times \scrH l
2 \times \widehat \scrH l

2. Hence, (19) has a solution

(Y,Z, U) in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2, unique by Lemma 3.1.
Moreover, the sequence (Y (n), Z(n), U (n)), is well-defined, by iterated application of Lemma

3.2, and the majoration (69) implies the stated geometrical convergence of this sequence to
(Y,Z, U).

Remark 3.1. In the case where f is not only monotone but Lipschitz in y, then one can

check likewise that the explicit Picard iteration, with Y
(n - 1)
t instead of Y

(n)
t as second argu-

ment of f in (22), also converges in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 to (Y,Z, U).

3.1. A special case. In this subsection, we assume that \rho (Y,Z, U) only depends on (Z,U)
through

\int \cdot 
0 ZsdBs+

\int \cdot 
0

\int 
E Us(e)M(ds, de) and that f does not depend on (z, u). More precisely,

\rho (Y,Z, U) = \=\rho 
\bigl( 
Y, Y0 +

\int \cdot 

0
ZsdBs +

\int \cdot 

0

\int 
E
Us(e)M(ds, de)

\bigr) 
, f(t, y, z, u, \varrho ) = \=f(t, y, \varrho ),

where \=f satisfies the amended form of Assumption 3.2 obtained by replacing all missing
arguments by 0 there, while \=\rho is a map from \scrS l2\times \scrM l

2 into the space of \BbbF predictable processes,
which satisfies the following.

Assumption 3.3. There exists a constant c\=\rho such that, for any (Y,N), (Y \prime , N \prime ) in \scrS l2\times \scrM l
2,

for any t \in [0, T ],

| \=\rho t(Y,N) - \=\rho t(Y
\prime , N \prime )| 2

\leq c2\=\rho \BbbE t

\biggl[ 
sup

t\leq s\leq T
| Ys  - Y \prime 

s | 
2
+

l\sum 
k=1

\bigl( 
\langle Nk  - (N \prime )k\rangle T  - \langle Nk  - (N \prime )k\rangle t

\bigr) \biggr] 
.

(23)

Then | \rho t(Y,Z, U) - \rho t(Y
\prime , Z \prime , U \prime )| 2 in (18) is rewritten as | \=\rho 

\bigl( 
Y,N

\bigr) 
 - \=\rho 
\bigl( 
Y \prime , N \prime | 2, where

N = Y0 +

\int \cdot 

0
ZsdBs +

\int \cdot 

0

\int 
E
Us(e)M(ds, de) and

N \prime = Y \prime 
0 +

\int \cdot 

0
Z \prime 
sdBs +

\int \cdot 

0

\int 
E
U \prime 
s(e)M(ds, de)

are such that

l\sum 
k=1

\bigl( 
\langle Nk  - (N \prime )k\rangle T  - \langle Nk  - (N \prime )k\rangle t

\bigr) 
=

\int T

t

\bigl( 
| Zs  - Z \prime 

s| 2 + | Us  - U \prime 
s| 2s
\bigr) 
ds.

Hence (23) is rewritten as (18) (for c\rho there equal to c\=\rho ), which shows that Assumption 3.1 is
satisfied. Moreover, by inspection,

1. Assumption 3.2 holds;
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2. the ABSDE (19) for (Y,Z, U) in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 is equivalent, via the martingale rep-
resentation property (3), to the following equation to be solved for a (special) semi-
martingale Y in \scrS l2 with m(Y ) in \scrS l2:

(24) Yt = \BbbE t

\biggl[ 
\xi +

\int T

t

\=f
\Bigl( 
s, Ys, \=\rho s

\bigl( 
Y,m(Y )

\bigr) \Bigr) 
ds

\biggr] 
, t \leq T,

which is in turn equivalent to the following system of equations for a (special) semi-
martingale Y in \scrS l2 and a martingale N(= m(Y )) in \scrS l2:

N0 = Y0 and, for t \in (0, T ],

dNt = dYt  - \=f (t, Yt, \=\rho t(Y,N)) dt,

Yt = \BbbE t

\biggl[ 
\xi +

\int T

t

\=f
\bigl( 
s, Ys, \=\rho s(Y,N)

\bigr) 
ds

\biggr] 
;

(25)

3. the Picard iteration of Theorem 3.1 for (Y, Z, U) is equivalent to the following Picard
iteration for (Y,N = m(Y )) in (25): Y (0) = N (0) = 0 and, for n \geq 1,

Y
(n)
t = \BbbE t

\biggl[ 
\xi +

\int T

t

\=f
\bigl( 
s, Y (n)

s , \=\rho s(Y
(n - 1),N (n - 1))

\bigr) 
ds

\biggr] 
, 0 \leq t \leq T,

N
(n)
0 = Y

(n)
0 and, for t \in (0, T ],

dN
(n)
t = dY

(n)
t  - \=f

\bigl( 
t, Y

(n)
t , \=\rho t(Y

(n - 1),N (n - 1))
\bigr) 
dt.

(26)

4. The XVA equations in the case of a default-free bank are well-posed.

4.1. The (FVA,KVA) ABSDE system. Note that L only intervenes via CR as per (17)
in the FVA and KVA equations (7), (9), (11), and (17). As a consequence, using in this
paragraph a superscript z in reference to the value of the initial condition z for L in (7),
if (Lz,FVAz,KVAz) solves the FVA and KVA equations, then, for every real u, (Lz + u  - 
z,FVAz,KVAz) solves the same equations with z replaced by u in (7). Hence, the value of
the initial condition z for L is immaterial in the XVA problem.

Hereafter, in order to be in line with the convention that the martingale part of a special
semimartingale S starts from S0 (in this case we target L = m(CA+Q \dotp \bfitdelta )), we set z = CA0.
The FVA and KVA problem (7), (9), (11), and (17) is then rewritten as (with CA used as a
shorthand for CVA + FVA, hence L = \mu +m(FVA), by (5))

L0 = CA0 and, for t \in (0, T ],

= dCAt  - rtCAtdt+Qt\bfitdelta (dt)

+ \lambda t

\biggl( 
Pt  - CAt  - max

\biggl( 
\BbbE \BbbS t
\biggl( \int t+1

t
\beta  - 1
t \beta sdLs

\biggr) 
,KVAt

\biggr) \biggr) +

dt,

FVAt = \BbbE t

\int T

t
\beta  - 1
t \beta s\lambda s

\biggl( 
Ps  - CAs  - max

\biggl( 
\BbbE \BbbS s

\biggl( \int s+1

s
\beta  - 1
s \beta udLu

\biggr) 
,KVAs

\biggr) \biggr) +

ds,

KVAt = h\BbbE t

\Biggl[ \int T

t
\beta  - 1
t \beta s

\biggl( 
\BbbE \BbbS s

\biggl( \int s+1

s
\beta  - 1
s \beta udLu

\biggr) 
 - KVAs

\biggr) +

ds

\Biggr] 
.

(27)
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As will be detailed in the proof of Theorem 4.1 below, the system (27) belongs formally to
the class of equations considered in section 3.1, in the form (25), for Y = (FVA,KVA) and its
martingale part N (having noted that L = \mu +m(FVA) in (27)).

Remark 4.1. As \lambda is bounded (and h is constant), the system (27) is Lipschitz in
(\beta FVA, \beta KVA), irrespective of the boundedness assumption made on r. However, we prefer
to look at the system in terms of (FVA,KVA), even if this is at the cost of assuming r bounded
(which is not a real restriction in practice, as explained at the beginning of section 2). In-
deed, in Markov setups with numerical solutions in mind, working with (\beta FVA, \beta KVA) would
require us to introduce an additional factor process (at least mathematically) to account for
the path dependence induced by \beta .

Definition 4.1. We denote as a square integrable solution to (27), any special semimartin-
gale solution (componentwise) (FVA,KVA) (with L = \mu +m(FVA) in (27)), with components
(i.e., the XVA processes themselves) and their martingale parts in \scrS 2.

4.2. The (FVA,KVA) ABSDE system (27) is well-posed.

Lemma 4.1. The map defined by, for (Y,N)in \scrS 22 \times \scrM 2
2,

\=\rho t(Y,N) = \BbbE \BbbS t

\Biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta s

\bigl( 
d\mu s + dN1

s

\bigr) \Biggr] 
, t \in [0, T ](28)

(which only depends on (Y,N) through the first component N1 of N), satisfies Assumption
3.3 (for l = 2 there).

Proof. By (14), we have for any (Y,N), (Y \prime , N \prime ) in \scrS 22 \times \scrM 2
2,

| \=\rho t(Y,N) - \=\rho t(Y
\prime , N \prime )| 2 \leq (1 - \alpha ) - 2

\Biggl( 
\BbbE t

\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd

\bigl( 
N1

s  - (N \prime )1s
\bigr) \biggr] \Biggr) 2

\leq (1 - \alpha ) - 2\BbbE t

\biggl[ \biggl( \int (t+1)\wedge T

t
\beta  - 1
t \beta sd

\bigl( 
N1

s  - (N \prime )1s
\bigr) \biggr) 2\biggr] 

,

by the (conditional) Jensen inequality. Moreover, as a local martingale in \scrS 2, the process
(N1  - (N \prime )1) is a square integrable martingale. As \beta  - 1

t \beta s, t \leq s \leq T, is bounded, the process
s \mapsto \rightarrow 

\int \cdot 
t \beta 

 - 1
t \beta sd

\bigl( 
N1

s  - (N \prime )1s
\bigr) 
is therefore a square integrable martingale over [t, T ]. The (con-

ditional) Burkholder inequality applied to this process then yields

| \=\rho t(Y,N) - \=\rho t(Y
\prime , N \prime )| 2 \leq (1 - \alpha ) - 2C\BbbE t

\Bigl( 
\langle N1  - (N \prime )1\rangle T  - \langle N1  - (N \prime )1\rangle t

\Bigr) 
.

In particular, Assumption 3.3 holds (with l = 2 there).

We introduce the following Picard iteration, where CVA and \mu are given by (4) and (5):
FVA(0) = KVA(0) = 0, L(0) = \mu and, for n \geq 1, (FVA(n),KVA(n)) given as the unique square
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integrable solution7 to, with CA(n) as a shorthand for CVA+ FVA(n),

KVA
(n)
t = h\BbbE t

\int T

t
\beta  - 1
t \beta s

\biggl( 
\BbbE \BbbS s

\biggl( \int s+1

s
\beta  - 1
s \beta udL

(n - 1)
u

\biggr) 
 - KVA(n)

s

\biggr) +

ds, t \in [0, T ],

FVA
(n)
t = \BbbE t

\int T

t
\beta  - 1
t \beta s\lambda s

\biggl( 
Ps  - CA(n)

s

 - max

\biggl( 
\BbbE \BbbS s

\biggl( \int s+1

s
\beta  - 1
s \beta udL

(n - 1)
u

\biggr) 
,KVA(n)

s

\biggr) \biggr) +

ds, t \in [0, T ],

L
(n)
0 = CA

(n)
0 and, for t \in [0, T ], dL

(n)
t = Qt\bfitdelta (dt) + dCA

(n)
t  - rtCA

(n)
t dt

+ \lambda t

\biggl( 
Pt  - CA

(n)
t  - max

\biggl( 
\BbbE \BbbS t
\biggl( \int t+1

t
\beta  - 1
t \beta sdL

(n - 1)
s

\biggr) 
,KVA

(n)
t

\biggr) \biggr) +

dt.

(29)

Theorem 4.1. Suppose (r and \lambda are bounded), (P+)2 \in \scrH 1 and
\int T
0 Qs\bfitdelta (ds) is \BbbP square in-

tegrable. Then the system (27) admits a unique square integrable solution (FVA,KVA), which
is also the limit in \scrS 22 , with a geometrical convergence rate, of the sequence (FVA(n),KVA(n))n\in \BbbN 
in (29). Moreover, L = \mu +m(FVA) \in \scrM 2.

Proof. The system (27) is nothing but the integral form of (25) with

l = 2, \=\rho as per (28), \xi = (0, 0)T, and \=f = ( \=f1, \=f2)
T such that, for any t, y = (y1, y2)

T, \varrho ,

\=f1 = \=f1(t, y, \varrho ) = \lambda t

\Bigl( 
Pt  - CVAt  - y1  - max

\bigl( 
\varrho , y2

\bigr) \Bigr) +
 - rty1,

\=f2 = \=f2(t, y, \varrho ) = h
\bigl( 
\varrho  - y2

\bigr) +  - rty2.

(30)

As shown by Lemma 4.1, \=\rho in (28) satisfies Assumption 3.3. Moreover, for any t \in [0, T ],
for y = (y1, y2)

T and y\prime = (y\prime 1, y
\prime 
2)

T in \BbbR 2, as r and \lambda are bounded from below, we have

\langle \=f(t, y, \varrho ) - \=f(t, y\prime , \varrho ), y  - y\prime \rangle 
=
\bigl( 
\=f1(t, y, \varrho ) - \=f1(t, y

\prime , \varrho )
\bigr) 
(y1  - y\prime 1) +

\bigl( 
\=f2(t, y, \varrho ) - \=f2(t, y

\prime , \varrho )
\bigr) 
(y2  - y\prime 2)

= \lambda t

\Bigl( \bigl( 
Pt  - CVAt  - y1  - max

\bigl( 
\varrho , y2

\bigr) \bigr) +  - \bigl( Pt  - CVAt  - y\prime 1  - max
\bigl( 
\varrho , y\prime 2

\bigr) \bigr) +\Bigr) 
(y1  - y\prime 1)

 - rt(y1  - y\prime 1)
2 + h

\Bigl( \bigl( 
\varrho  - y2

\bigr) +  - \bigl( \varrho  - y\prime 2
\bigr) +\Bigr) 

(y2  - y\prime 2) - rt
\bigl( 
y2  - y\prime 2

\bigr) 2
\leq C| y  - y\prime | 2.

Hence, the ABSDE coefficient \=f in (30) satisfies the monotonicity condition of Assumption
3.2(i) (it is in fact even Lipschitz, as our processes r and \lambda are actually assumed bounded).
Next, for any arguments t, y = (y1, y2)

T, and \varrho , \varrho \prime , we have

| \=f(t, y, \varrho ) - \=f(t, y, \varrho \prime )| 2

=
\bigl( 
\=f1(t, y, \varrho ) - \=f1(t, y, \varrho 

\prime )
\bigr) 2

+
\bigl( 
\=f2(t, y, \varrho ) - \=f2(t, y, \varrho 

\prime )
\bigr) 2

= \lambda 2
t

\bigm| \bigm| \bigm| \bigl( Pt  - CVAt  - y1  - max
\bigl( 
\varrho , y2

\bigr) \bigr) +  - \bigl( Pt  - CVAt  - y1  - max
\bigl( 
\varrho \prime , y2

\bigr) \bigr) +\bigm| \bigm| \bigm| 2
+ h2| 

\bigl( 
\varrho  - y2

\bigr) +  - \bigl( \varrho \prime  - y2
\bigr) +| 2 \leq C

\bigm| \bigm| \varrho  - \varrho \prime 
\bigm| \bigm| 2,

7Here we mean square integrable solution in the sense immediately analogous to the one of Definition 4.1,
as justified at the end of the proof of Theorem 4.1.
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which implies that Assumption 3.2(ii) holds. Finally, writing

\widehat \rho t = \=\rho t
\bigl( 
(0, 0)T, (0, 0)T

\bigr) 
= \BbbE \BbbS t

\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] 
,

we have, for each t and y = (y1, y2)
T (simply denoting by 0 the origin of \BbbR 2 in what follows)

\=f1(t, y, \widehat \rho t) = \lambda t

\biggl( 
Pt  - CVAt  - y1

 - max

\biggl( 
\BbbE \BbbS t
\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] 
, y2

\biggr) \biggr) +

 - rty1,

\=f1(t, 0, \widehat \rho t) = \lambda t

\biggl( 
Pt  - CVAt  - max

\biggl( 
\BbbE \BbbS t
\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] \biggr) \biggr) +

,

\=f2(t, y, \widehat \rho t) = h

\biggl( 
\BbbE \BbbS t
\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] 
 - y2

\biggr) +

 - rty2,

\=f2(t, 0, \widehat \rho t) = h\BbbE \BbbS t
\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] 
,

(31)

hence,
| \=f(t, y, \widehat \rho t) - \=f(t, 0, \widehat \rho t)| \leq (| \lambda t| + | rt| )(| y1| + | y2| ) + h| y2| .

By assumption, r and \lambda are bounded and (P+)2 \in \scrH 1. In addition,

\| \widehat \rho 2\| \scrH 1 = \BbbE 
\biggl[ \int T

0

\biggl( 
\BbbE \BbbS t
\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] \biggr) 2

dt

\biggr] 
\leq (1 - \alpha ) - 2\BbbE 

\biggl[ \int T

0

\biggl( 
\BbbE t

\biggl[ \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\mu s

\biggr] \biggr) 2

dt

\biggr] 
\leq (1 - \alpha ) - 2\BbbE 

\biggl[ \int T

0

\biggl( 
\BbbE t

\biggl[ \int (t+1)\wedge T

t
\beta  - 2
t \beta 2

sd[\mu ]s
\bigr] \biggr) 

dt

\biggr] 
.

Hence, since \beta  - 2
t \beta 2

s \leq eCT ,

\| \widehat \rho 2\| \scrH 1 \leq (1 - \alpha ) - 2eCT\BbbE 
\biggl[ \int T

0

\int T

0
d[\mu ]sdt

\biggr] 
\leq (1 - \alpha ) - 2eCTT\BbbE [\mu 2

T ],

which is finite, by Remark 2.4 (having assumed that
\int T
0 Qs\bfitdelta (ds) is \BbbP square integrable). From

the above (starting with (31) onward), we deduce that Assumption 3.2(iii) is satisfied. Hence,
an application of Theorem 3.1, via the observations 1 and 2 in section 3.1, shows that (25)
with data (30) has a unique solution in \scrS 22 \times \scrM 2

2, i.e., the (FVA,KVA) system (27) admits a
unique square integrable solution.

The well-posedness of the Picard iteration (29) among square integrable solutions
(FVA(n),KVA(n)), for each n, and the geometrical convergence of (FVA(n),KVA(n)), when
n\rightarrow \infty , follow through the observation 3 in section 3.1, from the second part of Theorem 3.1.

Finally, we have L = \mu + m(FVA) in (27), where \mu is in \scrM 2, by Remark 2.4, and so is
m(FVA), by Definition 4.1 of a square integrable solution to (27).



THE XVA ANTICIPATED BSDEs 115

Remark 4.2. As L = \mu +m(FVA) \in \scrS 2 (last statement in Theorem 4.1) and \beta is bounded,
the stochastic integral

\int \cdot 
0 \beta tdLt is a uniformly integrable martingale, in line with the corre-

sponding requirement before (9).

5. Invariance times transfer properties. What precedes was done in the theoretical case
of a default-free bank. However, in reality, banks are defaultable and counterparty risk is
related to cash flows or valuations linked to either counterparty default or the default of the
bank itself. In particular, the bank funding spread \lambda , which we introduced in the above as
liquidity, is essentially related to the credit spread of the bank (see Remark 2.1). Hence it is
crucial to understand the case of a defaultable bank.

Then, as detailed in Albanese and Cr\'epey (2019, section 4.1) and recalled in what follows,
we consider not only one pricing basis, i.e., (\BbbF ,\BbbP ) above, but actually two, i.e., also (\BbbG ,\BbbQ )
below. These pricing bases are connected by suitable consistency conditions (B) and (A),
meaning that the bank default time \tau is an invariance time in the sense of Cr\'epey and Song
(2017) (see Appendix B for a survey of the main results there).

In this transition section, which is general and of independent interest, we establish a
transfer between expectations and martingale properties in the original and changed stochas-
tic bases, assuming an invariance time \tau endowed with an intensity and a positive Az\'ema
supermartingale.

5.1. Reduction of filtration setup. We suppose that a complete and right-continuous
filtration \BbbG = (\frakG t)t\in \BbbR + of sub-\sigma fields of \frakA is an enlargement of our previous filtration
\BbbF = (\frakF t)t\in \BbbR + , such that we have the following.

Condition (B).8 \forall t \geq 0 and B \in \frakG t, \exists B\prime \in \frakF t such that B \cap \{ t < \tau \} = B\prime \cap \{ t < \tau \} .
This holds, in particular, under a standard progressive enlargement of the filtration setup,

i.e., when \frakG t = \frakF t \vee \sigma (\tau \wedge t), t \geq 0.
As seen in Cr\'epey and Song (2017, Lemma 2.2), under the condition (B), any \BbbG optional

process Y admits an \BbbF optional reduction Y \prime such that 1[0,\tau )Y = 1[0,\tau )Y
\prime ; any \BbbG predictable

process Y admits an \BbbF predictable reduction Y \prime such that 1(0,\tau ]Y = 1(0,\tau ]Y
\prime .

For any process Y, we denote by Y \tau = 1[0,\tau )Y + 1[\tau ,+\infty )Y\tau and9 by Y \tau  - = 1[0,\tau )Y +
1[\tau ,+\infty )Y\tau  - the processes Y stopped at and before \tau , respectively. A process Y is said to be
stopped at \tau if Y = Y \tau and stopped before \tau if Y = Y \tau  - .

Given a positive constant T , we assume further that a full model probability measure \BbbQ 
equivalent to \BbbP on \frakF T satisfies the following.

Condition (A). For any (\BbbF ,\BbbP ) local martingale P on [0, T ], P \tau  - is a (\BbbG ,\BbbQ ) local martin-
gale on [0, T ].

The full model probability measure \BbbQ is then interpreted as the prevailing risk-neutral
pricing measure, whereas the reduced stochastic pricing basis (\BbbF ,\BbbP ) plays a technical role
analogous to the one of the survival probability measure associated with \BbbQ (cf. Sch\"onbucher
(2004)), while avoiding the singularity issue of the latter (see Cr\'epey and Song (2017, section
4.2)).

8cf. Cr\'epey and Song (2017, eq. (2.1)).
9Here we assume that the involved left-limit exists and we use the convention that Y0 - = Y0.
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The Az\'ema supermartingale S of \tau is defined as St = \BbbQ (\tau > t | \frakF t), t > 0.

Remark 5.1. The situation where \BbbP = \BbbQ in condition (A) corresponds to the special case
where S is nonincreasing and predictable. The subcase where S is also continuous corresponds
to the class of pseudostopping times with the avoidance property (see Nikeghbali and Yor
(2005) and Cr\'epey and Song (2017, section 4.1)). Pseudostopping times include Cox times,
the family of default times most commonly used in the credit and counterparty risk literatures;
see, e.g., Bielecki, Jeanblanc, and Rutkowski (2009, Chapter 3), Brigo and Pallavicini (2014),
or Bichuch, Capponi, and Sturm (2018).

We assume ST > 0 a.s., so that, by Cr\'epey and Song (2017, Lemma 2.3),

Two \BbbF optional processes that coincide before \tau coincide on [0, T ].(32)

In particular, \BbbF optional reductions are uniquely defined on [0, T ].
Finally, we assume that \tau has a (\BbbG ,\BbbQ ) intensity \gamma , i.e., the (\BbbG ,\BbbQ ) compensator of 1[\tau ,\infty )

is given as
\int \cdot 
0 \gamma tdt for some \BbbG predictable process \gamma (vanishing beyond time \tau ). Summarizing,

we suppose in the remainder of sections 5--6 the following.

Condition (C). The conditions (B) and (A) are satisfied, ST > 0, and \tau has a (\BbbG ,\BbbQ )
intensity \gamma .

We then have the following converse to the condition (A).

Lemma 5.1. For any (\BbbG ,\BbbQ ) local martingale M stopped before \tau (i.e., such that M =
M \tau  - ), M \prime is an (\BbbF ,\BbbP ) local martingale on [0, T ].

Proof. The process S - \dotp M \prime + [S,M \prime ] is an (\BbbF ,\BbbQ ) local martingale on \{ S - > 0\} , by (71),
where \{ S - > 0\} = \{ S > 0\} \supseteq [0, T ] by (75) and our assumption that ST > 0. The conclusion
then follows from (76).

5.2. Expectation transfer formulas. The following result provides an extension of the
classical credit risk intensity pricing formulas (see, e.g., Bielecki, Jeanblanc, and Rutkowski
(2009, Chapter 3)) to the invariance time setup, i.e., beyond the basic immersion setup, where
(\BbbF ,\BbbP = \BbbQ ) local martingales are (\BbbG ,\BbbQ ) local martingales without jump at \tau .

We denote the \BbbQ expectation by \widetilde \BbbE , whereas the \BbbP expectation is denoted as before by \BbbE .

Theorem 5.1. For any \BbbF stopping time \sigma \leq T and \frakF \sigma measurable nonnegative random
variable \chi , for any \BbbF predictable nonnegative process K, for any \BbbF optional nondecreasing
process A starting from 0, we have, respectively,

\widetilde \BbbE [\chi 1\{ \sigma <\tau \} ] = \BbbE [\chi e - 
\int \sigma 
0 \gamma \prime 

sds],(33)

\widetilde \BbbE [K\tau 1\{ \tau \leq T\} ] = \BbbE 
\biggl[ \int T

0
Kse

 - 
\int s
0 \gamma \prime 

udu\gamma \prime s ds

\biggr] 
,(34)

\widetilde \BbbE [A\tau  - 
T ] = \BbbE 

\biggl[ \int T

0
e - 

\int s
0 \gamma \prime 

udu dAs

\biggr] 
.(35)
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Proof. Let \Gamma =
\int \cdot 
0 \gamma 

\prime 
sds. Since \chi is \frakF \sigma measurable, \widetilde \BbbE [\chi 1\{ \sigma <\tau \} ] = \widetilde \BbbE [\chi S\sigma ]. As ST > 0, (75)

implies that \{ S - > 0\} = \{ pS > 0\} \supseteq [0, T ]. Then (72) implies that

\widetilde \BbbE [\chi S\sigma ] = \widetilde \BbbE \biggl[ \chi S0\scrE \biggl(  - 1

S - 
\dotp D

\biggr) 
\sigma 

\scrE 
\biggl( 

1
pS

\dotp Q

\biggr) 
\sigma 

\biggr] 
= \BbbE 

\biggl[ 
\chi S0\scrE 

\biggl( 
 - 1

S - 
\dotp D

\biggr) 
\sigma 

\biggr] 
,(36)

by (74). In view of (73), we obtain (33).
For (34), we compute

\widetilde \BbbE [K\tau 1\{ \tau \leq T\} ] = \widetilde \BbbE \biggl[ \int T

0
Ks1\{ s\leq \tau \} \gamma 

\prime 
s ds

\biggr] 
=

\int T

0

\widetilde \BbbE [Ks1\{ s<\tau \} \gamma 
\prime 
s] ds

=

\int T

0
\BbbE [Kse

 - \Gamma s\gamma \prime s] ds = \BbbE 
\biggl[ \int T

0
Kse

 - \Gamma s\gamma \prime s ds

\biggr] 
,

where (33) was used for passing to the second line.
Regarding (35), an application of (34) yields

\widetilde \BbbE [A\tau  - 1\{ \tau \leq T\} ] = \BbbE 
\biggl[ \int T

0
Ase

 - \Gamma s\gamma \prime s ds

\biggr] 
=  - \BbbE [AT e

 - \Gamma T ] + \BbbE 
\biggl[ \int T

0
e - \Gamma s dAs

\biggr] 
.

Using (33), we deduce

\widetilde \BbbE [A\tau  - 
T ] = \widetilde \BbbE [AT1\{ T<\tau \} ] + \widetilde \BbbE [A\tau  - 1\{ \tau \leq T\} ]

= \BbbE [AT e
 - \Gamma T ] - \BbbE [AT e

 - \Gamma T ] + \BbbE 
\biggl[ \int T

0
e - \Gamma s dAs

\biggr] 
= \BbbE 

\biggl[ \int T

0
e - \Gamma s dAs

\biggr] 
.

Denoting X\ast 
t = supt\in [0,T ] | Xs| , we introduce the space \widetilde \scrS l2 (simply renoted \widetilde \scrS 2 when l = 1)

of the \BbbR l valued c\`adl\`ag \BbbG adapted processes \widetilde Y such that \widetilde Y = \widetilde Y \tau  - and

\| \widetilde Y \| 2\widetilde \scrS l
2

= \widetilde \BbbE \biggl[ | \widetilde Y0| 2 + \int T

0
1\{ s<\tau \} e

\int s
0 \gamma udud(\widetilde Y \ast )2s

\biggr] 
<\infty .(37)

Lemma 5.2. For any real valued c\`adl\`ag \BbbF adapted process Y , we have

\| Y \| \scrS 2 = \| Y \| \widetilde \scrS 2
.(38)

Proof. For A =
\int \cdot 
0 e

\int s
0 \gamma \prime 

udud(Y \ast )2s, the expectation transfer formula (35) yields

\widetilde \BbbE \biggl[ \int T

0
1\{ s<\tau \} e

\int s
0 \gamma udud(Y \ast )2s

\biggr] 
= \BbbE [(Y \ast )2T ] - \BbbE [Y 2

0 ] = \BbbE [(Y \ast )2T ] - \widetilde \BbbE [Y 2
0 ]

(noting that \BbbP and \BbbQ coincide on \frakF 0, by (74)), which is (38).
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6. The realistic case of a defaultable bank. We now revisit the analysis of section 2 in
the realistic case of a defaultable bank, with default time \tau satisfying the condition (C) of
section 5.1. We can then identify \lambda , the funding spread of the bank, with the instantaneous
credit spread process (1 - \=R)\gamma \prime of the bank, where \=R is a constant recovery rate (cf. Remark
2.1). The time horizon of the XVA problem is now \=\tau = \tau \wedge T , where T is the final maturity
of the derivative portfolio of the bank.

Accounting for the defaultability of the bank, a key distinction appears between the cash
flows received by the bank prior \tau and the cash flows received by the bank during the default
resolution period starting at \tau . Indeed, the first stream of cash flows affects the bank share-
holders, whereas the second stream of cash flows only affects bondholders. For accepting a
new deal, bank shareholders need to be at least indifferent given the first stream of cash flows
only. Accordingly, as can be seen from the general CVA, FVA, and KVA equations (10), (11),
and (18)--(20) in Albanese and Cr\'epey (2019),10 the ``recipe"" to obtain the XVA equations
of a defaultable bank under (\BbbG ,\BbbQ ) is to stop all cash flows before \tau in the (\BbbF ,\BbbP ) equations
(or, more precisely but to the same result, to stop all cash flows before \tau in the extension of
these equations that also include the cash flows received by the bank from time \tau onward).
See below for concrete illustrations.

In all (\BbbG ,\BbbQ ) equations, we write \widetilde XVA for the corresponding (defaultable bank) XVA
process stopped before \tau . Likewise, we denote by \widetilde L (instead of L before) the now \BbbG adapted
bank trading loss process L stopped before \tau .

6.1. CVA. The differential form of the CVA equation (4) is written as

(39)

CVAT = 0 and, for t \in (0, T ],

dCVAt = rtCVAtdt - Qt\bfitdelta (dt) + d\mu t

for some (\BbbF ,\BbbP ) martingale \mu in \scrS 2.

On the other hand, in the present defaultable bank setup, the differential form of the
general \widetilde CVA equation (10) in Albanese and Cr\'epey (2019) is

(40)

\widetilde CVAT = 0 on \{ T < \tau \} and, for t \in [0, \=\tau ],

d\widetilde CVAt = rt\widetilde CVAtdt - 1\{ t<\tau \} Qt\bfitdelta (dt) + d\widetilde \mu t

for some (\BbbG ,\BbbQ ) martingale \widetilde \mu in \widetilde \scrS 2.
Observe that (40) is nothing but the (\BbbG ,\BbbQ ) equation obtained by formally ignoring all cash
flows from \tau onward in (39).

Now, (39) and (40) are in fact equivalent via \BbbF (optional) reduction \cdot \prime (cf. section 5.1).

Proposition 6.1. Equation (39) for CVA in \scrS 2 and (40) for \widetilde CVA in \widetilde \scrS 2 are equivalent via

\BbbF optional reduction, i.e., through the relation CVA = \widetilde CVA
\prime 
.

If
\int T
0 Qs\bfitdelta (ds) is \BbbP square integrable, then (39) for CVA in \scrS 2 has the unique solution (4).

10The notation in the present paper differs from the one in Albanese and Cr\'epey (2019). In particular, \widetilde \BbbE 
and \BbbE here correspond to \BbbE and \BbbE \prime there; \widetilde \scrS 2 and \scrS 2 here correspond to \scrS 2 and \scrS \prime 

2 there; `` \widetilde \cdot "" for ``(\BbbG ,\BbbQ )
equations"" is only used here; the risk-free asset is used as num\'eraire there.
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Proof. Assuming that (\widetilde CVA, \widetilde \mu ) \in \widetilde \scrS 22 satisfies (40), then (CVA, \mu ) = (\widetilde CVA
\prime 
, \widetilde \mu \prime ) \in \scrS 22 , by

(38), and (CVA, \mu ) thus defined satisfies the second line in (39) on [0, \=\tau ], hence, on [0, T ], by
(32), while the martingale condition in the third line holds by Lemma 5.1. Moreover, taking
the (\frakF T ,\BbbQ ) conditional expectation of the first line in (40) yields

0 = \widetilde \BbbE [\widetilde CVAT1\{ T<\tau \} | \frakF T ] = \widetilde \BbbE [\widetilde CVA\prime 
T1\{ T<\tau \} | \frakF T ] = \widetilde CVA

\prime 
TST ,

where ST > 0, hence, CVAT = \widetilde CVA
\prime 
T = 0.

Conversely, assuming that (CVA, \mu ) \in \scrS 22 satisfies (39), then

(\widetilde CVA, \widetilde \mu ) = (CVA\tau  - , \mu \tau  - ) \in \widetilde \scrS 22 ,
by (38), and (\widetilde CVA, \widetilde \mu ) = (CVA\tau  - , \mu \tau  - ) satisfies the conditions of the first two lines in (40),
while \widetilde \mu = \mu \tau  - is a (\BbbG ,\BbbQ ) local martingale, by virtue of the condition (A).

This proves the first part in Proposition 6.1. The second part is an immediate consequence
of Remark 2.4.

6.2. FVA and KVA. The differential form of the (FVA,KVA) ABSDE system (27) is
written as (with CA as a shorthand for CVA + FVA):

(41)

CAT = 0 and, for t \in (0, T ],

dCAt = rtCAtdt - Qt\bfitdelta (dt)

 - \lambda t

\biggl( 
Pt  - max

\biggl( 
\BbbE \BbbS t
\biggl( \int (t+1)\wedge T

t
\beta  - 1
t \beta sdLs

\biggr) 
,KVAt

\biggr) 
 - CAt

\biggr) +

dt+ dLt

for some (\BbbF ,\BbbP ) martingale L in \scrS 2

(L was interpreted in section 2 as the trading loss of a default-free bank), along with

(42)

KVAT = 0 and, for t \in (0, T ],

dKVAt = (rt + h)KVAtdt - hmax

\biggl( 
\BbbE \BbbS t
\biggl( \int (t+1)\wedge T

t
\beta  - 1
t \beta sdLs

\biggr) 
,KVAt

\biggr) 
dt+ d\nu t

for some (\BbbF ,\BbbP ) martingale \nu in \scrS 2.

On the other hand, in the present defaultable bank setup, the general \widetilde FVA and \widetilde KVA
equations (11) and (18)--(20) in Albanese and Cr\'epey (2019) yield the following system of
\widetilde XVA equations (with \widetilde CA used as a shorthand for \widetilde CVA+ \widetilde FVA):

\widetilde CAT = 0 on \{ T < \tau \} and, for t \in (0, \=\tau ],

d\widetilde CAt = rt\widetilde CAtdt - 1\{ t<\tau \} Qt\bfitdelta (dt)

 - \lambda t

\biggl( 
Pt  - \widetilde CAt  - max

\biggl( 
\BbbE \BbbS t
\biggl( \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\widetilde L\prime 

s

\biggr) 
, \widetilde KVAt

\biggr) \biggr) +

dt+ d\widetilde Lt

for some (\BbbG ,\BbbQ ) martingale \widetilde L in \widetilde \scrS 2
(43)
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(\widetilde L is interpreted as the bank shareholders' trading loss of the now defaultable bank), along
with

(44)

\widetilde KVAT = 0 on \{ T < \tau \} and, for t \in (0, \=\tau ],

d\widetilde KVAt = (rt + h)\widetilde KVAtdt - hmax

\biggl( 
\BbbE \BbbS t
\biggl( \int (t+1)\wedge T

t
\beta  - 1
t \beta sd\widetilde L\prime 

s

\biggr) 
, \widetilde KVAt

\biggr) 
dt+ d\widetilde \nu t

for some (\BbbG ,\BbbQ ) martingale \widetilde \nu in \widetilde \scrS 2.
Remark 6.1. We recall from Albanese and Cr\'epey (2019, section 4.3) that capital calcula-

tions are typically performed ``on a going-concern basis,"" i.e., disregarding the default of the
bank itself. In view of the comments preceding Remark 5.1, this grounds our specification
\BbbE \BbbS t(

\int t+1
t \beta  - 1

t \beta sd\widetilde L\prime 
s) in (43)--(44) for the economic capital of a defaultable bank.

Lemma 6.1. Equations (41)--(42) for (FVA,KVA) in \scrS 22 and (43)--(44) for (\widetilde FVA, \widetilde KVA) in\widetilde \scrS 22 are equivalent via \BbbF optional reduction, i.e., through the relation (FVA,KVA) =

(\widetilde FVA\prime 
, \widetilde KVA

\prime 
).

Proof. The proof is similar to the one of the first part of Proposition 6.1, hence omitted.

Square integrable solutions to the (\widetilde FVA, \widetilde KVA) equations are defined in reference to the\widetilde \scrS 2 space.

Theorem 6.1. Under the assumptions of Theorem 4.1, the (\widetilde FVA, \widetilde KVA) and (FVA,KVA)
equations are well-posed (and equivalent via \BbbF optional reduction) in their respective spaces of
square integrable solutions.

Proof. This is the conclusion of Lemma 6.1 and Theorem 4.1 (first part), also noting that,
under the assumptions of Theorem 4.1, the differential and the integral formulations of the
(FVA,KVA) system are equivalent in their space of square integrable solutions.

Remark 6.2. Under the assumptions of Theorem 4.1, one also has the equivalence, within
square integrable solutions, between the differential formulation (43)--(44) of the (\widetilde FVA, \widetilde KVA)
equations and the corresponding integral formulation (not displayed in the paper for length's
sake). This can be shown by the same argument as the one used for concluding the proof of
the first part of Theorem 5.1 in Albanese and Cr\'epey (2019).

7. Synthesis. To conclude, we reread the paper upside down, which reveals the overall
logic of our XVA approach.

By application of the general CVA, FVA, and KVA equations in Albanese and Cr\'epey
(2019, sections 3--4), we derive in section 6 the differential formulations (40) and (43)--(44)
of these equations in the specific setup that we want to address in this paper, with possible
use of CR as VM by the bank. In particular, the FVA and KVA equations (43)--(44) form a
bivariate system of ABSDEs (BSDEs of the McKean type), stopped before the bank default
time \tau .

Using an enlargement of filtration methodology of independent interest, finalized in section
5 following up on Cr\'epey and Song (2017), we show in section 6 the equivalence between these
ABSDEs, natively stated with respect to the ``full"" pricing model including the bank default
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time as a stopping time, and reduced ABSDEs (41)--(42) stated with respect to a smaller
filtration and an equivalently changed probability measure.

These reduced equations are none but the ones that were derived in section 2 in the
irrealistic case of a default-free bank, at the cost of abusively interpreting the bank funding
spread there as liquidity (cf. Remark 2.1). By ignoring the default of the bank, the XVA setup
of section 2 was far-fetched and, in a sense, internally inconsistent financially. But the related
mathematics of sections 3--4, showing that the corresponding bank default-free XVA equations
were well-posed, are of course valid. Hence, we were able to conclude in Theorem 6.1 that the
bank default-prone FVA and KVA equations (43)--(44) are well-posed mathematically.

Putting together Theorems 6.1 and 4.1, we obtain schematically, under the assumptions
of Theorem 4.1,

(\widetilde FVA, \widetilde KVA) \sim (FVA,KVA)\leftarrow (FVA(n),KVA(n)).(45)

Moreover, as demonstrated numerically in Albanese, Caenazzo, and Cr\'epey (2017, section
5) and Albanese, Cr\'epey, Hoskinson, and Saadeddine (2019, section 5), the Picard iteration
(FVA(n),KVA(n)) in (29) is amenable to Monte Carlo approximation, including at the scale
of a real banking portfolio with hundreds of counterparties and hundreds of thousands of
contracts. Hence, the XVA approach of this paper is not only theoretically well-posed, but
also workable in practice for a bank.

A more extensive numerical study of the XVA ABSDEs is left for future research.

Appendix A. Details of the ABSDE proofs. In this section, we give the details of the
computations used to establish the well-posedness of the l-variate ABSDE (19).

First we note that, if (Y,Z, U) solves (19), then

(\scrY t,\scrZ t,\scrU t) = (ecmtYt, e
cmtZt, e

cmtUt)

solves, for 0 \leq t \leq T ,

(46)

\left\{         
\scrY t =ecmT \xi +

\int T

t

\bigl( 
ecmsf

\bigl( 
s, e - cms\scrY s, e - cms\scrZ s, e

 - cms\scrU s, \rho s(e - cm\cdot \scrY \cdot , e - cm\cdot \scrZ \cdot , e
 - cm\cdot \scrU \cdot )

\bigr) 
 - cm\scrY s

\bigr) 
ds - 

\int T

t

\int 
E
\scrU s(e)M(ds, de) - 

\int T

t
\scrZ sdBs.

Namely, (\scrY ,\scrZ ,\scrU ) solves an l-variate ABSDE of the general form (19), but for modified data
that satisfy Assumptions 3.1 and 3.2 with cm = 0 in the latter. Moreover,

(Y, Z, U) \in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 \Leftarrow \Rightarrow (\scrY ,\scrZ ,\scrU ) \in \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2.

Hence we may and do suppose that cm = 0 in Assumption 3.2, without loss of generality
in what follows.
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A.1. Proof of Lemma 3.1. For t \in [0, T ], set \Gamma t = e\kappa t, for some to-be-determined positive
constant \kappa . An application of the It\^o formula to \Gamma | Y | 2 yields

\Gamma t| Yt| 2 +
\int T

t
\Gamma s| Zs| 2ds+

\int T

t
\Gamma s| Us| 2sds = \Gamma T | YT | 2  - \kappa 

\int T

t
\Gamma s| Ys| 2ds

+ 2

\int T

t
\Gamma s\langle Ys, f

\bigl( 
s, Ys, Zs, Us, \rho s(Y,Z, U)

\bigr) 
\rangle ds

 - 2

\int T

t
\Gamma sY

T
s ZsdBs  - 

\int T

t

\int 
E
\Gamma s

\bigl( 
| Ys - + Us(e)| 2  - | Ys - | 2

\bigr) 
M(ds, de).

(47)

The Burkholder's inequality yields

\BbbE 
\biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma sY

T
s ZsdBs

\bigm| \bigm| \bigm| \bigm| \biggr] \leq C\BbbE 
\biggl[ \biggl( \int T

0
\Gamma 2
s| Ys| 2| Zs| 2ds

\biggr) 
g1/2

\biggr] 

\leq \BbbE 
\biggl[ \biggl( 

sup
s\in [0,T ]

\Gamma s| Ys| 2
\biggr) 1/2\biggl( 

C

\int T

0
\Gamma s| Zs| 2ds

\biggr) 1/2\biggr] 
.

Then, by Young's inequality (ab \leq 1
2\epsilon a

2 + \epsilon 
2b

2) with \epsilon = 4, we have

\BbbE 
\biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma sY

T
s ZsdBs

\bigm| \bigm| \bigm| \bigm| \biggr] \leq 1

8
\BbbE 
\biggl( 

sup
s\in [0,T ]

\Gamma s| Ys| 2
\biggr) 
+ 2C2\BbbE 

\biggl[ \int T

0
\Gamma s| Zs| 2ds

\biggr] 
.(48)

Similarly, we obtain

\BbbE 
\biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s

\int 
E
Ys - Us(e)M(ds, de)

\bigm| \bigm| \bigm| \bigm| \biggr] 

\leq C\BbbE 
\biggl[ \biggl( \int T

0
\Gamma 2
s| Ys - | 2

\int 
E
| Us(e)| 2j(ds, de)

\biggr) 1/2\biggr] 
\leq \BbbE 

\biggl[ \biggl( 
sup

s\in [0,T ]
\Gamma s| Ys| 2

\biggr) 1/2\biggl( 
C

\int T

0
\Gamma s

\int 
E
| Us(e)| 2j(ds, de)

\biggr) 1/2\biggr] 
\leq 1

8
\BbbE 
\biggl( 

sup
s\in [0,T ]

\Gamma s| Ys| 2
\biggr) 
+ 2C2\BbbE 

\biggl[ \int T

0
\Gamma s| Us| 2sds

\biggr] 
.

(49)

In particular, the (\frakF t,\BbbP ) conditional expectation of the last line in (47) is equal to 0.
Moreover, by Assumption 3.2 on f and Young's inequality, we have, for any \epsilon > 0,

2\langle Ys, f
\bigl( 
s, Ys, Zs, Us, \rho s(Y,Z, U)

\bigr) 
\rangle 

\leq 2| Ys| | f(s, 0, 0, 0, \rho s(0, 0, 0))| + 2cf | Ys| 
\bigl( 
| Zs| + | Us| s + | \rho s(Y,Z, U) - \rho s(0, 0, 0)| 

\bigr) 
\leq 
\bigl( 
1 + 8c2f + c2f \epsilon 

 - 1
\bigr) 
| Ys| 2 + | f(s, 0, 0, 0, \rho s(0, 0, 0))| 2

+
1

4

\bigl( 
| Zs| 2 + | Us| 2s

\bigr) 
+ \epsilon | \rho s(Y,Z, U) - \rho s(0, 0, 0)| 2.

(50)
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Besides,

\BbbE 
\biggl[ \int T

0
\Gamma s

\biggl( 
sup

s\leq u\leq T
| Yu| 2 +

\int T

s
(| Zu| 2 + | Uu| 2u)du

\biggr) 
ds

\biggr] 
\leq \BbbE 

\biggl[ \int T

0
\Gamma s

\biggl( 
sup

s\leq u\leq T
| Yu| 2

\biggr) 
ds

\biggr] 
+ \BbbE 

\biggl[ \int T

0

\int T

s
\Gamma s(| Zu| 2 + | Uu| 2u)duds

\biggr] 
\leq \BbbE 

\biggl[ \int T

0

\biggl( 
sup

s\leq u\leq T
\Gamma u| Yu| 2

\biggr) 
ds

\biggr] 
+ \BbbE 

\biggl[ \int T

0

\int u

0
\Gamma s(| Zu| 2 + | Uu| 2u)dsdu

\biggr] 
\leq T \BbbE 

\biggl[ 
sup

0\leq u\leq T
\Gamma u| Yu| 2

\biggr] 
+ T\BbbE 

\biggl[ \int T

0
\Gamma u(| Zu| 2 + | Uu| 2u)du

\biggr] 
\leq T \BbbE 

\biggl[ 
sup

0\leq u\leq T
\Gamma u| Yu| 2 +

\int T

0
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
.

(51)

In addition, Assumption 3.1 implies\int T

t
\Gamma s| \rho s(Y,Z, U) - \rho s(0, 0, 0)| 2ds

\leq c2\rho 

\int T

t
\Gamma s\BbbE s

\biggl( 
sup

s\leq u\leq T
| Yu| 2 +

\int T

s
(| Zu| 2 + | Uu| 2u)du

\biggr) 
ds,

(52)

hence,

\BbbE 
\biggl[ \int T

0
\Gamma s| \rho s(Y,Z, U) - \rho s(0, 0, 0)| 2ds

\biggr] 
\leq c2\rho T \BbbE 

\biggl[ 
sup

0\leq u\leq T
\Gamma u| Yu| 2 +

\int T

0
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
.

(53)

Plugging (50) into (47), taking expectations there, and using (53), we therefore obtain, for
\epsilon = 1

4c2\rho T
,

\BbbE 
\bigl[ 
\Gamma t| Yt| 2

\bigr] 
+

3

4
\BbbE 
\biggl[ \int T

t
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
+ \BbbE 

\biggl[ \int T

t

\bigl( 
\kappa  - (1 + 8c2f + 4c2fc

2
\rho )
\bigr) 
\Gamma s| Ys| 2ds

\biggr] 
\leq \BbbE 

\bigl[ 
\Gamma T | YT | 2

\bigr] 
+ \BbbE 

\biggl[ \int T

t
\Gamma s| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds

\biggr] 
+

1

4
\BbbE 
\biggl[ 

sup
0\leq u\leq T

\Gamma u| Yu| 2 +
\int T

0
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
.(54)

In particular, for \kappa = 1 + 8c2f + 4c2fc
2
\rho , (54) implies that

sup
t\in [0,T ]

\BbbE 
\bigl[ 
| Yt| 2

\bigr] 
+ \BbbE 

\biggl[ \int T

0
(| Zs| 2 + | Us| 2s)ds

\biggr] 
\leq C\BbbE 

\biggl( 
| \xi | 2 +

\int T

0
| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds+ sup

0\leq s\leq T
| Ys| 2

\biggr) 
.

(55)
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In order to show that the sup and the \BbbE can be switched on the left-hand side of (55), we
rearrange the It\^o formula (47) as

\Gamma t| Yt| 2 = \Gamma T | \xi | 2 + 2

\int T

t
\Gamma s\langle Ys, f

\bigl( 
s, Ys, Zs, Us, \rho s(Y,Z, U)

\bigr) 
\rangle ds - \kappa 

\int T

t
\Gamma s| Ys| 2ds

 - 
\int T

t
\Gamma s| Zs| 2ds - 

\int T

t

\int 
E
\Gamma s| Us(e)| 2j(ds, de)

 - 2

\int T

t
\Gamma sY

T
s ZsdBs  - 2

\int T

t
\Gamma s

\int 
E
Ys - Us(e)M(ds, de).

(56)

Plugging (50) and (52) into (56), we obtain

\Gamma t| Yt| 2 \leq \Gamma T | \xi | 2 +
\int T

t
\Gamma s| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds+

1

4

\biggl[ \int T

t
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
+ (1 + 8c2f + 4c2fc

2
\rho  - \kappa )

\int T

t
\Gamma s| Ys| 2ds(57)

+ \epsilon c2\rho 

\int T

t
\Gamma s\BbbE s

\biggl( 
sup

s\leq u\leq T
| Yu| 2 +

\int T

s
(| Zu| 2 + | Uu| 2u)du

\biggr) 
ds

 - 2

\int T

t
\Gamma sY

T
s ZsdBs  - 2

\int T

t
\Gamma s

\int 
E
Ys - Us(e)M(ds, de).(58)

Setting \kappa = 1 + 8c2f + 4c2fc
2
\rho yields

\Gamma t| Yt| 2 \leq \Gamma T | \xi | 2 +
\int T

t
\Gamma s| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds+

1

4

\biggl[ \int T

t
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr] 
+ \epsilon c2\rho 

\int T

t
\Gamma s\BbbE s

\Biggl( 
sup

s\leq u\leq T
| Yu| 2 +

\int T

s
(| Zu| 2 + | Uu| 2u)du

\Biggr) 
gds

 - 2

\int T

t
\Gamma sY

T
s ZsdBs  - 2

\int T

t
\Gamma s

\int 
E
Ys - Us(e)M(ds, de).(59)

Taking the supremum over t \in [0, T ] and expectation on both sides, we have

\BbbE 

\Biggl( 
sup

t\in [0,T ]
\Gamma t| Yt| 2

\Biggr) 
\leq \Gamma T\BbbE 

\bigl( 
| \xi | 2
\bigr) 
+ \BbbE 

\biggl( \int T

0
\Gamma s| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds

\biggr) 
+

1

4
\BbbE 
\biggl( \int T

0
\Gamma s(| Zs| 2 + | Us| 2s)ds

\biggr) 
+ \epsilon c2\rho \BbbE 

\biggl( \int T

0
\Gamma s\BbbE s

\biggl( 
sup

s\leq u\leq T
| Yu| 2 +

\int T

s
(| Zu| 2 + | Uu| 2u)du

\biggr) 
ds

\biggr) 
+ 2\BbbE 

\Biggl( 
sup

t\in [0,T ]

\int T

t
\Gamma sY

T
s ZsdBs

\Biggr) 
+ 2\BbbE 

\Biggl( 
sup

t\in [0,T ]

\int T

t
\Gamma s

\int 
E
Ys - Us(e)M(ds, de)

\Biggr) 
.

(60)
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Then, by using \epsilon = 1
4c2\rho T

, (48), (49), (51), and the estimates on Z and U in (55), we deduce

from (60)

\BbbE 
\Bigl( 

sup
t\in [0,T ]

| Yt| 2
\Bigr) 
\leq C\BbbE 

\biggl( 
| \xi | 2 +

\int T

0
| f(s, 0, 0, 0, \rho s(0, 0, 0))| 2ds

\biggr) 
.

In conjunction with the estimates on Z and U in (55), this concludes the proof of (20).

A.2. Details of the proof of Theorem 3.1. Given (X,V,W ) and (X \prime , V \prime ,W \prime ) in \scrS l2\times \scrH l
2\times \widehat \scrH l

2, let (Y,Z, U) = \Phi (X,V,W ) and (Y \prime , Z \prime , U \prime ) = \Phi (X \prime , V \prime ,W \prime ). For L = X,V,W, Y, Z, U ,
we denote \delta L = L\prime  - L. As in the proof of Lemma 3.1, letting \Gamma t = e\kappa t and applying Ito's
formula to \Gamma | \delta Y | 2 yields

\BbbE [\Gamma t| \delta Yt| 2] + \BbbE 
\biggl[ \int T

t
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s + \kappa | \delta Ys| 2)ds

\biggr] 
= 2

\int T

t
\BbbE [\Gamma s\langle \delta Ys, \delta fs\rangle ]ds,(61)

where
\delta fs = f(s, Ys, Zs, Us, \rho s(X,V,W )) - f(s, Y \prime 

s , Z
\prime 
s, U

\prime 
s, \rho s(X

\prime , V \prime ,W \prime )).

Given Assumptions 3.1 on \rho and 3.2 on f , applying Young's inequality with c1, c2 \not = 0, we
have

2

\int T

t
\Gamma s\langle \delta Ys, \delta fs\rangle ds \leq 

\int T

t

\bigl( 
2c21cf + c22cf

\bigr) 
\Gamma s| \delta Ys| 2ds

+
cf
c21

\int T

t
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds+

cf
c22

\int T

t
\Gamma s| \rho s(X,V,W ) - \rho s(X

\prime , V \prime ,W \prime )| 2ds

\leq 
\int T

t

\bigl( 
2c21cf + c22cf

\bigr) 
\Gamma s| \delta Ys| 2ds+

cf
c21

\int T

t
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

+
cf
c22

c2\rho 

\int T

t
\Gamma s\BbbE s

\biggl[ 
sup

s\leq u\leq T
| \delta Xu| 2 +

\int T

s
(| \delta Vu| 2 + | \delta Wu| 2u)du

\biggr] 
ds.

(62)

Applying this inequality in (61) and proceeding as in (53) yields

\BbbE [\Gamma t| \delta Yt| 2] + \BbbE 
\biggl[ \int T

t
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s + \kappa | \delta Ys| 2)ds

\biggr] 
\leq 
\bigl( 
2c21cf + c22cf

\bigr) 
\BbbE 
\biggl[ \int T

t
\Gamma s| \delta Ys| 2ds

\biggr] 
+

cf
c21

\BbbE 
\biggl[ \int T

t
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
+

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

(63)

In particular, we obtain

sup
0\leq t\leq T

\BbbE [\Gamma t| \delta Yt| 2] +
\biggl( 
1 - 

cf
c21

\biggr) 
\BbbE 
\biggl[ \int T

0
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
+ (\kappa  - 2c21cf  - c22cf )\BbbE 

\biggl[ \int T

0
\Gamma s| \delta Ys| 2ds

\biggr] 
\leq 

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

(64)



126 ST\'EPHANE CR\'EPEY, WISSAL SABBAGH, AND SHIQI SONG

Choosing c21 > cf and \kappa \geq 2c21cf + c22cf , we deduce from (64) that

\BbbE 
\biggl[ \int T

0
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
\leq c21

(c21  - cf )

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

(65)

For estimating the \delta Y term, we write the It\^o formula that applies to \Gamma | \delta Y | 2 in the manner of
(56), i.e.,

\Gamma t| \delta Yt| 2 = 2

\int T

t
\Gamma s\langle \delta Ys, \delta fs\rangle ds - \kappa 

\int T

t
\Gamma s| \delta Ys| 2ds

 - 
\int T

t
\Gamma s| \delta Zs| 2ds - 

\int T

t

\int 
E
\Gamma s| \delta Us(e)| 2j(ds, de)

 - 2

\int T

t
\Gamma s\delta Y

T
s \delta ZsdBs  - 2

\int T

t
\Gamma s

\int 
E
\delta Ys - \delta Us(e)M(ds, de).

Taking the supremum over t \in [0, T ] and expectation on both sides, using (62) and proceeding
as in (53), we obtain

\BbbE 
\biggl[ 
sup

0\leq t\leq T
\Gamma t| \delta Yt| 2

\biggr] 
+ (\kappa  - 2c21cf  - c22cf )\BbbE 

\biggl[ \int T

0
\Gamma s| \delta Ys| 2ds

\biggr] 
\leq 

cf
c21

\BbbE 
\biggl[ \int T

0
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
+

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
+ 2\BbbE 

\biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s\delta Y

T
s \delta ZsdBs

\bigm| \bigm| \bigm| \bigm| \biggr] + 2\BbbE 
\biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s

\int 
E
\delta Ys - \delta Us(e)M(ds, de)

\bigm| \bigm| \bigm| \bigm| \biggr] .

(66)

By the Burkholder--Davis--Gundy inequality, there exists a positive constant \=c such that

\BbbE 
\biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s\delta Y

T
s \delta ZsdBs

\bigm| \bigm| \bigm| \bigm| \biggr] \leq \=c\BbbE 

\Biggl[ \Biggl( \int T

0
e2\kappa s| Ys| 2| Zs| 2ds

\Biggr) 1/2\Biggr] 

\leq \=c\BbbE 
\biggl[ \Biggl( 

sup
t\in [0,T ]

\Gamma t| Yt| 2
\Biggr) 1/2\Biggl( \int T

0
\Gamma s| Zs| 2ds

\Biggr) 1/2\biggr] 
.

Therefore, by Young's inequality with c3 > 0 and (65) we have

2\BbbE 
\biggl[ 
sup

t\in [0,T ]

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s\delta Y

T
s \delta ZsdBs

\bigm| \bigm| \bigm| \bigm| \biggr] \leq \=c

c23
\BbbE 
\biggl( 

sup
t\in [0,T ]

\Gamma s| \delta Yt| 2
\biggr) 
+ c23\=c\BbbE 

\biggl[ \int T

0
\Gamma s| Zs| 2ds

\biggr] 
\leq \=c

c23
\BbbE 
\biggl( 

sup
t\in [0,T ]

\Gamma s| \delta Yt| 2
\biggr) 

+ c23\=c
c21

(c21  - cf )

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

(67)
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Similarly, we can bound the last term in (66) as follows:

2\BbbE 
\biggl[ 
sup

0\leq t\leq T

\bigm| \bigm| \bigm| \bigm| \int T

t
\Gamma s

\int 
E
\delta Ys - \delta Us(e)M(ds, de)

\bigm| \bigm| \bigm| \bigm| \biggr] \leq \=c

c23
\BbbE 
\biggl( 

sup
t\in [0,T ]

\Gamma s| \delta Yt| 2
\biggr) 

+ c23\=c
c21

(c21  - cf )

cfc
2
\rho T

c22
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

(68)

Combining inequalities (65) through (68) gives\biggl( 
1 - 2\=c

c23

\biggr) 
\BbbE 
\biggl[ 
sup

0\leq t\leq T
\Gamma t| \delta Yt| 2

\biggr] 
+

\biggl( 
1 - 

cf
c21

\biggr) 
\BbbE 
\biggl[ \int T

0
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
\leq 
\biggl( 
cfc

2
\rho T

c22
+ (1 + 2c23\=c)

c21
(c21  - cf )

cfc
2
\rho T

c22

\biggr) 
\BbbE 
\biggl[ 

sup
0\leq s\leq T

\Gamma s| \delta Xs| 2 +
\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

Finally, we can choose c21 = 2cf , c
2
3 = 4\=c, fix c2 large enough so that K =

2(3+16\=c2)cf c
2
\rho T

c22
< 1,

and we then have, for \kappa \geq 2c21cf + c22cf in \Gamma = e\kappa \cdot ,

\BbbE 
\biggl[ 
sup

0\leq t\leq T
\Gamma t| \delta Yt| 2

\biggr] 
+ \BbbE 

\biggl[ \int T

0
\Gamma s(| \delta Zs| 2 + | \delta Us| 2s)ds

\biggr] 
\leq K\BbbE 

\biggl[ 
sup

0\leq s\leq T
\Gamma s| \delta Xs| 2 +

\int T

0
\Gamma s(| \delta Vs| 2 + | \delta Ws| 2s)ds

\biggr] 
.

Hence \Phi is a contraction on the Banach space \scrS l2 \times \scrH l
2 \times \widehat \scrH l

2 endowed with the norm defined
by the square root of

\BbbE 
\biggl[ 
sup

0\leq t\leq T
\Gamma t| Xt| 2 +

\int T

0
\Gamma s(| Vs| 2 + | Ws| 2s)ds

\biggr] 
for any (X,V,W ) \in \scrS l2 \times \scrH l

2 \times \widehat \scrH l
2.

In order to prove the geometrical convergence of the Picard iteration, we can apply the
previous computations with the following correspondence:

\delta Y = Y (n+1)  - Y (n), \delta X = Y (n)  - Y (n - 1),

\delta Z = Z(n+1)  - Z(n), \delta V = Z(n)  - Z(n - 1),

\delta U = U (n+1)  - U (n), \delta W = U (n)  - U (n - 1),

which shows that

\| Y (n+1)  - Y (n)\| 2\scrS l
2
+ \| Z(n+1)  - Z(n)\| 2\scrH l

2
+ \| U (n+1)  - U (n)\| 2\widehat \scrH l

2

\leq CKn.(69)

Appendix B. Invariance times. For completeness we recall the results of Cr\'epey and Song
(2017) that are used in the proofs of Theorem 5.1 and Lemma 5.1.

We consider the enlargement of the filtration setup corresponding to the condition (B) in
section 5.1, which we reproduce here for the reader's convenience.
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Condition (B). \forall t \geq 0 and B \in \frakG t, \exists B\prime \in \frakF t such that B \cap \{ t < \tau \} = B\prime \cap \{ t < \tau \} .
The \BbbF Az\'ema supermartingale S of \tau , with \BbbF predictable projection pS (see Dellacherie

and Meyer (1975)), admits the canonical Doob--Meyer decomposition S = Q  - D, where Q
(with Q0 = S0) and D (with D0 = 0) are the (\BbbF ,\BbbQ ) local martingale component and the (\BbbF ,\BbbQ )
drift of the (\BbbF ,\BbbQ ) supermartingale S.

We work with \BbbF semimartingales and (\BbbF ,\BbbP ) and (\BbbF ,\BbbQ ) local martingales on a predictable
set of interval type \scrI as defined in He, Wang, and Yan (1992, section VIII.3). We recall
that, for any semimartingale X and for any predictable X integrable process L, X is a local
martingale on \scrI (respectively, Y = L \dotp X on \scrI ) means that

X\iota n is a local martingale (respectively, Y \iota n = L \dotp (X\iota n))(70)

holds for at least one or, equivalently, any nondecreasing sequence of stopping times (\iota n)n\geq 0

such that \cup [0, \iota n] = \scrI .
The stochastic exponential of a semimartingale X is denoted by \scrE (X).

Lemmas 2.2 and A.1 in Cr\'epey and Song (2017). Under the condition (B) we have the fol-
lowing.

1. Let M be a (\BbbG ,\BbbQ ) local martingale stopped before \tau . For any \BbbF optional reduction M \prime 

of M , M \prime is an \BbbF semimartingale on \{ S - > 0\} and

S - \dotp M \prime + [S,M \prime ] is an (\BbbF ,\BbbQ ) local martingale on \{ S - > 0\} .(71)

Conversely, for any \BbbF semimartingale K on \{ S - > 0\} such that S - \dotp K + [S,K] is an
(\BbbF ,\BbbQ ) local martingale on \{ S - > 0\} , K\tau  - is a (\BbbG ,\BbbQ ) local martingale on \BbbR +.

2. The Az\'ema supermartingale S of \tau admits the multiplicative decomposition

S = S0\scrQ \scrD on \{ pS > 0\} ,(72)

where \scrQ = \scrE ( 1
pS \dotp Q) is an (\BbbF ,\BbbQ ) local martingale on \{ pS > 0\} and \scrD = \scrE ( - 1

S - 
\dotp D)

is an \BbbF predictable nonincreasing process on \{ pS > 0\} . Moreover, if \tau has a (\BbbG ,\BbbQ )
intensity \gamma , then D is continuous and

\scrE 
\biggl( 
 - 1

S - 
\dotp D

\biggr) 
= e - 

\int \cdot 
0 \gamma \prime 

tdt(73)

holds on \{ S - > 0\} .
Likewise, we reproduce here the condition (A) from section 5.1.

Condition (A). For any (\BbbF ,\BbbP ) local martingale P on [0, T ], P \tau  - is a (\BbbG ,\BbbQ ) local martin-
gale on [0, T ].

Theorem 3.2 in Cr\'epey and Song (2017). The condition (A) holds if and only if the (\BbbF ,\BbbQ )
density process of \BbbP coincides with

\scrE 
\biggl( 
1\{ pS>0\} 

1
pS
\dotp Q

\biggr) 
\cdot \wedge T

(74)

on \{ pS > 0\} \cap [0, T ].
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Theorem 3.7 in Cr\'epey and Song (2017). If the condition (A) holds and \tau has a (\BbbG ,\BbbQ )
intensity, then

\{ S - > 0\} = \{ pS > 0\} = \{ S > 0\} .(75)

In addition,

a process P is an (\BbbF ,\BbbP ) local martingale on \{ S - > 0\} \cap [0, T ]

if and only if

S - \dotp P + [S, P ] is an (\BbbF ,\BbbQ ) local martingale on \{ S - > 0\} \cap [0, T ].

(76)
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