N
N

N

HAL

open science

Capital and collateral simulation for reverse stress
testing

Claudio Albanese, Stéphane Crépey, Stefano Iabichino

» To cite this version:

Claudio Albanese, Stéphane Crépey, Stefano Iabichino. Capital and collateral simulation for reverse
stress testing. Michael Eichhorn Tiziano Bellini and Daniel Mayenberger. Reverse Stress Testing in

Banking, De Gruyter, pp.349-360, 2021, 10.1515/9783110647907-017 . hal-03910103

HAL Id: hal-03910103
https://hal.science/hal-03910103v1

Submitted on 21 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-03910103v1
https://hal.archives-ouvertes.fr

Michael Eichhorn
Tiziano Bellini

Daniel Mayenberger

Reverse Stress
Testing in Banking

A Comprehensive Guide

De Gruyter



- 262 -

Claudio Albanese'®, Stéphane Crépey?° and Stefano labichino?!

17 Capital and Collateral Simulation for Reverse Stress Testing

Chapter 16 introduced a holistic framework for Reverse Stress Testing (RST), based on accurate data mining of large-
scale synthetic scenarios. The current section takes a step closer to the operational reality of a market maker, shedding
light on the theoretical and computational framework for the analysis of extreme events in the form of forward-looking
RST. The framework builds on a large-scale Monte Carlo simulation, thus, targeting the bespoke characteristics of the
portfolio held. The Monte Carlo, relying on models calibrated to option prices, is used to propagate all the risk factors
the portfolio is exposed to, while the RST aims to gather those future economic states under which bank solvency could
be impaired. Specific and General Wrong Way Risks effects are injected through dynamic market-credit and credit-
credit correlations.

Throughout this chapter, which provides a roadmap on the implementation of Albanese, C., S. Crépey, and S. Iabichino
(2020), we introduce the main ingredients and mechanics required to achieve such a holistic framework, which
coherency extends to the entire banking-book. While driving the reader throughout the framework's alchemy, we will
present numerical results collected on a representative portfolio. We refer the interested reader to Albanese, C., S.
Crépey, and S. labichino (2020) for details on the possible scope of applicability, of the presented framework, to the
reality of a market-maker.

17.1 Setting the Stage

For the sake of simplicity, we use the risk-free (OIS rate) asset growing as a numeraire, and we assume equality between
physical and pricing measures, denoted by P and Q respectively. The latter assumption is justifiable by the absence of
reliable knowledge about the discrepancy between P and Q at the large horizons, which are typical of an OTC derivative
portfolio. Furthermore, we indicate with E¢[ - | F,] = EZ|[-] the conditional (to the c-algebra F,) risk-neutral expectation.

Consider a portfolio composed by a set N, of counterparties. A counterparty can be characterised either by an individual
netting-set, or by a collection of netting sets??, for which a Credit Support Annex (CSA) characterises collateral posting
obligations.

For each counterparty, the characteristics of an individual netting-set are analysed in terms of risk-factors drivers and
future cash-flows. This information is then sourced to the Monte Carlo based environment to generate counterparty
specific CCR, and portfolio-wide funding exposure profiles. Therefore, for each counterparty, the distribution of future
CCR losses as well as its present expected value i.e., the CVA (Counterparty Valuation Adjustment), are computed.

The (unilateral) CVA for a counterparty c is defined as
Tc +
UCVA, (c) = EQ [e‘fro 1o 1 rerLGD () (Vr (€) = €54, () ]
“EQ [ e fgrois®ds 4 1 LGD(O)(V(c) — CSA())" 8, (dt)

where:

19 Global Valuation, London.

20 University of Evry in Paris-Saclay. The research of Stéphane Crépey benefited from the support of the Chair Stress Test, RISK
Management and Financial Steering, led by the French Ecole polytechnique and its Foundation and sponsored by BNP Paribas.

21 JP Morgan, London. This paper represents the opinions of the authors and it is not meant to represent the position or
opinions of JP Morgan or their members.

Acknowledgement: The authors are thankful to Alex Miscampbell for discussions.

22 However, for the sake of narration simplicity, in the following, we will adopt the simplifying view that a counterparty has only one
netting set with a CSA.
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e t,and T are the computation date and the final maturity of the portfolio;

e 7, is the default time of the counterparty c;

® 71y is the risk-free rate;

e 1, is an indicator function, subject to the A condition;

e LGD(c) is the counterparty-specific Loss Given Default, i.e. one minus the counterparty-specific recovery rate;
e V.(c) is the counterparty specific aggregated Mark-to-Market;

e (SA.(c) is the collateral posted by the client ¢ according to the counterparty specific Credit Support Annex;

e vt =max(v,0).

Additionally, the present value of the Funding Valuation Adjustment FVA, computed at the funding-set level, is
determined. Following Albanese, Andersen, and labichino (2015), the FVA is defined as:

+

Ne
T t
FVA, = E f e lroroisds g (py Z(Vt(c)—CSAt(c))ltqc Licrydt
2 c=1

0

where:
e T3 is the default time of the bank;

e S,(B) is the funding spread of the bank.

17.1.1 Tensor algebra, CVA, and FVA computations

Define a set of epoch dates ty,, with h € {1,2, ..., N,}, and a set of primary scenarios s € [1, Ng]. For each risk-factor
characterising the portfolio, define a set of discrete state variables 7, with x € {1, 2, ..., N, }. The dynamic of each risk-
factor are described in terms of a transition probability tensor, representing a collection of kernels (T,;t(x, x'; th)) whose
elements specify the transition probabilities to evolve from the state x to the state x’ at any given epoch-date t,. The
validity conditions for a transition probability tensor are:

1. Positivity: Ts,(x,x";t;) =0, Vx;
2. Probability Conservation: Y, T, (x, x5 t,) = 1, Vi,

The first condition implies the non-negativity of the elements of the tensor, while, for each epoch-date t;, the second
imposes the additivity to one of the kernels.

For each epoch-date, counterparty, and scenario, we store in-memory all the relevant counterparty specific information
e.g. conditional default probabilities (PD(h, c, s)), OIS discounted exposures (17 (h,c, s)) and collateral amounts
(C/S\A (h, c, s)).

In order to compute the CVA, following Albanese and Pietronero (2010), define a loss lattice [ € {1, 2, ..., N;}. At each
epochs, the scenario conditional portfolio default loss distribution (A(h, s, l)) is calculated taking the convolution
product over individual counterparty losses conditioned to a scenario (assuming that the individual counterparty losses
are independent given the realisation of a scenario):

A(h,s, 1) = A(h, s, cq, 1) * A(h, s, c3, 1) * ..o% /l(h, S, Cn, l)
where

Alhs, ¢, 1) = (1= PD(h, c;,5)) 8(1) + PD(h, c;,5)8 (l ~ (7 (hc;,5) - CSA (hc, s)))
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is the probability that the loss triggered by the possible default of counterparty c¢; at time / equals /, conditional on the
realization s of the economic drivers at time / (with § for the Dirac measure at 0).

The (unconditional) point-in-time Default-Loss-Distribution, is deduced as:

N¢
1
A1) = FZ Alh,s,D)
Ss=1

from which cumulative portfolio losses between time 0 and H are computed by summation between epochs h = 0 and H
(see Figure 16.1). Figure 16.1 represents the expected loss level, for each epochs, using white pins, which converges to
the time 0 CVA in the large horizon limit.

Figure 17.1 Cumulative Portfolio Default Loss Distribution. The white pins indicate the corresponding expected portfolio Default
Loss at each epoch date

At this point, the definition of a suitable scenario ranking criterion, i.e. a merit function, takes a pillar role.

17.2 The KVA

A holistic RST framework, which scope of applicability extends to the entire derivative book, requires a merit function
sensitive to all the risk sources characterising the book, including CVA and FVA volatility. As we will discuss, the KVA
owns all the desired properties.

The Regulatory Capital Valuation Adjustment (KVA) is a risk margin metric representing the expected remuneration of
bank shareholders for their posted loss-absorbing capital, at some hurdle rate (h). However, instead of considering Pillar
I regulatory capital models, following Albanese, Caenazzo, and Crépey (2016, 2017), Crépey, Sabbagh, and Song
(2020), Albanese, Crépey, Hoskinson, and Saadeddine (2019), and consistently with IFRS17 (see IASB (2017)), we use
a more comprehensive definition of KVA in terms of Pillar II economic capital.

The reason to favour a KVA defined in compliance with the Pillar II economic capital sits on the fact that, while Pillar I
Regulatory Capital is consistent in intent with the Pillar II economic capital, Pillar I Regulatory Capital is characterized
by several modelling assumptions. These assumptions, proposed to reduce computation times, strongly shrink the risk
factors which the Pillar I Regulatory Capital is able to capture. For example, the Expected Effective Positive Exposure
(EEPE)*, based on an individual counterparty viewpoint, neglects General Wrong-Way Risk (GWWR), default
clustering, as well as complex tail dependencies, while the usage of Gaussian copulas (in the default RWA) highly

23 The EEPE, for an unsecured portfolio, is defined as: f 1 vear

+
oo B E[(Vy)*]dt
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stylizes default occurrences. Remarkably, the possibility of creating doom loops (e.g., between Capital Requirements
and CCR hedges) and the losses triggered by the volatility of CVA and FVA are completely neglected.

Instead, Pillar II economic capital strongly tights to the shareholder’s Core Equity Tier 1 capital (CET1), which is
allocated to absorb any form of unexpected losses. CET1 depletions are given by

—dCET1, = dD(t) + dF(t) + dUCVA, + dFVA, (17.1)

where dD(t) and dF(#) are the shorthand notation for the integrands in the E,?O f:To ... formulations of the CVA and FVA
above, i.e. the future losses realized by the bank due to defaults and funding expenses. The Pillar II economic capital
(EC) profile at time t is specified as the 1 year 97.5% expected shortfall depletion of CET1, i.e.

EC(t) = E°[CET1, — CET1,,, | CET1, — CET 1,4, = VaR(t)] (17.2)

where VaR(t) is the 97.5% Value-at-Risk of the CET1, — CET1,,, distribution. The present value of the KVA is then
given by

KVA, =h [ EC(t)dt (17.3)
where h is the inter-temporal hurdle rate, representing shareholder’s expected reward for unit of capital invested.

Therefore, the KVA,, which equals zero if and only if the CET1 is a constant function through time, represents the
present value of the weighted average of future economic capital needs. It is, therefore, an organic metric to express the
inter-temporal risk of the bank.

The computation of equations (17.1)-( 17.2) requires the knowledge of the conditional future UCV A, and FV A, terms.
These future conditional metrics are computed through nested Monte Carlo, where, for each epoch-date and primary
scenario, a set of secondary scenarios are branched-off (ref. Figure 17.2 Nested Monte Carlo).

Nested Monte Carlo

Figure 17.2 Nested Monte Carlo

See Figure 17.3 for the resulting CET1 distribution at one epoch date.
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Figure 17.3 The CET1 distribution for one epoch date. The red bin marks the EC profile at the 97.5% confidence level.
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17.3 The KVA as Merit Function and the Reversing Problem

The definition of KVA, anchoring to those CET]1 losses exceeding their 97.5% VaR, naturally focuses on those stress
scenarios where the whole portfolio suffers from severe default and/or market losses. However, before risk-factor data-
mining, all the scenarios that composed the CET1 distribution need to be ranked in terms of their riskiness.

We define the scenario (s € [1, N]) incremental KVA as the marginal contribution of a given scenario to the overall
KVA,, ie. as:

8,KVAy = KVA, — KVAy(—s) Vs (17.4)

In other words, the scenario incremental KVA is defined as the difference between the KVA and the KVA recomputed
excluding scenario s. §KV A, thus, captures the dividend stream accrual requested by the capital market to lend capital
to the bank to cover unexpected losses. Therefore, §;KV A, represents a suitable merit function, as each incremental
scenario will collect the additional capital requirement needed to cover any type of future losses.

17.3.1 Risk-Factors Inversion and Data Mining

Among the pool of scenarios, we select stress scenarios in the confidence interval [99%,99.9%]. We, thus, select the 200
most adverse scenarios out of the original pool of primary scenarios (ref. to Figure 17.4)

Figure of Merit: Ranking of the worst 200 scenarios. (Tail Loss over 27.26578 MLN)
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Figure 17.4 Figure of Merit Ranking criterion

An interval-by-interval drill-down analysis, among the pool of gathered CET1 absorbing scenarios, identifies the points
in time where the most significant CET1 depletions occur (ref. to Figure 17.5).

Figure 17.5 Time Point where the most significant CET1 loss materialises

The knowledge of the scenario-epoch date tuple, representing the most substantial CET1 depletion, allows to perform a
scenario drill-down analysis. We, therefore, gather the set collecting the risk-factor state underneath the CET1 depletion
spike (seeFigure 17.6).
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Figure 17.6: Risk-Factor state driving the CET1 loss

Figure 17.7 depicts a bivariate projection of such an analysis. Each rhomboid pinpoints the risk factor state where the
most material CET1 depletions manifest.
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Figure 17.7: USD OIS vs. CFH overnight rates (in BPS) for stress scenarios on a representative fixed-income portfolio.

17.3.2 Counterparty Inversion and Data Mining

After identifying the most adverse economic states, we can proceed with a further data-mining analysis. We, therefore,
expand the analysis to identify the counterparties which exacerbate the CET1 depletion in the identified states (see
Figure 17.8).
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Top 5 Countrparties for CET1 Deplition (in MLN $) -- Scenario 18, Epoch-Date 2 years
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Figure 17.8: Extreme stress scenario — top name

The possibility to identify the counterparties that impair the capital demand (see Figure 17.8) sets the base to formulate a
new credit limit metric based on counterparty incremental KVA. Taking the difference between the KV A, of the entire
portfolio and the KVA of the portfolio obtained by removing the counterparty c, we compute the incremental
counterparty KVA (A KV Ay).

Similarly to the potential future exposure (PFE)*, the A.KV A,, assumes going-concern, and a run-off basis portfolio
holding. However, differently from the PFE?, which concerns only MtM losses, the A.KV A, reflects all the potential
sources of future losses, and it carries the intuitive meaning of the incremental demand for CET1 capital generated by a
counterparty (see Figure 17.9: Incremental Counterparty KVA). A_KV A, could, thus, take naturally a fundamental spot
for setting limits on idiosyncratic risk appetites. Accounting for the full-term structure of economic capital, as opposed
to just the current value, is in line with regulatory directives, such as CRR 292.7(b) (see European Banking Association
(2013)). The CRR 292.7(b) explicitly prescribes to monitor and potentially capitalize on the concentration of exposure
beyond the first year of credit exposure.

24 An extreme quantile (typically ranging between 95% and 99%) of the counterparty specific time-t MtM distribution defines the
PFE. The risk metric used for credit limit monitoring is typically the maximum PFE (maxcefo,n(PFE(t)), where T is either the residual
life of the netting set or its first year of credit exposure.

% The PFE, currently used to impose Credit Limits, is based on primordial RST exercises, as it concerns potential
future extreme MtM losses. To prevent risk concentrations, which might threaten bank solvency, credit risk officers
set limits based on extreme exposure levels. These limits are used to bound the accepted total exposure over the
lifetime of a netting set.
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Figure 17.9: Incremental Counterparty KVA

Current Credit Limit practices relay on metrics which are limited, as often based on a counterparty-centric view. As for
Regulatory Capital metrics, correlated losses triggered by GWWR, or convexity concentrations for exotic derivative, are
neglected. The lack of a comprehensive risk view, typical of MtM centric metrics, can, thus, obfuscate solvency risk?®.
The higher risk sensitivity of A.KV A makes KVA based credit limits a substantial addition to a PFE based system.

26 For example, fully collateralized derivative portfolios result in a zero PFE, although there is collateral funding risk, so that the risk embedded could be far different from zero.
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