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§1. Borelli and the Classical Ideal of Mathematics 
The mathematical work of Giovanni Alfonso Borelli (1608-1679) was entirely devoted to the 

study and interpretation of the Greek classics. His most important mathematical book is the 
Euclides restitutus (“Euclid Restored”) from 1658, in which Borelli offered a complete rewriting of 
Euclid's Elements. In 1663, Borelli’s Euclides was abridged, simplified and translated into Italian as 
Euclide rinnovato (“Euclid Renewed”) to serve as a student textbook. A third edition also appeared 
later in Borelli’s life (1679), which was essentially a Latin version of the earlier Italian compendium, 
enriched with a selection of theorems from works by Apollonius and Archimedes.1 In 1661, Borelli 
also made a significant contribution to the first Latin edition of Books V, VI and VII of Apollonius' 
Conics, to which he added numerous explanatory notes.2 

 
I heartily thank Mattia Mantovani and Ugo Baldini for their helpful advice on this article. 
1 G.A. BORELLI, Euclides restitutus, sive prisca geometriae elementa breviùs et faciliùs contexta, in quibus precipuè 
proportionum thoriae nova firmiorique methodo promuntur, Pisa, F. Onofrio, 1658, in nine books. The Italian edition, 
entitled Euclide rinnovato ovvero gli antichi elementi della geometria (Bologna, Ferroni, 1663) was translated by 
Domenico Magni in collaboration with Borelli (cf. Borelli’s testimony to have worked at the translation in GALLUZZI 
1970, p. 284). The 1663 Euclide presented, in abbreviated form, only the first five books of the 1658 edition. The 
second Latin edition (Euclides restitutus denuo limatus, Roma, Mascardi, 1679) presented in abbreviated form the first 
seven books of the first edition, and added a significant preface ad lectorem geometram in which Borelli explained the 
purpose of the volume. The 1679 edition was complemented by a second tome of Elementa conica Apollonii Pergaei et 
Archimedis opera (cf. Borelli’s letters on the topic in DERENZINI 1960). Borelli’s Euclides also had a posthumous fourth 
edition (Roma, Ercole, 1695) that was similar to the third but added to it (without changes) Book VIII of the 1658 
edition. In addition to these works on Euclid, the young Borelli had published a mathematical disputation in Italian: 
Discorso del signor Gio. Alfonso Borrelli, academico della Fucina e Professore delle Scienze Matematiche nello Studio della 
Nobile Città di Messina, Messina, Brea, 1646. 
2 On the complex history of this edition, see GIOVANNOZZI 1916, TENCA 1956, GUERRINI 1999. On the importance 
of this volume by Borelli for the history of science, see DEL CENTINA, FIOCCA 2020. Borelli also contributed to the 
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In none of these works did Borelli make use of modern mathematics: he does not seem ever to 
have written one single algebraic formula; not the sum of an infinite series or a study of indivisibles; 
not a reflection on projections that could lean toward non-metric geometry; not a study on curves 
that had not already been studied by the Greeks. Borelli remained outside the extraordinary 
seventeenth-century renewal of mathematics, and it is not surprising that modern histories of 
science do not ascribe any original theories to him nor are there theorems bearing his name. Today, 
he is mostly regarded as a successful teacher and a competent interpreter of classical texts.3 

Nevertheless, Borelli's Euclides is a masterwork in the foundations of mathematics, and 
arguably the most important treatise on the subject in the seventeenth century. In it, Borelli 
reformulated most of Euclid's definitions, modified and expanded the axioms, transformed a great 
many demonstrations in the Elements, and made in depth changes to the deductive structure of the 
classical treatise. Euclid's Elements had already been modified many times over the centuries and 
the text had always remained partially plastic and changeable. Through all these changes, however, 
the Elements had remained a classical text to which editors had added scholia and local amendments. 
In times closer to Borelli, such modifications had become bolder: Jesuits and Ramists had abridged 
the text for students, Aristotelians had reshaped some proofs into syllogistic chains, Herigone and 
Barrow had formalized the Elements with new symbolisms.4 None of them, however, had changed 
the mathematics of Euclid: the ideas behind the demonstrations and their deductive order had 
remained the same. By contrast, Borelli’s book revolutionized the mathematical core of Euclid’s 
work to such an extent that it could be doubted whether it was still Euclid’s. 

The starting point of Borelli’s attitude towards the Elements is probably to be found in Galileo 
himself. Looking for a mathematics for his new science of mechanics, Galileo did not turn to 
modern techniques but employed Euclid’s classical theory of proportions. Yet, he also felt the need 
to rewrite the foundations of this theory in the so-called Fifth Day of Discorsi.5 Galileo's example 
led to a multitude of variations and rewritings of the theory of proportions by his disciples. The 

 
posthumous edition (Messina, Brea, 1654) of Apollonius' Conics edited by Maurolycus (Books I-IV, and a "divination" 
of Books V and VI). On this endeavor, see BERTOLONI MELI 2001. 
3 We know that Borelli taught mathematics in Pisa using his Euclides as a textbook, and for instance in 1660 he was 
asking to send him twelve more copies of the book for his students (Borelli’s letter is published in GALLUZZI 1970, p. 
273). Some of the books in Borelli's possession are now preserved at the Biblioteca Nazionale Centrale in Rome and 
recognizable by an ex libris. In this collection only one edition of Euclid's Elements is to be found (edited by Oronce 
Finé, 1536), although it is crystal clear that Borelli must have known many other editions, and some of them (such as 
the celebrated one by Clavius, 1574) are also mentioned by him in the Euclides. Borelli's sources on elementary 
geometry, however, remain in many cases entirely conjectural. On Borelli's library, see BALDINI 1996. 
4 Among Jesuit textbooks, André TACQUET’s 1654 edition of the Elements is probably the one that dared to make most 
changes with respect to the classical text. Yet, the deductive structure of Tacquet’s book is essentially Euclid’s, and it 
cannot be said to be a compete reworking of the text in any sense comparable to Borelli’s. Borelli mentioned Tacquet’s 
work to Magliabechi in 1663, but it is not clear from the context whether he knew it already or not (see GALLUZZI 
1970, p. 285). For an example of a Ramist textbook for schoolchildren, which often does not even carry out the 
demonstrations of theorems, see KECKERMANN 1621, of which Borelli owned a copy (see the previous note). RAMUS’ 
original Scholae mathematicae from 1569 were much more extended but did not change the order of Euclid’s theorems: 
they were more a (critical) commentary than a rewriting. A reworking of Euclid’s proofs into syllogisms is in the edition 
by HERLINUS, DASYPODIUS from 1566. HERIGONE’s edition is from 1634, and BARROW’s edition from 1655 drew 
from it. We do not know if Borelli knew this latter work, but he surely owned the works of Archimedes in Barrow's 
edition, as well as his lectures on geometry and optics. 
5 GALILEO 1968, vol. 8, pp. 347-62. This essay was circulating among Galileo’s disciples and was posthumously 
published by Vivani in 1674. 
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result of this approach was a peculiar innovative classicism; faithful and at the same time 
antagonistic toward Greek authors, which characterizes many Italian works of the time.6 At first, 
Borelli's work fitted perfectly into this cultural framework. As early as 1641 (seventeen years before 
the publication of the Euclides) he, in the wake of Galileo, was working on an alternative theory of 
proportions that eventually became a part of his book. In 1660, he boasted about a good definition 
of proportion that 

 
none of the ancients found. But I did.7 

 
By this point, however, Borelli had long surpassed Galileo and his contemporaries in both 

classicism and reformation. He extended the critical approach from the foundations of the theory 
of proportions to the whole of mathematics, and thus rewrote all of the Elements. Moreover, he 
embraced a hyper-classicist demonstrative ideal that was stricter than that of his contemporaries, 
and completely rejected modern mathematics and even the innovations made by the Galilean 
school (such as the geometry of indivisibles). 

A clear example of Borelli’s upturning of Euclid is given by the deductive structure of Book V 
of the Euclides restitutus. We can list the sequence of theorems proven in this book, in comparison 
with the matching propositions from the Elements: 

 
Elements IV,10   New   II,2   II,6   IV,15   IV,16   IV,7   IV,12   IV,9   IV,14   IV,4   IV,8   
IV,13   XIII,8   XIII,9   Arch.   XII,1   VI,19   XII,2   Arch.   Papp.   Papp.   Ptol.  New   
I,47   VI,31   New   II,4   New   II,7   New   II,8   New   II,5   II,6   II,9   II,10   XIII,4   
XIII,6   XIII,3   XIII,1   New   II,12   New   II,13   New   I,48   XIII,12   New   XIII,10   
New 

 
As can be seen, Book V of Borelli’s Euclides mixes together Euclid’s theorems belonging to the 

second, fourth and thirteenth books of the Elements, adding something from the first, sixth and 
twelfth books. The order of the propositions is generally quite different from Euclid’s sequences of 
the same books (for Elements IV, Borelli proves the theorems in this order: 10, 15, 16, 7, 12, 9, 14, 
4, 13). These theorems are also interspersed with results from Archimedes, Ptolemy and Pappus. 
To hold together such a deductive sequence, Borelli also demonstrates therein ten new theorems. 
As a bonus, Borelli offered a wholly new proof of the important Elements XII,2 (circles are to each 
other as the squares of the diameters) avoiding the method of exhaustion, which Borelli found 
hopelessly obscure given its reference to the infinite.8 

A couple of years after the publication of the Euclides, Cosimo Noferi described Borelli’s work: 
 

 
6 On the theory of proportions in the Galilean school, see the important GIUSTI 1993. 
7 “…nessuno degli antichi l’ha trovata; ma l’ho trovata io”: Borelli to Alessandro Marchetti, August 21st, 1660, quoted 
in DERENZINI 1959, p. 228. 
8 Euclides, p. 217. A demonstration of Elements XII,2 without exhaustion had already been offered by Maurolycus in 
the Praeparatio ad Archimedis opera that introduced his edition of the works of Archimedes. This edition was not 
published until 1685 (the theorem is here on p. 6), but we know that Borelli had worked on Maurolycus' manuscripts. 
In turn, the technique used by Maurolycus for this demonstration seems to have been taken from the pseudo-
Archimedean Liber de curvis superficiebus, a medieval treatise associated with the name of John of Tynemouth, which 
can be read today in CLAGETT 1964, pp. 433-557. 
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...and it seems to me that this book should have for its title Euclid Mendacious, 
Transformed, Destroyed, Mutated, Upturned, and the like, which are more suitable to it 
than Euclid Restored.9 

 
These words were echoed by Milliet Dechales in 1674: 
 

Although the work is excellent and useful, nevertheless the title is wrong, because you 
will hardly recognize Euclid in Euclid Restored.10 

 
The scandal and the fascination provoked by Borelli’s book among his contemporaries was 

fully justified. For centuries Euclid’s Elements had been the paradigm itself of the deductive method, 
and the model of any further attempt to present a body of truths as a continuous chain of 
demonstrations. Innumerable works of logic, mathematics, science, and philosophy had taken the 
Elements as their template and had drawn their rigor and truth by imitating Euclid’s book. To revise 
the deductive sequence of the Elements, and to suggest that a better logical arrangement of theorems 
is possible, was an unprecedented claim in the seventeenth century. It was an attack on mathematics 
itself. 

Borelli felt entitled to justify his complete transformation of Euclid's text with an accurate 
historical consideration, but one that was highly unusual at the time: namely, that the thirteen 
books that make up Euclid's Elements had not been written by Euclid himself, but were 
independent essays that the ancient geometer had collected under one title. The polygenesis of the 
classical text explains, according to Borelli, its structural flaws, and the fact that its theorems can be 
reorganized according to different and more cohesive thematic groups. This is precisely the purpose 
of the new structure of the Euclides restitutus.11 

Borelli employed his abilities as a classical philologist and scholar of ancient mathematical texts 
in order to historicize Euclid’s Elements. He transformed the eternal paradigm of science into a 
contingent historical phenomenon. Euclid and his predecessors were historical actors offering a 
presentation of mathematics according to their own views. Likewise modern geometers legitimately 
expound mathematics in a different, and possibly better, form. 

Borelli’s novel presentation of elementary mathematics was guided by an epistemological 
program. The choice of new definitions and axioms, the new organization of the content, the 
different poofs, are all grounded on the masterplan of implementing a philosophy of mathematics 
in actual mathematics. The importance of Borelli’s book lays in this philosophically-directed, 
revisionary approach to the foundations of mathematics.12 

 
9 C. NOFERI, Disceptatio pro Euclides, written in 1658-1663 and never published : "... quare potius mihi videtur 
Euclides mendax, permutatus, dirutus, pervolutus, inversus, et simili appellatione inscribendus, ipsius volumini magis 
propria, quam Euclides restitutus" (quoted in GIUSTI 1993, p. 154). 
10 C.F.M. DECHALES, Cursus, 1690: "Quamvis autem opus sit bonum, & utile, malè tamen ei titulus est praefixus, 
cum vix Euclidem in Euclide restituto agnosces" (p. 25). 
11 Borelli offers a history of geometry (up to the works of Giovan Battista Benedetti) in the dedication of the Euclides. 
This was not new, and already Clavius had a lengthy historical introduction to the Elements, which did not, however, 
conclude with their imperfection or the need to reform them. 
12 A revisionary approach to Euclid’s Elements had been followed by Francesco PATRIZI, Della nuova geometria (1587), 
insofar as it reshaped (the first half of the first book of) the Elements according to a certain philosophical vision. Yet, 
the inadequate mathematical skills of Patrizi cannot match with Borelli’s real dive into the foundations of geometry. 
Something similar may be said of Hobbes’ own attempts at elementary mathematics. The epistemological importance 
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Borelli, however, maintained that his own epistemology and methods in geometry were 
nothing but an implementation of what was already found in Greek authors. He appropriated 
Greek texts by seeking in them a classical demonstrative ideal: a set of methods, techniques, 
constraints that according to him constituted mathematics as a science. He wanted to extract a 
philosophy of mathematics from the works of Euclid and Archimedes. 

Classical texts do not provide anything similar without a great deal of interpretation, and 
Borelli was thus creating a Greek ideal of demonstration by favoring certain theorems, emphasizing 
certain definitions, using certain principles, and consciously passing silently over other theorems, 
definitions and principles. More than this: he corrected the Greeks, and Euclid in particular, so that 
they would fit the bill of Borelli’s own classicist epistemology. 

Borelli entitled his own masterpiece Euclid Restored, because it brought Euclid back to the 
classical demonstrative ideal for which it was intended. But Borelli also translated the title into 
Italian with the antiphrastic Euclid Renewed, because the restoration of the classical text also 
involved going against the original in the name of its ideal. 

In this sense even Borelli's lag behind modern mathematics, his regrettable ignorance of 
algebra, and his rejection of the so promising analysis of the infinite can be read as conscious 
epistemological choices. He self-imposed proof constraints tighter than those of Euclid, and much 
tighter than those of many modern mathematicians who had access to post-classical mathematical 
tools, because he wanted to prove theorems of elementary mathematics in the most appropriate way. 
Borelli's Euclides can thus be seen as the ancestor of a centuries-long tradition enquiring about the 
standards of rigor, the purity of methods, and the logical tools that can be employed in a 
mathematical proof. For the first time in history, Borelli showed that it was possible to rewrite a 
classic of science according to a modern epistemological ideal. Borelli was the first of “Euclid’s 
modern rivals”, and the Euclides restitutus changed for good the modern approach to the classics of 
mathematics.13 

In the following paragraphs, we will see in a little more detail how Borelli's epistemology of 
mathematics affects the deductive structure and system of principles of the Euclides. In §2, we deal 
with Borelli’s epistemology and its theory of principles. In §3, we discuss the axiomatic system of 
the Euclides. In §4 we sketch the new deductive structure of the work and of Book I in particular. 
In §5 we draw some conclusions on the historical meaning and legacy of the Euclides restitutus. We 
especially concentrate on the first edition of the Euclides, which was not abridged for students; and 
on the geometrical books of it, since Borelli’s gave no major contributions to number theory or its 
foundations. 
 

 
§2. The Principles of Mathematics 

Borelli's philosophy of mathematics is set out in the introductory pages of the Euclides. Borelli 
was not a philosopher by profession, and this theory appears to us today as an eclectic variant of 
Scholastic theories widely held in the seventeenth century. This is all the more remarkable because 

 
of Borelli's work has been recognized by several modern scholars including Koyré. A comprehensive evaluation of 
Borelli's scholarly work from this perspective can be found in BALDINI 1974. 
13 The famous expression on the modern rivals titles the 1879 book by Charles DODGSON (Lewis Carroll) on the 
subject. Borelli is not mentioned in it. 
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Borelli himself often presented his thinking as entirely anti-Aristotelian and criticized la ragione 
muffa e antiquata ("the moldy and antiquated reason") of the Scholastics.14 

According to Borelli, the objects of geometry are shaped magnitudes, or geometrical figures. 
This is also Aristotle’s view: he had defined magnitudes as continuous quantities, such as solids, 
surfaces and lines.15 Aristotle’s definition of the object of geometry was standard in the seventeenth 
century. Earlier, at the end of the sixteenth century, some mathematicians had begun to suggest 
that geometry dealt instead with the properties of space, but this idea, which would become 
dominant between the eighteenth and nineteenth centuries, was still a minority in Borelli's time.16 
Tommaso Campanella, for instance, who is often associated with Borelli, argued that space, not 
magnitudes, was the proper object of geometry.17 Borelli himself, however, who is often credited 
with a theory of "absolute" space in physics, never seems to have connected space and geometry 
together.18 By contrast, Borelli believed, like Aristotle, that we arrive at the notions of mathematical 
magnitudes and figures by abstracting them from physical bodies. Indeed, he criticized Euclid for 
having begun the Elements with the definitions of a point, line, surface and solid, in that order, 
whereas mathematical abstractionism dictates that one should first define a mathematical solid 
(which is closer to a physical body), and then move on to define surfaces and lines as further 
abstractions.19 

The most important part of Borelli’s philosophy of mathematics, and the one having 
consequences on the demonstrative structure of the Euclides, is the theory of the principles of 
demonstration. In a nutshell, it is the following. 

 Each geometrical figure has (a) several essential properties and (b) several different procedures 
by which it can be constructed.20 In each of the two sets, there will be properties and procedures 
that are “first and most known”. We may arbitrarily take any one of these as the definition of the 
figure. All the remaining first and most known essential properties may be taken as axioms about 
the figure, and the remaining first and most known constructive procedures may be taken as 
postulates about the figure. Properties and constructive procedures which are not first and most 
known, should be proven as propositions. 

 
14 Borelli to Alessandro Marchetti, February 24th, 1659; in DERENZINI 1959, p. 227. On Borelli's mathematical 
epistemology, see VASOLI 1969. 
15 See, for example, ARIST. Rhet. Α	2, 1355b30-31. 
16 See DE RISI 2015. 
17 Campanella expressed his views on the relationship between space and geometry, which he probably took from 
Francesco Patrizi, in many of his works. The most complete exposition is in a manuscript first published in ROMANO 
1935. 
18 Borelli refers to worldly space as a ground of the science of motion in the De vi percussionis, 1667, pp. 3-4. 
19 Vitale Giordano, defending Euclid against Aristotle, protested that Borelli's definitional procedure amounted to 
ponere currum ante boves (putting the cart before the horse). See Giordano to Leibniz, November 11th, 1689; in A II, 
2, n. 71, p. 296. 
20 Borelli calls the idea of a constructive procedure the ratio structurae formalis of a figure, and clearly states that there 
are several of these for each figure: “ratio structurae formalis alicuius subjecti quanti multiplex esse oportet” (Euclides, 
p. 15). These rationes structurae are thus somewhat similar to the mathematical schemata of Kant (who may have been 
familiar with the Euclides restitutus, see later in note 55). 
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An immediate consequence of Borelli’s theory of principles is the interchangeability of 
definitions with axioms and postulates. There are no sharp boundaries among them, and 
mathematicians have a certain freedom in defining mathematical figures: 

 
…from which follows that any definition may be an axiom, in case the object has already 
a name. And by contrast any axiom may be a definition, in case the object does not yet 
have a name.21 

 
This point justifies Borelli’s upturning of Euclid’s system of principles. Definitions, axioms 

and postulates may be exchanged among them, just as the sequence of theorems of the Elements 
may be rearranged according to different deductive structures. 

Borelli advanced a further requirement: for each figure there must be at least one constructive 
procedure. This is because there may be pseudo-definitions of non-existent objects (e.g. “a 
rectilinear figure with two sides”), and only an explicit constructive procedure may guarantee that 
the corresponding figure exists.22 A mathematician should offer such a constructive procedure 
before employing the figure and its properties in proving theorems. Borelli's position on the 
necessity of constructive definitions was not unique in the seventeenth century, and something 
similar had been advanced, for example, a few years earlier by Thomas Hobbes—an author that 
Borelli knew well. There were however some differences among their views. According to Borelli, 
definitions, axioms and postulates are ideas; their linguistic expression is quite contingent. For 
Hobbes, on the other hand, they are essentially linguistic expressions. As a consequence, for 
instance, Hobbes admitted that impossible objects may be defined, even if such definitions are 
useless in science, whereas Borelli denied that such objects have a proper definition. Hobbes dealt 
with nominal definitions of words, Borelli with real definitions of things.23 

The constructive requirement offers a further constraint, or at least a methodological thread, 
in selecting the principles of demonstration. Borelli clearly expresses his preference for taking first 
and most known constructive procedures as definitions, rather than defining objects through 
essential properties and then show their constructability—even though, according to his own 
epistemology, this could be done. In fact, he criticizes Euclid and other geometers for behaving 
differently. 

We can give an example illustrating the whole theory. A circumference may be characterized 
in several ways. It is a conic section, obtained by a particular intersection of a cone with a plane. It 
is a line, the points of which are equidistant from a single point (the center). It is a line traced by 
the end of a segment rotating around the other end. The first characterization, according to Borelli, 
expresses a constructive procedure generating the circumference, but it is not “first and most 
known”. As a consequence, it cannot be employed either as a definition or as a postulate, and 

 
21 Euclides, p. 16: “Unde colligitur, quod quaelibet definition esse potest Axioma, sin omen iam esse receptum. Et è 
contra quodlibet axioma esset definitio, si nomen non esset receptum”. 
22 The example of the figure with two straight sides (Euclides, p. 16) became commonplace, and was employed by 
WOLFF (Latin Logic, §533; 1728, p. 404) and later on, famously, by KANT (KrV, A220/B268 and A291/B348). 
23 See HOBBES, De corpore, I, i, § 5; in Opera, vol. 1, pp. 5-6, a work that Borelli owned (see note 3). In the Euclides, 
p. 15, Borelli says that definitions are cognitiones and then also ideae. He discusses these primae et notissimae ideas in 
Euclides, p. 16, where he explains that they are true, maximally evident, and such that further properties of the object 
may be explained through them. The passage is clearly reminiscent of Aristotle, An. post. A 2, 71b26-30, in which 
principles of demonstration are said to be true, explanatory, more familiar and prior. Borelli’s statement on names is in 
the Euclides, p. 15: “nomina sunt signa, ad placitum imposita, ad significandam praecognitionem in animo existentem”. 
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should be proven as a theorem. The second characterization expresses a first and most known (non-
constructive) essential property of the circumference, and may be employed either as the definition 
or as an axiom. The third characterization expresses a first and most known constructive procedure 
and may be employed either as the definition or as a postulate. Euclid has defined the circumference 
according to the second characterization, and has assumed the third (even if not explicitly enough) 
as a postulate. According to Borelli, this may be correct in principle, but wrong in practice. He 
chooses rather to take the third characterization as the constructive definition of the circumference, 
and the second one as an axiom expressing an essential property of it.24 

Euclides restitutus is full of similar modifications of Euclid’s system of principles, which are 
allowed and encouraged by Borelli’s epistemology. 

Borelli’s choice of principles has also important consequences in the demonstrations in the 
Euclides. He hardly ever makes use of postulates, since the relevant constructive procedures are 
always included in the definitions. But he also rarely makes use of the definitions themselves. They 
have the prefatory foundational role of showing the possibility of mathematical objects, but are of 
little use in actual proofs. As a consequence, in Borelli axioms acquire an enormous importance as 
the only principles that are employed in proving theorems.25 

There is more. Borelli’s theory of principles would imply the existence of a plethora of axioms: 
there are a great many (and possibly infinite) statements expressing first and well known essential 
properties of figures. Nonetheless, Borelli was guided by a principle of economy in the selection of 
axioms. Although the axioms in the Euclides are certainly not all independent of each other – there 
is no clear concept of deductive independence in seventeenth-century mathematics – they are never 
redundant and have no significant overlap. Borelli selected them with the aim of maximizing the 
perspicuity of the principles and at the same time minimizing the number of undemonstrated 
assumptions. This implies a much deeper reflection than was usual in the early modern age on what 
are the actual assumptions necessary for proving theorems. 

Moreover, Borelli seems to have much tighter epistemic requirements for definitions than for 
axioms. He states, for instance, that the notion of the infinite is irremediably obscure, and should 
not pollute the definitions of mathematical objects. Yet, he accepts it in the axioms, provided that 
they are drawn from constructive definitions. Euclid’s definition of a circumference refers to the 
equality of an infinity of radii, and is therefore unfit as a definition, but it may be employed as an 
axiom. So in many other cases: Borelli's definition of parallels is local, but his axiom on parallels 

 
24 Here is Borelli’s judgment on Euclid’s definition of a circumference: "Haec est una ex ijs definitionibus, quae 
passionem ignotam tradunt. Non enim facilè est videre, an in natura reperiri possit talis figura, quae habeat punctum 
unicum intra se, à quo omnes rectae, ad eius terminum ductae, sint inter se aequales. Semper enim dubitari potest, an 
aliqua ex infinitis illis lineis habeat eadem mensuram cum reliquis" (Euclides, pp. 9-10). Borelli's idea had a wide 
following, and for example Christian Wolff, fifty years later, adopted (for the same epistemological reasons) Borelli's 
definition and axiom of the circumference. See WOLFF 1738, §45 of the Geometrie, p. 129 (a different treatment was 
in the Latin edition of WOLFF 1713, §38 of the Elementa geometriae, p. 100). 
25 Given the interchangeability between definitions and axioms, Borelli claims that definitions may be used as 
demonstrative premises of proofs: “definitiones adhibentur in demonstratione ut praemissae” (Euclides, p. 15). In actual 
practice, Borelli did employ sometimes definitions in order to prove theorems, and this is especially true in Book III 
of the Euclides, on proportions, since both Euclid and Galileo had used definitions rather than axioms to ground such 
a theory. In general, however, Borelli almost exclusively employed axioms in the proof. This is very apparent in 
elementary geometry, and in the proofs of the entire Book I of the Euclides there is only one reference to a definition 
(Proposition 4, p. 22), and a hundred or so references to axioms. 
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makes use of the infinite; his definitions of proportion avoid recurring to the infinite and are based 
on commensurable ratios, but his axioms also refer to incommensurable ratios. 

Borelli’s reliance on axioms rather than definitions in proofs, and his attempt at selecting a 
small but sufficient number of them in order to prove theorems, distance the Euclides restitutus 
from the other treatises of the seventeenth century and make it similar to a modern textbook. This 
was the beginning of a long and far-reaching transformation in the logical organization of 
mathematical books. 

 
 

§3. Axiomatization 
Given the importance of the principles of demonstration in Borelli’s epistemology, it is worth 

looking at the axiomatic structure of the Euclides restitutus. In the early modern age, Euclid’s 
interpreters had already offered many different systems of axioms for the Elements, and as it happens 
the set of principles was the most widely edited part of the ancient book.26 Since none of these 
mathematicians had also attempted to significantly reform the theorems and the demonstrations, 
they did not go much further than suggesting that certain statements had to be assumed as principles 
of demonstration. Borelli’s Euclides offers one of the most advanced systems of axioms in the 
seventeenth century, since it is economical and powerful, but most of all it shows when and how 
these principles need to be actually employed in the proofs. 

Euclid’s Elements were possibly prefaced by 5 postulates and 5 common notions (or axioms).27 
By contrast, Borelli’s Euclides restitutus states a total of 6 postulates and 29 axioms. 

In Book I, on plane geometry, Borelli enunciates 4 postulates and 14 axioms. The postulates 
are Euclid's three postulates on the construction of straight lines and circumferences, plus a fourth 
principle enunciated by Clavius on the possibility of taking magnitudes larger and smaller than any 
given magnitude.28 The axioms cover Euclid's standard common notions, and add to them a couple 
of mereological principles that were found in the tradition (such as that the whole is the sum of the 
parts). There are two axioms about straight lines, which establish that two straight lines do not 
enclose a space and cannot have a segment in common (they had already been discussed in late 
antiquity). These are followed by the above-mentioned axiom on the equality of the radii of the 
circle; by a new version of the axiom of parallels; and by an axiom on the continuity of figures. 
Borelli competes the axiomatization of plane geometry in the following books: in Book II, there is 
a principle stating that equal circles have equal radii, and vice versa; and in Book V, an axiom 
assuming that a straight line is shorter than the semicircle and any broken line between the same 
ends. The latter flows from Borelli’s definition of a straight line as the shortest line between two 
points, which was taken from Archimedes but never directly used in proofs.29 

 
26 For a presentation of the different axiomatic systems employed in the Elements, see DE RISI 2016. 
27 Numbers vary in different manuscripts, and I mention here the numbers appearing in Heiberg’s critical edition of 
the text. 
28 CLAVIUS, Euclidis, Book I, Postulate 4 (ed. 1574, vol. 1, p. 15r). 
29 Annotating the Euclides restitutus, Leibniz observed that although Borelli defines the straight line as the shortest line, 
he does not shy away from proving Elements I,21 (Book I, proposition 22; Euclides, pp. 47-48), which states that one 
side of the triangle is less than the sum of the other two. But if it made sense to prove this proposition in the Elements, 
it is pleonastic with Borelli’s new definition of a straight line. Borelli does not seem bothered by this redundancy, any 
more than he was by the formulation of the axiom in Book V. Here is Leibniz's annotation, which is still unpublished 
and found in his copy of Borelli’s Euclides kept in Hannover: "Non utitur autor hac definitione, cum uti potest, v.g. 
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One of Borelli's greatest foundational merits is that he attempted the first axiomatization of 
solid geometry. Neither Euclid's Elements nor the following Euclidean tradition had principles for 
this besides the definitions, and from the point of view of modern axiomatics this is one of the 
major foundational gaps in ancient, medieval and Renaissance geometry. Book VI of the Euclides 
restitutus offers for the first time some principles, 2 postulates and 5 axioms, for solid geometry. 
The two postulates are simple extensions of Euclid’s ones for plane geometry, and state that it is 
possible to draw and protract planes in space. Two axioms extend the axiomatic properties of 
straight line to planes, stating that two planes do not enclose a space and that they cannot have a 
plane segment in common. The other axioms relate plane geometry to solid geometry by asserting 
that the intersection of two planes is a line, that if two lines intersect one another they lie in the 
same plane, and that the line joining two points is in the same plane as them.30 In the years that 
followed, a great many mathematicians followed Borelli's example, and gradually more complex 
axiomatizations of solid geometry appeared in the treatises of Arnauld (1667), Roberval (1670s), 
Lamy (1685), Marchetti (1709), Simpson (1760), and many others, until they became quite 
standard in the nineteenth century. 

In Book III of the Euclides, Borelli also offered a new axiomatization of the theory of 
proportions. In this he was preceded by similar attempts by Maurolycus, Benedetti, Torricelli, and 
others, who had introduced axioms for a theory that Euclid had left without principles (other than 
definitions). Borelli's six axioms on proportions partly take up previous attempts, and partly 
innovate a theory that he was also renewing very deeply at the level of definitions and theorems.31 
Borelli’s most important axiom in the theory is an axiom on the existence of the fourth proportional 
magnitude after three given magnitudes. This axiom had been already added by Clavius and 
employed by Galileo, but was by no means uncontroversial, and many mathematicians in the early 
modern age doubted of the possibility of assuming the non-constructive existence of magnitudes 
whatsoever.32 Borelli’s reliance on this axiom shows that his mathematical constructivism was if fact 
quite limited. Once again, it only applies to the definitions, and not to the axioms. Constructions, 
for him, are meant to offer a criterion to spell out true definitions from empty nominal expressions 
without reference (e.g. the rectilinear figure with two sides). But once we know that a certain figure 
(say, a circle) is possible, we are allowed to assume the existence of any of those figures (i.e. circles 

 
in axiomate 14 (quod assumit post prop. 13), utitur potius Clavij definitione seu explicatione, ut axioma confirmet. 
Et posita hac definitione non erat usu demonstraret propositionem 21 quod duo trianguli latera sint majora tertio". 
30 The principle that if two points on a line are in a plane then so is the whole line can be seen as an axiomatic 
reformulation of Elements XI,1, which had often been regarded as an indemonstrable proposition that Euclid had 
clumsily attempted to prove. Before Borelli, Pierre HERIGONE (1634) had already suggested accepting it simply as an 
axiom. Borelli's axiom that two intersecting lines lie in a plane is the axiomatic formulation of Elements XI,2, which 
suffered from the same difficulties but had never before been suggested as a principle of the theory. Both principles are 
still recognizable as axioms I,5 and I,6 in Hilbert’s Grundlagen der Geometrie (HILBERT 1968, p. 3). 
31 Borelli's system of axioms for the theory of proportions has been the subject of some modern criticism, which noted 
that some axioms are pleonastic and provable. See PODETTI 1913 and GIUSTI 1993, who also correctly notes (p. 126, 
note 23) that the concept of "axiom" in Borelli does not require strict indemonstrability. 
32 Borelli’s axiom was strongly criticized by SACCHERI in the Euclides vindicatus (1733, pp. 107-109; cf. also my 
discussion of the topic in SACCHERI 2014). 
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of any magnitude), even if we may not be able to construct each of them in particular. Borelli was 
not a constructivist according to many modern understandings of the term.33 

There are some conspicuous absences in Borelli’s list of axioms. First of all, the Euclides 
completely lacks Euclid's Fourth Postulate, which states that all right angles are equal. This 
assumption had been criticized since classical antiquity, and was generally regarded as provable; 
however, it is remarkable that it appears neither as an axiom nor as a theorem in Borelli's work. 
Second, Borelli never states the famous Axiom of Archimedes (“any magnitude may be multiplied 
as many times as to exceed any given homogeneous magnitude”), which even various modern 
authors (including Clavius) had added to the Elements as a necessary principle for concluding some 
of Euclid's demonstrations. Borelli makes use of it throughout the proofs but never makes it explicit 
in the system of principles.34 Finally, Borelli has no axioms in the arithmetical book of the Euclides 
restitutus, as if the theory of numbers required no principles. Euclid had no axioms for arithmetic 
either, but modern editions of the Elements had formulated several explicit principles. Borelli could 
not ignore this fact, but left no explanation of his choice of not including them. The epistemology 
of principles set forth at the beginning of the Euclides does not seem to easily apply to the domain 
of numbers.35 

Should we look at the legacy of Borelli’s Euclides, and the impact it had on modern 
foundational studies, the single most important axiom in the volume is probably Axiom 13 in Book 
I. This is one of the first axioms on continuity to ever be formulated—a topic that was conspicuously 
absent from ancient and medieval discussions on geometry and moved to the center of the 
foundational debate in the modern age. The pioneering role of Borelli in this matter is witnessed 
by a certain uncertainty surrounding the axiom. It was introduced in the first edition of the Euclides, 
but without comments on its grounds or its usefulness in the book. The axiom is not connected 
with any definition, and is not constructive. In short, it is not clear how it complies with Borelli’s 
epistemology of principles. The axiom was retained in the 1663 Italian translation of the Euclides, 
but disappeared – again without notice – in the 1679 edition. 

The problem at issue is that Euclid draws lines and circles which intersect with one another, 
but has no principles stating that points of intersection exist. Rather, the existence of points of 
intersection seems to be read off from the diagram (i.e. the drawing accompanying the text), as if 
the inspection of a drawing could be sufficient to establish the existence of a mathematical object. 
In the very first proposition of the ancient text, Elements I,1, Euclid draws two circles that overlap 

 
33 Borelli, for example, had no difficulty with mathematical proofs by reductio ad absurdum, whose validity was widely 
discussed, and sometimes rejected, by seventeenth-century philosophers. 
34 This is all the more strange because a large part of the Euclides is devoted to demonstrating that so-called angles of 
contact (e.g., the space bounded by a circumference and a line tangent to it) are not angles at all: see the scholium after 
Prop. 21 in Book II in the 1658 edition of the Euclides (pp. 90-96) and the preface of the 1679 edition. Angles of 
contact had been discussed since classical antiquity (and, in times closer to Borelli, by Peletier and Clavius) precisely 
because they do not satisfy the Axiom of Archimedes. Borelli's stance on this issue, therefore, could be read as a further 
confirmation of the universal validity of this axiom in geometry. On the angles of contact in Borelli, see ITARD 1961. 
Angelo Marchetti, who generally followed Borelli’s choice of axioms, explicitly added the Axiom of Archimedes to the 
principles of his own Euclides reformatus of 1709 (p. 42). 
35 Throughout Book VIII on arithmetic, however, Borelli often employs the axioms and results in Book III on the 
theory of proportions. This was a novelty, since in Euclid the theory of proportions between magnitudes set forth in 
Elements V cannot be applied to numbers, and he instead offers an alternative theory of proportions between numbers 
at the beginning of Elements VII. Borelli's theory of proportions, on the other hand, by treating commensurable and 
incommensurable ratios together, claims to be applicable to both natural numbers and continuous magnitudes. 
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each other, and assumes without further ado that there is a point of intersection between the two 
circumferences.36 

This gap in the axiomatic structure of the Elements has played an important role in the modern 
history of the foundations of geometry, and engendered a lively and important debate. Several 
continuity axioms were added to Euclid’s principles to justify the existence of the points of 
intersection between figures. Borelli was among the very first mathematicians to conceive of such 
axioms, but he was not the first. The Renaissance geometer Oronce Finé, in 1532, had suggested 
adding an axiom about the intersection of circles. Since he did not dare to modify Euclid’s text, 
however, he did not implement this principle in the actual proof of Elements I,1. This was only 
done a century later by Claude Richard (1645), who proved this one proposition thanks to his own 
axiom on intersections between circles.37 

Borelli, who may have known both Finé’s and Richard’s work,38 formulated a much more 
general principle: 

 
Axiom 13. If the same straight line is wholly inside two figures, the two figures will have 
a common part and will intersect one another.39 

 
Borelli’s axiom does not refer to circles (like the previous ones) but to figures in general. It is 

not a local fix of Elements I,1, but a new principle of intersections for the whole of geometry: it may 
be used in several other theorems of the Elements, but also in more advanced theories such as the 
Conics. This was an important breakthrough in the foundations of geometry, and similar continuity 
axioms were later introduced by Pascal, Roberval, Schott, Leibniz, Kästner, and many others. Many 
of them seem to have been following Borelli’s Euclides on the topic.40 

Notwithstanding the generality of Borelli’s formulation, the axiom is only explicitly employed 
by him in the proof of Elements I,1— just like Richard's weaker and ad hoc axiom. It is not clear 
why Borelli omitted any reference to it in the proof of the other theorems, nor why he erased the 
axiom altogether from the last edition of the Euclides that appeared in his lifetime. In the 1679 
Euclides, Borelli added a complex argument within the demonstration of Elements I,1 showing – 
with the help of his other axiom on the equality of the radii of a circle – that the two circles are 
drawn in such a position that they overlap each other, and thus intersect.41 According to modern 

 
36 See DE RISI 2021. 
37 Oronce FINÉ, Protomathesis, Paris, 1532, p. 54v . In this work Finé does not demonstrate Elements I,1, and thus the 
principle remains unused. Finé did not mention it in the edition of the Elements he edited in 1536, probably because 
he did not want to alter the classical text. Finé’s axiom was later mentioned by the Spanish translator of the 
Protomathesis, Pedro Juan de Lastanosa de Monzón, in his Latin edition of the Elements. Cf. LASTANOSA, Elementa, 
1569, p. 45. It is possible that Claude Richard was taking Finé's axiom from here and expounded it in RICHARD, 
Euclidis, 1645, pp. 16-17. 
38 Borelli owned some of Finé's works, including an edition of Euclid's Elements edited by him (see above note 3), but 
not the Protomathesis in which the axiom of continuity appears. Borelli mentions Richard’s edition of Apollonius' 
Conics in his letters (see GIOVANNOZZI 1916, p. 5 n. 5). 
39 Euclides: "XIII. Si eadem recta linea intra duas figuras tota collocata fuerit, habebunt illae figurae partem aliquam 
commune, & se secabunt" (p. 14). 
40 See DE RISI 2020. 
41 The model for Borelli's demonstration in the 1679 edition may be Greek, and summarize some considerations found 
in a demonstration of Elements I,22 offered in PROCLUS, In primum Euclidis 329-32. Unbeknownst by Borelli, a similar 
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standards, this was a step back, since a principle of continuity was still needed to draw this last 
inference. Borelli’s 1679 argument is important, however, because it offered a demonstration of 
something (the mutual position of two circles) that had always been simply assumed to be evident 
from the diagram as well. Perhaps Borelli wanted to convey a new ideal of proof, according to 
which geometric demonstrations should be entirely propositional and non-diagrammatic.42 If he 
thought so, he did not make this explicit, and in any case the lack of the continuity axiom was 
damaging this program. The following generations of mathematicians, however, openly discussed 
such an ideal of proof, and demonstrations like Borelli’s Elements I,1 powerfully contributed to 
such debates.43 

Whatever we may think of this inchoative attempt at a gapless proof of Elements I,1 and at 
dealing with the more general issue of continuity in elementary and higher geometry, Borelli’s 
Euclides remained for a long time a model for its powerful and yet simple axiomatic system. It was 
imitated, discussed and corrected by innumerable other axiomatic presentations of mathematics, 
and several of its specific solutions – on parallels, solid geometry, proportions, continuity – survived 
as many landmarks in foundational studies. 

 
 

§4. The Demonstrative Structure 
The true masterpiece of Borelli’s Euclides is not to be found in its philosophy or system of 

axioms, but in the deep reworking of the deductive structure of elementary mathematics. It was 
also the most difficult part of Borelli’s endeavor, and the one which required years of work to be 
carried out. Revising the deductive order according to a new demonstrative ideal required to write 
anew many proofs, to invent new theorems, and to rethink the whole logic innerving elementary 
mathematics. No one had dared so much. 

The content of the thirteen books of the Elements are reorganized by Borelli into nine thematic 
books of his Euclides restitutus. Thus, Book I of the Euclides deals with elementary geometry, and 
is actually close to the first book of the Elements. Book II deals with the properties of the circle, and 
mixes theorems from Elements III and Elements X. Book III, from which the whole Euclides 
restitutus had germinated, develops the theory of proportions according to a new method, and thus 
covers roughly the contents of Elements V. Book IV deals with similarity, and thus has Elements VI 
for its basis, but supplements it with all the other theorems on similarity found in Euclid's other 
books. Book V deals with polygons and their measurement, and draws crosswise from several books 
of the Elements. Book VI deals with solid geometry, and thus covers the main theorems of Elements 
XI and XII. Book VII offers a theory of regular polyhedra, drawing on Elements XIII and the 

 
demonstration is also found in some of Richard's personal notes, now in the Biblioteca de la Real Academia de la Historia 
in Madrid (Colección de Cortes, 9/2680-568, f. 1v). 
42 It cannot be ruled out that Borelli chose Elements I,1 as a paradigmatic case, and for this reason he made use of his 
axiom of continuity (in 1658) and his non-diagrammatic demonstration (in 1679) in this proposition only—assuming 
that similar axioms and proofs could be extended to the rest of the book. This had happened with the early modern 
attempts at transforming Euclid’s proofs into chains of syllogisms in Barbara, which generally only dealt with this one 
proposition. See the famous proofs by PICCOLOMINI 1547, CLAVIUS 1574 and HERIGONE 1634. Note that all these 
logical attempts at remolding Euclid’s proofs into syllogisms still accepted diagrammatic inferences and unstated 
assumptions about intersections. In this sense Borelli was doing much better. 
43 Entirely non-diagrammatic proofs of Elements I,1 are to be found, for instance, in Leibniz’ studies on analysis situs. 
See DE RISI 2020. 
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(spurious) Elements XIV. Book VIII, on the other hand, deals with arithmetic, and thus refers to 
Elements VII, VIII and IX. Finally, Book IX deals with incommensurable quantities and is an 
abbreviated version of Elements X. It is remarkable that in this structure arithmetic occupies the 
penultimate place, and is found after all the geometrical books. In many reworkings of the Elements 
after Borelli, it was instead advanced to the first position, since it is a simpler and more abstract 
science than geometry. We have seen, however, that for Borelli, more abstract also meant posterior 
in nature, and therefore to be treated afterwards—just as surfaces and lines are defined after solid 
bodies.44 

Borelli did not merely reorganize the large thematic units of the thirteen books, but also altered 
the deductive structure within each book. In doing so, Borelli simplified and shortened many 
deductive sequences in the Elements, and halved the theorems of the classical text, reducing Euclid's 
473 propositions to the 230 propositions of the Euclides restitutus.45 Something was certainly lost 
in the editing, but in many cases the richness of the results in the Elements was preserved by the 
elimination of repetitions, by the choice of keeping only the strongest results, and sometimes even 
by the insertion of new general theorems. In addition, Borelli enriched his own treatment of 
elementary geometry by adding a number of important theorems that were found in other classical 
sources—especially in Archimedes and Pappus. 

We may examine in greater detail the deductive structure of Book I of the Euclides restitutus. 
The content of this book is still very similar to the first book of the Elements, and Borelli has not 
yet deconstructed Euclid’s text to the extent we saw earlier in Book V. The beginnings of geometry 
are the same for the two authors. Nonetheless, the deductive structure is completely different. Here 
is the sequence of Borelli’s theorems: 

 
Elements I,1   I,2   I,3   I,4   New   I,15   I,5   I,8   I,9   I,10   I,11   I,12   I,13   I,14   New   
I,29   I,27   I,28   I,31   I,30   I,32   I,16   I,17   I,18   I,6   I,19   I,20   I,21   I,22   I,23   
I,26   I,34   I,33   VI,9   Post.5   New   I,35   I,30   I,37   I,38   I,41   I,42   I,46 

 
The changes might look negligible at first, but grow into a complete “perversion” of Euclid in 

the course of the book. Borelli's Euclides begins like the Elements with the sequence of Elements I,1, 
Elements I,2, Elements I,3, and Elements I,4 dealing with the transportation of segments and the 
first criterion of congruence of triangles. These demonstrations are similar to those in Euclid. 
However, then Borelli moves on to consider angle theory, and introduces a new theorem (proven 
through the technique of superposition) that if two angles are equal then their supplementary angles 
are also equal. This theorem of Borelli's, which was missing in Euclid, is indeed very deep and has 
far-reaching consequences. It will be used many times in the modern age, and even Hilbert, in the 
Grundlagen der Geometrie, formulated it as the fundamental theorem of the theory of angles.46 

 
44 For a treatment of elementary mathematics that puts number theory before geometry, see for example ARNAULD, 
Nouveaux Élémens, 1667; or, in the following century, the textbooks by Christian Wolff. In the times of Borelli, Isaac 
Barrow had reiterated the conceptual precedence of geometry over arithmetic in his Lectiones mathematicae, but this 
was a rather isolated position (BARROW 1683); these lectures by Barrow are not the same on geometry and optics that 
had been published earlier and Borelli owned (see note 3). 
45 This is stated by Borelli in the dedication of the Euclides. The number of propositions in the Elements varies from 
edition to edition depending on the manuscripts used. Heiberg's critical edition numbers 460 propositions. 
46 This is Proposition 5 in Book I of the Euclides restitutus, pp. 23-24, proven by Hilbert as Theorem 14 of the 
Grundlagen (HILBERT 1968, p. 17). 
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Through this new theorem, Borelli is able to immediately prove Elements I,15 (about vertically 
opposite angles), which in Euclid required the sequence of theorems of Elements I,5, Elements I,7, 
Elements I,8, Elements I,11, and Elements I,13, which Borelli has not yet proven. Armed with 
Elements I,15, Borelli could demonstrate through it Elements I,5 (an isosceles triangle has equal 
angles at the base). Borelli's proof of this Elements I,5 is different from Euclid's, which was very 
famous and often discussed as too complex and unnatural for such a simple theorem, and was 
considered difficult for students (the so-called pons asinorum). From Elements I,5, Borelli proves 
Elements I,8 (the third criterion of congruence of triangles), making use of a demonstration that 
does not need to assume Elements I,7 (which Borelli had not yet proven, and Euclid had employed 
in the proof). Borelli’s demonstration of Elements I,8 is found in Proclus attributed to Philo of 
Byzantium,47 who apparently had devised it precisely to show that Elements I,8 is deductively 
independent of Elements I,7. Borelli, by inserting Philo's proof into the deductive sequence of the 
Euclides restitutus, shows that such a demonstrative path is indeed globally viable. From here 
Borelli's book takes up the Euclidean deductive sequence and easily proves the propositions from 
Elements I,9 to Elements I,14, concluding the discussion on angles. After these, however, Borelli 
jumps directly to the theory of parallels, with the group of theorems, in perturbed order, from 
Elements I,27 to I,32. At this point the deductive sequence of the Euclides departs even further from 
that of the Elements, and goes on with a sequence of results that has no match in Euclid. The last 
part of Book I is devoted to a general theory of parallelograms and proves many theorems actually 
found in Euclid's text and a few more. However, Euclid arguably proved theorems about 
parallelograms for the sole purpose of arriving at Elements I,45, which is a very general theorem of 
equivalence between polygons. He had so little interest in parallelograms per se that he did not even 
bother to give a definition of them. Borelli, on the other hand, deals with the theory of equivalence 
of polygons in Book IV, and proves Elements I,45 in that book. Consequently, the whole theory of 
parallelograms (Elements I,33 – I,44) is no longer, in Borelli, functional for a further result, but 
instead becomes an independent research topic. Once again, the deductive sequence within these 
theorems changes to reflect the shift in function of the propositions and is enriched with results 
(such as Elements VI,9) that were foreign to the subject matter treated by Euclid. Similarly, the last 
theorem in the first book of the Elements is the famous Theorem of Pythagoras, which Borelli 
proves only in Book V because he believed it is thematically connected with the topics covered 
there. But this shift disrupts the Euclidean deductive sequence: for example, Elements I,46, on the 
construction of squares, is demonstrated by Borelli at the end of Book I of the Euclides as a further 
complement to the theory of parallelograms rather than as a premise to the Pythagorean Theorem 
as it was in Euclid.48 

It is worth taking a closer look at the demonstrative sequence concerning the theory of parallels 
in Book I, since this is generally considered one of Borelli’s masterpieces. Many geometers were 
dissatisfied with Euclid's original theory and tried to offer better alternatives: a sound theory of 
parallels was therefore pivotal in determining the success of a radical rewriting of the Elements. 

Borelli suggested that the difficulties of the classical theory depend on the fact that Euclid had 
resorted to the notion of the infinite. Euclid, indeed, defines parallel lines as straight lines that never 
meet, even if extended to infinity. This definition is then supplemented by the Fifth Postulate, 

 
47 See PROCLUS, In primum Euclidis 266-69. Philo's demonstration was discussed in a scholium by CLAVIUS, Euclidis, 
ed. 1574, pp. 54-55. 
48 On the deductive structure of the first book of Euclid's Elements see NEUENSCHWANDER 1973, MUELLER 1981, 
VITRAC 1990-2001. 
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which states that two straight lines that are inclined towards each other (i.e., that form with a 
transversal interior angles less than two right angles), will eventually meet if extended infinitely 
(i.e., are not parallel). In both the definition and the postulate appears the Greek term ἄπειρον, the 
"infinite" or "indefinite," otherwise very rare in Euclid’s text. Borelli judges Euclid’s definition of 
parallels to be based on a passio valdè remota et incomprensibilis, and believes that no use can be 
made of it.49 

Borelli offers a new definition of parallel lines: parallels are those straight lines which have a 
perpendicular in common.50 This definition has the advantage of not having to consider the two 
lines in their entirety, that is, infinitely extended. Borelli's definition is local. Moreover, although 
this definition expounds an essential property of parallels rather than their construction, Euclid 
shows in Elements I,11 and 12 how to construct perpendicular straight lines with ruler and compass. 
Using these propositions, it is thus possible to construct parallel lines according to Borelli's 
definition. This complies with Borelli’s constructive epistemology.51 

Borelli complemented his definition with an explicit axiom: a segment running perpendicular 
on a straight line traces with its free end another straight line (which is parallel to the first, following 
Borelli’s definition). This statement had appeared as an explicit assumption in the course of Clavius’ 
discussion of the theory of parallels, but no one had assumed it as an axiom before Borelli.52 It is a 
statement equivalent to Euclid’s original Fifth Postulate. 

From this axiom, Borelli proves a new theorem on parallel lines: if two straight lines have a 
perpendicular in common, then any other perpendicular to one of them is also perpendicular to 
the other. In the centuries that followed, Borelli’s theorem became a standard formulation of the 
Fifth Postulate in geometry.53 Through this important theorem, Borelli easily proves that parallel 
lines (defined according to him) satisfy Euclid’s definition of parallels, namely, that they do not 
meet even if extended infinitely. Further on, he demonstrates Euclid's main propositions requiring 

 
49 The expression comes from the scholium after Proposition 16 in Book I (Euclides, p. 37). 
50 There is really an ambiguity in Borelli's definition of parallels, because this definition is offered in 1658 after the 
formulation of the axiom on parallels, and thus it is not clear whether parallel lines are those with a common 
perpendicular or those that are drawn according to the axiom. However, in the preface to the 1679 edition it is clear 
that Borelli's definition is the former: "Certum enim est, ex Propositionibus 10. & 11. Primi Elementi quod duae 
rectae AB, CD in eodem plano existentes possunt perpendiculariter elevari super eandem rectam EH; tunc quidem 
predictas lineas AB, & CD voco inter se parallelas" (p. iii). It may also be mentioned that the edition of Euclid's 
Elements edited by André Tacquet in 1654 had a definition of parallels as equidistant lines, later enriched by an axiom 
(pleonastic, for it can be proven from the definition) that two parallels have a common perpendicular (cf. p. 9 and p. 
12). It is possible, but not necessary, that Borelli was inspired by this (far less interesting) theory of Tacquet. 
51 It is true, however, that in Elements I,12 (Euclides, Prop. 11; p. 29) there is a much needed reference to an infinite 
straight line.  
52 CLAVIUS, Euclidis, ed. 1589, pp. 144-61. The theory was missing from the first edition (1574) of Clavius' work. 
The construction of parallels through the motion of a perpendicular segment dates to the Arabic Middle Ages (Thābit 
ibn Qurra, ninth century), and Clavius had attempted to justify it with a quite naïve argument. Borelli’s argument 
does not fare any better, but it largely surpasses Clavius’ discussion in making explicit that we are dealing with a new 
axiom.  
53 On Borelli's theorem, see Saccheri’s remark: "Ma il punto è dimostrare senza petizione di principio che se una retta 
è perpendicolare a due rette, qualunque altra che sia perpendicolare ad una di esse, debba essere perpendicolare alla 
compagna. Io non mi arrendo che il Borelli abbia ciò dimostrato, quando non abbia fatto capo al concetto formale 
obiettivo di linea retta. Fin qui il Saccheri…" (Ceva to Grandi, August 9th, 1713, in TENCA 1952, p. 38). On the 
subject, see also: MAIERÙ 1982 and DI STEFANO, FRASCA SPADA 1985. 
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the Fifth Postulate (Elements I,29, and then Elements I,32 on the sum of the interior angles of 
triangles), and finally the Fifth Postulate itself in Euclid's original formulation. In this way he 
reconstructs, by a different deductive path, the theory of parallels in the Elements. It is remarkable 
that in Borelli's presentation many theorems on parallels that are independent of the validity of the 
Fifth Postulate (such as Elements I,27, Elements I,28, Elements I,31) are proven after the assumption 
of Borelli’s substitute axiom. Even the Exterior Angle Theorem (Elements I,16), which Euclid used 
as an important tool in his own theory of parallels, is not proven by Borelli until after the 
development of the entire theory. Borelli, in short, never had any interest in separating the results 
of "absolute geometry" independent of the validity of the Fifth Postulate from those specifically 
"Euclidean" results that require its validity. His epistemology did not focus on the independence 
of certain theorems from certain axioms (as is normally the case in today’s geometry), but rather 
on the fact that axioms are immediate consequences of definitions, and therefore they must be 
formulated, and used, at the beginning of the theory and in place of the definitions themselves. 

This brief examination of the deductive structure of Book I of the Euclides restitutus shows how 
complex the task of rewriting the Elements was. Borelli had many objectives in doing this: he wanted 
to prove general and consequence-rich theorems (Borelli's theorem on supplementary angles), 
simplify the Elements for students (the pons asinorum), show the logical independence of certain 
propositions from others (Elements I,8 with respect to Elements I,7), prove standard axioms and 
revise classical definitions (the discussion on parallels), thematize new geometrical objects left out 
by Euclid (parallelograms), eliminate the infinite from proofs, and still others. He accomplished 
these aims by using alternative proofs found in ancient commentators, rewriting himself some 
proofs, inventing new theorems, making liberal use of material found in the works of recent 
mathematicians, and most of all by studying in depth the logical structure of Euclid’s treatise. 

Borelli showed that the venerable deductive tree planted by Euclid was more changeable than 
expected, and its roots, trunk and branches could be mixed up as to make new timber for geometry. 
Following his own ideal of demonstration, he carved his Euclides restitutus out of the Elements. The 
material was the same: Borelli never doubted that there is just one possible geometry, that had been 
expounded in Euclid’s Elements. But the architecture of his Euclides was different, since the same 
corpus of mathematical truths may be arranged in different ways. 

Borelli’s new structure for elementary mathematics offered new insights on geometry itself, by 
showing connections and logical dependencies that previously had been invisible in Euclid's work. 
As we have seen, however, something else went lost in the Euclides. Some deductive sequences 
actually present in the ancient text, such as a unified theory of the equivalence of polygonal figures 
in Elements I, 35 – I,45, or the connection between Elements I,46 and the Theorem of Pythagoras, 
or yet the fact that Elements I,16 – I,28 are independent from the Fifth Postulate, were missing in 
Borelli’s book. This fact is a straightforward consequence of Borelli’s historicization of Euclid: 
different arrangements of the same mathematical corpus may show different mathematical facts. 
Euclid had his own interpretation of mathematics, which stressed and amplified some aspects of it, 
while leaving others in the shade. Borelli had a different interpretation of mathematics, driven by 
questions and themes that were foreign to Euclid and had become relevant in the seventeenth 
century. 

In the following centuries, many other mathematicians retained the idea of implementing their 
own views into alternative deductive systems of elementary geometry. Borelli had made clear that 
the logical structure of mathematics is not given once and for all, but is a conscious choice of the 
mathematician, who can shape the deductive sequence according to different interests, goals and 
ideals. 
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§5. The Legacy of the Euclides restitutus 
Borelli's Euclides restitutus is a fundamental junction in the history of the foundations of 

mathematics. Borelli's eclecticism and broad interests gathered therein together the foundational 
reflections of Galileo and his school, the erudition of Clavius, the inventions of Maurolycus and, 
through him, of some medieval authors, but then also modern innovations of mathematicians from 
France and Spain such as Finé and Richard, and then again Scholastic and perhaps even Hobbesian 
theories on definitions and axioms. All these materials were rethought and transformed by Borelli 
into a new conception of geometry, which he expounded through a radical rereading and 
transformation of Euclid's Elements. His contemporaries realized the importance of Borelli's work 
in this field, and discussed it at length: it was taken as a model for countless further mathematical 
treatises, and was harshly criticized in many others. Thus, the threads of the various traditions that 
Borelli had woven together in the Euclides unraveled again in a multitude of new lines; and almost 
all modern foundational studies, so different from each other and often oblivious of Borelli, owe 
something to this first attempt at rearranging Euclid. 

The most immediate and obvious filiation of the Euclides restitutus occurred among Italian 
scholars. 

Vitale Giordano da Bitonto, who was well acquainted with Borelli and his work, published in 
1680 (only a few months after Borelli's death) a book that he had probably been preparing for some 
time but had not yet had the audacity to give to print: a Euclide restituto written in Italian. This 
work offered a reference to Borelli from the title, and Borelli's foundational studies are discussed 
there in a multitude of places. Giordano's Euclide restituto, however, seems to want to oppose, 
rather than imitate, Borelli's Italian Euclide rinnovato. Indeed, Giordano follows Euclid's deductive 
order, and not Borelli's altered one; he has the axioms and definitions of the Euclidean tradition of 
Clavius and other Renaissance mathematicians, and not Borelli's; and he presents Greek classical 
theories, such as that of proportions, rather than Borelli's new ones. Only in the theory of parallels 
does Giordano try some new foundational paths, but again he takes care to put his own reflections 
in scholia and notes, without altering the classical text. It would have been clear to all readers that 
he was restoring Euclid’s Elements to their classical form after they had been so disfigured by Borelli. 
Giordano was also preserving and expounding, in the margin of the text, some of Borelli's new 
foundational ideas. It was thus a rejection but also taming of Borelli's work. 

In 1709, Angelo Marchetti (son of Alessandro, Borelli's student) published his own Euclides 
reformatus. This work had no philological qualms, and pursued the idea of reforming Euclid 
through a new deductive structure and new principles—as Borelli had done. Marchetti departed 
from Borelli, quite explicitly, in terms of specific foundational solutions. In particular, he authored 
a new theory of proportions, quite different from Euclid's and also from Borelli's, which he opposed 
to both. Elsewhere, however, Marchetti's different foundational choices were mere variations on 
Borelli's, and he in fact followed him in almost all important points. It was thus a continuation of 
the tradition inaugurated by Borelli. 

Finally, in 1733, Gerolamo Saccheri gave his Euclides vindicatus in print. Again, the title was 
an explicit reference to the book by Borelli, who is the most discussed author in the volume. In his 
book, Saccheri presents the reader with two monographic studies on the theory of parallels and the 
theory of proportions, and in both he sets out to "vindicate" Euclid from the unjust criticisms that 
modern mathematicians, and Borelli in particular, had made of him on these issues. The hyper-
classicism of Saccheri, who like Borelli (but half a century after him) never dealt with modern 
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mathematics, naturally led him to confront the Euclides restitutus and its classicist demonstrative 
ideal. Saccheri felt however that any deviation from Euclid, like those, very numerous, of Borelli, 
were as many insults to mathematics and logic. Even more, they were unwarranted attacks on the 
highest mathematical authority, since Euclid’s Elements represents for Saccheri an orthodoxy 
accepting no interpretation that is not a heresy.54 The Euclides vindicatus was a veritable counter-
reformation of Borelli’s Euclides restitutus. In any case, given the extraordinary importance of 
Saccheri’s theory of parallels for the discovery of non-Euclidean geometries, it can be said that it 
was this Euclides of 1733 that highlighted, albeit critically, the foundational relevance of Borelli’s 
studies in this domain. 

The Italian geometrical tradition, however, shows only the most explicit reception of the 
Euclides restitutus. Borelli’s work quickly crossed national borders, and was an important source of 
inspiration for all subsequent treatises on geometry that radically reformed Euclid’s Elements. 

Many of Borelli’s mathematical ideas survived in the later geometrical tradition, and in the 
treatises of the eighteenth and nineteenth centuries it is not difficult to pick up fragments of the 
Euclides: a deductive sequence different from that of the Elements, an axiom of continuity that is 
clearly derived from Borelli, the axiomatization of the geometry of solids, some considerations on 
the theory of parallels, a rewriting of the Euclidean theorems proven through exhaustion, various 
considerations on constructivism or the infinite, and much more. Borelli’s ideas have influenced 
many aspects of the modern treatment of elementary mathematics for a very long time.  

Borelli's mathematical epistemology even exerted a strong fascination among the philosophical 
community, which was attracted by the fame and foundational rigor of the Euclides. Thus we find 
discussions of Borelli's work in authors such as Spinoza, who was interested in it for the theory of 
axioms and definitions; in Leibniz, who commented on the Euclides with a multitude of marginal 
notes and observations of his own; in Wolff, who made use of it in his own philosophy of 
mathematics, which had such a wide influence in eighteenth-century Germany; and even in Kant, 
who seems to have regarded Borelli's work as a model and paradigm for mathematical 
demonstration.55 

Borelli's legacy in the history of mathematics, however, does not depend only, or so much, on 
the survival of certain of his particular results in geometry and epistemology. The Euclides had 
shown for the first time the possibility of making use of Greek mathematical texts in a new way, 
and had thus created a new approach to the classics of this science. After Borelli's book, nothing 
was as before: dozens and then hundreds of mathematicians wrote treatises on elementary geometry 
that departed from the structure of the Elements. This is an exceptionally important historical 

 
54 It is impossible not to see a political and religious contrast between the “revolutionary” Borelli, who participated to 
the anti-Spanish revolts in Messina, and the conservative Jesuit Saccheri. Among the many studies on Borelli’s political 
views, see for instance BALDINI 1978 and BERTOLONI MELI 1996. 
55 Spinoza discussed Borelli's philosophy of mathematics in Letter 9 to de Vries (1663). Leibniz was an avid reader of 
the Euclides restitutus, which he annotated with great care, pointing out what he approved ("rectè") and what seemed 
to him to be inexcusable errors. He had correspondences about Borelli with Vitale Giordano (see note 19) and Angelo 
Marchetti (A III, 6, n. 244, pp. 806-807; A III, 7, n. 196, pp. 779-81). At the end of his life and after writing hundreds 
of pages of foundational studies in elementary geometry, however, Leibniz was quite dismissive with Borelli: "In Borello 
multum diligentiae agnosco, ingenio mediocri fuisse videtur" (Leibniz to Johann Bernoulli, October 23rd, 1716; in 
GM III, p. 971). We have already mentioned in the notes 22 and 24 some works in which Wolff quoted Borelli and 
applied his methodological directions. Kant cites Apollonius’ Conics in Borelli's edition, but it seems possible that he 
was also familiar with the Euclides and the theory of parallels in particular. On Kant and Borelli see LAYWINE 2014 
and HEIS 2020. 
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phenomenon that powerfully influenced the history of modern mathematics and still marks today's 
foundational studies. Arnauld's Elements of 1667, guided by a Cartesian epistemology; the 
eighteenth-century textbooks of Simpson and Kästner; Legendre's great Éléments de géométrie of 
1794; and also the works on elementary geometry by Pasch and Peano, and Hilbert's celebrated 
Grundlagen der Geometrie, which closed the foundational research of the nineteenth century and 
opened those of today: are as many examples of radical rewriting, inspired by different 
epistemologies, of the content of Euclid's Elements. 

All these books and many more, so different from each other and so important for the history 
of science, belong to the same literary genre. This literary genre was created by Borelli with the 
Euclides restitutus, which was, in many respects, the first modern book of elementary geometry. 
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