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Abstract: To directly compare five commonly used on-field systems (motorized linear encoder,
laser, radar, global positioning system, and timing gates) during sprint acceleration to (i) measure
velocity–time data, (ii) compute the main associated force–velocity variables, and (iii) assess their
respective inter-trial reliability. Eighteen participants performed three 40 m sprints, during which five
systems were used to simultaneously and separately record the body center of the mass horizontal
position or velocity over time. Horizontal force–velocity mechanical outputs for the two best trials
were computed following an inverse dynamic model and based on an exponential fitting of the
position- or velocity-time data. Between the five systems, the maximal running velocity was close
(7.99 to 8.04 m.s−1), while the time constant showed larger differences (1.18 to 1.29 s). Concurrent
validity results overall showed a relative systematic error of 0.86 to 2.28% for maximum and theoret-
ically maximal velocity variables and 4.78 to 12.9% for early acceleration variables. The inter-trial
reliability showed low coefficients of variation (all <5.74%), and was very close between all of the
systems. All of the systems tested here can be considered relevant to measure the maximal velocity
and compute the force–velocity mechanical outputs. Practitioners are advised to interpret the data
obtained with either of these systems in light of these results.

Keywords: GPS; linear encoder; force; velocity; sprint

1. Introduction

Sprint acceleration performance is key in many sports, and has been explored through
the assessment of mechanical variables, leading more and more staff to assess them during
sprinting (e.g., running velocity and ground reaction force). This has been done using gold
standard 3D motion capture and force plates systems that measure the center of mass veloc-
ity of the sprinter [1–3]. However, analyzing a full acceleration phase of a sprint (from 0 to
the achievement of maximal velocity in athletes) with such gold standard systems involves
heavy experimental protocol and data processing procedures that may not consistently fit
with in situ conditions and practitioners’ requirements. To solve this issue, a field method
based on Newtonian laws of motion and athletes’ position or velocity measurement has
been proposed and validated in order to compute the net step-averaged external force
produced by athletes during a complete sprint acceleration [4,5]. This method has been
used in various contexts of sports science and practice [6–8]. Provided the position–time or
velocity–time input is accurately measured, this method can be theoretically implemented
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with a wide range of modern systems [4]. This accuracy of position–time or velocity–
time measurement has been shown for linear encoder technology [9–11], lasers [12,13],
radars [12,14], global positioning systems (GPS) [15,16], and timing gates [17]. On this
basis, sprint specific horizontal force production capacities have recently been studied
via the “force–velocity profile” approach using the 1080 Sprint motorized linear encoder
technology [18], the MuscleLab laser system [19], Stalker ATS II radar [20], Catapult Vector
S7 GPS [21], and the Microgate timing gates [22].

However, no study has directly assessed the concurrent validity of all these “silver
standard” systems within a single protocol and a wide range of sprint velocities. Such
a multiple-comparison study seems warranted to inform researchers and practitioners
about the magnitude of inter-system differences and the potential interchangeability of the
mechanical outcomes computed. The aim of this study was to directly compare five of the
most commonly-used on-field systems (linear encoder, laser, radar, GPS, and timing gates)
during sprint acceleration in order to (i) measure velocity–time data, (ii) compute the main
associated force–velocity variables, and (iii) assess their respective inter-trial reliability.

2. Materials and Methods
2.1. Study Population

Eighteen participants (13 men and 5 women) (age: 27.0 ± 6.7 years, height: 1.79 ± 0.10 m,
and body mass: 72.0 ± 12.6 kg) volunteered to participate in the present study. They were
practicing sport at various levels ranging from non-specialist to elite sprinters, and were
free from lower limb injuries in the three months prior to the tests. The participants
were instructed to avoid any strenuous exercise 24 h prior to the experiments. They were
informed about the nature, aims, and risks associated with the experimental procedures
before providing written consent to participate in the present study, which was approved
by the ethical committee of the French west area, Tours (N◦2021-A02523-38).

2.2. Protocol

After an individual 20 min warm-up (mobility, activation, athletics drills, and accel-
erations), each participant performed three 40 m sprint trials on an official outdoor track
(tartan®), with a three-point start. The following systems were used synchronously to
measure the horizontal velocity or displacement of the body center of mass during the
trials: (i) linear motorized encoder (1080 Sprint, 1080 Motion; 333 Hz, Lidingö, Sweden),
(ii) laser (Muscle LabTM Laser Speed device Ergotest Innovations, Stathelle, Norway,
1000 Hz), (iii) radar (Stalker Pro II Sports Radar Gun; Plano, TX, USA, 46.875 Hz), (iv) GPS
(Vector S7; Catapult Innovations, Melbourne, Australia, 10 Hz), and (v) timing gates (Witty
Microgate, Microgate, Bolzano, Italy). The two best 40 m sprints based on the fastest finish
time at 40 m were retained for the analysis. For each trial and each system, position–time
and velocity–time data were used to compute the sprint mechanical outputs using the
same data analysis procedure (as detailed below) and compared. The following sections
present each system’s characteristics and the associated raw data recording. All systems
simultaneously and separately captured running speed, but were not time-synchronized
due to obvious technical limitations.

2.2.1. Linear Encoder

The device was set in isotonic mode with 1 kg of resistance load in order to reduce the
slack of the cable, and the device was placed on the track, 5 m behind the starting position.
However, this extra 1 kg of resistance did not affect the inter-system comparisons for
running velocity and derived data, as all systems measured the same running movement
with the runner connected to the encoder via a cable attached to a waist belt. Raw velocity
data were computed at 333 Hz from the change in position of the cable and were recorded
on a tablet. Raw velocity data were exported in ASCII format for further analysis with
OriginPro, version 2021 (OriginLab Corporation, Northampton, MA, USA).
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2.2.2. Laser

The device was set on a tripod on the track, 5 m behind the starting position and
1 m above ground level, corresponding approximately to the height of participants’ cen-
tre of mass [14]. Laser system calculate velocity measuring the time delay of pulsed
infrared light that is reflected off the subject [12]. Raw velocity data were sampled at
1000 Hz, recorded and smoothed by the manufacturer software (Muscle LabTM, version
10.200.90.5097, Stathelle, Norway), and then exported in ASCII format for further analysis
with OriginPro.

2.2.3. Radar

The device was set on a tripod on the track, 5 m behind the starting position and 1 m
above ground level. The raw data sampled participants’ running velocity from very high
frequency radio waves converted into a stream of digital data processed with a custom
made software (MookyStalker V2.0.9) to provide the velocity at a sampling frequency of
46.875 Hz [12]. Raw data were then exported in TXT format for further analysis with
OriginPro. Raw data outliers were deleted. Then, the cleaned data were fitted using the
exponential model proposed and were validated by Samozino and colleagues [5] in order
to compute the sprint mechanical outputs.

2.2.4. GPS

The GPS units provided a sampling rate of 10 Hz and encompassed a double con-
stellation system (GNSS and GPS). They were tightly installed into a fitted vest on the
upper thoracic spine between the scapulae. Each participant carried two GPS devices
within two different vests at the same time to examine the inter-device variability. The
GPS positioning quality was 61.9 ± 5.3%, the average horizontal dilution of precision
was 0.65 ± 0.04, and the number of satellites was 17.0 ± 1.0, which is considered to be
within the upper range of good signal quality [23]. GPS can calculate the velocity using
either positional differentiation or Doppler-shift methods. The GPS brand used in the
present study determined the velocity via the Doppler-shift method, which is based on
the velocity computation by measuring the change in frequency of the satellite emitted
periodic signal [23]. The raw velocity data recorded by each GPS unit were uploaded to
the Openfield console (version 3.4.0, Catapult Innovations, Melbourne, Australia) with the
CSV format box checked, allowing for access to the both raw and smoothed velocity data.
Finally, data were analyzed with OriginPro.

2.2.5. Timing Gates

Dual-beam timing gates were placed on the track 1 m above ground level at 0, 5, 10,
15, 20, 30, and 40 m from the starting line, to capture the entire acceleration phase and
ensure valid sprint mechanical values computation [17]. The starting position was located
0.5 m behind the first timing gate (i.e., 0 m). As a result of this location, the time delay
between the first propulsive action of the participant (i.e., determined when the thumb of
the forward hand took off the ground) and the crossing of the timing gates was determined
frame by frame by visual inspection from the video recordings using an iPhone 8 (iOS 13.7,
Apple Inc., Los Altos, CA, USA). Videos were recorded at 240 fps from a left lateral view
located 5 m from the start line. The time delay was computed on 36 sprint trials and its
value was 0.25 ± 0.06 s.

2.3. Data Processing

For all of the systems, the raw position–time or velocity–time data for the two best
trials were used to compute the mechanical outputs based on the method proposed by
Samozino and colleagues [4,5]. Briefly, in this macroscopic method based on the motion
of the body center of mass, running position–time or velocity–time over time during the
acceleration was fitted with an exponential function using the least-square regression
method with a time adjustment to ensure the actual start of the computation at t = 0 s, in
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case of delay between the time trigger and the actual increase in velocity [4] with Vmax, the
maximal velocity, and Tau, the early acceleration time-constant:

v(t) = vmax·
(

1 − e−(t−d)/τ
)

Then, the acceleration of the runner in the horizontal direction was computed by
derivating velocity over time, and following the fundamental laws of dynamics in the
horizontal direction, the net horizontal antero–posterior ground reaction force applied to
the body center of mass was modelled over time based on the athlete’s body mass and the
estimated aerodynamic drag force. Finally, the linear force–velocity relationship obtained
was described by theoretical maximal velocity (V0) and the horizontal component of the
ground reaction force (F0) (Figure 1). For the velocity recording systems, data considered
for further analysis ranged between the first value over 0.5 m.s−1 and the last velocity point
of the Vmax plateau.
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Figure 1. Raw velocity data and raw velocity data fitted by the mono-exponential function [5], and
force–velocity profiles for the two best trials were subsequently computed for each system (linear
encoder, laser, radar, GPS, and timing gates). The maximal velocity (Vmax), acceleration time constant
(Tau), theoretical maximal velocity (V0), and horizontal component of the ground reaction force (F0)
were calculated.

2.4. Statistics

All data are presented as mean ± standard deviation (SD) (min–max). The main kinetic
parameters of the force–velocity relationship obtained with each system were compared
using bias (mean differences between systems and systematic bias) and limits of agreement
(bias + or—random errors computed as 1.96 × standard deviation of the inter-system
differences [24] (Figure 2). The inter-trial reliability for each parameter was calculated
using the change in the mean, and the standard error of measurement (SEM, expressed
in percentage of mean values) between the two best trials [25]. In addition, this inter-trial
coefficient of variation (%) was computed for the main variables.
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Figure 2. Bland and Altman comparisons between the linear encoder and other systems [24]. Mean
raw differences with the linear encoder were computed for (a) maximal velocity (Vmax), (b) accelera-
tion time constant (Tau), (c) theoretical maximal velocity (V0), and (d) horizontal component of the
ground reaction force (F0).

3. Results
3.1. Inter-System Comparisons

Table 1 shows the main sprint variables computed for all of the participants and trials
(n = 36) on a 40 m sprint for the five considered systems. These results showed almost
equal values between systems for Vmax and V0 and especially between the GPS and linear
encoder. However, greater differences occurred between the systems for Tau and F0, with
extreme differences observed between GPS and the linear encoder. In addition, we tested
two GPS units simultaneously, but for clarity reasons, we only presented the results of
unit 1, due to the close results (less than 0.2% for V0 and 2.2% for F0) observed between
unit 1 and unit 2.

Table 2a,b presents the mean raw differences between the systems and the associated
limits of agreement for all of the subjects and trials.
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Table 1. Main mechanical variables computed from position or velocity data collected during 40 m
sprints for all participants and trials (n = 36) using the five systems compared. Values are mean
(in bold) ± SD, (min–max). Numbers in italic indicate the inter-subjects’ coefficient of variation
(%) for maximal velocity (Vmax), acceleration time constant (Tau), and theoretical maxima of the
force–velocity relationship (F0 and V0).

Vmax
(m.s−1)

Tau
(s)

V0
(m.s−1)

F0
(N.kg−1)

Linear encoder
8.02 ± 1.20
(6.11–10.50)

15.0%

1.22 ± 0.12
(1.00–1.52)

9.4%

8.31 ± 1.30
(6.26–11.00)

15.7%

6.48 ± 0.62
(5.21–8.09)

9.6%

Laser
7.99 ± 1.15
(6.17–10.37)

14.4%

1.17 ± 0.11
(0.99–1.40)

9.0%

8.27 ± 1.24
(6.33–10.83)

15.0%

6.77 ± 0.77
(5.30–8.15)

11.4%

Radar
8.00 ± 1.15
(6.17–10.49)

14.4%

1.24 ± 0.12
(1.03–1.52)

9.4%

8.30 ± 1.24
(6.31–10.99)

15.0%

6.40 ± 0.78
(5.01–8.00)

12.3%

GPS
8.02 ± 1.18
(6.14–10.57)

14.7%

1.29 ± 0.16
(0.85–1.55)

12.3%

8.33 ± 1.28
(6.28–11.09)

15.4%

6.18 ± 0.96
(4.36–8.88)

15.6%

Timing gates
8.04 ± 1.15
(6.16–10.30)

14.3%

1.25 ± 0.11
(0.98–1.45)

8.9%

8.45 ± 1.27
(6.39–10.89)

15.0%

6.38 ± 0.87
(4.85–8.45)

13.7%

Table 2. (a). Mean raw differences (in bold) for two by two comparisons (line vs. column = one
comparison) ± SD and associated limits of agreement for all subjects and trials (n = 36) for maximal
velocity (Vmax, lower part of the table, background in grey), acceleration time constant (Tau, upper
part, background in white). (b). Mean raw differences (in bold) for two by two comparisons (line vs.
column = one comparison) ± SD and associated limits of agreement for all subjects and trials (n = 36)
for theoretical maximal velocity (V0, lower part of the table, background in grey) force and velocity
(F0, upper part, background in white).

(a)

Linear Encoder Laser Radar GPS Timing Gates

Linear encoder −0.055 ± 0.079
(−0.210; 0.100)

0.018 ± 0.077
(−0.133; 0.169)

0.072 ± 0.140
(−0.203; 0.346)

0.025 ± 0.101
(−0.147; 0.223)

Tau (s)Laser −0.031 ± 0.080
(−0.187; 0.125)

−0.072 ± 0.077
(−0.224; 0.079)

0.126 ± 0.135
(−0.139; 0.391)

0.079 ± 0.095
(−0.108; 0.267)

Radar −0.014 ± 0.093
(−0.196; 0.167)

−0.017 ± 0.078
(−0.169; 0.136)

0.054 ± 0.148
(−0.235; 0.343)

0.007 ± 0.096
(−0.181; 0.195)

GPS −0.003 ± 0.096
(−0.191; 0.186)

0.028 ± 0.104
(−0.177; 0.233)

0.012 ± 0.100
(−0.184; 0.207)

−0.047 ± 0.167
(−0.374; 0.280)

Timing gates 0.025 ± 0.103
(−0.177; 0.226)

0.056 ± 0.097
(−0.135; 0.246)

0.039 ± 0.100
(−0.156; 0.234)

0.027 ± 0.107
(−0.182; 0.237)

Vmax (m.s−1)

(b)

Linear Encoder Laser Radar GPS Timing Gates

Linear encoder 0.294 ± 0.397
(−0.485; 1.072)

−0.086 ± 0.375
(−0.820; 0.649)

−0.299 ± 0.729
(−1.729; 1.131)

−0.104 ± 0.462
(−1.009; 0.800)

F0 (N.kg−1)Laser −0.047 ± 0.102
(−0.246; 0.153)

0.379 ± 0.393
(−0.391; 1.150)

−0.593 ± 0.677
(−1.919; 0.733)

−0.398 ± 0.475
(−1.329; 0.533)

Radar −0.013 ± 0.116
(−0.239; 0.214)

−0.034 ± 0.099
(−0.228; 0.160)

−0.214 ± 0.791
(−1.764; 1.337)

−0.019 ± 0.460
(−0.920; 0.882)

GPS 0.012 ± 0.122
(−0.227; 0.252)

0.059 ± 0.135
(−0.206; 0.323)

0.025 ± 0.132
(−0.234; 0.284)

0.195 ± 0.857
(−1.484; 1.874)

Timing gates 0.137 ± 0.126
(−0.110; 0.384)

0.183 ± 0.133
(−0.078; 0.445)

0.149 ± 0.134
(−0.114; 0.413)

0.124 ± 0.141
(−0.152; 0.400)

V0 (m.s−1)
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3.2. Inter-Trial Comparisons

Table 3 shows the inter-trial coefficient of variation mean (CV) and the associated
changes in the mean and standard error of measurement (SEM) for all of the subjects and
trials (n = 36) using the five systems compared. These results overall show similar CV and
SEM for Vmax, Tau, V0, and F0 between the trials.

Table 3. The inter-trial coefficient of variation mean in bold (CV in %) and associated change in the
mean (bold) and standard error of measurement (SEM) for all subjects and trials (n = 36) for the five
systems compared. Relative change in the mean and relative SEM in % and italic.

CV Inter Trial Mean ± SD (%) Change in the Mean ± SEM

Vmax
(%)

Tau
(%)

V0
(%)

F0
(%)

Vmax
(m.s−1)

Tau
(s)

V0
(m.s−1)

F0
(N.kg−1)

Linear encoder 1.13 ± 0.98 4.52 ± 3.04 1.25 ± 1.13 3.84 ± 2.85 0.04 ± 0.13
0.5 ± 1.6%

−0.04 ± 0.06
−3.0 ± 5.2%

0.04 ± 0.16
0.5 ± 1.9%

0.21 ± 0.27
3.3 ± 4.2%

Laser smooth 1.11 ± 0.77 4.58 ± 3.33 1.26 ± 0.79 4.11 ± 3.37 0.05 ± 0.11
0.6 ± 1.4%

−0.03 ± 0.06
−2.6 ± 5.5%

0.05 ± 0.13
0.6 ± 1.6%

0.20 ± 0.33
3.0 ± 4.9%

Radar 1.37 ± 0.94 5.00 ± 4.27 1.52 ± 1.06 4.32 ± 3.93 0.08 ± 0.13
1.0 ± 1.7%

−0.01 ± 0.08
−0.9 ± 6.5%

0.09 ± 0.16
1.0 ± 1.9%

0.09 ± 0.39
1.4 ± 6.1%

GPS smooth 1.47 ± 1.40 5.74 ± 3.98 1.63 ± 1.57 5.64 ± 5.89 0.07 ± 0.18
0.9 ± 2.2%

0.03 ± 0.09
2.0 ± 6.7%

0.08 ± 0.20
1.0 ± 2.5%

−0.06 ± 0.40
−1.1 ± 6.4%

Timing gates 1.31 ± 1.00 5.09 ± 2.06 1.47 ± 1.12 4.20 ± 2.68 0.04 ± 0.14
0.5 ± 1.7%

−0.04 ± 0.06
−3.5 ± 4.9%

0.03 ± 0.16
0.4 ± 1.9%

0.23 ± 0.29
3.6 ± 4.6%

4. Discussion

The aim of this study was to compare five of the most popular field systems (lin-
ear encoder, laser, radar, GPS, and timing gates) during sprint acceleration to (i) mea-
sure velocity–time data, (ii) compute the main associated force–velocity variables, and
(iii) assess their respective inter-trial reliability.

The present findings confirm the almost perfect goodness of fit between raw velocity
or position data and the exponential model, and in turn the feasibility of the force–velocity
relationship determination following the method proposed and validated by Samozino and
colleagues [4,5], based on earlier observations [9,26,27]. This feasibility is confirmed for all
of the systems tested, as shown in previous studies [18–22]. Concurrent validity results
overall show a small relative systematic error of 0.85% to 2.28% for the maximum velocity
variables (Vmax and V0) and larger (4.78% to 12.9%) for the early acceleration variables
(Tau and F0).

4.1. Inter-System Comparisons

In the absence of an absolute gold standard, the concurrent validity results for Vmax
show a relative systematic error ranging from 0.86 ± 0.47% between the radar and laser to
1.06 ± 0.77% between the GPS and laser. As also shown in Figure 1 and in Table 2b, these
results for V0 show the same trend with slightly larger ranges of mean raw differences:
from 1.06 ± 0.87% between the radar and linear encoder to 2.28 ± 1.49% between the
timing gates and laser. This suggests that all of the systems tested could be considered
interchangeable to assess Vmax and V0. This result is in accordance with the findings of
some previous studies comparing some of these systems [12,21,28–30]. This very high level
of agreement was probably due to the low rate of change in the running velocity around
the Vmax plateau.

Regarding the early acceleration variables (Tau and F0), all comparisons showed
greater inter-system differences: relative systematic error for Tau ranging from 5.49 ± 3.72%
between the radar and linear encoder to 12.89 ± 9.09% between the laser and GPS. For
F0, they ranged from 4.78 ± 3.20% between the linear encoder and radar to 11.54 ± 6.29%
between the laser and GPS. As the rate of velocity increase was higher in the early accelera-
tion phase, this likely exacerbated the difference found between systems, compared to the
lower rate of change in velocity by the end of the acceleration. Contrary to the maximum
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velocity variables, these results confirm the reliability of intra-system comparisons and
suggest that comparisons of athlete’s values obtained from different systems should take
these differences into account.

Despite consistent overall results, the data from Table 1 show a specific difference between
timing gates (8.45 m.s−1 on average) and all others systems (from 8.27 to 8.33 m.s−1 on average)
for V0. This could be due to the 40 m split time measurements for all trials, while the
velocity data systems have been analyzed up to the last point of the Vmax plateau, which
occurred before 40 m for most of the athletes tested. The present sample of participants did
not include world-class level sprinters, but data were consistent across the wide range of
Vmax tested (6.5 to 10.60 m.s−1).

The inter-system differences observed for Tau and F0 may be explained by the fitting
method used in this experimentation, and the first data taken into account after the velocity
threshold of 0.5 m.s−1, which could have a major influence on the model. In line with the
interpretation of the good agreement for the maximal velocity values, the lower agreement
for acceleration variables could also be due to the very high rate of change in velocity
during early acceleration. This influence was even higher when the sample rate of the
system was lower.

Regarding the laser and GPS systems, the set of data analyzed was the smoothed data
provided by the manufacturer software, but we also analyzed the complete set of raw data
(specifically provided by the manufacturer for the purpose of this study). In both cases, the
results for the raw data were extremely close to those presented in the present study for the
smoothed data, which are the only data accessible by default to all users. Indeed, less than
1% difference was observed on the relative systematic error values between the raw and
smoothed data for all of the systems and variables.

4.2. Inter-Trial Comparisons

The inter-trial reliability showed low to very low coefficients of variation (highest
CV of 5.74%) and very close results between all of the systems (Table 3). These results
showed that the inter-trial reliability was good in the population tested, and that each of
the five field systems tested could be considered equally reliable for intra- or inter-athlete
comparisons using the same system, measurement, and analysis procedures.

4.3. Limitations

All of the systems used did not measure the velocity of the center of the mass and thus
induced uncertainty regarding the real velocity of the participants. Moreover, this study
did not include a gold standard (3D camera or force platform), because it was a very rare
setting, and was almost not possible to use in such field conditions. In this context, we
focused on the comparisons of systems considered as “silver standards”.

Split times obtained with slow motion video analysis (MySprint app or GoPro cam-
era) [22,31] is another popular field method that has not been tested here. This was due
to logistical reasons in a heavy protocol context, but we can reasonably assume that the
results of this split times approach would have been very close to other split times systems
obtained here, as presented in previous studies [22,31].

We cannot rule out the influence of the fixed starting threshold at 0.5 m.s−1 and the
visual inspection of the Vmax plateau on the computation outcomes. Ongoing research
has been undertaken to test this hypothesis. However, the same methodological approach
based on signal visual inspection has been used by the same experienced investigator
(author CFS) for each technology.

Finally, 1 kg of resistance was used on the motorized linear encoder for each trial to
prevent any form of slack in the cable, but this did not affect the inter-system comparisons
performed in our study. That being said, this information needs to be taken into account
when comparing the present data to other studies using other systems that do not include
this slight extra resistance.
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The number of satellites and the average horizontal dilution of precision are key
indicators to ensure that the data collected can be analyzed and interpreted with confidence.
Indeed, poor quality data (e.g., less than 6 satellites connected to the devices and/or
horizontal dilution of precision greater than 1) [23] could give erroneous values of speed
and acceleration measures that can influence the interpretation of the sprint mechanical
variables computed. Therefore, practitioners should systematically take into account these
indicators to analyze the data with confidence.

5. Conclusions

Given the inter-system and inter-trial differences observed, all of the systems tested
here can be considered relevant to measure the maximal velocity and compute the force–
velocity sprint profile outputs using Samozino et al.’s validated approach. However,
researchers and practitioners are advised to interpret their own data obtained with either
of these systems in light of these results, and their cost/ease-of-use ratio.

Only intra-system comparisons will allow for the most accurate interpretation of inter-
athletes or intra-athlete changes. Alternatively, inter-system comparisons (for example
between different research studies) must be interpreted cautiously due to the percent
differences observed here and the different data sampling and processes. Some of our
recent unpublished works show that higher speed thresholds to determine the sprint start
(e.g., 1 m.s−1) lead to higher inter-systems reliability.

These results suggest the possibility of several practical applications such as facilitated
monitoring and regular analysis of the sprint mechanical profile in prevention or injury
management, on the basis of several different systems.
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