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Abstract

Since the 2008–09 financial crisis, banks have introduced a family of XVA met-
rics to quantify the cost of counterparty risk and of its capital and funding implica-
tions: the credit/debt valuation adjustment (CVA and DVA), the costs of funding
variation margin (FVA) and initial margin (MVA), and the capital valuation ad-
justment (KVA).

We revisit from a wealth conservation and wealth transfer perspective at the
incremental trade level the cost-of-capital XVA approach developed at the level
of the balance sheet of the bank in Albanese, Crépey, Hoskinson, and Saadeddine
(2019). Trade incremental XVAs reflect the wealth transfers triggered by the deals
due to the incompleteness of counterparty risk. XVA-inclusive trading strategies
achieve a given hurdle rate to shareholders in the conservative limit case that no
new trades occur.

XVAs represent a switch of paradigm in derivative management, from hedging
to balance sheet optimization. This is illustrated by a review of possible applica-
tions of the XVA metrics.
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1 Introduction

In the aftermath of the financial crisis of 2008–09, regulators launched in a major bank-
ing reform aimed at reducing counterparty risk by raising collateralisation and capital
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requirements and by incentivising central clearing (see (Basel Committee on Bank-
ing Supervision 2013)). The Basel III banking regulatory framework also set out guide-
lines for CVA and DVA (credit and debt valuation adjustments), which are valuation
metrics for counterparty and own default risk in bilateral markets.

In bilateral as in centrally cleared transactions, collateral nowadays comes in two
forms. The variation margin (VM), which is typically re-hypothecable, tracks the
(counterparty-risk-free) value of a portfolio. The initial margin (IM) is an additional
layer of margin, typically segregated, which is meant as a guarantee against the risk
of slippage of a portfolio between default and liquidation. To quantify the respective
costs of VM and IM, banks started to price into contingent claims funding and now
margin valuation adjustments (FVA and MVA).

On a parallel track, the regulatory framework for the insurance industry has also
been reformed, but on the basis of a different set of principles. Insurance claims are
largely unhedged and markets are intrinsically incomplete. The cost of capital is re-
flected into prices. Solvency II focuses on regulating dividend distribution policies in
such a way to ensure a sustainable risk remuneration to the shareholders over the life-
time of the portfolio. This is based on the notion of risk margin, which in banking
parlance corresponds to a capital valuation adjustment (KVA).

In a related stream of papers, we develop a cost-of-capital XVA approach in incom-
plete counterparty risk markets. Albanese, Crépey, Hoskinson, and Saadeddine (2019)
state the fundamental principles, rooted in the specificities of the balance sheet of a
dealer bank. The application of these principles in continuous time leads in Albanese
and Crépey (2019) to a progressive enlargement of filtration setup and nonstandard
XVA backward stochastic differential equations (BSDEs) stopped before the bank de-
fault time. Crépey, Sabbagh, and Song (2019) consider further the BSDEs “of the Mc
Kean type” that arise when one includes the possibility for the bank to use its capital
as a funding source for variation margin. Abbas-Turki, Diallo, and Crépey (2018) deal
with the numerical solution of our XVA equations by nested Monte Carlo strategies
optimally implemented on graphics processing units (GPUs). Albanese, Caenazzo, and
Crépey (2017) apply what precedes to the concrete situation of a bank engaged into
bilateral trade portfolios, demonstrating the feasibility of this approach on real banking
portfolio involving thousands of counterparties and hundreds of thousands of trades.
They also illustrate numerically the importance of the FVA mitigation provided, in
the case of uncollateralized portfolios, by the use of capital as a funding source. Ar-
menti and Crépey (2017) and Albanese, Armenti, and Crépey (2019) apply the generic
principles of Albanese, Crépey, Hoskinson, and Saadeddine (2019) to the XVA analy-
sis of centrally cleared portfolios: in Armenti and Crépey (2017), this is done under
standard regulatory assumptions on the default fund and the funding strategies for
initial margins, in order to compare in XVA terms bilateral versus centrally cleared
trading networks. Albanese, Armenti, and Crépey (2019), on the other hand, challenge
these assumptions in the direction of achieving a greater efficiency (in XVA terms) of
centrally cleared trading networks.

The aim of the present paper is to show how XVAs represent a switch of paradigm
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in derivative management, from hedging to balance sheet optimization. This is done by
extensively relying on the notion of wealth transfer. This notion is already at the core of
Albanese, Crépey, Hoskinson, and Saadeddine (2019), but kind of implicitly and at the
level of the whole portfolio of the bank, mainly used a posteriori and for interpretation
purposes. By contrast, in this paper, we make it our main tool, exploited directly at
the trade incremental level. The rewiring of the theory around the notion of wealth
transfer allows re-deriving explicitly and “linearly”, with virtually no mathematics, a
number of the conceptual relations obtained in Albanese and Crépey (2019).

By the variety of situations that we consider, we try and demonstrate that the
wealth transfer view yields a very practical and versatile angle on XVA analysis. The
benefit of this angle is to bring in intuition and flexibility. The price for it lies in detail
and accuracy, as, beyond the elementary static setup considered as a toy example in
Section 4, going deeper into the arguments in order to obtain precise XVA equations
brings back to the peculiarities in Albanese and Crépey (2019) and the follow up papers.

Under our cost-of-capital pricing approach, beyond CVA and DVA, the whole XVA
suite is rooted on counterparty risk incompleteness. For alternative, replication-based,
XVA approaches, see, for instance, Brigo and Pallavicini (2014), Burgard and Kjaer
(2011, 2013, 2017), Bichuch, Capponi, and Sturm (2018) (without KVA), or, with a
KVA meant as an additional liability like the CVA and the FVA (as opposed to a risk
premium in our case), Green, Kenyon, and Dennis (2014). A detailed comparative
discussion is provided in Albanese and Crépey (2019, Section 6).

The outline of the paper goes as follows. Section 2 sets our XVA pricing stage
and delivers our main result Theorem 2.1 (which is just another perspective on the
FTP formulas (32) or (40) in Albanese, Crépey, Hoskinson, and Saadeddine (2019)).
Starting from the limiting case of complete markets, the successive wealth transfers
triggered by different forms of counterparty risk incompleteness or trading restrictions
are reviewed in Section 3, along with the corresponding XVA implications. Section
4, which is a rewiring of Section 3 in Albanese, Crépey, Hoskinson, and Saadeddine
(2019), yields explicit XVA formulas and illustrates the XVA wealth transfer issue in
a one-period static setup. Section 5 illustrates the switch of paradigm that XVAs rep-
resent in derivative management, from hedging to balance sheet optimization. Some
connections with the Modigliani-Miller theory are discussed in Section A (which de-
velops the concluding paragraph of Section 3.5 in Albanese, Crépey, Hoskinson, and
Saadeddine (2019)).

1.1 Abbreviations

Here is a recapitulative list of the abbreviations introduced in the course of the paper.

BCVA Bilateral CVA.

BDVA Bilateral DVA.

CA Contra-assets valuation.

CCP Central counterparty.
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CDS Credit default swap.

CL Contra-liabilities valuation.

CSA Credit support annex.

CVA Credit valuation adjustment (can be unilateral or bilateral).

CVACL Contra-liability component of a unilateral CVA.

DFC Default fund contribution.

DVA Debt valuation adjustment (can be unilateral or bilateral).

FDA Funding debt adjustment.

FTP Funds transfer price.

FVA Funding valuation adjustment.

IAS International accounting standard.

IFRS International financial reporting standards.

KVA Capital valuation adjustment.

MDA Margin debt adjustment.

MtM Mark-to-market.

MVA Margin valuation adjustment.

OIS Overnight index swap.

RC Reserve capital.

REPO Repurchase agreement.

RM Risk margin.

SCR Shareholder capital at risk.

UCVA Unilateral CVA.

XVA Generic “X” valuation adjustment.

Also:

BA Value of the derivative portfolio of the bank to the bank as a whole (share-
holders and bondholders).

SH Value of the derivative portfolio of the bank to the bank shareholders.

BH Value of the derivative portfolio of the bank to the bank bondholders.

CO Value of the derivative portfolio of the bank to the bank clients (corporate
counterparties).
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2 XVA Framework

2.1 Agents

Banks play a unique role in the industry as they accept deposits, make loans, and
enter into risk transformation contracts with clients. Banks compete with each other
to provide their services by offering the best prices to clients. A dealer bank is a price
maker which cannot decide on asset selection: trades are proposed by clients and the
market maker needs to stand ready to bid for a trade at a suitable price, no matter
what the trade is and when it arrives.

When modeling a bank with defaultable debt, we need to consider its shareholders
and creditors as separate entities. Specifically, we model a bank as a composite entity
split into shareholders and bondholders. Shareholders make investment decisions up
until the default of the bank, at which point they are wiped out. Bondholders instead
represent the junior creditors of the bank, which have no decision power until the time
of default, but are protected by laws such as pari-passu forbidding certain trades that
would trigger wealth away from them to shareholders (or to more senior creditors)
during the default resolution process of the bank.

Derivative clients (corporate counterparties of the bank) are also individual eco-
nomic entities. Non-financial firms are characterized by a portfolio of real investments
which is separate and in addition to their portfolio of financial contracts. In a re-
duced form model of the economy where we ignore the real investments portfolios of
clients and model only their financial contracts, we lack the information required to
decide whether a trade would be optimal to execute or not. Non-financial firms are
just viewed as price takers that do not optimize and possibly accept to sustain a loss
as a consequence of trading with banks.

The bank also needs an external “funder” to borrow unsecured, as required in last
resort by its trading strategy (once all the internal sources of funding, such as received
and rehypothecable variation margin, have been exhausted). This funder can be seen
as a senior creditor of the bank, which in our setup enjoys an exogenous recovery rate
upon bank default.

Last, the bank needs an access to the financial markets, e.g. repo markets, other
banks (possibly via CCPs), etc., for setting up a hedge of its portfolio or, more precisely,
of its mark-to-market component (as we assume jump-to-default risk hardly hedgeable
in practice). We call abstractly the “hedger” of the bank the corresponding agent.

Hence, we consider an economy, with agents, labeled by an index a, coming in five
different types:

• Bank shareholders (sh), who will only agree upon the bank entering a new trade
if appropriately compensated by the client through the entry price of the deal,
accounting for the costs of funding and cost of capital in particular;

• Bank bondholders (bh), who have no saying on trades but are protected by pari-
passu type laws;
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• Bank clients (or counterparties, co), who are price takers and willing to accept
a loss in a trade for the sake of receiving (e.g. hedging) benefits that become
apparent only once one includes their real investment portfolio, which is not
explicitly modeled;

• Bank funders (fu), who agree to lend cash to the bank unsecured at some risky
spread, which can be proxied by the CDS spread of the bank;

• Bank hedgers (he), who agree to provide a mark-to-market hedge (fully collater-
alised back-to-back hedge) of the derivative portfolio of the bank.

As these entities enter into contracts, wealth is transferred among them, as defined and
explained in what follows.

2.2 Cash Flows

We assume that, at time 0, agents are already bound by contractual agreements between
each other, which obligate them to exchange the related trading cash flows in the future.
The cumulative cash flows up to time t received by entity a from all other agents in
the economy assuming no new trade is entered (other than the ones initially planned
at time 0, even though the latter may include forward starting contracts or dynamic
hedging positions) is denoted by a (i.e. we identify agents with the corresponding cash
flow processes), premium payments included.

We then assume that at time t = 0 a new trade is concluded. We prefix by ∆
any trade incremental quantity of interest, e.g. ∆a denotes the difference between the
cumulative cash flow streams affecting the corresponding agent with and without the
new deal.

There are also cash flows affecting our different economic agents, unrelated to the
derivative portfolio of the bank. By definition, such cash flows are unchanged upon
inclusion of the new deal in the bank portfolio. We assume that none of our economic
agents is a monetary authority. Hence, money can neither be created nor destroyed
and all relevant entities are included in the model. Under these conditions:

Assumption 2.1 We have that ∑
agents

∆a = 0. (1)

Our objective is to assess the incremental impact of the new trade on counterparty
risk and on the cost of debt financing and the cost of capital, in such a way that
this information can be reflected into entry prices at a level making the shareholders
indifferent (at least) to the deal. The analysis can then be repeated at each new trade
as frequently as one wishes.
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2.3 Valuation Operator

Under a cost-of-capital XVA approach, shareholders decide whether to invest depending
on two inputs: a value function and incremental cost of capital. In this part we define
the former.

We consider throughout the paper a pricing stochastic basis (Ω,G,Q), with model
filtration G = (Gt)t∈R+ and pricing measure Q (the Q expectation is denoted by E),
such that all the processes of interest are G adapted.

Remark 2.1 In case markets are assumed to be complete, then there is one unique
pricing measure Q. In case markets are incomplete, several calibratable risk neutral
probabilities can coexist and we need to recognize the related model risk. For this
purpose, one can deal with a Bayesian-like prior distribution µ(dQ) in the space of risk
neutral measures. Subjective views of price makers are embedded in the choice of the
prior measure µ. In this paper, to keep things simple, we assume that µ is an atomic
delta measure, i.e. we simply pick one possible risk neutral measure Q as it emerges
from a calibration exercise and stick to it without including model risk.

However, we will introduce cost of capital, as a KVA risk-premium entering prices
on top of risk-neutral Q valuation of the cash flows (shareholder cash flows, i.e. pre-
bank default cash flows, for alignment of deals to shareholder interest, which drives the
trading decisions of the bank as long as it is nondefault).

We denote by r a G progressive OIS rate process, i.e. overnight indexed swap rate, the
best market proxy for a risk-free rate as well as the reference rate for the remuneration
of cash collateral). Let β = e−

∫ ·
0 rtdt be the corresponding risk-neutral discount factor.

The representation of valuation by the traders of the bank is encoded into the following:

Definition 2.1 The (time 0) value of a cumulative cash flow stream P is given by

E
∫
[0,∞)

βtdPt (2)

(integral from time 0 included onward, under the convention that all processes are nil
before time 0).

In particular, we call mark-to-market MtM of the new deal the value of its contrac-
tually promised cash flow stream ρ (i.e. MtM is the value of the deal ignoring the impact
of counterparty risk and of its funding and capital implications). For each agent, we
denote by the corresponding capitalized acronym A = SH,BH,CO,FU,HE, the value
of a.

Definition 2.2 The wealth transfer triggered by the deal to a given agent is the differ-
ence between the values of the corresponding cash flow streams a accounting or not for
the new deal, i.e. the value ∆A of ∆a (by linearity of our valuation operator).

Recalling that the corresponding cash flow streams are premium inclusive (and that
the time integration domain includes 0 in (2)):
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Assumption 2.2 The risky funding assets and the hedging assets are “fairly” valued,
in the sense that FU = HE = 0.

Hence we no longer report about FU and HE in the sequel.

Lemma 2.1 We have ∑
agents

∆A = 0 (3)

and, more specifically,
∆SH + ∆BH + ∆CO = 0. (4)

Proof. Definition 2.2 and (1) immediately imply (3), which, under Assumption 2.2,
specializes to (4).
Hence, our setup is in line with the Williams (1938) law of conservation of investment
value according to which, as a consequence of a financial trade among a number of
entities who enter into a contract at time 0 to exchange future cash flows towards each
other, the algebraic sum of all wealth transfers at time 0 among all entities involved
is zero. But the wealth transfer amount ∆A is possibly non-zero, in general, for some
entities a(=sh, bh, and/or co).

We also introduce ba = sh + bh and BA = SH + BH for the cash flows and value
of the derivative portfolio to the bank as a whole. From a balance sheet interpretation
point of view that is detailed in Albanese, Crépey, Hoskinson, and Saadeddine (2019,
Section 2), BA and SH correspond to the accounting equity and to the core equity Tier
1 capital of the bank (at least, at the trade incremental level).

2.4 Contra-Assets and Contra-Liabilities

In the case of an investment bank, counterparty risk entails several sources of market
incompleteness, or trading restrictions (cf. Sect. A):

• Pari-passu rules, meant to guarantee to the bank bondholders the benefit of any
residual value within the bank in case of default;

• Bank debt cannot possibly be fully redeemed by the bank shareholders;

• Client default losses cannot be perfectly replicated.

In order to focus on counterparty risk and XVAs, we assume throughout the paper that
the market risk of the bank is perfectly hedged by means of perfectly collateralized back-
to-back trades. That is, each client deal is replicated, in terms of market risk, by a
perfectly collateralized back-to-back trade with another bank. Hence, all remains to
be priced is counterparty risk and its capital and funding implications.

More precisely, netting the cash flows of the client portfolio and its hedge results in
a set of counterparty risk related cash flows that can be subdivided into counterparty
default exposures and funding expenditures, incurred by the bank as long as it is alive,
and cash flows received by the bank from its default time onward, when shareholders
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have already been wiped out by the bondholders, which increase the realized recovery
of the latter: See Sect. 4 in an illustrative static setup. Accordingly (cf. Equations
(14) and (17) in Albanese and Crépey (2019) for more technical detail):

Definition 2.3 We call contra-assets and contra-liabilities the synthetic liabilities and
assets of the bank that emerge endogenously from its trading, through the impact of
counterparty risk on its back-to-back hedged portfolio.

We denote by ca and cl the corresponding cash flow streams, with respective values
CA and CL. As the counterparty risk related add-ons are not known yet, this is all “FTP
excluded” (cf. Sect. 2.6), i.e. not accounting for the corresponding (to be determined)
premium that will be paid by the client to the bank.

Note that, by Definition 2.2, contra-liabilities (such as the DVA) do not benefit to the
wealth of shareholders but only to bondholders, because the corresponding cash flows
come too late, when shareholders have already been wiped out by the bondholders.

The counterparty related cash flows, i.e. (ca−cl), are composed of credit and funding
cash flows. Under bilateral counterparty risk, there is a credit valuation adjustment
(CVA) for each risky counterparty and a debt valuation adjustment (DVA) for default of
the bank itself. Each CVA (respectively DVA) is equal to the cost of buying protection
against the credit risk of that counterparty (respectively the symmetrical cost seen from
the perspective of the counterparty toward the bank). Accordingly, credit cash flows
are valued as (∆BDVA−∆BCVA). Note that we are dealing with bilateral BCVA and
BDVA here, where the CVA and DVA related cash flows between the bank and each
given counterparty are only considered until the first occurrence of a default of the two
entities, consistent with the fact that later cash flows will not be paid.

Proposition 2.1 We have

CA− CL = BCVA − BDVA. (5)

Proof. In view of the above, this is an immediate consequence of ∆FU = 0 (by
Assumption 2.2).

2.5 Cost of Capital

Following the principles of Basel III and Solvency II, we handle (unhedgeable) coun-
terparty risk by means of a combination of a reserve capital account, which is used by
the bank to cover systematic losses, and capital at risk to cover exceptional losses.

Shareholders require a dividend premium as compensation for the risk incurred on
their capital at risk. The level of compensation required on shareholder capital at risk
(SCR) is driven by market considerations. Typically, investors in banks expect a hurdle
rate h of about 10% to 12%.

When a bank charges cost of capital to clients, these revenues are accounted for
as profits. Unfortunately, prevailing accounting standards for derivative securities are
based on the theoretical assumption of market completeness. They do not envision
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a mechanism to retain these earnings for the purpose of remunerating capital across
the entire life of transactions, which can be as long as decades. In complete markets,
there is no justification for risk capital. Hence, profits are immediately distributable.
A strategy of earning retention beyond the end of the ongoing accounting year (or
quarter) is still possible as in all firms, but this would be regarded as purely a business
decision, not subject to financial regulation under the Basel III accord.

This leads to an explosive instability characteristic of a Ponzi scheme. For instance,
if a bank starts off today by entering a 30-year swap with a client, the bank books a
profit. Assuming the trade is perfectly hedged, the profit is distributable at once.
But, the following year, the bank still needs capital to absorb the risk of the 29-year
swap in the portfolio. If the profits from the trade have already been distributed the
previous year, the tentation for the bank to maintain shareholder remuneration levels is
to lever up by selling and hedging another swap, booking a new profit and distributing
the dividend to shareholders that are now posting capital for both swaps. As long
as trading volumes grow exponentially, the scheme self-sustains. When exponential
growth stops, the bank return on equity crashes. The global financial crisis of 2008–
09 can be analyzed along these lines (cf. the 2008 financial derivative Ponzi scheme
displayed in Figure 1): In the aftermath of the crisis, the first casualty was the return

Figure 1: 2008 financial derivatives Ponzi scheme (Source: Office of the comptroller of
the currency, Q3 2015 quarterly bank trading revenue report).
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on equity for the fixed income business, as profits had already been distributed and
market-level hurdle rates could not be sustained by portfolio growth.

Interestingly enough however, in the insurance domain, the Swiss Solvency Test and
Solvency II (see Swiss Federal Office of Private Insurance (2006) and Committee of Eu-
ropean Insurance and Occupational Pensions Supervisors (2010)), unlike Basel III, do
regulate the distribution of retained earnings through a mechanism tied to so called
“risk margins” (see Wüthrich and Merz (2013), Eisele and Artzner (2011), or Salzmann
and Wüthrich (2010) regarding the risk margin and cost of capital actuarial literature).
The accounting standards set out in IFRS 4 Phase II (see International Financial Re-
porting Standards (2012, 2013)) are also consistent with Solvency II and include a
treatment for risk margins that has no analogue in the banking domain.

Under the KVA approach of Albanese and Crépey (2019, Section 3.6), which pro-
vides a continuous-time and banking analog of the above-mentioned insurance frame-
work, earnings are retained into a risk margin (RM) account and distributed gradually
and sustainably, at some “hurdle rate” h, to the shareholders. This yields a framework
for assessing cost of capital for a bank, passing it on to the bank clients, and distribut-
ing it gradually to the bank shareholders through a dividend policy that would be
sustainable even in the limit case of a portfolio held on a run-off basis, with no new
trades ever entered in the future.

2.6 Funds Transfer Price

A strategy based on capital for unhedged risk and risk margin for dividend distribution
allows one to setup an optimal portfolio management framework for a market maker.

Shareholders have decision power in a firm and make investment decisions with the
purpose of optimising their own wealth. Accordingly, our broad XVA principle reads
as follows:

Assumption 2.3 The bank will commit to an investment decision at time 0 and exe-
cute the trade in case ∆SH exceeds the incremental cost of capital or ∆KVA 1 for the
trade.

By Definition 2.1, the mark-to-market MtM of the new deal corresponds to its value
ignoring counterparty risk and its funding and capital consequences. In line with it:

Assumption 2.4 MtM is the amount required by the bank for setting up the fully
collateralized back-to-back market hedge to the deal.

Hence, at inception of a new trade at time 0, the client is asked by the bank to
pay the mark-to-market (MtM) of the deal (as the cost of the back-to-back hedge for
the bank), plus an add-on, called funds transfer price (FTP), reflecting the incremental
counterparty risk of the trade and its capital and funding implications for the bank.
Accordingly, Assumption 2.3 is refined as follows.

1cf. Sect. 3.6.
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Definition 2.4 The FTP is computed by the bank in order to achieve

∆SH = ∆KVA. (6)

We emphasize that, since trading cash flows include premium payments (see the be-
ginning of Sect. 2.2), ∆SH contains the FTP (cf. Sect. 2.7 below). Hence, the rationale
for Definition 2.4 is that, should a tentative price be less than MtM plus the FTP that
is implicit in (6), then, in line with Assumption 2.3, the bank should refuse the deal
at this price, as it would be detrimental to shareholders. We set an equality rather
than ≥ in (6) in view of the competition between banks, which pushes them to accept
from the client “the lowest price admissible to their shareholders”: see the concluding
paragraph of Section 3.3 in Albanese, Crépey, Hoskinson, and Saadeddine (2019).

The FTP of a deal can be negative, meaning that the bank should effectively be
ready to give some money back to the client (it may do it or not in practice) in order
to account for a counteparty(/funding/capital) risk reducing feature of the deal.

2.7 A General Result

As we will see in all the concrete cases reviewed in Sect. 3, a dealer bank only incurs
actual (nonnegative) costs before its defaults and actual (nonnegative) benefits from
its default time onward, i.e. bh = cl, hence BH = CL. A common denominator to all
our later formulas (whatever the detailed nature of the wealth transfers involved) is the
following (cf. the formulas (32) or (40) in Albanese, Crépey, Hoskinson, and Saadeddine
(2019)):

Theorem 2.1 Assuming that ∆BH = ∆CL, we have

∆SH = FTP−∆CA. (7)

Hence, the investment criterion (6) is equivalent to

FTP = ∆CA + ∆KVA (8)

and

∆SH = ∆KVA,

∆BH = ∆CL,

∆CO = −(∆CL + ∆KVA).

(9)

Proof. Disregarding the FTP, the trade incremental cash flows that affect the bank are
∆(ca− cl) and he (which includes MtM as the cost of setting up the fully collateralized
back-to-back market hedge of ρ, cf. Assumption 2.4). Hence, by Definition 2.3,

∆BA = FTP− (∆CA−∆CL). (10)

As a consequence, the assumption that ∆BH = ∆CL implies

∆SH = FTP−∆(CA− CL)−∆BH = FTP−∆CA,
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which is (7). Therefore, the investment criterion (6) is rewritten as (8). The last
identity in (9) readily follows from the two first ones and from (4).

As a concluding remark to this section, let us now assume, for the sake of the
argument (cf. Albanese, Crépey, Hoskinson, and Saadeddine (2019, Section 3.5)), that
the bank, all other things being equal, would be able to hedge (or monetize) its own
jump-to-default exposure through a further deal corresponding to the delivery by the
bank of a cash flow stream cl in exchange of a premium fee “fairly” priced as its
valuation CL. Then, switching from the FTP given by (8) to a modified

FTP = ∆CA−∆CL + ∆KVA = ∆BCVA −∆BDVA + ∆KVA, (11)

but accounting for the extra income to shareholders provided by the premium fees of
the hedge in each portfolio including and excluding the new deal, all shareholder cash
flows are now exactly the same as before (in each portfolio including and excluding the
new deal), but the bondholders are entirely wiped out by the hedge. Hence we have,
instead of (9),

∆SH = ∆KVA,

∆BH = 0,

∆CO = −∆KVA.

(12)

This shows that, under the trading strategy including the hedge, our investment cri-
terion (6) becomes equivalent to the modified pricing rule (11), which supersedes (8),
and the corresponding wealth transfers are given by (12).

If, in addition, the trading loss of the bank shareholders was also hedged out, then
there would be no more risk for the bank and therefore no capital at risk required, hence
the KVA would vanish and we would be left with the “complete market formulas”

FTP = ∆BCVA−∆BDVA and ∆SH = ∆BH = ∆CO = 0

(cf. Sect. 3.1).
However, in practice, a bank cannot hedge its own default nor replicate its counter-

party default exposure, hence we remain with the outputs of Theorem 2.1. The exact
specification of the different terms in (8)–(9) depends on the trading setup, as our next
sections illustrate.

3 Wealth Transfers Triggered by Market Incompleteness

In this section we provide more detailed (but still conceptual) formulas for the FTP
and the different wealth transfers involved, under more and more realistic assumptions
regarding the trading restrictions and market incompleteness faced by a dealer bank.
See the papers commented upon in Sect. 1 (or see Sect. 4 in a static static setup) for
definite XVA formulas or equations in various concrete trading setups.
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3.1 The Limiting Case of Complete Markets

In the special case of complete markets (without trading restrictions, in particular),
wealth transfers between bank shareholders and bank creditors can occur but are irrel-
evant to investment decisions and they have no impact on prices, i.e. there is no point
to distinguish shareholders from bondholders. The (complete market Modigliani-Miller
form of) justification of this statement (cf. Sect. 2.7 and A) is that, in case

∆BA = ∆SH + ∆BH ≥ 0

but “it seems that” ∆SH < 0, shareholders would still be able to increase their wealth
(canceling out the wealth transfer from them to bondholders triggered by the deal) by
buying the firm debt prior to executing the trade, making ∆SH nonnegative (and ∆BH
diminished by the same amount, in line with the conservation law (3)). Moreover, in
complete markets, there is no justification for capital at risk, so that there is no cost
of capital either. Hence, the criterion (6) for an investment decision is rewritten as

∆BA = 0. (13)

In complete markets without trading restrictions, funding comes for free because
unsecured derivatives can be REPOed, i.e. posted as a guarantee against the corre-
sponding funding debt, which therefore is free of credit risk. That is, fu = 0.

Hence, consistent with (10) and (5) (but with even fu = 0 here, instead of only
FU = 0 in general), we obtain

∆BA = ∆BDVA −∆BCVA + FTP. (14)

An application of the investment criterion (13) to (14) yields

FTP = ∆BCVA−∆BDVA (15)

(and we have ∆SH = ∆BH = ∆CO = 0), which flows into the reserve capital account
maintained by the bank for dealing with counterparty risk in expectation (and no
capital at risk, hence no risk margin, are required).

As discussed in Sect. 2.7 and Sect. A, the (complete market form of Modigliani-
Miller) argument whereby shareholders buy hedge the default of the bank is crucial in
relation to the pricing rule (15). If shareholders cannot do so, then this pricing rule
triggers wealth transfers from shareholders to bondholders by the amount

∆SH = −∆BDVA, ∆BH = ∆BDVA. (16)

The reason for this wealth transfer is that gains conditional to the default of the bank
represent cash flows which are received by the bank bondholders at time of default.
They do not benefit the shareholders, which at that point in time are wiped out, unless
precisely these gains can be monetized before the default through hedging by the bank
(see the computations in Sect. 2.7,).
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Accounting standards for derivative securities such as IAS 39 followed by IFRS 9
have been designed around a concept of “fair valuation”, which implicitly depends on
the complete market hypothesis (cf. Sect. 2.5). Under this understanding the valuation
of a bilateral contract is “fair” if both parties agree on the valuation independently:
This is the case if there exists a replication strategy that precisely reproduces the cash
flow stream of a given derivative contract.

In complete markets, there is no distinction between price maker and price taker.
There is also no distinction between entry price and exit price of a derivative contract.
The fair valuation of a derivative asset is the price at which the asset can be sold. All
buyers would value the derivative at the exact same level, as any deviation from the
cost of replication would lead to an arbitrage opportunity. In particular, fair valuations
are independent of endowments and any other entity specific information.

The most glaring omission in a complete market model for a bank is a justification
for equity capital as a loss absorbing buffer. Capital may still be justified as required
to finance business operations. A bank is justified to charge fees for services rendered,
but these fees should not depend on the risk profile of the trades. They should only
be proportional to the operational workload (in the sense of a volume based fee) of the
bank. Once the fees are received, a portion is allocated to cover operational costs and
the remainder is released into the dividend stream.

3.2 DVA Wealth Transfer Triggered by Shareholders Not Being Able
to Redeem Bank Debt

As explained at different levels in Sect. 2.7, 3.1 and A, if shareholders were able to
freely trade bank debt, the interest of shareholders would be aligned with the interests
of the firm as a whole (shareholders and bondholders altogether). However, in reality,
trading restrictions prevent shareholders from effectively offsetting wealth transfers to
bondholders by buying bank debt. Hence these wealth transfers can only compensated
by clients in the form of suitable valuation adjustments at deal inception. The debt
valuation adjustment (DVA) illustrates well this phenomenon. As a bank enters a new
trade, they pass on to clients the credit valuation adjustment (CVA) as a compensation
against the counterparty default risk. The DVA is the CVA the counterparty assigns
to the bank. If valuations were fair, a bank should symmetrically recognise also a
DVA benefit to clients. However, since the DVA can be monetised by the bank only
by defaulting, managers are reluctant to recognise a DVA benefit to clients. If they
did, they would effectively trigger a wealth transfer as in (16) from shareholders to
bondholders that they would not be able to hedge. In order to ensure ∆SH = 0 (we
are not considering KVA yet) in spite of this, a bank should charge, instead of (15),

FTP = ∆BCVA, (17)
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so that the wealth transfer to bondholders becomes borne by the client of the deal
instead of the bank shareholders. This yields, instead of (16),

∆SH = 0,

∆BH = ∆BDVA,

∆CO = −∆BH.

(18)

Conceivable DVA hedges would involve the bank selling credit protection on itself,
an impossible trade, or violations of the pari passu rule on debt seniority. Following up
to these considerations, regulators have started to de-recognize the DVA as a contrib-
utor to core equity tier I capital, the metric that roughly represents the value of the
bank to the shareholders (see Basel Committee on Banking Supervision (2012)).

3.3 CVACL Wealth Transfer Triggered by Shareholders Bankruptcy
Costs

The Basel Committee on Banking Supervision (2012) went even further and decided
that banks should compute a unilateral CVA, which we denote by UCVA. This can be
interpreted as saying that shareholders face a bankruptcy cost, equal to UCVA at de-
fault time, which goes to benefit bank bondholders. This bankruptcy cost corresponds
to the transfer to bondholders of the residual amount on the reserve capital account of
the bank in case the latter defaults. Accounting for this feature, upon entering a new
trade, if entry prices are struck at the indifference level for shareholders (still ignoring
capital and its KVA implication, here and until Sect. 3.6), we obtain FTP = ∆UCVA
and

∆SH = 0,

∆BH = ∆BDVA + ∆CVACL,

∆CO = −∆BH.

(19)

Here, by definition, CVACL is the difference between the unilateral UCVA and BCVA,
i.e. the valuation of the counterparty default losses occurring beyond the default of the
bank itself. The acronym CL in CVACL stands for contra-liability (see Definition 2.3),
because CVACL indeed corresponds to a “contra-liability component” of the UCVA.

3.4 FVA Wealth Transfer Triggered by the Impossibility to REPO
Derivatives

A related form of wealth transfer occurs in the case of costs of funding for variation
margin. The acquisition of assets funded with unsecured debt triggers a wealth transfer
from shareholders to bondholders. This happens because shareholders sustain a cost of
carry for unsecured debt while bondholders benefit out of having a claim on the asset
in case the bank defaults.
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Remark 3.1 In this regard, REPO contracts are a more efficient method for funding
asset acquisitions since shareholders sustain far lower funding rates (close to risk-free
rates); on the flip side however, bondholders do not have a claim on an asset passed as
collateral in a REPO transaction.

Applying Williams (1938)’s wealth conservation principle to unsecured debt valua-
tion (cf. Sect. 2.3), the cost of carry of debt to shareholders equals the gain to bond-
holders induced by the non reimbursement by the bank of the totality of its funding
debt to the funder if it defaults. In Albanese and Andersen (2014, 2015) and Albanese,
Crépey, Hoskinson, and Saadeddine (2019), the wealth transferred from shareholders
to bondholders by the cost of unsecured debt is called funding valuation adjustment
(FVA), while the wealth received by bondholders through the accordingly increased
recovery rate is denoted with FDA. Wealth conservation implies that FDA = FVA
(akin to FU = 0 in Assumption 2.2). So, in accounts, the fair valuation of the deriva-
tive portfolio of the bank (i.e. of the counterparty risk related cash flows, under our
back-to-back hedge assumption of market risk) should also contain a term FDA equal
to FVA in absolute value, but contributing to the bank fair valuation with an opposite
sign, i.e. appearing as an asset, of the contra-liability kind, in the bank balance sheet
(see Albanese, Crépey, Hoskinson, and Saadeddine (2019, Figure 1 in Section 2) for
the detailed balance sheet perspective on the XVA metrics). This way, the accounting
equity of the bank, i.e. the wealth of the bank as a whole, does not depend on the
funding spreads or funding policies of the bank, a result in the line of Williams (1938)’s
law, which holds independently of whether markets are complete or not (cf. our general
identity (5)).

However, the resulting notion of fair valuation of the portfolio (or wealth of the
bank as a whole) is only relevant in a complete market. If markets are incomplete
in the sense that shareholders are forbidden to buy bank bonds, then one needs to
refocus on shareholder interest. As the FVA subtracts from shareholder value (because
the corresponding cash flows are pre-bank default), investment decisions do depend on
funding strategies. That is, in order for an investment to be acceptable, the bank needs
to ensure that the change in FVA is passed on to the client. The same amount is then
also transferred as a net benefit to bank bondholders.

As a result, FTP and wealth transfers for indifference entry prices in the case of
unsecured funding of variation margin are given by FTP = ∆UCVA + ∆FVA and

∆SH = 0,

∆BH = ∆BDVA + ∆CVACL + ∆FVA,

∆CO = −∆BH.

(20)

3.5 MVA Wealth Transfer Triggered by Different Funding Policies for
Initial Margins

Initial margin (IM) offers a fourth example of wealth transfer. When the IM posted by
the bank is funded using debt unsecured to the funder, an additional wealth transfer
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∆MVA from shareholders to bondholders is triggered (unless the bank could hedge its
own default, see Sect. 2.7 and A). Hence, at indifference, we have

FTP = ∆UCVA + ∆FVA + ∆MVA (21)

and

∆SH = 0,

∆BH = ∆BDVA + ∆CVACL + ∆FVA + ∆MVA,

∆CO = −∆BH.

(22)

It is debatable whether or not unsecured collateral funding strategies are unavoid-
able. As a rule, wealth transfers, entry prices for clients, and investment decisions by
banks depend on the collateral strategies which are enacted. For instance, in case initial
margin posting would be delegated to a non-banking specialist lender without funding
costs and recovering the portion of IM unused to cover losses if the bank defaults, then,
since the IM is sized as a large quantile of the return distribution over the margin
period, the corresponding MVA is bound to be much smaller than the one resulting
from unsecured borrowing at the bank CDS spread. See Albanese et al. (2017, Section
4.3) and Albanese, Armenti, and Crépey (2019, Section 5) for details.

Remark 3.2 Strategies to achieve secured funding for variation margin are discussed
in Albanese, Brigo, and Oertel (2013) and Albanese et al. (2015). However, such
funding schemes are much more difficult to implement for VM because VM is far larger
and more volatile than IM.

3.6 KVA Wealth Transfer Triggered by the Cost of Capital Which
is Required by the Impossibility of Hedging out Counterparty
Default Losses

The formulas (21)–(22) do not account for the cost of the capital earmarked to absorb
exceptional losses (beyond the expected losses already accounted for by reserve capital).
In our framework we include this cost as a capital valuation adjustment (KVA), which is
dealt with separately as a risk premium, flowing into a risk margin account distinct from
the reserve capital account. Specifically, we define our KVA as the cost of remunerating
shareholders at some constant hurdle rate h > 0 for their capital at risk. The hurdle
rate is the instantaneous remuneration rate of one unit of shareholder capital at risk,
which can be interpreted as a risk aversion parameter of the shareholders (cf. the
concluding paragraph of Section 3.3 in Albanese, Crépey, Hoskinson, and Saadeddine
(2019)). This KVA is the investment banking analog of the Solvency II notion of risk
margin. or market value margin.

Accounting further for cost of capital, indifference in the sense of (6) for shareholders
corresponds to

FTP = ∆UCVA + ∆FVA + ∆MVA + ∆KVA (23)
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and

∆SH = ∆KVA, (24)

∆BH = ∆BDVA + ∆CVACL + ∆FVA + ∆MVA, (25)

∆CO = −∆BH−∆KVA. (26)

If the deal occurs, the sum of the first three incremental amounts in (23), i.e. ∆UCVA+
∆FVA + ∆MVA, accrues to reserve capital, while the last term ∆KVA accrues to the
risk margin account.

We emphasize that the FTP formula (23) makes the price of the deal both entity-
dependent (via, for instance, the CDS funding spread of the bank, which is a major
input to the FVA) and portfolio-dependent (via the trade incremental feature of the
FTP), far away from the law of one price, the complete market notion of fair valuation,
and the (complete market form of) the Modigliani-Miller invariance principle.

4 XVA Formulas and Wealth Transfers in a Static Setup

In this section, which is a rewiring around the notion of wealth transfer of Section 3
in Albanese, Crépey, Hoskinson, and Saadeddine (2019), we illustrate the XVA wealth
transfer issues in an elementary static one-year setup, with r set equal to 0.

Assume that at time 0 a bank, with no prior endowment and equity E corresponding
to its initial wealth, enters a derivative position with a client. We drop the ∆· notation
in this section, where every quantity of interest prior to the deal is simply 0, so that
all our price and XVA notation refers to the new deal at time 0.

The bank and its client are default prone with zero recovery and no collateralization
(no variation or initial margins). We denote by J and J1 the survival indicators of
the bank and its client at time 1 (both being assumed alive at time 0), with default
probability of the bank Q(J = 0) = γ and no joint default for simplicity, i.e Q(J =
J1 = 0) = 0. The bank wants to charge to its client an add-on (or obtain from its
client a rebate, depending on whether the bank is seller or buyer), denoted by CA,
accounting for its expected counterparty default losses and funding expenditures, as
well as a KVA risk premium.

The all-inclusive XVA add-on to the entry price for the deal, which we call funds
transfer price (FTP), follows as

FTP = CA︸︷︷︸
Expected costs

+ KVA︸ ︷︷ ︸
Risk premium

.
(27)

4.1 Cash Flows

The counterparty risk related cash flows affecting the bank before its default are its
counterparty default losses

C◦ = (1− J1)ρ+
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and its funding expenditures F◦. Accounting for the to-be-determined add-on CA (the
KVA paid by the client at time 0 is immediately transferred by the bank management
to the shareholders), the bank needs to borrow (MtM − CA)+ unsecured or invest
(MtM−CA)− risk-free, depending on the sign of (MtM−CA), in order to pay (MtM−
CA) to the client. In accordance with Assumption 2.2, unsecured borrowing is “fairly”
priced as its valuation (cf. Definition 2.1) γ × the amount borrowed by the bank, so
that the funding expenditures of the bank amount to

F◦ = γ(MtM− CA)+ (28)

(deterministically in this one-period setup). We assume further that a fully collateral-
ized back-to-back market hedge is set up by the bank in the form of a deal with a third
party, with no entrance cost and a payoff to the bank of −(ρ −MtM) = −he at time
1, irrespective of the default status of the bank and the third party at time 1.

Collecting all cash flows, the result of the bank over the year is (cf. the proof
of Lemma 3.2 in Albanese, Crépey, Hoskinson, and Saadeddine (2019) for a detailed
calculation)

ba = −(1− J1)ρ+ − γ(MtM− CA)+ + (1− J)(ρ− + (MtM− CA)+
)

+ FTP. (29)

Introducing further

C• = (1− J)ρ−, F• = (1− J)(MtM− CA)+, (30)

we thus have

ba = FTP−
ca︷ ︸︸ ︷

(C◦ + F◦)︸ ︷︷ ︸
sh

+ C• + F•︸ ︷︷ ︸
bh=cl

= −
(
C◦ − C• − FTP

)︸ ︷︷ ︸
co

−F◦ −F•︸ ︷︷ ︸
fu

,

(31)

where the identification of the different terms follows from their financial interpretation.

4.2 Static XVA Formulas

In a static one-period setup, there are no unilateral versus first-to-default issues and no
bank accounts involved (as no rebalancing of the trading strategies at intermediate time
points is necessary), hence no CVACL issue either (cf. Sect. 3.3). Moreover we assume no
collateralization, hence there is nothing related with initial margin. As a consequence,
contraliabilities in this context reduce to the DVA and the FDA. Accordingly, the FTP
and wealth transfer formulas (8) and (9) reduce to

FTP = CA + KVA = CVA−DVA + CL + KVA,

SH = KVA,BH = CL,CO = −CL −KVA,
(32)
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where

CA = EC◦︸︷︷︸
CVA

+EF◦︸︷︷︸
FVA

.
(33)

Hence, using also (28),

CVA = E
[
(1− J1)ρ+

]
, FVA =

γ

1 + γ
(MtM− CVA)+, (34)

and

CL = E[(1− J)ρ−]︸ ︷︷ ︸
DVA

+E[(1− J)(MtM− CA)+]︸ ︷︷ ︸
FDA=γ(MtM−CA)+=FVA

.
(35)

As for the KVA, it is meant to remunerate the shareholders at some hurdle rate h
(e.g. 10%) for the risk on their capital, i.e.

KVA = hE. (36)

Moreover, as the bank shareholders are in effect CVA and FVA traders in this setup
(where market risk is hedged out and there is no MVA), we may add that it would
be natural to size E by some risk measure (such as value at risk or, better, expected
shortfall, at some “sufficiently high” level, e.g. 97.5%) of the trading loss(-and-profit)
of the shareholders given as (cf. (31))

L = C◦ + F◦ − CA = −sh+ KVA (37)

(i.e. the pure trading loss not accounting for the KVA risk premium). Hence, in the
static setup, our hurdle rate h is nothing but the return on equity (ROE).

Note moreover that

CA− CL = CVA + FVA− (DVA + FDA) = CVA−DVA, (38)

as FVA = FDA.

5 Derivative Management: From Hedging to XVA Com-
pression

The global financial crisis of 2008–09 emphasized the incompleteness of counterparty
risk. XVAs represent the ensuing switch of paradigm in derivative management, from
hedging to balance sheet optimization. In this section we illustrate this evolution by a
discussion of two potential applications of the XVA metrics in the optimization mode,
beyond the basic use of computing them and charging them into prices for some target
hurdle rate h > 0 that would be set by the management of the bank.

Of course, for any potential application of the XVA metrics to be practical, one
needs efficient XVA calculators in the first place: XVAs involve heavy computations
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at the portfolio level, which yet need sufficient accuracy so that trade incremental
numbers are not in the numerical noise of the machinery. In practice, banks mostly
rely on exposure-based XVA computational approaches, based on time 0 XVAs refor-
mulated as integrals of market expected exposures against relevant CDS or funding
curves. This is somehow enhanced by the regulation, which requires banks to compute
their mark-to-future cubes2 already for the determination of their credit limits (through
potential future exposures, i.e. maximum expected credit exposures over specified pe-
riods of time calculated at some quantile levels). Exposure-based approaches are also
convenient for computing the XVA sensitivities that are required for XVA hedging pur-
poses3 (see Green and Kenyon (2014), Huge and Savine (2017), or Antonov, Issakov,
McClelland, and Mechkov (2018)). The most advanced (but also quite demanding) im-
plementations are nested Monte Carlo strategies optimized with GPUs (see Albanese,
Bellaj, Gimonet, and Pietronero (2011) and Abbas-Turki et al. (2018)).

5.1 Capital/Collateral Optimisation of Inter-Dealer Trades

In this section, we consider a bilateral derivative market with banks and clients. Each
bank is supposed to have a CDS curve which is used as its funding curve. Each
bank also uses a certain hurdle rate for passing cost of capital to clients. We assume
that clients hold a fixed portfolio of derivative trades with one or more of the banks
and are indifferent to trades between dealers. We want to identify capital/collateral
optimisation inter-dealer trades that would be mutually beneficial4 to the shareholders
of two dealer counterparties and find a way to achieve a “Pareto optimal equilibrium”,
in the sense that there exists no additional mutually beneficial inter-dealer trade.

Considering a tentative inter-dealer trade, with contractually promised cash flows ρ,
between a tentative “seller bank” a (meant to deliver the cash flows ρ) and a tentative
“buyer bank” b (meant to receive ρ) , we denote the corresponding FTPs as (cf. (23)):

FTPa(ρ) = ∆UCVAa(ρ) + ∆FVAa(ρ) + ∆MVAa(ρ) + ∆KVAa(ρ)

FTPb(−ρ) = ∆UCVAb(−ρ) + ∆FVAb(−ρ) + ∆MVAb(−ρ) + ∆KVAb(−ρ).

Note that all incremental XVA terms are entity specific as they depend on the endow-
ment of each dealer, i.e. of their current portfolio. The FVA and the MVA also depend
on the entity specific funding spread. Finally, the KVA depends additionally on the
target hurdle rates set by bank managements.

Consistent with Assumption 2.3 and Theorem 2.1, bank a would be happy to sell
the contract at any price ≥ MtM + FTPa(ρ), whereas bank b would be happy to buy
it at any price ≤ MtM−FTPb(−ρ). Hence the sales of the contract ρ from a to b may
be a win-win provided

FTPa(ρ) + FTPb(−ρ) < 0. (39)

2Prices of spanning instruments at future time points of different scenarios, from which expected
exposure profiles are easily deduced.

3Hedging of spread risks, as jump-to-default risk can hardly be hedged.
4In the sense of Assumption 2.3.
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However, allocated shareholder capital sets a constraint on trading. As a consequence
of the new trade, shareholder capital at risk (cf. Sect. 2.5) of each bank i = a, b changes
by the amount ∆SCRi. Hence the sales can only occur if

SCRi + ∆SCRi ≤ SHCi, for i = a, b, (40)

where SHCi is the shareholder capital (at risk or uninvested) for bank i.
In conclusion:

Proposition 5.1 The transaction whereby bank a agrees on delivering the additional
future cash-flows ρ to bank b (contractually promised cash-flows, ignoring counterparty
risk and its capital and funding consequences) can be a win-win for both parties if and
only if (39) holds, subject to the constraint (40). In this case, if the transaction occurs
at the intermediate price

MtM + FTPa(ρ)− 1

2

(
FTPa(ρ) + FTPb(−ρ)

)
= MtM− FTPb(−ρ) +

1

2

(
FTPa(ρ) + FTPb(−ρ)

)
paid by bank b to bank a, then the shareholders of both banks a and b mutually benefit
of a positive net wealth transfer equal to

∆w = −1

2

(
FTPa(ρ) + FTPb(−ρ)

)
> 0. (41)

5.2 Optimal Liquidation of the CCP Portfolio of a Defaulted Clearing
Member

Another potential application of the XVA metrics is for dealing with default or distress
resolutions. Specifically, we consider the problem of the liquidation of the CCP deriva-
tive portfolio of a defaulted clearing member, dubbed “defaulted portfolio” for brevity
henceforth. Here CCP stands for a central counterparty (also called clearing house,
see Armenti and Crépey (2017, 2019) and European Parliament (2012) for references).
A CCP nets the contracts of each of its clearing members (typically broker arms of
major banks) with all the other members and collects variation and initial margins in
the same spirit as for bilateral trades, but at the netted portfolio level for each mem-
ber. In addition, a CCP deals with extreme and systemic risk through an additional
layer of protection, called default fund, contributed by and pooled among the clearing
members. We denote by µi the (nonnegative) default fund refill allocation weights,
which determine how much each surviving clearing member must contribute to the
refill of the default fund in case the latter has been eroded by the default of a given
member, e.g. µi proportional to the current default fund contributions of the surviving
members. We denote by MtM the mark-to-market5 of the defaulted portfolio at the

5Counted, sign-wise, as a debt to the other clearing members.
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liquidation time where it is reallocated between the surviving members. Let VM,6 IM,
and DFC denote the corresponding variation margin, initial margin, and default fund
contribution of the defaulted member.

In a first stage, we assume that the defaulted portfolio is proposed as an indivisible
package to the surviving members, which are just left with the freedom of proposing a
price for global novation, i.e. replacing the defaulted member in all its future contractual
obligations related to the defaulted portfolio.

One may then consider the following reallocation and pricing scheme. The CCP
computes the FTPs of each surviving member corresponding to every other member
receiving the portfolio of the defaulted member, i.e. their respective incremental XVA
costs in each of these alternative scenarios.

The scenario giving rise to the lowest aggregated FTP, say member 1 receiver of
the defaulted portfolio, is implemented. Let FTP1 denotes the aggregated FTPs of
the surviving members corresponding to this reallocation of the portfolio to member
1. Accordingly, member 1 recovers the portfolio of the defaulted member and an MtM
amount of cash from the CCP, whereas each surviving member (1 included) receives its
corresponding FTP from the CCP, so that everybody is indifferent to the reallocation
in MtM and XVA terms. In addition:

1 If C1 = MtM − VM + FTP1 > IM + DFC, then the liquidation results for the
surviving members in a collective loss of

L1 = MtM− (VM + IM + DFC) + FTP1 > 0,

which is shared between the surviving members i (member 1 included) propor-
tionally to their µi;

2 If 0 ≤ C1 ≤ IM + DFC, then the surviving members suffer no loss or gain from
the liquidation; the CCP can give back a total amount (−L1) of non-consumed
DFC and IM (in this order) of the defaulted member to its liquidator;

3 If C1 ≤ 0, then the CCP gives back all the IM + DFC of the defaulted member to
its liquidator and the liquidation results for the surviving members in a collective
gain of (−C1), which is distributed to them proportionally to their µi.

Let us now assume that the defaulted portfolio would instead be rewired with a
surviving member corresponding to an aggregated FTP greater than FTP1, say member
2, along with the required amounts of cash making each survivor indifferent to the
reallocation in MtM and XVA terms. Then one must replace C1 by C2 = MtM −
VM + FTP2 in the bullet points above, where FTP2 is the aggregated FTP of all
clearing members when member 2 receives the defaulted portfolio. As FTP2 > FTP1

by definition, therefore C2 > C1, implying that everybody would end up worse off than
in the first alternative.

6Counted positive when posted by the defaulted member.
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Last, we assume that, instead of being reallocated as an indivisible package, the
defaulted portfolio is divided by the CCP into sub-packages reallocated one just after
the other to possibly different clearing members. Iterating the above procedure, we
denote by MtMl and VMl the mark-to-markets and related variation margins, and by
FTPl the recursively cheapest aggregated FTPs, of the successive lots l (cheapest over
consideration of the different scenarios regarding which survivor receives the lot l). The
overall liquidation cost (or negative of the benefit, if negative) is

C =
∑
l

(MtMl −VMl + FTPl) = MtM−VM +
∑
l

FTPl ≤ C1,

because of the multiple embedded optimizations (so that, in particular,
∑

l FTPl ≤
FTP1). Hence, everybody would now end up better off than in the first alternative.

5.3 XVA Compression Cycles

In the context of Sect. 5.1, a solution to reach Pareto optimal equilibrium with no
additional mutually beneficial inter-dealer trades would be to run iterative bidding
cycles to discover trades that could be profitable to two banks. By running virtual
bidding cycles, we can also answer other questions such as how to find a Pareto optimal
reallocation of the portfolio of one given bank in case this portfolio is being liquidated
(cf. Sect. 5.2). Another related application could be how to perform a partial liquidation
in case a bank is in regulatory administration and the objective is to restore compliance
with regulatory capital requirements.

Such systematic, market-wide bidding cycles would be very useful to optimise bi-
lateral derivative markets by releasing costs for funding and capital into the dividend
stream at participating broker dealers. A practical implementation problem, however,
is that bilateral portfolios are held confidentially by each dealer and cannot be disclosed
as an open bidding cycle would require: In order for a bidding cycle to be realistic and
implementable in real life situations, it has to be designed in such a way that trade
data at each bank is handled securely and not revealed to the other participants except
when a mutually beneficial trade is identified and there is consensus on both sides to
discover it.

Likewise, in the default resolution setup of Sect. 5.2, one should be careful that,
in the course of the process, the CCP does not disclose to members any information,
direct or indirect (i.e. via XVAs or incremental XVAs) relative to the portfolio of the
other members.

A possible solution to this portfolio confidentiality problem could be as follows.
Suppose that an XVA calculator is present within the firewall of each bank. This XVA
calculator would be separate from the internal XVA calculator but hopefully will not
deviate too much from it. Internal calculators, to avoid model risk, would be seeded
with precisely the same calibrated models and guaranteed to produce identical results
when loaded with identical portfolios under identical conditions and market data.

Suppose also that these calculators can share confidentially information with each
other corresponding to each trade or set of trades which would be a candidate for
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novation. In this case, the existence of win-win trades would be discovered by the
calculators without trade information itself being revealed.

Once the existence of a win-win trade such as (39)–(40) is detected by the XVA
calculator, the two parties would then have to take the initiative to communicate with
each other to exploit the opportunity if they so choose. Namely, the hypothetical seller
would know which trade (or set of trades) would be worthwhile selling and to which
peer. The hypothetical seller will be notified and it will be up to her to decide whether
to start a conversation with the peer. In particular, before proceeding the seller has
to verify that the calculator result on entry prices is acceptably accurate. If the seller
then opens a communication channel with the peer, she will disclose the nature of the
trades in question and ask the peer to verify a price on his own internal systems. If
both internal systems agree that there is a trade opportunity, then the trade takes
place.

In the future such largely automated XVA compression cycles could favorably re-
place the current XVA compression procedures that monopolize hundreds of quants
twelve hours in a row in major tier 1 banks7.

A Connections with the Modigliani-Miller Theory

The Modigliani-Miller celebrated invariance result is in fact not one but several related
propositions, developed in a series of papers going back to the seminal Modigliani and
Miller (1958) paper. These propositions are different facets of the broad statement that
the funding and capital structure policies of a firm are irrelevant to the profitability of
its investment decisions. Ssee e.g. Baron (1976), Miller (1988), and Villamil (2008) for
various discussions and surveys. We emphasize that we do not need or use such result
(or any negative form of it) in our paper, but there are interesting connections to it,
which we develop in this section.

A.1 Modigliani-Miller Irrelevance, No Arbitrage, and Completeness

Modigliani-Miller (MM) irrelevance, as we put it for brevity hereafter, was initially
understood by its authors as a pure arbitrage result. They even saw this understanding
as their main contribution with respect to various precedents, notably Williams (1938)’s
law of conservation of investment value (see Sect. 2.3). So, quoting the footnote page
271 of Modigliani and Miller (1958) :

“See, for example, J. B. Williams [21, esp. pp. 72-73]; David Durand [3];
and W. A. Morton [15]. None of these writers describe in any detail the
mechanism which is supposed to keep the average cost of capital constant
under changes in capital structure. They seem, however, to be visualiz-
ing the equilibrating mechanism in terms of switches by investors between
stocks and bonds as the yields of each get out of line with their ‘riskiness.’

7Source: David Bachelier, panel discussion Capital & margin optimisation, Quantminds Interna-
tional 2018 conference, Lisbon, 16 May 2018.
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This is an argument quite different from the pure arbitrage mechanism
underlying our proof, and the difference is crucial.”

But, thirty years later, judging by the footnote page 99 in Miller (1988), the view of
Miller on their result had evolved:

“For other, and in some respects, more general proofs of our capital struc-
ture proposition, see among others, Stiglitz (1974) for a general equilibrium
proof showing that individual wealth and consumption opportunities are
unaffected by capital structures; See Hirshleifer (1965) and (1966) for a
state preference, complete-markets proof; Duffie and Shafer (1986) for ex-
tensions to some cases of incomplete markets”

Non-arbitrage and completeness are intersecting but non-inclusive notions. Hence,
implicitly, in Miller’s own view, MM invariance does not hold in general in incomplete
markets (even assuming no arbitrage opportunities). As a matter of fact, we can read
page 197 of Gottardi (1995):

“When there are derivative securities and markets are incomplete the finan-
cial decisions of the firm have generally real effects”

and page 9 of Duffie and Sharer (1986):

“As to the effect of financial policy on shareholders, we point out that,
generically, shareholders find the span of incomplete markets a binding
constraint. This yields the obvious conclusion that shareholders are not
indifferent to the financial policy of the firm if it can change the span of
markets (which is typically the case in incomplete markets). We provide
a trivial example of the impact of financial innovation by the firm. De-
Marzo (1986) has gone beyond this and such earlier work as Stiglitz (1974),
however, in showing that shareholders are indifferent to the trading of ex-
isting securities by firms. Anything the firm can do by trading securities,
agents can undo by trading securities on their own account. Indeed, any
change of security trading strategy by the firm can be accomodated within
a new equilibrium that preserves consumption allocations. Hellwig (1981)
distinguishes situations in which this is not the case, such as limited short
sales.”

Regarding MM irrelevance or not in incomplete markets (including some of the refer-
ences that appear in the above quotations and other less closely related ones): Baron
(1976), Milne (1975), Hagen (1976), and Hellwig (1981) deal with the impact of the
default riskiness of the firm; Miller (1995) and Balling (2015) discuss the special case
of banks, notably from the angle of the bias introduced by government repayment
guarantees for bank demand deposits; Cline (2015) tests empirically MM irrelevance
for banks, concluding to MM offsets of the order of half what they should be if MM
irrelevance would fully hold.
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A.2 The XVA Case

A bit like with limited short sales in Hellwig (1981), a (seemingly overlooked) situation
where shareholders may “find the span of incomplete markets a binding constraint” is
when market completion or, at least, the kind of completion that would be required for
MM invariance to hold, is legally forbidden. This may seem a narrow situation but it is
precisely the XVA case, which is also at the crossing between market incompleteness and
the presence of derivatives pointed out as the MM ‘non irrelevance case’ in Gottardi
(1995). The contra-assets and contra-liabilities that emerge endogenously from the
impact of counterparty risk on the derivative portfolio of a bank (cf. Definition 2.3)
cannot be “undone” by shareholders, because jump-to-default risk cannot be replicated
by a bank: This is practically impossible in the case of contra-assets, for lack of available
or sufficiently liquid hedging instruments (such as CDS contracts with rapidly varying
notional on corporate names that would be required for replicating CVA exposures at
client defaults); It is even more problematic in the case of contra-liabilities, because
a bank cannot sell CDS protection on itself (this is forbidden by law) and it has a
limited ability in buying back its own debt (as, despite the few somehow provocative
statements in Miller (1995), a bank is an intrinsically leveraged entity).

As a consequence, MM irrelevance is expected to break down in the XVA setup.
In fact, as seen in the main body in the paper, cost of funding and cost of capital
are material to banks and need be reflected in entry prices for ensuring shareholder
indifference to the trades.

More precisely, the XVA setup is a case where a firm’s valuation is invariant to
funding strategies and, still, investment decisions are not. The point here is a bit
subtle. Saying that the value of a company is independent of financing strategies does
not imply that investment decisions do not depend on financing strategies. There two
numbers we can look at: the value of the equity E and the sum of the value of equity
and debt, E + D. Equity holders will naturally seek to optimize E and will accept
an investment opportunity if ∆E is positive. Williams’ law implies that equity plus
debt, E + D, stays invariant under a certain financial transaction. But this does not
imply in general that shareholders are indifferent to the transaction: Shareholders are
indifferent if ∆E = 0, not if ∆(E + D) = 0. To go from Williams’ wealth conservation
law to MM irrelevance, we have to assume complete markets or, at least, the availability
of certain trades to shareholders. Namely, assuming shareholders can and do change
financing strategy, then, even if we start with ∆E < 0 for a given transaction (but
∆(E + D) = 0), we may conclude that equity shareholders are actually indifferent as
there exists a change in financing strategy for which ∆E = 0. However, in the XVA
case, the bank cannot freely buy back its own debt, so such a change is not possible
and only Williams’ wealth conservation law remains, whereas MM irrelevance breaks
down: See Sect. 4 for illustration in a pedagogical static setup.
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