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Abstract: This paper describes OpenSpyrit, an open access and open source ecosystem for
reproducible research in hyperspectral single-pixel imaging, composed of SPAS (a Python
single-pixel acquisition software), SPYRIT (a Python single-pixel reconstruction toolkit) and
SPIHIM (a single-pixel hyperspectral image collection). The proposed OpenSpyrit ecosystem
responds to the need for reproducibility and benchmarking in single-pixel imaging by providing
open data and open software. The SPIHIM collection, which is the first open-access FAIR
dataset for hyperspectral single-pixel imaging, currently includes 140 raw measurements acquired
using SPAS and the corresponding hypercubes reconstructed using SPYRIT. The hypercubes are
reconstructed by both inverse Hadamard transformation of the raw data and using the denoised
completion network (DC-Net), a data-driven reconstruction algorithm. The hypercubes obtained
by inverse Hadamard transformation have a native size of 64× 64× 2048 for a spectral resolution
of 2.3 nm and a spatial resolution that is comprised between 182.4 µm and 15.2 µm depending on
the digital zoom. The hypercubes obtained using the DC-Net are reconstructed at an increased
resolution of 128× 128× 2048. The OpenSpyrit ecosystem should constitute a reference to
support benchmarking for future developments in single-pixel imaging.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spectral imaging is a major tool of modern science, with applications in astronomy, environmental
monitoring, food processing, agriculture, and biomedical imaging [1,2]. The pushbroom and
filter-based methods are scanning techniques that require multiple measurements to acquire a full
(x, y, λ) hypercube. Pushbroom methods acquire one (y, λ) slice at a time and require scanning
along the x-axis [3]. Filter-based setups acquire an (x, y) image for one spectral band, with the full
hypercube obtained from a sequence of measurements by rotating a filter wheel or monitoring
electronically tunable filters [4]. Both pushbroom and filter-based approaches suffer from low
optical throughput as only a small part of the hypercube is measured at a time. Moreover, the
spatial (i.e., for pushbroom) or spectral (i.e., for filters) resolutions are linear in proportion to the
number of measurements, and hence they are either slow or low resolution. These limitations
have led to computational snapshot methods that rely on algorithms that reconstruct a hypercube
from a few raw measurements [5]. Coded aperture snapshot spectral imagers and their different
variants exploit a diffractive element with a programmable mask, such that each raw measurement
gives access to an oblique projection of the hypercube [6]. Miniature ultra-spectral imaging uses
a liquid crystal phase retarder to multiplex the spectral domain [7]. The spectral DiffuserCam is
a multispectral filter array where the optics are replaced by a diffuser, such that each pixel on the
sensor can ‘see’ the whole field of view [8]. However, snapshot imagers suffer from an inherent
trade-off between the spatial and the spectral dimensions.

Hyperspectral single-pixel imaging is a generalization of single-pixel imaging whereby a
reconstruction algorithm is used to recover high-spectral-resolution hypercubes from a set of
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spectra obtained using a set of spatial light patterns [9–14]. Compared to snapshot imagers, this
approach requires more measurements; however, it leads to an excellent spectral resolution, as
the spectral dimension is not multiplexed. Hyperspectral single-pixel imaging traces back to
the concept of Hadamard spectroscopy [15] that introduced Hadamard-coded measurements to
obtain a signal-to-noise ratio boost known as Fellgett’s effect [16]. This approach has received
renewed interest thanks to the advent of compressed sensing theory that allows the number of
measurements to be drastically reduced [17]. Interest has been further increased with the advent
of deep learning that enables fast reconstruction while outperforming handcrafted prior-based
methods [18]. The number of algorithms that exploit deep learning for single-pixel reconstruction
has continuously increased (see [19–25] to cite only a few relevant works). There is now a
wide variety of single-pixel systems and methods. Different systems are obtained by integrating
different light modulators, detectors, and synchronization strategies, while different single-pixel
methods are obtained by considering different types of light patterns, data preprocessing steps,
and reconstruction algorithms. However, there is no common dataset and platform for comparing
and testing the various methods. Concerns exist about the characterization of the performance
(e.g., resolution, sensitivity, robustness to noise) of these computational systems compared to
traditional ones (e.g., pushbroom). This includes concerns about data-driven algorithms whose
results are often difficult to reproduce and compare due to the hyperparameters and stochastic
nature of the training phase.

Here, we propose the OpenSpyrit ecosystem which addresses the need for reproducibility
and benchmarking in single-pixel imaging by providing open data and open software. Our new
single-pixel datasets include both the raw measurements and the corresponding hypercubes
reconstructed by two algorithms. Our acquisition and reconstruction software not only implement
a particular methodology but also provide tools that can be tailored to different user-specific
configurations. We have acquired a collection of hypercubes over 2,048 spectral channels
using a single-pixel imaging device whose spectral and spatial resolutions were characterized.
Our imaging device relies on a digital micromirror device (DMD) that displays a sequence of
Hadamard patterns. It acquires a spectrum for each pattern using a commercial spectrometer.
While the hypercubes can be recovered directly by inverse Hadamard transformation of the raw
spectra, we also consider an explainable reconstruction method based on deep learning [21]. Our
datasets - SPIHIM [26] - are made publicly available following FAIR (findability, accessibility,
interoperability, reusability) principles [27]. To the best of our knowledge, SPIHIM is the first
FAIR open-access data collection for hyperspectral single-pixel imaging. We share the raw data
together with the Hadamard inverse transformed hypercubes and the hypercubes reconstructed
thanks to deep learning. Our acquisition software is released via the SPAS package [28]. Our
reconstruction method is implemented in the Python package SPYRIT [29], which allows the
method to be retrained from scratch or to evaluate the corresponding Pytorch models that we
make available. The goal of OpenSpyrit is not to compare all existing single-pixel configurations
and methodologies, which would not be possible, but to provide novel tools that enable fair
benchmarking and reproducible research for all future developments in single-pixel imaging.

2. Methods

The computational framework implemented in the OpenSpyrit ecosystem is depicted in Fig. 1.
To acquire a 3D hypercube using a 2D sensor, we acquire multiple pixels at the same time by
shaping the light with a DMD. After a sequence of spectra has been taken by using different
DMD patterns, we feed the raw spectra into a deep reconstruction algorithm that recovers the
hypercube.
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Fig. 1. Hyperspectral single-pixel imaging principle. The hypercube F ∈ RN×Λ is sent to
a compact spectrophotometer via a digital micromirror device (DMD). A sequence of 2K
light patterns P ∈ R2K×N is uploaded onto the DMD, leading to the measurement of the 2K
raw spectra M̂ ∈ R2K×Λ. A reconstruction method is then used to reconstruct the hypercube
F from the raw spectra M̂.

2.1. Image formation model

Let M̂ ∈ R2K×Λ represent the raw measurements, where 2K is the number of DMD patterns and
Λ the number of spectral channels provided by the spectrometer. Let P ∈ R2K×N be the matrix
that contains the DMD patterns, where N is the number of (spatial) pixels in each pattern and
F ∈ RN×Λ represents the 3D hypercube. We model the acquisition process as linear measurements
corrupted by Poissonian-Gaussian noise [30]

M̂ ∼ gP(PF) +N(µdark,σ2
dark), (1)

where P and N are the Poisson and Gaussian distributions, g represents the system gain (in
counts/electron), µdark is the dark current (in counts), and σdark is the dark noise (in counts).

We choose P as Hadamard patterns, which maximizes the signal-to-noise ratio of the
reconstructed hypercube with respect to the additive Gaussian noise [15]. To handle the negative
values in P, the light patterns are split into positive and negative parts to be uploaded onto the
DMD [31]. In notations, we have

P =
[︂

P+
P−

]︂
, (2)

where P+ ∈ RK×N
+ and P− ∈ RK×N

+ are the positive and negative parts of Hadamard patterns
respectively, i.e., P+−P− = SH, where H ∈ RN×N is the Walsh-Hadamard basis and S ∈ {0, 1}K×N

is a subsampling matrix that retains some of the rows of H. In the following, we denote the
retained Hadamard patterns by H↓ = SH. Different subsampling strategies (e.g., random, low
frequency, high variance) have been investigated (see [32] for an overview).

We finally preprocess the raw measurements M̂ =
[︂

M̂+
M̂−

]︂
to compensate for splitting

M = M̂+−M̂−, (3)

where M̂+ ∈ RK×Λ and M̂− ∈ RK×Λ correspond to the measurements obtained with the positive
and negative patterns, respectively. Therefore, the preprocessed measurements M are Hadamard
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coefficients, in the sense that E (M) = H↓F, where E denotes the expectation. Note that the
problem is separable across the spectral dimension, i.e., E (mλ) = H↓fλ, 1 ≤ λ ≤ Λ, where
mλ ∈ RK and fλ ∈ RN are the λ-th column of M and P, respectively. Therefore, the spectral
resolution of the hypercube is given directly by the spectral resolution of the spectrometer, while
its spatial resolution depends only on the light patterns and our ability to recover fλ from mλ.

2.2. Image reconstruction

The hypercube can be reconstructed in the least squares sense as

F = 1
N

H⊤
↓
M. (4)

In the case K = N, the pseudo inverse 1
N H⊤

↓
is the inverse of H.

We also propose to reconstruct each λ-slice of the hypercube independently by using a data-
driven algorithm. We consider the denoised completion network (DC-Net) [33] that computes
the two steps

f̄λ = Gdc(mλ), and (5a)
fλ = Dθ (f̄λ), (5b)

where Gdc represents the denoised completion step and Dθ represents a neural network with
parameters θ. The denoised completion network is given by Gθ = Dθ ◦ Gdc.

The operator Gdc is chosen as the linear estimator achieving minimum mean squared error
under Gaussian assumptions. It is given by

Gdc(m) =
1
N

H⊤
↓

⎡⎢⎢⎢⎢⎣
IM

Σ21Σ
−1
1

⎤⎥⎥⎥⎥⎦ Σ1(Σ + Σ1)
−1m, (6)

where IM ∈ RM×M is the identity matrix, Σ1 and Σ21 are blocks of the covariance matrix of
Hf and Σ is the noise covariance, which can be estimated as detailed in [21]. While the
denoised completion operator Gdc is kept fixed during training, we optimize the parameters of
the convolutional neural network in a supervised manner

arg min
θ

∑︂
ℓ

∥f (ℓ) − Gθ (m(ℓ))∥2, (7)

where {f (ℓ) ∈ RN}1≤ℓ≤L is an image database and {m(ℓ) ∈ RK}1≤ℓ≤L are the associated
measurements computed according to Eq. (1) and Eq. (3).

2.3. SPAS: single-pixel acquisition software

SPAS [28] is an open source python package for single-pixel acquisition, which has been tested
to control a DMD 4100 (0.7" XGA VIS, ViALUX) and a spectrometer (Avantes AvaSpec-
ULS2048CL-EVO). It therefore requires the ALP4lib [34] package for DMD control and the
MSL-Equipment [35] package for spectrometer control. SPAS provides simple functions for the
initialization of the DMD and spectrometer, for the upload of a sequence of patterns into the
DMD memory, and for the acquisition that is triggered by an external signal provided by the
DMD. Each pattern is displayed on the DMD during a given illumination time and the external
trigger is sent to the spectrometer for synchronization. During acquisition, the spectra are stored
in the spectrometer’s internal memory and are transferred to the computer via a callback function,
which allows other tasks such as image reconstruction to be run in parallel.

SPAS also provides several functions for the visualization of the hypercubes (e.g., spectral
slicing, spectral binning, or RGB representation based on CIE color matching functions [36]),
in addition to the implementation of a simple interface to the more advanced reconstruction
functions of the SPYRIT package (see Section 2.5).
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2.4. SPIHIM: single-pixel hyperspectral imaging data collection

SPIHIM [26] is a FAIR [27], open-access collection of hypercubes acquired using the principle of
single-pixel imaging. The collection is stored in the PILoT warehouse managed by Girder, an open
source web-based data management platform. Each acquisition is associated with a uniquely iden-
tified folder which contains the raw measurements (*_spectraldata.npz), the hypercube
reconstructed by inverse Hadamard transformation (*_had_reco.npz), the hypercube recon-
structed using our neural network (*_nn_reco.npz), some metadata (*_metadata.json)
and an overview folder with several spatial and spectral representations of the hypercube. The
metadata provide information on the experimental conditions as well as on the acquisition
parameters. The metadata together with the raw data and hypercubes reconstructed by inverse
Hadamard transformation should greatly facilitate the implementation of benchmarking and
reproducibility. The collection currently contains 140 hypercubes acquired from 15 different
objects: "Star Sector", "Cat", "PpIX", "Color checker", "USAF", "Colored Star Sector", "No
object", "Tomato slice", "Horse", "White spot", "Thorlabs box", "Blob", "Tree leaf", "Lamb
brain", "Apple". For further details about the objects, please see Section 1A of Supplement 1.
We also provide an exhaustive list and detailed description of the acquisitions made from these
objects (see Tables S1-S15 in Supplement 1).

2.5. SPYRIT: single-pixel reconstruction toolkit

SPYRIT is a Python package for single-pixel image reconstruction [29] that relies on PyTorch [37]
and can be easily installed using the pip package management system. To handle different problems
in a simple and effective manner, SPYRIT is divided into four core submodules that implement
the measurement operator, noise model, preprocessing step, and reconstruction algorithm via
classes that inherit from nn.module (see Fig. 2). The pipeline from an image acquisition to its
reconstruction can be seen as a neural network, for which all PyTorch functionalities (e.g., data
loaders, network architectures, loss functions, optimizers, etc) can be exploited. SPYRIT already
includes the specific measurement operator, noise model, preprocessing step, and reconstruction
step corresponding to Eq. (1), (3) and (5), as well as base classes that SPYRIT users can tailor
to their particular problem. The source code of the SPYRIT package is available on GitHub
and benefits from continuous integration with automated release of Python packages, dedicated
benchmarks for regression testing, and integrated documentation. The software is licensed under
LGPL-3.0: it can be used and modified be anyone for private, public or commercial use. The
SPYRIT package is complemented by a companion Github repository [38] that contains script
examples that rely on SPYRIT. In particular, the scripts that generate the figures displayed in this
manuscript and Supplement 1 are available in /2022_OE_spyrit2/.

Fig. 2. Overview of the four SPYRIT core modules combined in a typical training pipeline:
meas represents the measurement operator, noise the noise model, prep the preprocessing
step, and recon the reconstruction algorithm. The modularity of SPYRIT allows a variety
of computational problems to be handled in an effective and simple manner.

https://doi.org/10.6084/m9.figshare.22260145
https://doi.org/10.6084/m9.figshare.22260145
https://doi.org/10.6084/m9.figshare.22260145
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3. Experiments

3.1. Experimental setup

Our setup is composed of an illumination arm, a DMD, and a light collection arm as depicted
in Fig. 3. The illumination arm is composed of a white LED lamp (Thorlabs LIUCWHA)
and a bi-telecentric lens system (Edmund Optics TECHSPEC Large Format Telecentric 62902,
magnification 0.9x) that forms the image of the object in the active plane of a DMD (ViALUX
GmbH DLP V-700, 1024 x 768 micromirrors, 13.7 µm pitch). The DMD is made of a matrix
of microscopic mirrors that can be individually tilted to either +24◦ (ON state) or −24◦ (OFF
state) according to spatial light patterns. The light collection arm, placed at +24◦ with respect
to the illumination arm, holds a 35 mm focal length bi-convex lens, a MAP104040-B Matched
Achromatic Lens Pair (both focal lengths are 40 mm), and an objective lens (x20, NA = 0.35)
that focuses light at the entrance of an optical fiber (1500 µm core diameter, NA = 0.39, FT1500
UMT) connected to a compact spectrometer (Avantes AvaSpec-ULS2048CL-EVO, Λ = 2048
spectral channels, 515–750 nm, entrance slit of 200 µm, 1200 lines/mm grating). The setup,
which is supported by a cage system, is lightweight and transportable. The setup depicted in
Fig. 3 is referred to as version v1.1 in the SPIHIM collection. The variants v1.2 , v1.3 and v1.3.1
differ with respect to the optical elements in the illumination and collection arms of the setup.
Additional details are provided in the SPIHIM collection [26].

DMD

SPPC
Data

Patterns Trigger

TL S
L

OLLPCL

OF

Fig. 3. Acquisition system. Light source (L), sample (S), telecentric lens (TL), digital
micromirror device (DMD), bi-convex lens (CL), achromatic lens pair (LP), objective lens
(OL), optical fiber (OF), spectrometer (SP), and instrumentation computer (PC). The green
arrows indicate the communication workflow between the computer, the DMD, and the
spectrometer. The blue arrows indicate the light path.

The integration time of the spectrometer is chosen as equal to the illumination time. A dead
time of 44 µs, referred to as dark phase, is necessary for the DMD to tilt its micromirrors
according to the next pattern. Another dead time of 356 µs is necessary for the spectrometer to
flush its buffer and prepare a new acquisition. This leads to an acquisition time per pattern equal
to the spectrometer integration time plus the longest dead time. The total time for the acquisition
of a hypercube is T = 2K(∆t + δt), where ∆t represents the integration time and δt represents
the dead time. While the integration time can be chosen by the user, the dead time is imposed
by the device. Note that the dead time of the spectrometer is much longer that the smallest
illumination time allowed by the DMD which cannot be operated at its maximum frequency
(22 kHz corresponding to 45 µs). Our acquisitions are typically made with an integration time
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of 1 ms. Therefore, the fully sampled acquisition of an image of N = 64 × 64 pixels requires
2K = 2N = 8,192 patterns × 1.4 ms ≈ 11.5 s.

3.2. Experimental data for setup characterization

As a reference image, we consider the image of a cat taken from the STL-10 [39] test set. The
cat image is printed on a plastic sheet on which we superimpose a linear variable filter (Ocean
Optics, LVF-HL, see Fig. 4). For the purpose of reproducibility, we characterize the spatial and
spectral resolution of the setup. To do so, we consider five objects from the SPIHIM collection.
To determine the spatial resolution, we consider the Star Sector resolution target (Thorlabs,
R1L1S2P, see top row of Fig. 5 and Fig. 6) and the USAF resolution target (Edmund, USAF
1951 38256, see bottom row of 5 and Fig 6). Both samples are illuminated in transmission
using a cold white LED array light source (Thorlabs, LIUCWHA). To determine the spectral
resolution, we consider the light spots of a Mercury-Argon calibration lamp (Ocean Optics HG-1
with characteristic peaks at 546, 577, 579, 697, 707, 727, and 738 nm, see Fig. 7). Finally, we
consider an image of a tomato slice (see Fig. 8) to evaluate the capacity of the neural network
to reconstruct the hypercube as a function of the acceleration rate. A tomato slice has smooth
optical contrast compared to calibration targets that have high symmetry and sharp edges where
reconstruction can fail for an undersampled acquisition. Details about these acquisitions can be
found in Supplement 1 (see Tables S1, S2, S5, S7 and S8).

Fig. 4. STL-10 cat hypercube acquisition with a linear variable filter. The full hypercube
is binned spectrally for display (seven bins in the range 544–670 nm, bin widths ∼19 nm,
central wavelengths: 553.7, 572.6, 591.1, 609.3, 627.1, 644.5, and 661.5 nm). The colorbars
show intensities in counts/pixel. The image on the bottom right is an RGB representation of
the full hypercube. Acquisition: K = N = 4,096 patterns, ×1 zoom, integration time of 1
ms/pattern; reconstruction by means of Eq. (4) with N = 4,096.

Irrespective of the imaging configuration, all the patterns of a 64 × 64 Hadamard basis are
acquired, resulting in a total of K = N = 4,096 Hadamard patterns split into 8,192 positive and
negative patterns. We also consider accelerated acquisitions for which K< 4,096 patterns are
acquired. The fully sampled datasets can be downsampled a posteriori to simulate an accelerated
acquisition with different acceleration factors. Typically, the 64 × 64 Hadamard patterns are
resized to fill the largest square region possible on the DMD, which corresponds to 768 × 768
micromirrors. In this case, each pixel of the Hadamard patterns corresponds to an area of 12× 12
micromirrors. However, it is also possible to display the patterns on smaller fields of view, acting
as a hardware zoom that is independent of the optical components of the acquisition setup. We

https://doi.org/10.6084/m9.figshare.22260145
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Fig. 5. Resolution targets acquired with different zooms. Top row: Star Sector; bottom row:
USAF. Zoom increases from left to right: ×1, ×3, ×6, and ×12; K = N = 4,096 patterns; the
integration time increases with the zoom: 1, 9, 36, and 144 ms/pattern, from left to right. All
hypercubes are reconstructed using Eq. (4). The displayed images are obtained by summing
the hypercubes in the 550-590 nm range.

consider six DMD-based hardware zooms: ×1, ×2, ×3, ×4, ×6, and ×12, which correspond
to patterns with a pixel size of 12, 6, 4, 3, 2, and 1 micromirrors, respectively. The higher the
zoom factor, the lower the photon counts. To obtain measurements with similar signal-to-noise
ratios, we chose the integration time depending on the zoom, as indicated in Table 1. For the ×1
zoom, we set the integration time to 1 ms/pattern for the STL-10 cat and 17.4 ms/pattern for the
Mercury-Argon calibration lamp. For the Star Sector and USAF targets that we image at zooms
×1, ×2, ×3, ×4, ×6, and ×12, we choose integration times of 1, 4, 9, 16, 36, and 144 ms/pattern,
respectively. For the tomato slice, we choose 4 ms/pattern for ×2 zoom and 144 ms/pattern for
×12 zoom.

Table 1. Integration times for the different zooms and samples. Times are given in ms/pattern;
‘n.a.’ indicates that a dataset is not available. The corresponding images are available in

Supplement 1 (see Tables S1, S2, S5, S7 and S8). Click on the integration times to access the raw
data via a unique identifier.

Zoom ×1 ×2 ×3 ×4 ×6 ×12

Pixel size (µm) 182.4 91.2 60.8 45.6 30.4 15.2

STL-10 cat 1 n.a. n.a. n.a. n.a. n.a.

Star Sector 1 4 9 16 36 144

USAF 1 4 9 16 36 144

Mercury-Argon lamp 17.4 n.a. n.a. n.a. n.a. n.a.

Tomato slice 1 4 n.a. n.a. 36 144

3.3. Training of the DC-Net

We train a DC-Net using SPYRIT for a number of measurements K of 4096, 2048, 1024, and 512
and images of size N = 128 × 128, contrary to the original implementation [21] that considers
smaller images of size N = 64 × 64. To do so, we consider the L = 100, 000 images that
correspond to the ‘test’ subset of the ImageNet dataset [40]. The original images are randomly

https://doi.org/10.6084/m9.figshare.22260145
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61781255478214d8c8a3119e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fe689478214d8c8a30d77
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fe8ac478214d8c8a30d8e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616feb30478214d8c8a30da5
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fec52478214d8c8a30dbc
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fefe1478214d8c8a30dea
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/616fff63478214d8c8a30e2f
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efc91fcdb6910b899d016e
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efd531cdb6910b899d018b
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efd8c4cdb6910b899d01a8
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efdc1bcdb6910b899d01c5
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61efdfdccdb6910b899d01e2
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61f00973cdb6910b899d020a
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61ba1731cdb6910b899cff83
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b07ee23f7ce79f5e565c2c
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b07f563f7ce79f5e565c46
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b080f83f7ce79f5e565c60
https://pilot-warehouse.creatis.insa-lyon.fr/#folder/61b0924b3f7ce79f5e565c7a
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cropped to 128×128 and are normalized between −1 and 1. The image domain denoiser Dθ is a
U-Net with three downsampling steps separated by a max pooling operation and three upsampling
steps separated by transposed convolutions. The number of filters in the contracting path is
increased from 16 to 32, then to 64. Each layer is separated by a ReLU and batch normalization
layer. Our U-Net has a total of 499,985 learnable parameters. Here again, this differs from the
original implementation [21] that considers a simple three-layer convolutional neural network
with 28,993 learnable parameters. We solve Eq. (7) using the ADAM optimizer [41], with an
initial learning rate of 10−3, which is halved every 10 epochs, for a maximum of 30 epochs. The
training phase took about 300 minutes on a NVIDIA GeForce RTX 2080 Ti graphic card in the
case of K = 512. The DC-Nets trained for the four number of measurements are available in the
/soft/model/ folder of SPIHIM.

4. Results

4.1. Acquisition example

To show the spatial and spectral capabilities of our hyperspectral camera, we first consider the
STL-10 cat image with a linear variable filter in front of it. The integration time was set at 1
ms/pattern leading to a total acquisition time of 11.5 s. Figure 4 shows the obtained hypercube
to which we apply spectral binning to facilitate its display. We compute seven bins within the
544–670 nm range with a bin width of ∼19 nm (central wavelengths: 553.7, 572.6, 591.1, 609.3,
627.1, 644.5, and 661.5 nm). We also provide an RGB representation as recommended by the
CIE [36]. Details about this acquisition can be found in Supplement 1 (see Table S2).

Each bin displays a different bandpass window that is selected by the linear filter. As expected,
the bandpass window translates diagonally within the field of view, from the top left corner to
the bottom right corner, as the central wavelength increases. This is also visible on the RGB
representation that displays the color palette starting with the green color in the top left corner to
the red color in the bottom right corner. The STL-10 cat is visible in the background.

4.2. Spatial resolution and DMD-based zoom

We evaluate the spatial resolution of our system by imaging two calibrated resolution targets: the
Star Sector and the USAF target. The Star Sector is composed of 36 black bars distributed around
360◦. The USAF target is composed of bar groups with decreasing bar spacing and length. In
Fig. 5, we display the images obtained for both targets at four different zooms (×1, ×3, ×6, and
×12), after summation in the 550–590 nm range. The integration time was set at 1, 9, 36, and
144 ms/pattern respectively leading to a total acquisition time of 11.5, 77.0, 298.2, and 1,183.0 s
respectively. Details about these acquisitions can be found in Supplement 1 (see Tables S1 and
S5).

For both targets, we first establish the spatial resolution in pixels. Then, we convert it to line
pairs per millimeter (lp/mm) to account for the optical magnification. For the Star Sector, we
determine the system resolution as the smallest radius of a circular profile for which consecutive
black bars appear to touch. For the USAF, we determine the system resolution as the smallest
distinguishable bar group vertically and horizontally [42]. We also report the theoretical spatial
resolution computed as 1/(2∆x), where ∆x is the image pixel size in millimeters. The image
pixel size depends linearly on the zoom, given the DMD pixel size and the telecentric lens
magnification. We obtain 182.4, 91.2, 60.8, 45.6, 30.4, and 15.2 µm for ×1, ×2, ×3, ×4, ×6, and
×12 zooms, respectively (see Table 1).

In Fig. 6, we plot the spatial resolution as a function of the zoom, considering six different
zooms that correspond to six independent acquisitions. We observe that spatial resolutions
obtained from both the USAF and Star Sector targets are in good agreement with theoretical
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values computed from the pixel size only. This indicates that our system is limited only by the
pixel size and that the DMD-based hardware zoom is not associated with undesirable blur.

Fig. 6. Spatial resolution as a function of the zoom. The red line is the theoretical resolution
calculated from the pixel size; the green dots represent the resolution measured from the
USAF target; the black stars represent the resolution measured from the Star Sector target.
The spatial resolution is given in line pairs/millimeters (lp/mm) and evaluated from the
images displayed in Fig. 5.

4.3. Spectral resolution at different locations

We evaluate the spectral resolution by imaging a Mercury-Argon calibration lamp positioned
in the object plane. We place the lamp at three different positions to create light spots at
different locations in the field of view and acquire a hypercube for each spot. Figure 7 shows the
superposition of the three lamp spots (2K = 8,192 patterns per acquisition, integration time ∆t =
17.4 ms/pattern). Details about this acquisition can be found in Supplement 1 (see Table S7).

(1)

(2)

(3)

(a) (b)

Fig. 7. Spectral resolution at different spatial locations in the field of view. (a) Image of a
three-spot of the Mercury-Argon calibration lamp. (b) Spectra of each of the light spots
indicated in (a). Integration time: 17.4 ms/pattern. The image in (a) is obtained by summing
the hypercube along the spectral dimension. The spectra in (b) are obtained by summing
all pixels within the red rectangles displayed in (a). These results confirm that the spectral
resolution of our device is directly given by the spectral resolution of the spectrometer and
that the spectral response of our system is spatially invariant.
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For all three acquisitions we observe a central bright spot corresponding to the position of the
light source (Fig. 7(a)). For each spot, we sum the contributions of all pixels in the respective red
rectangles, obtaining the spectra indicated in Fig. 7(b). For the three acquisitions, we recover a
spectrum that consists of the emission lines of mercury (λ< 650 nm) and argon (λ> 650 nm). In
the following, we consider the peaks at 546, 697, 707, 727, and 738 nm. We measure the full
width at half maximum of all peaks, for all spot locations, and obtain spectral resolutions between
2.15 nm and 2.30 nm. These spectral resolutions are in excellent agreement with the theoretical
spectral resolution of the spectrometer that is 2.3 nm, confirming that the spectral resolution of
our device is directly given by the spectral resolution of the spectrometer. We observe no spectral
degradation that originates from components before the spectrometer (e.g., DMD or focusing
optics). Note that the peak at 578 nm results from the observation of the mercury emission
doublet at 577 and 579 nm, which cannot be resolved. We also find that the amplitude of the
different peaks, except the doublet, are the same for the three spot locations, which indicates that
the spectral response of our system is spatially invariant.

4.4. Reconstructions for different values of K and N

We evaluate our ability to reconstruct images from different amounts of measurements considering
three samples: the Star Sector target, the USAF target, and a tomato slice. We consider the Star
Sector and USAF targets imaged using ×12 zoom, whereas for the tomato slice, both the ×2 and
×12 zooms were considered. Details about these acquisitions can be found in Supplement 1
(see Tables S1, S5 and S8). For each sample, we consider K = 4,096 measurements, K = 1,024
measurements, and K = 512 measurements. The case K = 4,096 measurements corresponds to a
full basis scan with 64× 64 Hadamard patterns. The cases K = 1,024 and K = 512 measurements
are obtained by subsampling the full basis scan acquisition. We retain the patterns that lead to
the measurements with the highest energy (i.e., we chose S such that E(∥SHf ∥2

2 ) is maximal), as
suggested in [43]. We reconstruct the hypercubes in the least square sense using Eq. (4) (see
first column of Fig. 8) as well as with the data driven DC-Net given by Eq. (5) (see second,
third, and fourth columns of Fig. 8). All reconstructed images are obtained by keeping a single
spectral channel at λ = 579 nm. The Hadamard matrices are constructed such that the set of
patterns at a given resolution is included in the set of patterns at higher resolutions. For instance,
a full basis scan at resolution 64 (i.e., K = 4, 096 measurements taken from patterns of size
N = 64 × 64) is equivalent to an acquisition at resolution 128 (i.e., K = 16, 384 measurements
taken from patterns of size N = 128× 128) undersampled by a factor of four. To illustrate this, we
reconstruct the USAF target at resolution 64 (see second row of Fig. 8) and at resolution 128 (see
third row of Fig. 8). More hypercubes reconstructed at resolution 128 can be found in Section 2
of Supplement 1 where we consider fifteen different objects and four different spectral channels.

The least-squares reconstruction is independent of the choice for N and depends on K only,
which can be seen by comparing the first image of the second row and the first image of the third
row. On the other hand, the reconstruction quality of the data-driven algorithm depends on the
size of the images considered during the training phase. Training the DC-Net with 128 × 128
images rather than with 64 × 64 images improves the quality of the reconstruction significantly.
This can be observed by comparing the images of the second row of Fig. 8 to those of the third
row of Fig. 8. In particular, the bars of the elements 5 and 6 of the group 4 can be resolved in the
deep reconstruction, but not in the least-squares reconstruction (see the red rectangles in Fig. 8).
This improvement is observed even if no such piecewise-constant binary images are present in the
ImageNet database used for training. As expected, lowering the number of measurements leads
to a loss of spatial resolution, which can be evaluated from the reconstructions of the resolution
targets (see second, third, and fourth rows of Fig. 8). The lower the number of measurements, the
higher the loss. For the Star Sector, the degradation of the spatial resolution appears as a blurred
region in the center of the target, where high spatial frequency structures are present. We also
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Fig. 8. Image reconstructions for different samples, number of measurements, and
reconstruction methods. First row: subsampling masks for N = 128 × 128; second and third
rows: USAF ×12 zoom; fourth row: Star Sector ×12 zoom; fifth row: tomato slice ×2 zoom;
sixth row: tomato slice ×12 zoom. First column: K = 4,096 measurements, least-squares
reconstruction; second column: K = 4,096 measurements, denoised completion network (DC-
Net) reconstruction; third column: K = 1,024 measurements, DC-Net reconstruction; fourth
column: K = 512 measurements, DC-Net reconstruction. The least-squares reconstructions
are obtained using Eq. (4), while the DC-Net reconstructions are given by Eq. (5). We
have set N = 128 × 128 in all rows, except in the second where N = 64 × 64. All images
correspond to the spectral channel λ = 579 nm.
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observe this effect in the tomato slice images (see fifth and sixth row of Fig. 8). However, as
fewer high frequencies are present, the degradation appears more limited.

We also reconstruct images from fifteen different samples for K = 4096, 1024 and 512
raw measurements using our DC-Net (See Section 2 of Supplement 1). For each sample and
measurement number, we consider eight images corresponding to four different spectral channels
and four different spectral bins that are obtained by summation of the spectral channels. The
resulting 360 reconstructions available constitute a solid reference for future benchmarking.

5. Discussion

Images collected by hardware-driven commercial systems are relatively abundant. Among
the main hyperspectral databases, the AVIRIS collection (e.g., see the NASA website [44])
contains thousands of hypercubes over 214 spectral channels taken from airborne platforms.
The BGU ICVL collection [45] currently contains 201 hypercubes over 519 spectral channels
corresponding to indoor and outdoor scenes taken from the ground. Very few databases offer
hypercubes with more than a thousand spectral bands. In contrast to existing datasets, our
computational device provides access to 2,048 spectral channels. Our imaging system natively
acquires a 64 × 64 × 2048 hypercube with a spectral resolution of 2.3 nm, while the spatial
resolution can be adjusted between 182 µm and 15 µm using a DMD-based hardware zoom that
can achieve a ×12 magnification with no modification of the optical components. The setup
characterization demonstrates that the spectral resolution is not affected by the micromirror matrix
of the DMD and is equal to that of the commercial spectrometer, while the spatial resolution is
approximately driven by the minimal group of micromirrors. As for the optical zoom, the higher
the magnification, the lower the photon flux. To account for this effect, the images at higher
zooms have been acquired for a longer duration (see Fig. 5), with a scaling factor equivalent
to the zoom squared. Our system maintains a high spectral resolution for a lower price than
currently available hyperspectral cameras with the same spectral resolution.

The shortest integration time that we consider is 1 ms/pattern, leading to a total acquisition
time of 11.5 s. As the spectrometer imposes a dead time δt of 356 µs during which no signal is
acquired, this represents a waste of 356/(356 + 1000) ≈ 26% of the total acquisition time. To
reduce the total acquisition time, it is possible to reduce the number of patterns 2K uploaded onto
the DMD. The total acquisition time of the accelerated acquisition depends directly on the number
of patterns (e.g., 11.5/2 ≈ 5.75 s considering only half of the patterns). This acceleration comes
at the cost of a spatial resolution reduction, as illustrated in Fig. 8. The acceptable acceleration
factor depends on the frequency content of the scene. While a 2-fold acceleration may be already
excessive for sharp or highly structured objects, an acceleration up to 8-fold may be acceptable
for smoother objects. In this study, we chose a subsampling strategy based on energy criteria;
however, any other subsampling strategy can be evaluated by subsampling a full acquisition a
posteriori. The determination of the best subset of patterns remains an open problem and the
subject of active research. To ease such studies, we provide several examples for reading and
reodering the SPIHIM measurements according to a given subsampling pattern as done in Fig. 8.

For the sake of generality, we have chosen to provide reconstructions where no assumptions
are made on the spectral content of the hypercube. Therefore, our algorithm reconstructs each
λ-slice of the hypercube independently using a DC-Net. We have chosen this approach for its
robustness to noise deviation, as underlined in [21]. However, many other data-driven approaches
can be considered, including approaches that exploit the spatio-spectral redundancy to jointly
reconstruct several λ-slices (e.g., [46]). The OpenSpyrit ecosystem could serve as a basis for a
more systematic comparison of the performance of these algorithms. Alternatively to the splitting
strategy given by Eq. (2), the patterns can be shifted to positive values. While the comparison of
shifting and splitting have been addressed in [31] for wavelet patterns, the question of handling
the negative values of Hadamard patterns remains open. The SPIHIM collection allows studies
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to be conducted with both approaches. Indeed, shifted Hadamard patterns 1
2 (SH + 1) coincide

with the positive part of Hadamard patterns P+. Therefore, the SPIHIM collection includes
the measurements from shifted Hadamard patterns that are obtained by retaining every second
spectrum.

6. Conclusion

We propose OpenSpyrit, an ecosystem for reproducible research in hyperspectral single-pixel
imaging. In particular, we introduce SPAS (a Python acquisition package), SPYRIT (a Python
reconstruction package) and SPIHIM (a data collection), to respond to the need for reproducibility
and open access in single-pixel imaging. The SPIHIM collection currently contains 140
hypercubes that are natively 64 × 64 × 2048 in size with a spectral resolution of 2.3 nm and a
spatial resolution that can be adjusted between 182.4 µm and 15.2 µm using a digital zoom. It
also contains the hypercubes reconstructed at resolution of 128 × 128 × 2048 by a data-driven
reconstruction algorithm. The SPIHIM dataset can be exploited for spectral imaging studies
in general, but also for more specific studies. In particular, the OpenSpyrit ecosystem should
provide a benchmark for single-pixel reconstruction algorithms. In the future, the data collection
is expected to continue growing and, in a similar manner, the SPYRIT package should integrate
novel reconstruction algorithms.
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