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ABSTRACT.
We compare the two basic concepts of minmax value and equilibrium points in terms
of :
- definitions, properties and interpretation,
- tools used in the existence proofs,
- developments and applications, in particular for repeated games.
This will lead us to question the approach asserting the following viewpoint:
Equilibrium as extension of the value paradigm to non-zero sum games,
Value as a special case of equilibrium payoff for zero-sum games.
We claim that many important properties apply only to one of these concepts.

1. BASIC CONCEPTS

We first recall the framework and the definition of these fundamental notions: value
and equilibria.

1.1. Value.
The min max theorem allows to evaluate some interactive situations of pure conflict
by a number: the value of the game.
Formally a function f from a product setX×Y to R defines a two-person zero-sum game,
with strategy set X and payoff function f for player 1 (resp. Y and −f for player 2).
v = supx∈X infy∈Y f(x, y) is the largest amount that player 1 can guarantee and simi-
larly v = infy∈Y supx∈X f(x, y) for player 2.

The minmax theorem gives conditions under which the game has a value, v, namely:

(1) v = v = v

see Borel (1921) [14].
In this case v is a natural and unique evaluation - in the payoff space- of the interaction.
Associated notions are the duality gap: δ = v−v and the gap function φ(x, y) = supX f(., y)−
infY f(x, .).
An equivalent formulation of (1) takes the duality form, for any a ∈ R:

(2) ∀y ∈ Y, ∃x ∈ X, f(x, y) ≥ a⇒ ∃x ∈ X, ∀y ∈ Y, f(x, y) ≥ a.

1.2. Equilibria.
An equilibrium describes some joint behavior of players in a game exhibiting a robust-
ness property.
Consider a strategic game G defined by a set I of players, a set Si of strategies for each
i ∈ I , a payoff mapping g from S = ΠI

i=1S
i to RI .
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A Nash equilibrium, Nash (1950) [61], is a profile of strategies s ∈ S where no player can
gain by changing her strategy:

(3) gi(ti, s−i) ≤ gi(s), ∀ti ∈ Si, ∀i ∈ I.

Alternatively, a profile t eliminates a profile s if there exists a player i ∈ I with gi(ti, s−i) >
gi(s). Let E(t) ⊂ S be the set of profiles not eliminated by t. An equilibrium is then a
profile in ∩t∈SE(t). This formulation is in the spirit of an equilibrium being a “rational”
rule of behavior.

The minimal hypotheses used to sustain this concept are:
- s is public knowledge,
- each player i knows her best reply correspondence BRi (where BRi(s−i) = {si ∈
Si; gi(si, s−i) ≥ gi(ti, s−i),∀ti ∈ Si}),
- each player i is rational.
The associated scenario is the following: a profile s is suggested to all players, each
player i plays the corresponding component si if and only if si ∈ BRi(s−i).
At this level, no player knows whether the suggestion s is an equilibrium or not, and
no notion of "credible threat" applies since i does not know gj , for j 6= i.
This leads to two interpretations, see the discussion in [45]:
the first one (proposal) is that the only acceptable public proposals are equilibria;
the second one (norm) involves a norm of behavior, namely a profile of strategies used
repeatedly in the past, under the hypotheses: 1) that the history available to the players
includes the strategies and is public knowledge, 2) that the structure of the interaction
is stationary (repeated game with short-lived players). Note that in this case the play-
ers, assuming a rational behavior of their opponents, will deduce that s is an equilib-
rium.
A related procedure with a dynamical aspect was suggested by Nash in his thesis [62],
under the name "mass action": the players are facing a stationary process (play gen-
erated by a population) and can identify their best replies hence rest points will be
equilibria.

The standard hypotheses under which the equilibrium concept is currently used are:
- common knowledge of the game parameters,
- common knowledge of rationality of the players.
The main issue is then a choice of equilibrium.
This interpretation (rational prediction) was also suggested by Nash in his thesis [62],
but he added a uniqueness requirement to justify the play of an equilibrium.

Even in the case of uniqueness the argument leading to an equilibrium may be prob-
lematic. A basic example is the following game due to Aumann and Maschler (1968)
[3]:

L R
T (2, 0) (0, 1)
B (0, 1) (1, 0)

where for both players equilibrium payoff and value coincide.
The only equilibrium is x1 = (1/2, 1/2), x2 = (1/3, 2/3) with payoff (2/3, 1/2). For
player 1 the minmax strategy y1 = (1/3, 2/3) is also a best reply to x2 but in addition
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it guarantees 2/3. An analogous property holds for player 2 and no strong argument
supports the use of x in a one-shot game.
A condition like "unique best reply” is needed to enforce the equilibrium play.

On the other hand if the players share information on their payoffs, some equilibria
are non-justifiable, see e.g. Laraki, Renault and Sorin (2019) [46]:

L R
T (0, 0) (10, 0)
B (1, 1) (0, 1)

If player 2 (a dummy player) knows player 1’s payoff and knows that player 1 knows
this fact, he will play L (to enforce B) and the (T,R) equilibrium does not make sense.
The only remaining equilibrium is (B,L).

2. TOOLS

We describe now briefly the different tools used in the existence proofs.

2.1. Value.
The initial proof of the minmax theorem is due to Von Neumann (1928) [80]. f is a
bilinear function on a product of simplices corresponding to the mixed extension of a
game with finitely many choices for each player.
Actually Von Neumann shows the existence of a saddle point for f , (x∗, y∗) ∈ X × Y
with:

f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y) ∀(x, y) ∈ X × Y

(x∗, y∗) being a fixed point of the best reply correspondence or a zero of the gap function
φ.
The first proof using the separation property of disjoint convex sets is due to Ville
(1938) [79], see von Neumann and Morgenstern (1944) [81] third ed. 1953, p. 154, note
1.

2.1.1. Alternative proofs of the minmax theorem.
As already noticed by Kuhn (2003) [44] in his lecture notes from 1953, a large variety
of proofs are available, among which:
- induction on the size of the game, Loomis (1946) [49],
- Fourier elimination procedure (in finite dimension) and alternative lemma; duality
for Linear Programming,
- separation in Rn (or more generally projection in Hilbert spaces),
- unilateral procedure in discrete time, following Blackwell (1956) [12],
- continuous time dynamics, Brown and von Neumann (1950) [16],
- fictitious play in discrete and continuous time, Brown (1951) [15], Robinson (1951)
[65],
- replicator dynamics, or more generally no-regret dynamics, see e.g. Hofbauer (2018)
[37].
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2.1.2. General formulation of the minmax theorem.
A useful and standard statement of the minmax theorem is the following:

Theorem 1 (Sion, 1958). [73]
Let G = (X, Y, f) be a zero-sum game satisfying:
(i) X and Y are convex subsets of a topological vector space,
(ii) X or Y is compact,
(iii) for each y in Y , f(., y) is quasi-concave upper semi-continuous in x, and for each x in X ,
f(x, .) is quasi-convex lowser semi-continuous in y.
Then G has a value.

Note that the hypotheses involve geometrical and topological properties on the strat-
egy sets and the payoff function.
An optimal strategy x∗ ∈ X for player 1, which satisfies a unilateral property, namely
guaranteeing the value, f(x∗, y) ≥ v,∀y ∈ Y , exists under a compactness assumption
on X , and similarly for player 2.
The basic tool used in the proof is the Hahn-Banach separation theorem via the inter-
section lemma, see Berge (1966) [11] p. 172.

2.2. Equilibria.
The first proof of existence for finite games was provided by Nash (1950) [61]; it used
the Nash map and Brouwer’s fixed point theorem.
A general version is as follows:

Theorem 2 (Nash, 1951 [63], Glicksberg, 1952 [27], Fan, 1952 [20]).
Let Si be a compact convex subset of a topological vector space, gi be continuous on S and quasi
concave w.r.t. si, for all i ∈ I , then the set of equilibria is compact and non empty.

The proof relies on Kakutani’s fixed point property [40] applied to the best reply
correspondence. Alternatively, equilibria are the zeroes of the Nikaido map Φ(s) =∑

i[supSi gi(., s−i)− gi(s)].
Notice that again the hypotheses involve geometrical and topological properties on
strategy sets and payoff functions. The main difference with Theorem 1 is that joint
continuity is required.

Conversely, McLennan and Tourky (2006) ) [53] use the existence of Nash equilibria
for two-person finite games to prove Kakutani’s fixed point theorem.

3. EXTENSIONS AND APPLICATIONS

3.1. Equilibrium.
We identify here four different fields where research has been extremely active and
productive.

3.1.1. Equilibrium selection.
The literature on this topic, which aims at reducing the equilibrium set, is huge and di-
verse by its approaches and domains of applications (extensive or normal form games).
Let us mention a.o. :
- perfect, Selten (1975) [70], Harsanyi and Selten (1988) [33]
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- proper, Myerson (1978) [60]
- sequential, Kreps and Wilson (1982) [43]
- persistent, Kalai and Samet (1984) [39]
- stable, Kohlberg and Mertens (1986) [41], Mertens (1989) [54, 55]
- divine, Banks and Sobel (1987) [7]
- essential, Govidan and Wilson (2005) [31]
and the surveys by Van Damme (2002) [78], Hillas and Kohlberg, (2002) [36].
A related area analyzes games with signals and the associated notion of conjectural
equilibrium (where the information after a play is consistent with the anticipation), see
e.g. Fudenberg and Levine (1993) [23].

3.1.2. Manifold of equilibria.
This area corresponds to the study of the graph E of the equilibrium correspondence
over the space Γ of games (in the finite case),

E = {(x,G); x equilibrium of G,G ∈ Γ}
and has been introduced by Kohlberg and Mertens (1986) [41].
A first property they prove is that E is homeomorphic to Γ.
Define a Nash field Φ as a continuous map from Γ × S to S such that the fixed points
of Φ(G, .) are the equilibria of G. Given a component of equilibria, its index is constant
among Nash fields and is equal to the local degree of the projection map from E to
Γ, Demichelis and Germano (2000, 2002) [18, 19], Govidan and Wilson (1997a, 1997b)
[29, 30].

3.1.3. Supergames.
This field is devoted to the analysis of the set of equilibria of a repeated game with
complete information.
Basic results extend the "Folk theorem" asserting that "the set of equilibrium payoffs
of the supergame are the feasible individually rational payoffs" to the framework of
perfect equilibria, Aumann and Shapley (1994) [5], Rubinstein (1994) [67].
Then follows a large and important literature involving variations on the payoffs: fi-
nite/discounted/uniform, equilibrium selection, games with signals, various duration
of the players, ... see a.o. Abreu,Pearce and Stacchetti (1990) [1], Fudenberg and Levine
(1994) [24], Fudenberg and Maskin (1986) [26], Benoit and Krishna (1985) [10], Sorin
(1992) [75], Gossner (1995) [28] , ... and the book by Mailath and Samuelson (2006) [50].

A closely related area studies the impact of perturbation/reputation effects on re-
peated interactions, Kreps, Milgrom, Roberts and Wilson (1982) [42], Aumann and
Sorin (1989) [6].

3.1.4. Games with a large number of players; population and non-atomic games.
Extension of Nash equilibria appears in the analysis of congestion modelling involving
a crowd of players, Wardrop (1952) [82] and for general non atomic games, Schmei-
dler (1973)[69], Mas Colell (1984)[51]. The model of population games is fundamental
in biology, Maynard-Smith (1981)[52], with specific concepts like Evolutionary Stable
Strategy, Taylor and Jonker (1978) [77].
The basic results in this field can be found in Hofbauer and Sigmund (1998) [38], a
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more recent presentation is Sandholm (2011) [68].
Let us also mention Mean Field Games that study anonymous differential games with
a continuum of players, Lasry and Lions (2007) [48].

3.2. Value.
We describe here three fields where the analysis in terms of value has been particularly
efficient.

3.2.1. Alternative/dual statements.
This corresponds to properties that extends statement (2).
A typical example is approachability theory, Blackwell (1956)[12] for games with vector
payoffs, where f maps X × Y to Rn. The basic duality takes the form:

(4) ∀y ∈ Y, ∃x ∈ X f(x, y) ∈ W ⇒ ∃x ∈ X, ∀y ∈ Y, f(x, y) ∈ W
which is the alternative for half spaces W .
When applied to a repeated game it leads, in the case of a convex domain D, to the
duality property: approachability vs excludability. In fact if player 2 cannot force some
set W disjoint from D, player 1 can inductively mimick a viable trajectory that gener-
ates a sequence of payoffs such that the average converges to D.
In the more general case with signals on the outcomes, necessary and sufficient condi-
tions of this kind for approachability are available, Perchet (2011) [64]

3.2.2. Operator approach and recursive formula.
This domain analyzes the extension of the recursive structure for discounted stochastic
games, introduced by Shapley (1953).

For a general repeated game, the natural state space is given by the consistent prob-
abilities on the universal belief space, Ω, Mertens and Zamir (1985) [57], Mertens, Sorin
and Zamir (2015) [56]. A profile of one-stage strategies defines an information structure
and the signals allow to compute the transition kernel on this state space Ω.

When the minmax theorem holds, the repeated game G has the same value as an
auxiliary game G′ where the one-stage strategies are announced. However in G′ a
basic recursive formula on the value function as a function on Ω is available, [56] Th.
IV.3.2.

This tool is fundamental to study asymptotic properties of the value, but also regu-
larity aspects and the link between discrete and continuous time approach (Hamilton-
Jacobi equation).

3.2.3. Uniform and asymptotic criteria.
The analysis of zero-sum repeated games can be divided into :
- an asymptotic approach which is concerned by the limit properties of the value function
as the (expected) duration of the game goes to infinity, like existence of lim vn (n-stage
game) or lim vλ (λ-discounted game),
- a uniform approach based on robustness properties of strategies in any game with long
duration, leading to the notion of uniform maxmin and minmax (where the existence
has to be proved), and of uniform value v∞ when they coincide.
In particular the existence of a uniform value implies the existence of an asymptotic
value and their equality.
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3.3. Comments.
Note that the topics under 3.1 are trivial or vacuous when applied to the value of

zero-sum games.

On the other hand there are no properties equivalent to 3.2 for equilibria of non-zero
sum games.
The viewpoint described in 3.2.1 is in the spirit of the basic approach of Blackwell and
Girshik (1954) [13] and applies as well to calibration procedures (see e.g. Cesa-Bianchi
and Lugosi [17] and 4.2.) or to the link between α and β characteristic functions.
The minmax theorem is one example of a duality result: expressing a property from
two perspectives (achieve or defend an amount).

Property 3.2.2 has no counter-part in non zero-sum games. Strategies have to be
specified on (private) histories, not on Ω, and this prevents the emergence of a recursive
structure.
In addition the "value operator” exhibits monotonic aspects (with respect to the payoff
or the strategy spaces) that are crucial to deduce regularity aspects and analyze limit
behavior.
One cannot establish similar properties for equilibria in non-zero sum games.

Concerning 3.2.3 there are no analogous results in the non-zero sum case, see for
incomplete information games, Aumann and Maschler (1995) [4], and for stochastic
games, Sorin (1986) [74].

4. SOME LINKS

We describe here two important connections between equilibrium and value.

4.1. Variational inequalities.
The equilibrium condition (3) for smooth concave payoff functions takes the form:

(5) 〈∇ig
i(s), si − ti〉 ≥ 0 ∀ti ∈ Si,∀i ∈ I,

where∇ig
i denotes the gradient of gi w.r.t. si.

More generally for a vector field F on a compact convex set Z, one introduces the sets
of internal solutions:

〈F (z), z − z′〉 ≥ 0 ∀z′ ∈ Z
and external solutions:

〈F (z′), z − z′〉 ≥ 0 ∀z′ ∈ Z
and for continuous fields the existence of an internal solution is equivalent to the fixed
point theorem, while external solutions may no exist.
The field is dissipative if:

〈F (z′)− F (z), z − z′〉 ≥ 0 ∀z, z′ ∈ Z.

For dissipative continuous fields, there is equivalence between internal and external
solutions of variational inequalities and an existence proof is available via the minmax
theorem, Minty (1967) [58].
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A basic example corresponds to F = (∇1f,−∇2f) for smooth concave/convex zero-
sum game, Rockafellar (1970) [66].
This property has fundamental applications in the study of no-regret dynamics, Sorin
(2021) [76].

A complementary perspective on the difference between fixed point and min max
approaches for variational inequalities is discussed in the recent article by Foster and
Hart (2021) [21], Sections III.D and VII.

4.2. Correlated equilibria.
Correlated equilibria corresponds to equilibria of a game extended by an information
structure, Aumann (1974) [2]. Hart and Schmeidler (1989) [35] proved existence by
identifying the set of correlated equilibrium distributions as the set of optimal strate-
gies in an associated two-person zero-sum game.

In repeated games several learning procedures based on the no-regret property, Han-
nan (1957) [32], converge to the set of optimal strategies in zero-sum games.

A refinement asking for internal vs external consistency, Hart and Mas Colell (2013)
[34], Foster and Vohra (1999) [22] allows to prove that if every player uses such a pro-
cedure then: all accumulation points of the empirical joint distribution of moves are
correlated equilibria.
Note that one obtains convergence of the average behavior to the set of correlated equilibria
under a profile of algorithms satisfying a unilateral property (equivalent to calibration).

5. RESEARCH DIRECTIONS

5.1. General theory of two-person zero-sum games.
In the spirit of sections 3.2.2.and 3.2.3. the aim is to build a comprehensive theory
including stochastic aspects, incomplete information and signals, Mertens, Sorin and
Zamir (2015) [56] and developing the link with differential games and games in con-
tinuous time, Laraki and Sorin (2015) [47].

5.2. Equilibria as solutions of variational inequalities.
The objective here is to extend and generalize the results of section 3.1.2. to the frame-
work of section 4.1. . Games will appear there as special vector fields that decompose
in the sense that:

(6) 〈φ(z), v〉 =
∑
i∈I

〈φi(z), vi〉, z, v ∈ Z

and the manifold of solutions is defined on the vector space {φ(.) + v, v ∈ Z}.

5.3. Nash fields and dynamic stability.
The analysis of the dynamical system ṡt = Φ(G, st), Φ being a Nash field, is of first
importance, especially concerning its asymptotic properties. In particular one can ob-
serve that attractors may not consist of subsets of fixed points, Shapley [72]. The link
with discrete time related dynamics is also of interest, in the spirit of Benaim, Hofbauer
and Sorin [8, 9].
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6. SUMMARY

To summarize it appears that value and equilibria are quite different concepts with
specific properties and fields of applications.
They correspond to two approaches that are complementary and cannot be reduced to
each other.
A typical example is the uniform approach for zero-sum games with lack of informa-
tion on one side: an optimal strategy of the informed player is the celebrated splitting
strategy, while an optimal strategy of the uninformed player relies on the approacha-
bility of an orthant. These are unilateral guarantees rather than equilibrium properties.

On the other hand, there are similar aspects between zero-sum games and certain
classes of non-zero sum games, mainly potential games, Monderer and Shapley (1996)
[59] or dissipative games, in particular in terms of learning dynamics.
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