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Introduction

Data analysis techniques can be divided into two main categories: supervised analysis, where the goal is to predict a mapping between a set of input variables and a target output variable, and unsupervised analysis where the objective is to describe the set of all variables by uncovering the underlying structure of the data. This is often achieved by identifying dense and homogeneous clusters of instances, using a family of techniques called clustering. Co-clustering ([Good, 1965, Hartigan, 1975]), also called cross-classification, is an extension of the standard clustering approach. It is a class of unsupervised data analysis techniques that aim at simultaneously clustering the set of instances and the set of variables of a data table.

Over the past years, numerous co-clustering methods have been proposed (for example, [Bock, 1979], [Govaert, 1983], [START_REF] Dhillon | Informationtheoretic co-clustering[END_REF], and [START_REF] Govaert | Co-Clustering[END_REF]). These methods differ on several axes including: data types, clustering assumptions, clustering techniques, expected results, etc. In particular, two main families of methods have been extensively studied: matrix reconstruction based methods where the co-clustering is viewed as a matrix approximation problem, and mixture model based methods where the co-clusters are defined by latent variables that need to be estimated (for a full review of co-clustering techniques, readers are referred to [START_REF] Brault | Revue des méthodes pour la classification jointe des lignes et des colonnes d'un tableau[END_REF]). The typical models used in mixture based approaches are Gaussian for numerical data, multinomial for categorical data and Bernoulli for binary data.

Fig. 1: An illustration of a co-clustering where the original binary data table is on the left and the co-clustered binary table is on the right. Figure 1 shows an example of a binary data table representing n = 10 instances and m = 7 variables ( [START_REF] Govaert | Block clustering with Bernoulli mixture models : Comparison of different approaches[END_REF]) and the binary table of co-clusters resulting from a co-clustering into 3 × 3 = 9 co-clusters. The table of co-clusters provides a summary of the original data and allows to view the main associations between the set of instances and the set of variables.

Co-clustering methods are naturally limited to homogeneous data where all variables are of the same nature: binary, numerical or categorical. In the present paper, we propose to extend these exploratory analysis methods to the case of mixed-type data using a two-step methodology. The first step consists in binarizing the data using a number of parts, given by the analyst, using equal frequency discretization in the case of numerical variables and keeping the most frequent values in the case of categorical variables. The second step consists of using a co-clustering method between the instances and variable parts, leading to a partition of the instances on one hand and a partition of the variable parts on the other hand.

Given a number of parts, our objective is to require no further parameters such as the number of instance clusters and the number of variable part clusters. Therefore, in the co-clustering step, we use the MODL approach ( [Boullé, 2011]) for its non parametric nature, its efficiency for extracting correlation structures from the data, its scalability and its robustness to overfitting induced by the embedded regularization.

Since we are in the context of exploratory analysis of a mixed-type data table, we compared our methodology to the most widely used factor analysis method in case of the presence of categorical variables: Multiple Correspondence Analysis (MCA). Indeed, MCA is factor analysis technique that enables one to extract and analyze the correlations between categorical variables while performing a typology of instances. It enables the instances and the variables to be handled in a complementary manner by duality where groups of instances can be interpreted using variables and vice-versa. These aims of MCA are thus consistent with the goals of co-clustering, hence the usefulness of such comparison.

The remainder of this paper is organized as follows. In section 2 we give an outline of the MODL approach for co-clustering, then in section 3 we illustrate our proposed methodology for co-clustering mixed-type data tables.

In section 4, we present a summary of the MCA basics. Section 5 presents the experimental results along with a comparative analysis. Finally, conclusions and future work are presented in section 6.

MODL based co-clustering of two categorical variables

This section presents a summary of the MODL approach ( [Boullé, 2011]) that clusters simultaneously the values of two categorical variables X and Y . In definition 1, we introduce a family of models for estimating the joint density of two categorical variables, based on partitioning the values of each variable into groups of values (hence MODL performs value oriented co-clustering). We then present the evaluation criterion for these models in theorem 1. Definition 1. A co-clustering model of two categorical variables is defined by:

• a number of groups for each variable,

• the partition of the values of each variable into groups of values,

• the distribution of the instances of the data over the cells of the resulting data grid, • for each variable and each group, the distribution of the instances of the group on the values of the group.

Notations:

• N : number of instances • V, W : number of values for each variable (assumed known)

• I, J: number of groups for each variable (unknown)

• G = IJ: number of cells in the resulting data grid • m i. , m .j : number of values in group i (resp. j)

• n v. , n .w : number of instances for value v (resp. w)

• n vw : number of instances for the pair of values (v, w)

• N i. , N .j : number of instances in the group i (resp. j)

• N ij : number of instances in the cell (i, j) of the data grid Every model from the set of models in definition 1 is completely defined by the choice of I, J, N ij , n v. , n .w , and the partition of the values of each variable to groups (clusters). In the co-clustering context, these parameters correspond to the number of clusters per variable, the multinomial distribution of the instances on the co-clusters, and the parameters of the multinomial distributions of the instances of each variable cluster on the values of the cluster. Notice that these parameters are optimized by the algorithm and not fixed the analyst: by using MODL we will not add any additional user chosen parameter to the data pre-processing parameter.

The number of values in each cluster m i. and m .j result from the partition of the values of each variable into the defined number of clusters. Similarly, the number of instances per cluster N i. and N .j are derived by summation from the number of instances per co-cluster (N i. = j N ij and N .j = i N ij ).

In order to select the best model, a MAP based criterion is chosen: we maximize the probability of the model given the data P (M |D) = P (M )P (D|M )

P (D)
. We use a prior distribution on the model parameters that exploits the natural hierarchical nature of the parameters. The distribution is uniform at each level of the hierarchy. In practice, it serves as a regularization term which prevents the optimization from selecting systematically a high number of groups, for instance.

Using the formal definition of the joint density estimation models and its prior hierarchical distribution, the Bayes formula enables us to compute the exact probability of a model given the data, which leads to theorem 1.

Theorem 1. Among the set of models, a co-clustering model distributed according to a uniform hierarchical prior is Bayes optimal if its evaluation according to the following criteria is minimal ( [Boullé, 2011]):

c(M ) = log V + log W + log B(V, I) + log B(W, J) + log N + G -1 G -1 + I i=1 log Ni. + mi. -1 Ni. -1 + J j=1 log N.j + m.j -1 N.j -1 + log N ! - I i=1 J j=1 log Nij ! + I i=1 log Ni.! + J j=1 log N.j ! - V v=1 log nv.! - W w=1 log n.w! (1)
where B(V, I) is the number of ways of partitioning a set of V elements into I nonempty groups which can be written as a sum of the Stirling number of the second kind: B(V, I)

= I i=1 S(V, i).
The first line of this criterion corresponds to the prior distribution of choosing the numbers of groups and to the partition of the values of each variable to the chosen number of groups. The second line represents the specification of the parameters of the multinomial distribution of the N instances on the G cells of the data grid and the specification of the multinomial distribution of the instances of each group on the values of the group. The third line corresponds to the likelihood of the distribution of the instances on the data grid cells and the likelihood of the distribution of the instances per group over the values in the group, by the mean of a multinomial term.

The estimation of the joint density of two categorical variables distributed according to hierarchical parameter priors is implemented in the software Khiops1 . We use this software for our experiments presented in section 5. The detailed formulation of the approach as well as optimization algorithms and asymptotic properties can be found in [Boullé, 2011].

Mixed-type data co-clustering

In this section we present our two-step approach. The first step is described in Sections 3.1 and 3.2 and consists in binarizing the numerical and categorical variables. The second step leverages the MODL approach to perform a coclustering of the instances × binarized variables data, see Section 3.3.

Data pre-processing

The first step of our methodology consists of binarizing all variables using a user parameter k, which represents the maximal number of parts per variable. In the case of a numerical variable, these parts are the result of an unsupervised discretization of the range of the variable into k intervals with equal frequencies. In the case of a categorical variable, the k -1 most frequent values define the first k -1 parts while the k th part receives all the other values. An alternative discretization is with equal bins. However, frequency based discretization reinforces the robustness of the approach and minimizes the effect of outliers if present in the data (both outlier instances and variable values).

The parameter k defines the maximal granularity at which the analysis can be performed. A good choice of k is related to a trade off between the fineness of the analysis, the time required to compute the co-clustering of the second step, and the interpretability of the co-clustering results. The computational cost of the MODL co-clustering in the worst case is in O(N √ N log N ) where N is the total number of instances (in our case, N = n × m, see Section 3.2), but the observed computation time tends to decrease with smaller k, when data is far from the worse case. Also the size of the data set and its complexity can be taken as an indicator, small values are probably sufficient for small and simple data sets while for larger ones, it would be wise to choose a larger parameter k. Nevertheless, we recommend to start with high values of k since it gives a detailed description of the data. Starting from a detailed description, the MODL approach will group the variable parts that needed not to be separated in the same cluster which can only enhance the level of correspondence of the resulting co-clustering to the original data, without much loss of information.

One should note, however, that the granularity parameter k is far less restrictive than other common parameters such as the number of instance clusters and the number of variable clusters, commonly used in the vast majority of co-clustering methods. In our experiments, we used k = 5 for a small data set and k = 10 for a relatively large one.

If we take the Iris database for example, the output of the binarization step, for k = 5, is illustrated in table 1. 

SepalLength SepalWidth PetalLength PetalWidth Class ] -∞; 5.05] ] -∞; 2.75] ] -∞; 1.55] ] -∞; 0.

Data transformation

The MODL approach ( [Boullé, 2011]), summarized in Section 2, has been chosen because it is non parametric, effective, efficient, and scalable. Although designed for joint density estimation, MODL has also been applied to the case of instances×binary-variables. An example of such application is that of a large corpus of documents, where each document is characterized by tens of thousands of binary variables representing the usage of words. In this case, the corpus of documents is transformed beforehand into a representation in the form of two variables IdText and IdWord.

IdInstance IdVarPart

I1 SepalLength]5.05; 5.65]

I1 SepalWidth]3.45; +∞[ I1 PetalLength] -∞; 1.55] I1 PetalWidth] -∞; 0.25] I1 Class{Iris-setosa} I2 SepalLength ] -∞; 5.05] I2 SepalWidth]2.75; 3.05] I2 PetalLength] -∞; 1.55] I2 PetalWidth] -∞; 0.25] I2 Class{Iris-setosa}
Table 2: The first 10 instances of the binarized Iris database

In the same manner, we transform the binarized database into two variables IdInstance and IdVarPart by creating, for each instance, a record per variable that logs the link between the instance and its variable part. The set of n initial instances characterized by m variables is thus transformed into a new data set of N = n × m instances and two categorical variables, the first of which contains V = n values and the second containing, at most, W = m × k values. For instance, in the Iris database, this transformation results in two columns of 750 instances. Table 2 shows the first ten instances. Notice that after the transformation, the algorithm cannot leverage two aspects of the data: the actual value taken by a variable inside a variable part and the original links between variable parts. In other words, the fact that SepalLength]5.05; 5.65] and SepalLength ] -∞; 5.05] both refer to the same original variable is not leveraged by MODL.

Co-clustering and co-cluster interpretation

Now that our data is represented in the form of two categorical variables, we can apply MODL to find a model estimating the joint density between these two variables. This results in two partitions of the values of the newly introduced categorical variables. Clusters of values of IdInstance are in fact clusters of instances while clusters of values of IdVarPart are clusters of variable parts. Thus the results is a form of co-clustering in which variables are clustered at the level of parts rather than globally. In the resulting co-clustering, the instances of the original database (values of the variable IdInstance) are grouped if they are distributed similarly over the groups of variables parts (values of the variable IdVarPart), and vice-versa.

When the optimal co-clustering is too detailed, coarsening of the partitions can be implemented by merging clusters (of objects or variable parts) in order to obtain a simplified structure. While this model coarsening approach can degrade the co-clustering quality, the induced simplification enables the analyst to gain insight on complex data at a coarser level, in a way similar to exploration strategies based on hierarchical clustering. The dimension on which the merging is performed and the best merging are chosen optimally at each coarsening step with regards to the minimum divergence from the optimal co-clustering, measured by the difference between the optimal value of the criterion and the valued obtained after merging to clusters.

Multiple Correspondence Analysis

Factor analysis is a set of statistical methods, the purpose of which is to analyze the relationships or associations that exist in a data table, where rows represent instances and columns represent variables (of any type).

The main purpose of factor analysis is to determine the level of similarity (or dissimilarity) between groups of instances (problem classically treated by clustering) and the level of associations (correlations) between the observed variables. Multiple correspondence analysis is a factor analysis technique that enables one to analyze the correlations between multiple categorical variables while performing a typology (grouping) of instances and variables in a complementary manner.

MCA in practice

Let x = (x ij , i ∈ I, j ∈ J) be the instance×variables data table, where I is the set of n studied objects and J is the set of p categorical variables (with m j categories each) characterizing the objects. Since mathematical operations would not make sense in categorical variables, MCA uses an indicator matrix called complete disjunctive table (CDT) which is a juxtaposition of p indicator matrices of all variables where rows represent the instances and columns represent the categories of the variable. This CDT can be considered as a contingency table between instances and the set of all categories in the data table.

For a given CDT, T , the sum of all elements of each row is equal to the number p of variables, the sum of all elements of a column s is equal to the marginal frequency n s of the corresponding category, the sum of all columns in each indicator matrix is equal to 1, the sum of all elements in T is equal to np, the matrix of row weights is given by r = 1 n I, and the column weights are given by the diagonal matrix D = diag(D 1 , D 2 , . . . , D p ) where each D j is the diagonal matrix containing the marginal frequencies of all categories of the j th variable.

Main mathematical results for MCA

The principal coordinates of categories are given by the eigenvectors of 1 p D -1 T t T, which are the solutions of the equation:

1 p D -1 T t Ta = µa
The principal coordinates of instances are given by the eigenvectors of 1 p TD -1 T t , which are the solutions of the equation:

1 p TD -1 T t z = µz
We deduce ( [Saporta, 2006]) the transition formulas given by z = 1 √ µ 1

p Ta and a = 1 √ µ D -1 T t z, which describes how to pass between the coordinates.

Note that:

• the total inertia is equal to ( m p -1), where m is the total number of categories.

• the inertia of all the m j categories in the j th variable is equal to 1 p (m j -1). Since the contribution of a variable to the total inertia is proportional to the number of categories in the variable, it is preferable to require all variables to have the same number of categories, hence the utility of the pre-processing step (section 3.1).

• the contributions of an instance i and of a category s to a principal axis are given by:

Ctr h (i) = 1 n z 2 ih µ h et Ctr h (s) = n s np a 2 ih µ h
• the contribution of a variable to the inertia of a factor is equal to the sum of contributions of all categories in the variable to that same axis. This contribution measures the level of correlation between the variable and the principal axis.

MCA can be used to simultaneously analyze categorical and numerical variable. To do so, we follow the classic approach of decomposing the range of each numerical variable into intervals.

Experiments

We start the experiments by comparing our methodology (Section 3) with MCA (Section 4) using the Iris database for didactic reasons, then we evaluate our approach using the Adult database ( [Lichman, 2013]) to evaluate its scalability.

The case study: Iris database

The Iris database consists of n = 150 instances and m = 5 variables, four numerical and one categorical.

Co-clustering

Fig. 2: Coclustering pour la base Iris

After binarizing the Iris data using a granularity of k = 5 parts and applying the MODL co-clustering method, we found that the optimal grid consists of 3 clusters of instances and 8 clusters of variable parts. Figure 2 illustrates this grid where rows represent the instance clusters and columns represent the variable part clusters. The mutual information between the two dimensions can be visualized in each cell, where the red color represents an overrepresentation of the instances compared to the case where the two dimensions are independent and the blue color represents an under representation.

The three instance clusters, shown in figure 2, can be characterized by the types of flowers of which they are composed and by the most represented variable parts per cluster (the red cell of each row of the grid):

• in the first row: a cluster of 50 flowers, all of the class Iris-setosa and characterized by the variable parts: Class{Iris-setosa} Notice first that, as expected, the methodology enables us to group variable (parts) of different nature in the same cluster.

The three instance clusters are easily understandable as they represent the small, large and medium flowers respectively. These clusters are mainly explained by three clusters of variable parts containing the variables Class, PetalLength and PetalWidth. In fact it is well known that in the Iris data set, the three classes are well separated by the Petal variables. This is reflected here by the grouping of the variables as well as by the instance clusters.

Conversely, looking at the clusters of variable parts, one can distinguish two non informative clusters (the fourth and eighth columns which are the two columns with the least contrast), which are based essentially on the variable SepalWidth:

• the fourth column contains the parts: SepalWidth] -∞; 2.75], SepalWidth]2.75; 3.05], and SepalLength]5.65; 6.15],

• the eighth column contains the parts: SepalWidth]3.05; 3.15] and SepalWidth]3.15; 3.45].

The small values of SepalWidth (fourth column) are slightly over-represented by the cluster of instances associated to the classes Iris-versicolor and Irisvirginica while the intermediate values (eighth column) are slightly overrepresented for the cluster of instances associated to Iris-versicolor.

MCA analysis

MCA analysis is performed based on the same data binarization as previously.

The distribution of eigenvalues (Figure 3) indicates that the first two principal axes do capture enough information with a cumulative variance of 38.30%. Therefore, we will limit our analysis to the first factorial plan.

The comparison between the projection of variables (figure 4 The projection of instances (on the left of figure 4) shows a mixture between Iris-virginica and Iris-versicolor. These results are identical to those found using the co-clustering analysis.

The variable parts issued from SepalWidth are weakly correlated with the others and contribute less the first factorial plan: the small values (less than 3.05) are associated with the mixture zone between Iris-virginica and Iris-versicolor, the intermediate values (between 3.05 and 3.45) have their projections in between Iris-virginica and Iris-setosa (they are therefore present in both flowers).

These results are also in agreement with the results deduced from the co-clustering (see the above interpretation of the fourth and eighth columns in the co-clustering).

Finally, on this didactic example where the results of MCA are easily interpretable, a good agreement emerges between the MCA and the proposed co-clustering approach.

The case study: Adult database

The Adult database is composed of n = 48842 instances represented by m = 15 variables, 6 numerical and 9 categorical. When the Adult data is binarized, using k = 10, and the transformation into two variables is performed as presented in Section 3, we obtain a data set of N ≈ 750, 000 rows and two columns: the IdInstance variable containing around n ≈ 50, 000 values (corresponding to the initial instances) and the IdVarPart variable containing m × k ≈ 150 values (corresponding to the variable parts). The co-clustering algorithm is an anytime, regularly issuing its quality index (the achieved level of compression). For the Adult database, the co-clustering takes about 4 mn for a first quality result (a time beyond which the level of compression does not improve significantly). However, we proceed with the optimization for about an hour which results in around 5% of improvement in the log-likelihood of the model. The obtained result is very detailed, with 34 clusters of instances and 62 clusters of variable parts. In an exploratory analysis context, this level of detail hinders the interpretability.

Co-clustering

In our case, the results can be simplified by iteratively merging the rows and columns of the finest clusters until reaching a reasonable percentage of the initial amount of information. Figure 5 presents the co-clustering results with 34 × 62 clusters (on the left), which represents 100% of the initial information, and a simplified version with 10 × 14 clusters preserving 70% of the initial information in the data.

The first level of retrieved patterns appears clearly when we consider dividing the clusters of instances into two parts, visible on the top half and the bottom half of the co-clustering cells presented in figure 5. The instance clusters in the top half are mainly men with a good salary, with an over-representation of the variable part clusters containing sex{Male}, relationship{Husband}, relationship{Married...}, class{More}, age]45.5; 51.5], age]51.5; 58.5], hoursPerWeek]48.5; 55.5], hoursPerWeek]55.5; +∞[. The instance clusters in the bottom half are mainly for women or rather poor unmarried men, with an over-representation of the variable part clusters containing class{Less}, sex{Female}, maritalStatus{Never-married}, maritalStatus-{Divorced}, relationship{Own-child}, relationship{Not-in-family}, relationship-{Unmarried}.

In the left side figure, the instance cluster with the most contrast (hence the most informative) is on the first row and it can easily be interpreted by the over-represented variable part clusters in the same row:

• relationship{Husband}, relationship{Married...}, • educationNum]13.5; +∞[, education{Masters}, • education{Prof-school}, • sex{Male}, • class{more}, • occupation{Prof-specialty},
• age]45.5; 51.5], age]51.5; 58.5],

• hoursPerWeek]48.5; 55.5], hoursPerWeek]55.5; +∞[. It is therefore a cluster of around 2000 instances, with mainly married men with rather long studies, working in the field of education, at the end of their careers, working extra-time with good salary.

In the right side figure, the most contrasted clusters of variable parts, hence the most informative, are those presented by the columns 4 to 9. These contain only variable parts issued from the variables education and educationNum which are the most structuring variables for this data set.

• educationNum]11.5; 13.5], education{Assoc-acdm}, education{Bachelors} (the 4 th column),

• educationNum]-∞; 7.5], education{10th}, education{11th}, education{7th-8th}(the 5 th column),

• educationNum]13.5; +∞[, education{Masters}(the 6 th column),

• educationNum]10.5; 11.5], education{Assoc-voc}, education{Prof-school} (the 7 th column),

• educationNum]7.5; 9.5], education{HS-grad}(the 8 th column),

• educationNum]9.5; 10.5], education{Some-college}(the 9 th column).

The variables education and educationNum are, respectively, categorical and numerical, very correlated as their variable part clusters seem particularly consistent.

MCA analysis

Figure 6 shows the distribution of the variability captured by the axes along with the cumulative level on information. On the contrary to the smaller Iris database, the distribution of the variance (Figure 6) indicates that the first two principal axes only capture a cumulative variance of 7.5%. Figure 7 shows the projections of the instances and variable parts on the first factorial plan where in the left side figure, the black circles are the instances that gain less than 50K and the red triangles are the instances that gain more than 50K. Without the prior knowledge about the class of each instance, which is the case in exploratory analysis, the projection of instances appears as a single dense cluster.

The projection on the first factorial plan does not allow to distinguish any clusters, which is not surprising given the low level of variability captured by this plan. However, in order to capture 20%, 25% or 30% of the variance, one needs to choose 7, 10 or 13 axes, respectively. Choosing a high number of axes, say 13, means that some post analysis of the projections is required. In order to extract potentially meaningful cluster from the MCA results, we performed a k-means on the projections of the instances and the variable parts on the factor space formed by the first 13 axes. Figure 8 shows the projection of the k-means centers with k = 10 (on the left) and k = 100 (on the right to illustrates how complex the data is). The k-means clustering of the projections with k = 2 gives two clusters containing 26178 instances associated to 50 variable parts, and 22664 instances associated with 46 variable parts, respectively. The first cluster of instances associates the variable part class{more} with being married, white, a men, having more than 10.5 years of education, being more than 30.5 years old, working more than 40.5 hours per week, or originating from Canada, Cuba, India or Philippines. The second cluster of instances associates the variable part class{less} with being young (age] -∞; 30.5]), having less than 10.5 years of education, being never married, divorced or widowed, being Amer-Indian-Eskimo, black or an other non white race (race{Other}), working for less than 40.5 hours per week, being a women or originated from countries like El-Salvador, England, Germany, Mexico, Puerto-Rico, and United-States. These clusters are consistent with the two main clusters found by the coclustering, particularly in combining being a men, married, middle aged and working extra hours with earning more than 50K and associating being a women, never married, divorced, or having a child with earning less than 50k.

Table 3 shows a summary of the k-means clustering with k = 10 indicating the contribution of each cluster to the intra-cluster variance. To avoid confusion with the clusters resulting from co-clustering, we name the k-means clusters using letters: {a, b, c, d, e, f, g, h, i, j}. Table 4 shows the confusion matrix between the clusters issued from the co-clustering method and the clusters issued from the k-means of projections.

The problem of comparing the two clusterings can be seen as a maximum weight matching problem in a weighted bipartite graph, also known as the assignment problem. It consists of finding the one-to-one matching between the nodes that provides a maximum total weight. This assignment problem can be solved using the Hungarian method [START_REF] Kuhn | The hungarian method for the assignment problem[END_REF]. Applied on the matrix of mutual information, the Hungarian algorithm results in the following cluster associations: (1, d), (2, g), (3, j), (4, i), (5, b), (6, h), (7, f ), (8, c), (9, a), (10, e) as highlighted in table 4. These same associations are also obtained when applying the algorithm to the chi2 table. This one-to-one matching carries 76.3% of the total mutual information. The highest contributions to the conserved mutual information associate the k-means cluster a with the co-clustering cluster 9, the k-means cluster c with the co-clustering cluster 8, the k-means cluster f with the co-clustering cluster 7, the k-means cluster h with the co-clustering cluster 6, the k-means cluster i with the co-clustering cluster 4, the k-means cluster j with the co-clustering cluster 3. In terms of variable parts, these clusters are as follows:

• the cluster a contains individuals who never-worked or work as handlerscleaners, have less than 7.5 years of education, or have a level of education from the 7th to the 11th grade. • the cluster c contains instances characterized by: workclass{Self-emp-inc}, education{Assoc-acdm, Bachelors}, education num]11.5; 13.5], occupation {Exec-managerial, Sales}, race{Asian-Pac-Islander}, capital loss ]77.5; +∞[, hours per week]40.5; 48.5], hours per week]48.5; 55.5], native-country{Germany, Philippines}. • the cluster f contains instances characterized by: earning less than 50K (class{less}), being relatively young (age]26.5; 33.5]), having relatively low level of education (education{HS-grad} and education num]7.5; 9.5]), being unmarried, divorced or separated, being an Amer-Indian-Eskimo, Black or Female. • the cluster h contains instances that work less than 35.5 hours per week, are under 26.5 years old, never married and have a child. • the cluster i contains middle-aged individuals (between 41.5 and 45.5 years old), with moderate education (9.5 to 10.5 years of education) and working in farming or fishing. To summarize, the clusters obtained using a k-means on the projections of the MCA, are somewhat consistent with those obtained using the co-clustering. However, the process of extracting these clusters, through MCA analysis, is rather tedious while with co-clustering, the clusters could be extracted and explained simply by looking at the matrix of co-clusters.

Discussion

An important contribution of our methodology, compared to MCA, is its ease of application and the direct interpretability of its results. When MCA is applied to a database of a significant size, such as Adult, the projections of instances and variables on the first factorial plan (and even on the second plan) do not enable us to distinguish any particularly dense clusters. Therefore, it is necessary to choose a high number of axes in order to capture enough information. On the database Adult, we found that 13 axes explain only 30% of the information. Choosing this high number of axes meant that some post analysis of the projections (such as k-means) is necessary to extract any possible clusters. Applying this long process for cluster extraction, the results obtained using k-means, although only explaining 30% of the information, are somewhat consistent with those obtained using the co-clustering and our two-step methodology. However, with our methodology, the hierarchy of clusters enables us to choose the desired level of detail and the percentage of information, then one can distinguish, and eventually explain, the most informative clusters, recognized by their contribution to the total information.

Conclusion

In this article, we have proposed a methodology for using co-clustering in exploratory analysis of mixed-type data. Given a number of parts, chosen by the analyst, the numerical variables are discretized into intervals with equal frequencies and the most frequent values in the categorical variables are kept. A co-clustering between the instances and the binarized variables is then performed while letting the algorithm infer, automatically, the size of the summarizing matrix.

We have shown that on a small database, exploratory analysis reveals a good agreement between MCA and co-clustering, despite the differences between the models and the methodologies. We have also shown that exploratory analysis is feasible even on large and complex databases. The proposed methods is a steps toward understanding a data set via a joint analysis of the clusters of instances and the clusters of variable parts. The results of these experiments are particularly promising and show the usefulness of the proposed methodology for real situations of exploratory analysis.

However, this methodology is limited by the need for the analyst to chose a parameter, the number of parts per variable, used for data binarization. Furthermore, the co-clustering method does not follow the origins of the parts which would be useful to consider the intrinsic correlation structure that exist between the parts originated from the same variable, which form a partition. In future work, we will handle these limitations by defining co-clustering models that integrate the granularity parameter and track the clusters of variable parts that form a partition of the same variable. By defining an evaluation criterion for such co-clustering as well as dedicated algorithms, we hope to automate the choice of the granularity and improve the quality of the co-clustering results.
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  Fig. 3: Histogram of eigenvalues (on the left) and the percentage of variance captured by the axes in the MCA analysis of Iris

Fig. 5 :

 5 Fig. 5: Co-clustering of the Adult database, with 100% of information (on the left) and 70% of information (on the right).

Fig. 6 :

 6 Fig. 6: Barplots of the variability (on the left) and the cumulative information captured by the axes (on the right) in the MCA analysis of Adult.

Fig. 7 :

 7 Fig. 7: Projection of the set of instances and variable parts, of the Adult database, on the first factorial plan

Fig. 8 :

 8 Fig. 8: Projection of the k-means centers with k=10 and k=100 clusters, on the first factorial plan.

Table 1 :

 1 The output of the discretization step for k = 5

  , PetalLength]inf ; 1.55] and PetalWidth] -inf ; 0.25],• in the second row: a cluster of 54 flowers, 50 of which are of the class Iris-virginica, and characterized by the following variable parts:

	Class{Iris-virginica}, PetalLength]5.35; +inf [, PetalWidth]1.95; +inf [ and
	PetalWidth]1.55; 1.95],
	• the third row: a cluster of 46 flowers, all of the class Iris-versicolor, and
	caracterized by the variable parts:
	Class{Iris-versicolor}, PetalLength]3.95; 4.65] and PetalWidth]1.15; 1.55].

Table 3 :

 3 Summary of the clusters of instances using k-means

	cluster a	b	c	d	e	f	g	h	i	j
	1	1679 444 141 2289 886 12	7	0	48 111
	2	0	20 4096 0	0	0	0	0	0	0
	3	0	96	0	0	0	18	5	0	0 6377
	4	0	31	0	0	0	0	0	13 3588 0
	5	114 88 576 247 129 331 54 28 455 434
	6	0	59	0	0	0	0 252 3314 3072 0
	7	1 183 0	1	0 7318 776 609	0	127
	8	0	27 4512 0	0	3 150 93	0	0
	9	2503 617 0	0	0	2 299 16	0	0
	10	0	7	0 1496 1046 2	38	2	0	0

Table 4 :

 4 The confusion matrix between the co-clustering and k-means partitions.

  • the cluster j contains instances characterized by the variable parts:

age]33.5; 37.5], age]37.5; 41.5], age]45.5; 51.5], age]51.5; 58.5], workclass {Self-emp-not-inc}, fnlwgt]65739; 178144.5], hours per week]55.5; +∞[, re-lationship{Husband}, marital status {Married-AF-spouse}, marital status {Married-civ-spouse}, occupation{Craft-repair, Transport-moving}, race-{White}, sex{Male}.

The Khiops tool is available as a shareware at www.khiops.com/.