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Abstract: This paper describes OpenSpyrit, an open access and open source ecosystem for8

reproducible research in hyperspectral single-pixel imaging, composed of SPAS (a Python9

single-pixel acquisition software), SPYRIT (a Python single-pixel reconstruction toolkit) and10

SPIHIM (a single-pixel hyperspectral image collection). The proposed OpenSpyrit ecosystem11

responds to the need for reproducibility in single-pixel imaging, which is currently lacking12

due to limited access to data and reconstruction algorithms. The SPIHIM collection currently13

contains 140 hypercubes that are acquired using SPAS and reconstructed using SPYRIT. The14

SPIHIM hypercubes are obtained by inverse Hadamard transformation of the raw data. They15

have a size of 64 × 64 × 2048 for a spectral resolution of 2.3 nm and a spatial resolution that is16

comprised between 182.4 µm and 15.2 µm depending on the digital zoom. We also reconstruct17

the hypercubes at a resolution of 128 × 128 × 2048 using a data-driven reconstruction algorithm18

available in SPYRIT, which leads to an increased spatial resolution.19

1. Introduction21

Spectral imaging is a major tool of modern science, with applications in astronomy, environmental22

monitoring, food processing, agriculture, and biomedical imaging [1,2]. The pushbroom and23

filter-based methods are scanning techniques that require multiple measurements to acquire a full24

(G, H, _) hypercube. Pushbroom methods acquire one (H, _) slice at a time and require scanning25

along the G-axis [3]. Filter-based setups acquire an (G, H) image for one spectral band, with the26

full hypercube obtained from a sequence of measurements by rotating a filter wheel or monitoring27

electronically tunable filters [4]. Both pushbroom and filter-based approaches suffer from low28

optical throughput as only a small part of the hypercube is measured at a time. Moreover, the29

spatial (i.e., for pushbroom) or spectral (i.e., for filters) resolutions are linear in proportion to the30

number of measurements, and hence they are either slow or low resolution. These limitations31

have led to computational snapshot methods that rely on algorithms that reconstruct a hypercube32

from a few raw measurements [5]. Coded aperture snapshot spectral imagers and their different33

variants exploit a diffractive element with a programmable mask, such that each raw measurement34

gives access to an oblique projection of the hypercube [6]. Miniature ultra-spectral imaging uses35

a liquid crystal phase retarder to multiplex the spectral domain [7]. The spectral DiffuserCam is36

a multispectral filter array where the optics are replaced by a diffuser, such that each pixel on the37

sensor can ‘see’ the whole field of view [8]. However, snapshot imagers suffer from an inherent38

trade-off between the spatial and the spectral dimensions.39

Hyperspectral single-pixel imaging is a generalization of single-pixel imaging whereby a40

reconstruction algorithm is used to recover high-spectral-resolution hypercubes from a set of41

spectra obtained using a set of spatial light patterns [9–14]. Compared to snapshot imagers, this42

approach requires more measurements; however, it leads to an excellent spectral resolution, as43

the spectral dimension is not multiplexed. Hyperspectral single-pixel imaging traces back to44

the concept of Hadamard spectroscopy [15] that introduced Hadamard-coded measurements to45
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obtain a signal-to-noise ratio boost known as Fellgett’s effect [16]. This approach has received46

renewed interest thanks to the advent of compressed sensing theory that allows the number of47

measurements to be drastically reduced [17]. Interest has been further increased with the advent48

of deep learning that enables fast reconstruction while outperforming handcrafted prior-based49

methods [18]. The number of algorithms that exploit deep learning for single-pixel reconstruction50

has continuously increased (see [19–25] to cite only a few relevant works). However, concerns51

exist about a number of aspects of algorithms based on deep learning, such as the reliability52

of the reconstruction, the dependence on training data, and the ease of interpretation of the53

results. There is a need for reproducibility in single-pixel imaging, which is currently lacking54

due to limited access to data and reconstruction algorithms. Data-driven algorithms are typically55

difficult to compare due to the hyperparameters and stochastic nature of the training phase.56

Another concern is the weak characterization of the performance of single-pixel imaging systems57

(e.g., resolution, sensitivity, robustness to noise) compared to traditional ones (e.g., pushbroom).58

Here, we propose the OpenSpyrit ecosystem for reproducible research in single-pixel imaging.59

We have acquired a collection of hypercubes over 2,048 spectral channels using a single-pixel60

imaging device whose spectral and spatial resolutions were characterized. Our imaging device61

relies on a digital micromirror device (DMD) that displays a sequence of Hadamard patterns. It62

acquires a spectrum for each pattern using a commercial spectrometer. While the hypercubes can63

be recovered directly by inverse Hadamard transformation of the raw spectra, we also consider an64

explainable reconstruction method based on deep learning [21]. Our datasets - SPIHIM [26] - are65

made publicly available following FAIR (findability, accessibility, interoperability, reusability)66

principles [27]. We share the raw data together with the Hadamard inverse transformed67

hypercubes and the hypercubes reconstructed thanks to deep learning. Our reconstruction method68

is implemented in the Python package SPYRIT [28], which allows the method to be retrained69

from scratch or to evaluate the corresponding Pytorch models that we make available. Our70

acquisition software is released via the SPAS package [29]. We believe the OpenSpyrit ecosystem71

can considerably ease the training and/or benchmarking of hyperspectral single-pixel image72

reconstruction algorithms.73

2. Methods74

The computational framework implemented in the OpenSpyrit ecosystem is depicted in Fig. 1.75

To acquire a 3D hypercube using a 2D sensor, we acquire multiple pixels at the same time by76

shaping the light with a DMD. After a sequence of spectra has been taken by using different77

DMD patterns, we feed the raw spectra into a deep reconstruction algorithm that recovers the78

hypercube.79

2.1. Image formation model80

Let Ŝ ∈ R2 ×Λ represent the raw measurements, where 2 is the number of DMD patterns
and Λ the number of spectral channels provided by the spectrometer. Let V ∈ R2 ×# be
the matrix that contains the DMD patterns, where # is the number of (spatial) pixels in each
pattern and L ∈ R#×Λ represents the 3D hypercube. We model the acquisition process as linear
measurements corrupted by Poissonian-Gaussian noise [30]

Ŝ ∼ 6 P(VL) + N (`dark, f
2
dark), (1)

where P and N are the Poisson and Gaussian distributions, 6 represents the system gain (in81

counts/electron), `dark is the dark current (in counts), and fdark is the dark noise (in counts).82

We choose V as Hadamard patterns, which maximizes the signal-to-noise ratio of the
reconstructed hypercube with respect to the additive Gaussian noise [15]. To handle the negative
values in V, the light patterns are split into positive and negative parts to be uploaded onto the



Fig. 1. Hyperspectral single-pixel imaging principle. The hypercube L ∈ R#×Λ
is sent to a compact spectrophotometer via a digital micromirror device (DMD). A
sequence of 2 light patterns V ∈ R2 ×# is uploaded onto the DMD, leading to the
measurement of the 2 raw spectra Ŝ ∈ R2 ×Λ. A reconstruction method is then
used to reconstruct the hypercube L from the raw spectra Ŝ.

DMD [31]. In notations, we have

V =
[
V+
V−

]
, (2)

where V+ ∈ R ×#+ and V− ∈ R ×#+ are the positive and negative parts of Hadamard patterns83

respectively, i.e., V+ − V− = YN, where N ∈ R#×# is the Walsh-Hadamard basis and84

Y ∈ {0, 1} ×# is a subsampling matrix that retains some of the rows of N. In the following,85

we denote the retained Hadamard patterns by N↓ = YN. Different subsampling strategies (e.g.,86

random, low frequency, high variance) have been investigated (see [32] for an overview).87

We finally preprocess the raw measurements Ŝ =

[
Ŝ+
Ŝ−

]
to compensate for splitting

S = Ŝ+ − Ŝ−, (3)

where Ŝ+ ∈ R ×Λ and Ŝ− ∈ R ×Λ correspond to the measurements obtained with the positive88

and negative patterns, respectively. Therefore, the preprocessed measurements S are Hadamard89

coefficients, in the sense that E (S) = N↓L, where E denotes the expectation. Note that the90

problem is separable across the spectral dimension, i.e., E (m_) = N↓ f_, 1 ≤ _ ≤ Λ, where91

m_ ∈ R and f_ ∈ R# are the _-th column of S and V, respectively. Therefore, the spectral92

resolution of the hypercube is given directly by the spectral resolution of the spectrometer, while93

its spatial resolution depends only on the light patterns and our ability to recover f_ from m_.94

2.2. Image reconstruction95

The hypercube can be reconstructed in the least squares sense as

L =
1
#
N>↓ S . (4)

In the case  = # , the pseudo inverse 1
#
N>↓ is the inverse of N.96



We also propose to reconstruct each _-slice of the hypercube independently by using a data-
driven algorithm. We consider the denoised completion network (DC-Net) [33] that computes
the two steps

f̄_ = Gdc (m_), and (5a)
f_ = D\ ( f̄_), (5b)

where Gdc represents the denoised completion step and D\ represents a neural network with97

parameters \. The denoised completion network is given by G\ = D\ ◦ Gdc.98

The operator Gdc is chosen as the linear estimator achieving minimum mean squared error
under Gaussian assumptions. It is given by

Gdc (m) =
1
#
N>↓

[
O"

�21�
−1
1

]
�1 (� + �1)−1m, (6)

where O" ∈ R"×" is the identity matrix, �1 and �21 are blocks of the covariance matrix
of N f and � is the noise covariance, which can be estimated as detailed in [21]. While the
denoised completion operator Gdc is kept fixed during training, we optimize the parameters of
the convolutional neural network in a supervised manner

argmin
)

∑
ℓ

‖ f (ℓ) − G\ (m (ℓ) )‖2, (7)

where { f (ℓ) ∈ R# }1≤ℓ≤! is an image database and {m (ℓ) ∈ R }1≤ℓ≤! are the associated99

measurements computed according to Eq. (1) and Eq. (3).100

2.3. SPAS: Single-Pixel Acquisition Software101

SPAS [29] is an open source python package for single-pixel acquisition, which has been been102

tested to control a DMD 4100 (0.7" XGA VIS, ViALUX) and an AvaSpec-ULS2048CL-EVO103

spectrometer. It therefore requires the ALP4lib [34] package for DMD control and the MSL-104

Equipment [35] package for spectrometer control. SPAS provides simple functions for the105

initialization of the DMD and spectrometer, for the upload of a sequence of patterns into the106

DMD memory, and for the acquisition that is triggered by an external signal provided by the107

DMD. Each pattern is displayed on the DMD during a given illumination time and the external108

trigger is sent to the spectrometer for synchronization. During acquisition, the spectra are stored109

in the spectrometer’s internal memory and are transferred to the computer via a callback function,110

which allows other tasks such as image reconstruction to be run in parallel.111

SPAS also provides several functions for the visualization of the hypercubes (e.g., spectral112

slicing, spectral binning, or RGB representation based on CIE color matching functions [36]),113

in addition to the implementation of a simple interface to the more advanced reconstruction114

functions of the SPYRIT package (see Section 2.5).115

2.4. SPIHIM: Single-Pixel Hyperspectral Imaging data collection116

SPIHIM [26] is a FAIR [27], open-access collection of hypercubes acquired using the principle117

of single-pixel imaging. The collection is stored in the PILoT warehouse managed by Girder,118

an open source web-based data management platform. Each acquisition is associated with a119

uniquely identified folder which contains the raw measurements (*_spectraldata.npz),120

the hypercube reconstructed by inverse Hadamard transformation (*_had_reco.npz), some121

metadata (*_metadata.json) and an overview folder with several spatial and spectral122

representations of the hypercube. The metadata provide information on the experimental123

https://github.com/openspyrit/spas
https://www.vialux.de/en/development-kits.html
https://www.avantes.com/products/spectrometers/starline/avaspec-uls2048cl-evo/
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Fig. 2. Acquisition system. Light source (L), sample (S), telecentric lens (TL), digital
micromirror device (DMD), bi-convex lens (CL), achromatic lens pair (LP), objective
lens (OL), optical fiber (OF), spectrometer (SP), and instrumentation computer (PC).
The green arrows indicate the communication workflow between the computer, the
DMD, and the spectrometer. The blue arrows indicate the light path.

conditions as well as on the acquisition parameters. The collection currently contains 140124

hypercubes acquired from 15 different objects: "Star Sector", "Cat", "PpIX", "Color checker",125

"USAF", "Colored Star Sector", "No object", "Tomato slice", "Horse", "White spot", "Thorlabs126

box", "Blob", "Tree leaf", "Lamb brain", "Apple". For further details about the objects, please127

see Section 1A of Supplement 1. We also provide an exhaustive list and detailed description of128

the acquisitions made from these objects (see Tables S1-S15 in Supplement 1).129

2.5. SPYRIT: Single-Pixel Reconstruction Toolkit130

SPYRIT is a Python package for single-pixel image reconstruction [28] that relies on PyTorch [37]131

and can be easily installed using the pip package management system. It implements the forward132

model of Eq. (1), the preprocessing step of Eq. (3), and the reconstruction step of Eq. (5)133

via classes that inherit from nn.module. This allows the full pipeline to be seen from an134

image acquisition to its reconstruction as a neural network, in addition to full exploitation of135

PyTorch functionalities (e.g., data loaders, network architectures, loss functions, optimizers, etc.).136

The source code of the SPYRIT package is available on GitHub and benefits from continuous137

integration with automated release of Python packages, dedicated benchmarks for regression138

testing, and integrated documentation. The software is licensed under LGPL-3.0: it can be be139

used and modified be anyone for private, public or commercial use.The SPYRIT package is140

complemented by a companion Github repository1 that contains script examples that rely on141

SPYRIT. In particular, the scripts that generate the figures displayed in this manuscript and142

Supplement 1 are available in /2022_OE_spyrit2/.143

3. Experiments144

3.1. Experimental setup145

Our setup is composed of an illumination arm, a DMD, and a light collection arm as depicted146

in Fig. 2. The illumination arm is composed of a white LED lamp (Thorlabs LIUCWHA) and147

a bi-telecentric lens system (Edmund Optics TECHSPEC® Large Format Telecentric 62902,148

1https://github.com/openspyrit/spyrit-examples



magnification 0.9x) that forms the image of the object in the active plane of a DMD (ViALUX149

GmbH DLP V-700, 1024 x 768 micromirrors, 13.7 µm pitch). The DMD is made of a matrix150

of microscopic mirrors that can be individually tilted to either +24◦ (ON state) or −24◦ (OFF151

state) according to spatial light patterns. The light collection arm, placed at +24◦ with respect152

to the illumination arm, holds a 35 mm focal length bi-convex lens, a MAP104040-B Matched153

Achromatic Lens Pair (both focal lengths are 40 mm), and an objective lens (x20, NA = 0.35)154

that focuses light at the entrance of an optical fiber (1500 µm core diameter, NA = 0.39, FT1500155

UMT) connected to a compact spectrometer (Avantes AvaSpec-ULS2048CL-EVO, Λ = 2048156

spectral channels, 515–750 nm, entrance slit of 200 µm, 1200 lines/mm grating). The setup,157

which is supported by a cage system, is lightweight and transportable. The setup depicted in158

Fig. 2 is referred to as version v1.1 in the SPIHIM collection. The variants v1.2 , v1.3 and v1.3.1159

differ with respect to the optical elements in the illuminate and collection arms of the setup.160

Additional details are provided in the SPIHIM collection [26].161

The integration time of the spectrometer is chosen as equal to the illumination time. A dead162

time of 44 µs, referred to as dark phase, is necessary for the DMD to tilt its micromirrors163

according to the next pattern. Another dead time of 356 µs is necessary for the spectrometer to164

flush its buffer and prepare a new acquisition. This leads to an acquisition time per pattern equal165

to the spectrometer integration time plus the longest dead time. The total time for the acquisition166

of a hypercube is ) = 2 (ΔC + XC), where ΔC represents the integration time and XC represents167

the dead time. While the integration time can be chosen by the user, the dead time is imposed168

by the device. Note that the dead time of the spectrometer is much longer that the smallest169

illumination time allowed by the DMD which cannot be operated at its maximum frequency170

(22 kHz corresponding to 45 µs). Our acquisitions are typically made with an integration time171

of 1 ms. Therefore, the fully sampled acquisition of an image of # = 64 × 64 pixels requires172

2 = 2# = 8,192 patterns × 1.4 ms ≈ 11.5 s.173

3.2. Experimental data for setup characterization174

For the purpose of reproducibility, we characterize the spatial and spectral resolution of the175

setup. To do so, we consider five objects from the SPIHIM collection. To determine the spatial176

resolution, we consider the Star Sector resolution target (Thorlabs, R1L1S2P, see top row of177

Fig. 4) and the USAF resolution target (Edmund, USAF 1951 38256, see bottom row of Fig. 4).178

Both samples are illuminated in transmission using a cold white LED array light source (Thorlabs,179

LIUCWHA). To determine the spectral resolution, we consider the light spots of a Mercury-Argon180

calibration lamp (Ocean Optics HG-1 with characteristic peaks at 546, 577, 579, 697, 707, 727,181

and 738 nm). As a more realistic reference image, we consider the image of a cat taken from the182

STL-10 [38] test set. The cat image is printed on a plastic sheet on which we superimpose a linear183

variable filter (Ocean Optics, LVF-HL, see Fig. 3). Finally, we consider an image of a tomato184

slice (see Fig. 7) to evaluate the capacity of the neural network to reconstruct the hypercube185

as a function of the acceleration rate. A tomato slice has smooth optical contrast compared to186

calibration targets that have high symmetry and sharp edges where reconstruction can fail for an187

undersampled acquisition. Details about these acquisitions can be found in Supplement 1 (see188

Tables S1, S2, S5, S7 and S8).189

Irrespective of the imaging configuration, all the patterns of a 64 × 64 Hadamard basis are190

acquired, resulting in a total of  = # = 4,096 Hadamard patterns split into 8,192 positive and191

negative patterns. We also consider accelerated acquisitions for which  < 4,096 patterns are192

acquired. The fully sampled datasets can be downsampled a posteriori to simulate an accelerated193

acquisition with different acceleration factors. Typically, the 64 × 64 Hadamard patterns are194

resized to fill the largest square region possible on the DMD, which corresponds to 768 × 768195

micromirrors. In this case, each pixel of the Hadamard patterns corresponds to an area of 12× 12196

micromirrors. However, it is also possible to display the patterns on smaller fields of view, acting197



Table 1. Integration times for the different zooms and samples. Times are given in
ms/pattern; ‘n.a.’ indicates that a dataset is not available. The corresponding images are
available in Supplement 1 (see Tables S1, S2, S5, S7 and S8). Click on the integration
times to access the raw data via a unique identifier.

Zoom ×1 ×2 ×3 ×4 ×6 ×12
Pixel size (µm) 182.4 91.2 60.8 45.6 30.4 15.2

STL-10 cat 1 n.a. n.a. n.a. n.a. n.a.
Star Sector 1 4 9 16 36 144
USAF 1 4 9 16 36 144
Mercury-Argon lamp 17.4 n.a. n.a. n.a. n.a. n.a.
Tomato slice 1 4 n.a. n.a. 36 144

as a hardware zoom that is independent of the optical components of the acquisition setup. We198

consider six DMD-based hardware zooms: ×1, ×2, ×3, ×4, ×6, and ×12, which correspond199

to patterns with a pixel size of 12, 6, 4, 3, 2, and 1 micromirrors, respectively. The higher the200

zoom factor, the lower the photon counts. To obtain measurements with similar signal-to-noise201

ratios, we chose the integration time depending on the zoom, as indicated in Table 1. For the ×1202

zoom, we set the integration time to 1 ms/pattern for the STL-10 cat and 17.4 ms/pattern for the203

Mercury-Argon calibration lamp. For the Star Sector and USAF targets that we image at zooms204

×1, ×2, ×3, ×4, ×6, and ×12, we choose integration times of 1, 4, 9, 16, 36, and 144 ms/pattern,205

respectively. For the tomato slice, we choose 4 ms/pattern for ×2 zoom and 144 ms/pattern for206

×12 zoom.207

3.3. Training of the DC-Net208

We train a DC-Net using SPYRIT [28] for a number of measurements of 4096, 2048, 1024,209

and 512. In particular, we consider the ! = 100, 000 images that correspond to the ‘test’210

subset of the ImageNet dataset [39]. The original images are randomly cropped to 128×128211

and are normalized between −1 and 1. The image domain denoiser D\ is a U-Net with three212

downsampling steps separated by a max pooling operation and three upsampling steps separated213

by transposed convolutions. The number of filters in the contracting path is increased from 16 to214

32, then to 64. Each layer is separated by a ReLU and batch normalization layer. Our U-Net has215

a total of 499,985 learnable parameters. We solve Eq. (7) using the ADAM optimizer [40], with216

an initial learning rate of 10−3, which is halved every 10 epochs, for a maximum of 30 epochs.217

The training phase took about 300 minutes on a NVIDIA GeForce RTX 2080 Ti graphic card in218

the case of  = 512. The DC-Nets trained for the four number of measurements are available in219

the /soft/model/ folder of SPIHIM. They can be easily loaded and run using SPYRIT (see220

Section 2 of Supplement 1 for a comprehensive overview of the hypercubes reconstructed for221

different numbers of measurements).222

4. Results223

4.1. An acquisition example224

To show the spatial and spectral capabilities of our hyperspectral camera, we first consider the225

STL-10 cat image with a linear variable filter in front of it. The integration time was set at 1226

ms/pattern leading to a total acquisition time of 11.5 s. Figure 3 shows the obtained hypercube227

to which we apply spectral binning to facilitate its display. We compute seven bins within the228

https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61781255478214d8c8a3119e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fe689478214d8c8a30d77
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fe8ac478214d8c8a30d8e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616feb30478214d8c8a30da5
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fec52478214d8c8a30dbc
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fefe1478214d8c8a30dea
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fff63478214d8c8a30e2f
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efc91fcdb6910b899d016e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efd531cdb6910b899d018b
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efd8c4cdb6910b899d01a8
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efdc1bcdb6910b899d01c5
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efdfdccdb6910b899d01e2
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61f00973cdb6910b899d020a
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61ba1731cdb6910b899cff83
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b07ee23f7ce79f5e565c2c
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b07f563f7ce79f5e565c46
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b080f83f7ce79f5e565c60
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b0924b3f7ce79f5e565c7a


Fig. 3. STL-10 cat hypercube acquisition with a linear variable filter. The full hypercube
is binned spectrally for display (seven bins in the range 544–670 nm, bin widths ∼19
nm, central wavelengths: 553.7, 572.6, 591.1, 609.3, 627.1, 644.5, and 661.5 nm). The
colorbars show intensities in counts/pixel. The image on the bottom right is an RGB
representation of the full hypercube. Acquisition:  = # = 4,096 patterns, ×1 zoom,
integration time of 1 ms/pattern; reconstruction by means of Eq. (4) with # = 4,096.

544–670 nm range with a bin width of ∼19 nm (central wavelengths: 553.7, 572.6, 591.1, 609.3,229

627.1, 644.5, and 661.5 nm). We also provide an RGB representation as recommended by the230

CIE [36]. Details about this acquisition can be found in Supplement 1 (see Table S2).231

Each bin displays a different bandpass window that is selected by the linear filter. As expected,232

the bandpass window translates diagonally within the field of view, from the top left corner to233

the bottom right corner, as the central wavelength increases. This is also visible on the RGB234

representation that displays the color palette starting with the green color in the top left corner to235

the red color in the bottom right corner. The STL-10 cat is visible in the background.236

4.2. Spatial resolution and DMD-based zoom237

We evaluate the spatial resolution of our system by imaging two calibrated resolution targets: the238

Star Sector and the USAF target. The Star Sector is composed of 36 black bars distributed around239

360◦. The USAF target is composed of bar groups with decreasing bar spacing and length. In240

Fig. 4, we display the images obtained for both targets at four different zooms (×1, ×3, ×6, and241

×12), after summation in the 550–590 nm range. The integration time was set at 1, 9, 36, and242

144 ms/pattern respectively leading to a total acquisition time of 11.5, 77.0, 298.2, and 1,183.0 s243

respectively. Details about these acquisitions can be found in Supplement 1 (see Tables S1 and244

S5).245

For both targets, we first establish the spatial resolution in pixels. Then, we convert it to line246

pairs per millimeter (lp/mm) to account for the optical magnification. For the Star Sector, we247

determine the system resolution as the smallest radius of a circular profile for which consecutive248

black bars appear to touch. For the USAF, we determine the system resolution as the smallest249

distinguishable bar group vertically and horizontally [41]. We also report the theoretical spatial250

resolution computed as 1/(2ΔG), where ΔG is the image pixel size in millimeters. The image251

pixel size depends linearly on the zoom, given the DMD pixel size and the telecentric lens252

magnification. We obtain 182.4, 91.2, 60.8, 45.6, 30.4, and 15.2 µm for ×1, ×2, ×3, ×4, ×6, and253

×12 zooms, respectively (see Table 1).254

In Fig. 5, we plot the spatial resolution as a function of the zoom, considering six different255



Fig. 4. Resolution targets acquired with different zooms. Top row: Star Sector; bottom
row: USAF. Zoom increases from left to right: ×1, ×3, ×6, and ×12;  = # = 4,096
patterns; the integration time increases with the zoom: 1, 9, 36, and 144 ms/pattern,
from left to right. All hypercubes are reconstructed using Eq. (4). The displayed
images are obtained by summing the hypercubes in the 550-590 nm range.

zooms that correspond to six independent acquisitions. We observe that spatial resolutions256

obtained from both the USAF and Star Sector targets are in good agreement with theoretical257

values computed from the pixel size only. This indicates that our system is limited only by the258

pixel size and that the DMD-based hardware zoom is not associated with undesirable blur.259

4.3. Spectral resolution at different locations260

We evaluate the spectral resolution by imaging a Mercury-Argon calibration lamp positioned261

in the object plane. We place the lamp at three different positions to create light spots at262

different locations in the field of view and acquire a hypercube for each spot. Figure 6 shows the263

superposition of the three lamp spots (2 = 8,192 patterns per acquisition, integration time ΔC =264

17.4 ms/pattern). Details about this acquisition can be found in Supplement 1 (see Table S7).265

For all three acquisitions we observe a central bright spot corresponding to the position of the266

light source (Fig. 6(a)). For each spot, we sum the contributions of all pixels in the respective red267

rectangles, obtaining the spectra indicated in Fig. 6(b). For the three acquisitions, we recover a268

spectrum that consists of the emission lines of mercury (_ < 650 nm) and argon (_ > 650 nm).269

In the following, we consider the peaks at 546, 697, 707, 727, and 738 nm. We measure the full270

width at half maximum of all peaks, for all spot locations, and obtain spectral resolutions between271

2.15 nm and 2.30 nm. These spectral resolutions are in excellent agreement with the theoretical272

spectral resolution of the spectrometer that is 2.3 nm, confirming that the spectral resolution of273

our device is directly given by the spectral resolution of the spectrometer. We observe no spectral274

degradation that originates from components before the spectrometer (e.g., DMD or focusing275

optics). Note that the peak at 578 nm results from the observation of the mercury emission276

doublet at 577 and 579 nm, which cannot be resolved. We also find that the amplitude of the277

different peaks, except the doublet, are the same for the three spot locations, which indicates that278

the spectral response of our system is spatially invariant.279



Fig. 5. Spatial resolution as a function of the zoom. The red line is the theoretical
resolution calculated from the pixel size; the green dots represent the resolution
measured from the USAF target; the black stars represent the resolution measured from
the Star Sector target. The spatial resolution is given in line pairs/millimeters (lp/mm)
and evaluated from the images displayed in Fig. 4.
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Fig. 6. Spectral resolution at different spatial locations in the field of view. (a) Image
of a three-spot of the Mercury-Argon calibration lamp. (b) Spectra of each of the light
spots indicated in (a). Integration time: 17.4 ms/pattern. The image in (a) is obtained by
summing the hypercube along the spectral dimension. The spectra in (b) are obtained
by summing all pixels within the red rectangles displayed in (a). These results confirm
that the spectral resolution of our device is directly given by the spectral resolution of
the spectrometer and that the spectral response of our system is spatially invariant.



4.4. Reconstructions for different values of  and #280

We evaluate our ability to reconstruct images from different amounts of measurements considering281

three samples: the Star Sector target, the USAF target, and a tomato slice. We consider the Star282

Sector and USAF targets imaged using ×12 zoom, whereas for the tomato slice, both the ×2 and283

×12 zooms were considered. Details about these acquisitions can be found in Supplement 1284

(see Tables S1, S5 and S8). For each sample, we consider  = 4,096 measurements,  = 1,024285

measurements, and  = 512 measurements. The case  = 4,096 measurements corresponds to a286

full basis scan with 64× 64 Hadamard patterns. The cases  = 1,024 and  = 512 measurements287

are obtained by subsampling the full basis scan acquisition. We retain the patterns that lead to288

the measurements with the highest energy (i.e., we chose Y such that E(‖YN f ‖22) is maximal),289

as suggested in [42]. We reconstruct the hypercubes in the least square sense using Eq. (4) (see290

first column of Fig. 7) as well as with the data driven DC-Net given by Eq. (5) (see second,291

third, and fourth columns of Fig. 7). All reconstructed images are obtained by keeping a single292

spectral channel at _ = 579 nm. The Hadamard matrices are constructed such that the set of293

patterns at a given resolution is included in the set of patterns at higher resolutions. For instance,294

a full basis scan at resolution 64 (i.e.,  = 4, 096 measurements taken from patterns of size295

# = 64 × 64) is equivalent to an acquisition at resolution 128 (i.e.,  = 16, 384 measurements296

taken from patterns of size # = 128× 128) undersampled by a factor of four. To illustrate this, we297

reconstruct the USAF target at resolution 64 (see second row of Fig. 7) and at resolution 128 (see298

third row of Fig. 7). More hypercubes reconstructed at resolution 128 can be found in Section 2299

of Supplement 1 where we consider fifteen different objects and four different spectral channels.300

The least-squares reconstruction is independent of the choice for # and depends on  only,301

which can be seen by comparing the first image of the second row and the first image of the third302

row. On the other hand, the reconstruction quality of the data-driven algorithm depends on the303

size of the images considered during the training phase. Training the DC-Net with 128 × 128304

images rather than with 64 × 64 images improves the quality of the reconstruction significantly.305

This can be observed by comparing the images of the second row of Fig. 7 to those of the third306

row of Fig. 7. In particular, the bars of the elements 5 and 6 of the group 4 can be resolved in the307

deep reconstruction, but not in the least-squares reconstruction (see the red rectangles in Fig. 7).308

This improvement is observed even if no such piecewise-constant binary images are present in the309

ImageNet database used for training. As expected, lowering the number of measurements leads310

to a loss of spatial resolution, which can be evaluated from the reconstructions of the resolution311

targets (see second, third, and fourth rows of Fig. 7). The lower the number of measurements, the312

higher the loss. For the Star Sector, the degradation of the spatial resolution appears as a blurred313

region in the center of the target, where high spatial frequency structures are present. We also314

observe this effect in the tomato slice images (see fifth and sixth row of Fig. 7). However, as315

fewer high frequencies are present, the degradation appears more limited.316

5. Discussion317

Images collected by hardware-driven commercial systems are relatively abundant. Among318

the main hyperspectral databases, the AVIRIS collection (e.g., see the NASA website [43])319

contains thousands of hypercubes over 214 spectral channels taken from airborne platforms.320

The BGU ICVL collection [44] currently contains 201 hypercubes over 519 spectral channels321

corresponding to indoor and outdoor scenes taken from the ground. Very few databases offer322

hypercubes with more than a thousand spectral bands. In contrast to existing datasets, our323

computational device provides access to 2,048 spectral channels. Our imaging system natively324

acquires a 64 × 64 × 2048 hypercube with a spectral resolution of 2.3 nm, while the spatial325

resolution can be adjusted between 182 µm and 15 µm using a DMD-based hardware zoom that326

can achieve a ×12 magnification with no modification of the optical components. The setup327

characterization demonstrates that the spectral resolution is not affected by the micromirror matrix328
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Fig. 7. Image reconstructions for different samples, number of measurements, and
reconstruction methods. First row: subsampling masks for # = 128 × 128; second and
third rows: USAF ×12 zoom; fourth row: Star Sector ×12 zoom; fifth row: tomato slice
×2 zoom; sixth row: tomato slice ×12 zoom. First column:  = 4,096 measurements,
least-squares reconstruction; second column:  = 4,096 measurements, denoised
completion network (DC-Net) reconstruction; third column:  = 1,024 measurements,
DC-Net reconstruction; fourth column:  = 512 measurements, DC-Net reconstruction.
The least-squares reconstructions are obtained using Eq. (4), while the DC-Net
reconstructions are given by Eq. (5). We have set # = 128 × 128 in all rows, except in
the second where # = 64 × 64. All images correspond to the spectral channel _ = 579
nm.



of the DMD and is equal to that of the commercial spectrometer, while the spatial resolution is329

approximately driven by the minimal group of micromirrors. As for the optical zoom, the higher330

the magnification, the lower the photon flux. To account for this effect, the images at higher331

zooms have been acquired for a longer duration (see Fig. 4), with a scaling factor equivalent332

to the zoom squared. Our system maintains a high spectral resolution for a lower price than333

currently available hyperspectral cameras with the same spectral resolution.334

The shortest integration time that we consider is 1 ms/pattern, leading to a total acquisition335

time of 11.5 s. As the spectrometer imposes a dead time XC of 356 µs during which no signal is336

acquired, this represents a waste of 356/(356 + 1000) ≈ 26% of the total acquisition time. To337

reduce the total acquisition time, it is possible to reduce the number of patterns 2 uploaded onto338

the DMD. The total acquisition time of the accelerated acquisition depends directly on the number339

of patterns (e.g., 11.5/2 ≈ 5.75 s considering only half of the patterns). This acceleration comes340

at the cost of a spatial resolution reduction, as illustrated in Fig. 7. The acceptable acceleration341

factor depends on the frequency content of the scene. While a 2-fold acceleration may be already342

excessive for sharp or highly structured objects, an acceleration up to 8-fold may be acceptable343

for smoother objects. In this study, we chose a subsampling strategy based on energy criteria;344

however, any other subsampling strategy can be evaluated by subsampling a full acquisition a345

posteriori. The determination of the best subset of patterns remains an open problem and the346

subject of active research. To ease such studies, we provide several examples for reading and347

reodering the SPIHIM measurements according to a given subsampling pattern as done in Fig. 7.348

For the sake of generality, we have chosen to provide reconstructions where no assumptions349

are made on the spectral content of the hypercube. Therefore, our algorithm reconstructs each350

_-slice of the hypercube independently using a DC-Net. We have chosen this approach for its351

robustness to noise deviation, as underlined in [21]. However, many other data-driven approaches352

can be considered, including approaches that exploit the spatio-spectral redundancy to jointly353

reconstruct several _-slices (e.g., [45]). The OpenSpyrit ecosystem could serve as a basis for a354

more systematic comparison of the performance of these algorithms. Alternatively to the splitting355

strategy given by Eq. (2), the patterns can be shifted to positive values. While the comparison of356

shifting and splitting have been addressed in [31] for wavelet patterns, the question of handling357

the negative values of Hadamard patterns remains open. The SPIHIM collection allows studies358

to be conducted with both approaches. Indeed, shifted Hadamard patterns 1
2 (YN + 1) coincide359

with the positive part of Hadamard patterns V+. Therefore, the SPIHIM collection includes360

the measurements from shifted Hadamard patterns that are obtained by retaining every second361

spectrum.362

6. Conclusion363

We propose OpenSpyrit, an ecosystem for reproducible research in hyperspectral single-pixel364

imaging. In particular, we introduce SPAS (a Python acquisition package), SPYRIT (a Python365

reconstruction package) and SPIHIM (a data collection), to respond to the need for reproducibility366

and open access in single-pixel imaging. The SPIHIM collection currently contains 140367

hypercubes that are natively 64 × 64 × 2048 in size with a spectral resolution of 2.3 nm and a368

spatial resolution that can be adjusted between 182.4 µm and 15.2 µm using a digital zoom. It369

also contains the hypercubes reconstructed at resolution of 128 × 128 × 2048 by a data-driven370

reconstruction algorithm. The SPIHIM dataset can be exploited for spectral imaging studies371

in general, but also for more specific studies. In particular, the OpenSpyrit ecosystem should372

provide a benchmark for single-pixel reconstruction algorithms. In the future, the data collection373

is expected to continue growing and, in a similar manner, the SPYRIT package should integrate374

novel reconstruction algorithms.375
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