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Federated Learning Methods, Applications and Beyond

In recent years the applications of machine learning models have increased rapidly, due to the large amount of available data and technological progress. While some domains like web analysis can benefit from this with only minor restrictions, other fields like medicine with patient data are stronger regulated. In particular data privacy plays an important role as recently highlighted by the trustworthy AI initiative of the EU or general privacy regulations in legislation. Another major challenge is, that the required training data is often distributed in terms of features or samples and unavailable for classical batch learning approaches. In 2016 Google came up with a framework, called Federated Learning to solve both of these problems. We provide a brief overview on existing Methods and Applications in the field of vertical and horizontal Federated Learning, as well as Federated Transfer Learning.

Introduction

Federated learning (FL) is a novel concept for learning distributed data, which was first introduced by Google [START_REF] Konečnỳ | Federated learning: Strategies for improving communication efficiency[END_REF][START_REF] Konečnỳ | Federated optimization: Distributed machine learning for on-device intelligence[END_REF][START_REF] Mcmahan | Federated learning of deep networks using model averaging[END_REF]] in 2016.

Definition 1 (Federated Learning). Given a large number of N clients and a particular data analysis task, each client C i has its own data addressing the task, without direct access to the other clients data. The objective in FL is to learn a predictive model M such that the error on the objective function E is minimized, in a distributed way. In particular various data processing clients are involved. The communication takes place by a distributed protocol where in general a master is identified to aggregate the prediction model. FL has three steps [START_REF] Konečnỳ | Federated learning: Strategies for improving communication efficiency[END_REF] an initial model is distributed to the clients (2) the local model of C i is trained on its local data by taking the model information of the master into account (3) the master aggregates the local models M i to the global model M and communicates the global model back to the clients. The steps are visualized in Figure 1.

FL has gained substantial interest in the machine learning (ML) community with different frameworks implementing the main concept [START_REF] Schneebeli | A practical federated learning framework for small number of stakeholders[END_REF], in particular flower [START_REF] Daniel | Flower: A friendly federated learning research framework[END_REF] which is considered very mature. Applications of FL are more and more frequent [START_REF] Brisimi | Federated learning of predictive models from federated electronic health records[END_REF][START_REF] Li | A review of applications in federated learning[END_REF][START_REF] Yazdinejad | Federated learning for drone authentication[END_REF][START_REF] Yang | Federated machine learning: Concept and applications[END_REF]. The research field is also very active with new communication protocols [START_REF] Konečnỳ | Federated learning: Strategies for improving communication efficiency[END_REF], encryption concepts [START_REF] Mothukuri | A survey on security and privacy of federated learning[END_REF] and particular optimization algorithms [START_REF] Konečnỳ | Federated optimization: Distributed machine learning for on-device intelligence[END_REF][START_REF] Shi | Modes: model-based optimization on distributed embedded systems[END_REF][START_REF] Zhu | Multi-objective evolutionary federated learning[END_REF]. FL has numerous advantages over classical ML. While in classical machine learning training data are submitted to a central instance and a model is learned in batch processing, FL shifts the actual learning to the data source. This allows one to employ the power of distributed client machines, keeps the user data private, and permits to use information that is otherwise inaccessible and spread over different clients.

In this view FL perfectly aligns with recent trends on machine learning on large community data [START_REF] Yang | Fcmf: Federated collective matrix factorization for heterogeneous collaborative filtering[END_REF] and the increasing set of constraints due to privacy regulations like the GDPR1 , trustworthy AI2 but also objectives covered in various AI manifests 3 . Broadly speaking, Federated Learning methods belong to three different categories, which depend on how comparable are the local data of the clients, as detailed in Sec. 2.

Types of federated learning

We denote the data held by client C i as D i . In FL a data set consists of the features X, the sample id space i and an optional label space y. The sample space, as well as the feature space, may not be identical over different data owners. By this characteristic, FL is categorized into horizontal FL (HFL), vertical FL (VFL), and Federated Transfer Learning (FTL), as detailed below. 

Horizontal FL

The scenario of HFL is depicted in Figure 3 and shows that the users are split across various clients, while the feature space is always the same. A typical scenario is given by a global business model which is implemented on smartphones or other IoT devices. Thereby the user generates the same data, like interaction events or shopping activities but may be located in very different geographical regions. HFL is beneficial by calculating a model which employs the information from a large (distributed) user group instead of focusing on a centralized approach with a rather limited amount of training data. In HFL it is common to calculate and upload local gradients calculated from the objective function, which are aggregated by a central master client. The data transmissions can be encrypted to improve the level of privacy using homomorphic encryption [START_REF] Fang | Privacy preserving machine learning with homomorphic encryption and federated learning[END_REF], differential privacy [START_REF] Rodríguez | Federated learning and differential privacy: Software tools analysis, the sherpa.ai fl framework and methodological guidelines for preserving data privacy[END_REF] or secure aggregation as discussed in Sec. 4.

Vertical FL

Vertical federated learning considers the case where we have multiple different feature sets on a common basis of users. A typical case for this scenario (depicted in Figure 2) is an analysis task where the user is using at least two ways of interaction and is generating data on two channels, like an online store and in a brick and mortar business.

Transfer learning

As described above, in FL, it is generally assumed that every user provides a sufficient set of labeled data for a model to learn a specified task. In general, it is also assumed that the analyzed data are given in common feature spaces, although potentially split across various clients [START_REF] Yang | Federated machine learning: Concept and applications[END_REF]. If the first assumption does not hold, the model cannot capture the whole data set characteristic leading to poor prediction performance. Further, the provided gradients are biased towards the present data characteristics, which eventually deteriorates the global learning model. If the second assumption does not hold, the entities and the corresponding feature spaces are disjoint. This prevents the model from discovering the feature space characteristics, and therefore, the FL system cannot extract useful information for the specific user model [START_REF] Yang | Federated machine learning: Concept and applications[END_REF]. In the cases just described, methods of Federated Transfer Learning need to be applied. The FTL setup is illustrated in Figure 4. FTL can be seen as the cross-section of horizontal and vertical transfer learning. In general, Transfer Learning is an algorithmic technique to improve a model trained on one data set, by using related information from another data set. The just mentioned data sets are usually denoted as source and target domain. FTL helps to improve the model of user U i on its data by using data or model information from one (or more) users U j , where i = j. Hence, the learning environment of U i is called target, and U j is source [START_REF] Liu | A Secure Federated Transfer Learning Framework[END_REF]. Note, that there can be small intersections regarding feature space or sample space as displayed in Figure 4. A model improvement on the target by means of FTL is achieved by creating a shared representation keeping the federation of data. For example via manifold alignment [START_REF] Ju | Federated transfer learning for eeg signal classification[END_REF] or domain adversarial learning [START_REF] Peng | Federated adversarial domain adaptation[END_REF]. Alternatively, FTL methods improve the target model leveraging the source model by instance reweighting [START_REF] Gao | Privacy-preserving heterogeneous federated transfer learning[END_REF] or by receiving gradients from source [START_REF] Liu | A Secure Federated Transfer Learning Framework[END_REF]. Note that some approaches also consider different data distributions between source and target [START_REF] Gao | Privacy-preserving heterogeneous federated transfer learning[END_REF].

Frameworks and Algorithms

In FL the communication architecture and protocols are of particular importance. FL has to deal with non i.i.d. data [START_REF] Sattler | Robust and communication-efficient federated learning from non-i.i.d. data[END_REF] and due to the FL learning concept substantial communication costs can occur. Considering the typical use cases of FL in the field of mobile devices, IoT [START_REF] Zhao | Local differential privacy-based federated learning for internet of things[END_REF], unmanned vehicles [START_REF] Yazdinejad | Federated learning for drone authentication[END_REF] or large distributed server systems additional compression techniques, averaging strategies, and sparsity constraints are applied to obtain real time-efficient sys-tems [START_REF] Chen | Communication-efficient federated learning[END_REF][START_REF] Konečnỳ | Federated learning: Strategies for improving communication efficiency[END_REF][START_REF] Konečnỳ | Federated optimization: Distributed machine learning for on-device intelligence[END_REF]. One can also employ quantization approaches [START_REF] Tonellotto | Neural network quantization in federated learning at the edge[END_REF] or information about the transmitted data to control the communication load [START_REF] Wu | Fedscr: Structure-based communication reduction for federated learning[END_REF].

Only recently some FL frameworks have been proposed which simplify the implementation of own FL models. In particular, for HFL the BlockFL framework was proposed in [START_REF] Kim | Blockchained on-device federated learning[END_REF] which makes use of a blockchain during the updates of the model parameters. A framework for VFL is provided by SecureBoost [START_REF] Cheng | Secureboost: A lossless federated learning framework[END_REF]. And in the context of Federated Transfer Learning the framework in [START_REF] Liu | A secure federated transfer learning framework[END_REF] is suggested. The framework Flower [START_REF] Daniel | Flower: A friendly federated learning research framework[END_REF] scales well to a large number of clients.

The machine learning community has also recently started to design dedicated learning algorithms for FL. One example is given in [START_REF] Shi | Modes: model-based optimization on distributed embedded systems[END_REF] where hyperparameter learning on distributed systems is considered. Also information theoretic strategies have been proposed [START_REF] Palash Uddin | Mutual information driven federated learning[END_REF], matrix factorization techniques [START_REF] Yang | Fcmf: Federated collective matrix factorization for heterogeneous collaborative filtering[END_REF], spectral clustering [START_REF] Wang | Federated multiview spectral clustering[END_REF], particular designed gradient descend techniques [START_REF] Liu | Accelerating federated learning via momentum gradient descent[END_REF][START_REF] Fernandes | Decay momentum for improving federated learning[END_REF] or multi-objective solvers [START_REF] Zhu | Multi-objective evolutionary federated learning[END_REF]. Furthermore, the Learning Vector Quantization (LVQ) concept has been adopted, to fit in a VFL environment by training separate LVQ models locally and using the relevance matrix to update a global model [START_REF] Brinkrolf | Federated learning vector quantization[END_REF].

Privacy methods

The key element of all FL approaches is to keep the data on the user side and in particular to avoid any disclosures. Three techniques are most common to ensure this goal and are frequently combined:

1. homomorphic encryption 2. differential privacy

(secure) model aggregation

The most common is model aggregation which trains the global model by summarizing the model parameters from all clients to avoid disclosure of original data. Many optimization concepts which are roughly based on a kind of iterative stochastic gradient descent on E perform a natural averaging of various update steps which is also used in batch online learning approaches [START_REF] Bishop | Neural networks for pattern recognition[END_REF]. A prominent approach for deep learning falling into this category is given in [START_REF] Mcmahan | Federated learning of deep networks using model averaging[END_REF]. An alternative view is to train local models in a multi-task setting which are subsequently combined as shown in [START_REF] Yurochkin | Bayesian nonparametric federated learning of neural networks[END_REF]. The various local model parameters can also be safely transferred in an aggregated form by blockchain techniques as shown in [START_REF] Kim | Blockchained on-device federated learning[END_REF]. One may also directly provide privacy-preserving data representations as shown for kernels in [START_REF] Polato | Privacy-preserving kernel computation for vertically partitioned data[END_REF].

Homomorphic encryption allows to apply calculations on encrypted data without the need of decoding. One approach following this idea is additive homomorphism [START_REF] Hardy | Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[END_REF].

Differential privacy as detailed in [START_REF] Dwork | Differential privacy[END_REF] is a technique to limit information disclosure during learning. Thereby the training procedure is designed such that small modifications of the training database have no substantial impact on the model outcome. The attacker can not obtain accurate individual information, but only a controlled piece of information, which still obeys privacy constraints. The particular strategies to implement this concept can be very simple by adding some noise contributions to the output during training or by more complex compression techniques as shown in [START_REF] Wei | Federated learning with differential privacy: Algorithms and performance analysis[END_REF].

In [START_REF] Polato | Privacy-preserving kernel computation for vertically partitioned data[END_REF] a privacy-preserving method to compute dot-product kernels in VFL is proposed. The technique uses multi-party computation to provide theoretical guarantees on security and privacy. For a more detailed analysis, we refer to [START_REF] Mothukuri | A survey on security and privacy of federated learning[END_REF].

Applications

FL can train a united model on data from distributed sources while preserving data privacy and security and thus can play an important role in many industrial sectors, like sales, health, insurance, and others. In general, in every sector, where data cannot be directly aggregated due to privacy protection, data security, or even property rights [START_REF] Yang | Federated machine learning: Concept and applications[END_REF].

FL has been successfully used to improve the quality of keyboard search suggestions on the Google Gboard [START_REF] Yang | Applied federated learning: Improving google keyboard query suggestions[END_REF]. Gboard is a virtual keyboard for mobile devices and has several features, like auto-completion and next-word prediction. The application needs to protect the privacy of users and make latency-free predictions. To avoid high data usage and battery consumption due to the FL optimization, the authors had to design mechanics to only send data to a centralized server, if the device is inside a wireless network and actively charging. The server provides every client with a training task as soon as enough clients are connected. In a related context, FL has also been used to perform mobile keyboard predictions [START_REF] Leroy | Federated learning for keyword spotting[END_REF].

Recently, a project has been started, which uses FL to deploy an auction for intralogistic autonomous drone transportation 4 . The goal of the project is, to create a system where drone owners can bid on transport jobs and execute them in case of winning. The bidding model is based on FL, which enables the knowledge incorporation of every drone in the global model of the system. The distribution of the global model also leads to the fact, that drones with fewer executed jobs will have the same chance to win an auction as more experienced drones.

In [START_REF] Pellegrini | Continual learning at the edge: Real-time training on smartphone devices[END_REF], a hybrid continual learning strategy is used to address the realworld constraints like computational and memory limits in a real-time on-device personalization task, running on a native Android application.

Other applications of FL include ranking browser history suggestions based on user-interactions [START_REF] Hartmann | Federated learning for ranking browser history suggestions[END_REF], visual object detection [START_REF] Liu | Fedvision: An online visual object detection platform powered by federated learning[END_REF], patient clustering to predict hospital stay time as well as mortality [START_REF] Huang | Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records[END_REF], drug discovery [START_REF] Xiong | Facing small and biased data dilemma in drug discovery with federated learning[END_REF][START_REF] Chen | Fl-qsar: a federated learning based qsar prototype for collaborative drug discovery[END_REF] and brain tumor segmentation [START_REF] Li | Abnormal client behavior detection in federated learning[END_REF][START_REF] Sheller | Multi-institutional deep learning modeling without sharing patient data: A feasibility study on brain tumor segmentation[END_REF][START_REF] Li | Privacy-preserving federated brain tumour segmentation[END_REF]. The application fields of FL are quickly increasing and are a promising research direction of ML. For a more comprehensive review, we refer to [START_REF] Li | A review of applications in federated learning[END_REF].

Conclusions

In this tutorial, we briefly discussed the evolving field of federated learning and outlined recent achievements and approaches. A detailed analysis of recent trends and problems in FL is also provided in [START_REF] Kairouz | Advances and open problems in federated learning[END_REF][START_REF] Zhang | A survey on federated learning[END_REF][START_REF] Aledhari | Federated learning: A survey on enabling technologies, protocols, and applications[END_REF][START_REF] Li | Federated learning: Challenges, methods, and future directions[END_REF]. Due to additional privacy constraints in ML and a variety of distributed user groups of ML methods, it can be expected that FL will become even more important in the future
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 1 Fig. 1: Diagram of FL. To preserve data privacy, local model gradients are only sent to one trusted server (or a primary coordinator) and not directly to other clients. The local instances are training their own model with the local data and after multiple iterations the gradient is sent to the primary coordinator. The primary coordinator aggregates all local gradients to a central global update, which is used to update the global model. Finally, the global model is sent back to the clients to replace their previous models.
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 234 Fig.2: Vertical Federated Learning (inspired by[START_REF] Chen | Fl-qsar: a federated learning based qsar prototype for collaborative drug discovery[END_REF])
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