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Abstract
Machine learning (ML) models are nowadays used in complex applications in various domains, such as medicine, bioinformat-
ics, and other sciences. Due to their black box nature, however, it may sometimes be hard to understand and trust the results
they provide. This has increased the demand for reliable visualization tools related to enhancing trust in ML models, which has
become a prominent topic of research in the visualization community over the past decades. To provide an overview and present
the frontiers of current research on the topic, we present a State-of-the-Art Report (STAR) on enhancing trust in ML models
with the use of interactive visualization. We define and describe the background of the topic, introduce a categorization for
visualization techniques that aim to accomplish this goal, and discuss insights and opportunities for future research directions.
Among our contributions is a categorization of trust against different facets of interactive ML, expanded and improved from
previous research. Our results are investigated from different analytical perspectives: (a) providing a statistical overview, (b)
summarizing key findings, (c) performing topic analyses, and (d) exploring the data sets used in the individual papers, all with
the support of an interactive web-based survey browser. We intend this survey to be beneficial for visualization researchers
whose interests involve making ML models more trustworthy, as well as researchers and practitioners from other disciplines
in their search for effective visualization techniques suitable for solving their tasks with confidence and conveying meaning to
their data.

Keywords: trustworthy machine learning, visualization, interpretable machine learning, explainable machine learning

ACM CCS: • Information systems→ Trust; • Human-centered computing→ Visual analytics; • Human-centered computing
→ Information visualization; • Human-centered computing→ Visualization systems and tools; •Machine learning→ Super-
vised learning; • Machine learning → Unsupervised learning; • Machine learning → Semi-supervised learning; • Machine
learning→ Reinforcement learning

1. Introduction

Trust in machine learning (ML) models is one of the greatest
challenges in real-life applications of ML [TAC∗20]. ML models
are now commonplace in many research and application domains,
and they are frequently used in scenarios of complex and critical
decision-making [NGDM∗19, PWJ06, TKK18]. Medicine, for
example, is one of the fields where the use of ML might offer
potential improvements and solutions to many difficult prob-
lems [KKS∗19, SGSG19, SKK∗19]. A significant challenge that
remains, however, is how trustworthy are the ML models that
are being used in these disciplines. Rudin and Ustun [RU18], for
example, emphasize the importance of trust for ML models in
healthcare and criminal justice, since they play a significant role
in making decisions regarding human lives. It is not uncommon to
observe that domain experts may not rely on ML models if they do
not understand how they work [JSO19].

The impact of this problem can already be observed in recent
works, such as the program “Explainable AI (XAI)” founded by
DARPA (Defense Advanced Research Projects Agency) [Dar20]
and described by Krause et al. [KDS∗17]. This initiative is only
one of the various projects that suggest further research into the
field of XAI, which—to a certain extent—addresses challenges re-
lated to trust. The XAI program in its two main motivational points
mentions specifically that “producing more explainable models,
while maintaining a high level of learning performance” and “en-
abling human users to understand, appropriately trust, and effec-
tively manage the emerging generation of AI” are both key actions
for the future development in numerous domains that use ML. Un-
derstanding and trusting ML models is also arguably mandatory un-
der the General Data Protection Regulation (GDPR) [EC16] as part
of the “right to be informed” principle: data controllers must pro-
vide meaningful information about the logic involved in automated
decisions [Art18]. Individuals have also the right not to be subject
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to a decision based solely on automated processing: enabling sub-
jects of ML algorithms to trust their decision is probably the easiest
way to reduce the objection to such automated decisions.

In reaction to these aforementioned challenges, multiple new
solutions have recently been proposed both in academia and in
industry. Google’s Explainable Artificial Intelligence (AI) Cloud
[Goo20], for example, assists in the development of interpretable
and explainable ML models and supports their deployment with
increased confidence. Another example is the Descriptive mA-
chine Learning EXplanations (DALEX) [Dal20] package, which
offers various functionalities that help users understand how com-
plex models work. Some works propose to enable domain ex-
perts to collaborate with each other to tackle this problem to-
gether [CJH19, FBG19]. In this context, information visualization
(InfoVis) techniques have been shown to be effective in making an-
alysts more comfortable with ML solutions. Krause et al. [KPB14],
for example, present a case study of domain experts using their tool
to explore predictive models in electronic health records. Also, in
visual analytics (VA), the first stages to partially address those chal-
lenges have already been reached, for instance by discussing how
global [RSG16a] or local [MPG∗14] interpretability can assist in
the interpretation and explanation of ML [GBY∗18, Wol19], and
how to interactively combine visualizations with ML in order to
better trust the underlying models [SSK∗16].

We build our state-of-the-art report (STAR) upon the results of
existing visualization research, which has emphasized the need for
improved trust in areas, such as VA in general, dimensionality re-
duction (DR), and data mining. Sacha et al. [SSK∗16] aimed to
clarify the role of uncertainty awareness in VA and its impact on
human trust. They suggested that the analyst needs to trust the
outcomes in order to achieve progress in the field. Sedlmair et
al. [SBIM12] found important gaps between the needs of DR users
and the functionalities provided by available methods. Such lim-
itations reduce the trust that users can put in visual inferences
made using scatterplots built from DR techniques. Bertini and
Lalanne [BL09] concluded, from a survey, that visualization can
improve model interpretation and trust-building in ML. An inter-
esting paper by Ribeiro et al. [RSG16b] shows that the interest on
using visualization to handle issues of trust is also present in the
ML field. The authors describe a method that explains the predic-
tions of any classifier via textual or visual cues, providing a qualita-
tive understanding of the relationship between the instance’s com-
ponents. Despite all the currently proposed solutions, many unan-
swered questions and challenges still remain, e.g., (1) If the ana-
lysts are not aware of the inherent uncertainties and trust issues that
exist in an ML system, how to ensure that they do not form wrong
assumptions? (2) Are there any guarantees that they will not be
deceived by false (or unclear) results? (3) What problems of trust-
worthiness arise in each of the phases of a typical ML pipeline?

In this STAR, we present a general mapping of the currently
available literature on using visualization to enhance trust in ML
models. The mapping consists of details about which visualization
techniques are used, what their reported effectiveness levels are,
which domains and application areas they apply to, a conceptual
understanding of what trust means in relation to ML models, and
what important challenges are still open for research. Note that the

terms trust and trustworthiness are used interchangeably through-
out the report. The main scientific contributions of this STAR are:

• an empirically informed definition of what trust in ML models
means;
• a fine-grained categorization of trust against different facets of

interactive ML, extracted from 200 papers from the past 12
years;
• an investigation of existing trends and correlations between cat-

egories based on temporal, topic, and correlation analyses;
• the deployment of an interactive online browser (see below) to

assist researchers in exploring the literature of the area; and
• further recommendations for future research in visualization for

increasing the trustworthiness of ML models.

To improve our categorization, identify exciting patterns, and pro-
mote data investigation by the readers of this report, we have de-
ployed an interactive online survey browser available at

https://trustmlvis.lnu.se

We expect that our results will support new research possibilities
for different groups of professionals:

• beginners/non-experts who want to get acquainted with the field
quickly and gain trust in their ML models;
• domain experts/practitioners of any discipline who want to find

the appropriate visualization techniques to enhance trust in ML
models;
• model developers and ML experts who investigate techniques to

boost their confidence and trust in ML algorithms and models;
and
• early-stage and senior visualization researchers who intend to

develop new tools and are in search of motivation and ideas from
previous work.

The rest of this report is organized as follows (see Figure 1). In
Section 2, we introduce background information that we used in
order to comprehend the concept of trustworthiness of ML models.
We also describe our adopted definition of the meaning of trust in
ML models. In Section 3, we discuss existing visualization surveys
that are relevant to our work. Afterwards, Section 4 provides details
with regard to our methodology, i.e., the searched venues and the
paper collection process. The overview in Section 5 includes initial
statistical information. In Section 6, we present our categorization
and describe the most representative examples. In Section 7, we
report the results of a topic analysis performed on these papers to
find new and interesting topics and trends derived from them, and
further findings from data-driven analysis. Our interactive survey
browser and research opportunities are discussed in Section 8. Fi-
nally, Section 9 concludes the STAR. Additionally, a set of supple-
mentary materials (referred to as S1 to S8) is also available, includ-
ing the documents used to guide our categorization methodology,
as well as the data that could not be part of this report due to space
restrictions.

2. Background: Levels of Trustworthiness of Machine
Learning Models

First, we present some earlier definitions of trust that are subse-
quently adapted to the context of our research. We also discuss
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Figure 1: The overview of our STAR with regard to the methodology, main results, and corresponding sections of the manuscript. Color
coding is used for grouping related activities and results (purple for the background information and key concepts, blue for the literature
search, green for the paper categorization, orange for the data analyses, and yellow for the manuscript); italic font is used for intermediate
activities; and bold font is used for the items discussed explicitly in this STAR. The marks S1©– S8© refer to supplementary materials.

qualitative data gathered from an online questionnaire that we dis-
tributed among ML experts and practitioners. The goals of the ques-
tionnaire were to shape our categorization of trust issues in ML and
to bring to light potential ideas on how visualization can support the
improvement of trustworthiness in the ML process. Building upon
these definitions and results, we group the identified factors of trust
into five trust levels (TLs). These levels are a part of our overall
methodology, discussed in Section 6.

Definitions of trust. The issues of definition and operationaliza-
tion of trust have been discussed in multiple research disciplines,
including psychology [EK09] and management [MDS95]. Such
definitions typically focus on trust in the context of expectations
and interactions between individuals and organizations. The exist-
ing work in human-computer interaction (HCI) extends this per-
spective. For example, Shneiderman [Shn00] provides guidelines
for software development that should facilitate the establishment
of trust between people and organizations. To ensure trustworthi-
ness of software systems, he recommends the involvement of in-
dependent oversight structures [Shn20]. Fogg and Tseng [FT99]
state that “trust indicates a positive belief about the perceived reli-
ability of, dependability of, and confidence in a person, object, or

process”; in their work, trust is also related (and compared) to the
concept of credibility. Rather than focusing on interpersonal trust,
the existing work has also addressed trust in automation [HJBU13],
which is more relevant to our research problem. Lee and See pro-
vide the following definition, widely used by the researchers in
this context [LS04]: trust is “the attitude that an agent will help
achieve an individual’s goals in a situation characterized by un-
certainty and vulnerability”. This definition has been further ex-
tended by Hoff and Bashir [HB15], who propose a model of trust in
automation with factors categorized into multiple dimensions and
layers. Further adaptation of such multi-dimensional approach has
been demonstrated, for example, by Yu et al. [YBC∗18]. Lyons et
al. [LHF∗18] adopt a model consisting of a non-orthogonal set of
factors in their analysis of trust factors for ML systems. In this
STAR, we rely on the rather general definition of trust by Lee and
See [LS04] and further expand it into a more detailed, multi-level
model presented below. Additionally, we make use of the defini-
tions and factors of trust described in the existing work within
InfoVis and VA and incorporate them in our model. For exam-
ple, Chuang et al. [CRMH12] define trust as “the actual and per-
ceived accuracy of an analyst’s inferences”. Although important,

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

this definition touches only on a single perspective of trust: the
one related to the users’ expectations. The authors also mention
that usually, during evaluations of the design choices performed on
new visualization systems and tools, the modelling of choices and
relationships between views is often omitted. This practice intro-
duces limitations regarding the improvement of trust for the system
as a whole, as opposed to the trustworthiness of each view indi-
vidually. In the uncertainty typology detailed by MacEachren et
al. [MRO∗12], trust is decomposed into three high-level types: (i)
accuracy, defined as correctness or freedom from mistakes, con-
formity to truth or to a standard or model; (ii) precision, defined as
the exactness or degree of refinement with which a measurement is
stated or an operation is performed; and (iii) trustworthiness, de-
fined as source dependability or the confidence the user has in the
information. The latter is a broad category that includes compo-
nents such as completeness, consistency, lineage, currency/timing,
credibility, subjectivity, and interrelatedness.

Online questionnaire. The next step of our work can be com-
pared to domain problem characterization [Mun09]. In order to
elicit the expectations and suggestions from ML practitioners with
regard to our problem, we distributed an online questionnaire ti-
tled “How Would Visualization Help Enhancing Trust in Machine
Learning Models?” (see supplementary material S1). We received
answers from 27 participants, all with at least a Bachelor’s de-
gree, and most with a Master’s (40.7%) or a Doctorate degree
(51.9%). Almost all of them had their education in Computer Sci-
ence or related fields. Some participants have only used ML in a
few projects (around 33.3%), but most are either ML practition-
ers (22.2%) or developers/researchers in the field (44.4%). Their
experiences with different types of ML algorithms/models are di-
verse, with rather balanced numbers between supervised (85.2%)
and unsupervised (70.4%) learning. Within these two categories,
classification (95.7%) and clustering (89.5%) are the most popular,
respectively. The questionnaire itself begins with a description of a
hypothetical scenario where a real-world data set was used (Pima
Indians Diabetes, obtained from the UCI ML repository [DG17]).
Each of the 15 questions presents a possible use of visualization re-
lated to trust in ML, and participants are asked to score them from 1
(strong disagreement) to 5 (strong agreement). Questions are also
accompanied by short descriptions of some characteristics of the
proposed scenario, in order to help participants in answering them.

According to the results, the bulk of the answers in most of the
questions is concentrated around the scores of 4 and 5. This is evi-
dence that the overall attitude of the participants towards visualiza-
tion for enhancing trust in ML is largely positive. Factors such as
visualizing details of the source of the data (Q1), data quality issues
(Q3), performance comparison of different ML algorithms (Q4),
hyper-parameter tuning (Q5), exploration of “what-if” scenarios
(Q11), and investigation of fairness (Q12) obtained the majority
of votes on score 5. Other factors which showed very positive—
but less overwhelming—opinions were the visualization of details
about the data collection process (Q2), data control and steering
during the training process (Q6 and Q9), feature importance (Q7),
visualizing the decisions of the model (Q8 and Q10), enabling col-
laboration (Q13), and the choice of tools for specific models (Q14).
In these cases the majority of the scores were 4, but with some
variance towards 3 and 5. The only question that deviated from

Table 1: Summary of the answers to the two open-ended questions
on the participants’ expectations and suggestions, which were pro-
vided at the end of the online questionnaire. The answers are sorted
based on the number of occurrences # and then alphabetically.

Summary of open answers # 
Everything (i.e., all together) 5 
Data importance (i.e., impact of data in the output) 4 
Feature importance 4 
Evaluation 3 
Impact of hyper-parameters 3 
Pre-processing 3 
Evolution of metrics during training 2 
Investigation of outliers 2 
Model accuracy and results in general 2 
Raw data 2 
Class separation 1 
Decision boundaries 1 
Learned features 1 
Uncertainty 1 

 

this trend was the last one (Q15), where we proposed that a sin-
gle well-designed performance metric would be enough to judge
the quality of an ML model, and no further actions (such as visu-
alization) would be necessary. In this case, most of the scores were
concentrated on either 1 or 2, showing clear disagreement.

The questionnaire ends with two open-ended questions, where
participants were free to give their ideas and opinions on which
steps of the ML process (or properties of the models and the data)
they would like to visualize to increase the trust in the ML models
they use. Many participants indicated their desire to visualize the
ML process as much as possible, in all phases where it might apply
(5 answers). Additionally, out of all the specific concepts and ideas
that emerged, the most popular were the visualization of feature
importance (4 answers), the impact of different characteristics of
the data instances (4 answers), investigation of hyper-parameters (3
answers), visualizing the pre-processing steps (3 answers), and the
evaluation of the model (3 answers). Table 1 summarizes all these
answers along with the number of occurrences. These answers were
mostly aligned with our prior hypotheses, but also enabled us to
gain new insights on what was missing from our categorization of
trust factors (see below). For instance, the source reliability cate-
gory was influenced by one participant who described her/his work
with Parkinson’s disease data and the reliability problems involved
with it: “For instance, I have been working with clinical studies
with Parkinson’s disease patients wearing sensors in their wrists.
For us researchers, it was difficult to see how the data was collected
e.g. patients could do a certain daily activity (e.g. cutting grass) but
in our model we accounted that as tremor.” Another important point
that was brought up is that visualization-based steering of the ML
training process might push the user to “fish” for desired results
and invalidate the statistical significance of the model.

Trust levels (TLs) and categories. In this STAR, we cover the
subject of enhancing trust in ML models with the use of visualiza-
tions. As such, we do not cover solutions proposed to address those
questions solely at the algorithmic level, even if they are consid-
ered with growing interest by ML researchers (as exemplified by
the two plenary invited talks [How18, Spi18] on the subject given
in 2018 at NeurIPS, one of the major ML venues). Based on the
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Figure 2: A typical ML pipeline (depicted in red), assisted by visualization (in purple). Issues of trust permeate the complete shown pipeline,
and we locate and categorize these issues in several trust levels (TLs). The various categories proposed in this work are represented in green.
The yellow “cloud” represents the knowledge created by the different target groups while they pursue their goals by using visualizations to
explore the pipeline, the data and/or the ML models. Finally, at the very top, we encode the real-world applications with an ellipsoid.

existing work discussing the issues of trust, the suggestions from
ML experts (see above), and internal discussions, we consider that
the problem of enhancing trust in ML models has a multi-level na-
ture. It can be divided into five TLs related to trustworthiness of
the following: the raw data (→TL1), the processed data (→TL2),
the learning method (i.e., the algorithms) (→TL3), the concrete
model(s) for a particular task (→TL4), and the evaluation and
the subjective users’ expectations (→TL5). These levels of trust
are aligned with the usual data analysis processes of a typical ML
pipeline, such as (1) collecting the raw data; (2) allowing the user
to label, pre-process, and query/filter the data; (3) interpreting, ex-
ploring, and explaining algorithms in a transparent fashion; (4) re-

fining and steering concrete model(s); and (5) evaluating the results
collaboratively. With the term algorithm, we define an ML method
(e.g., logistic regression or random forest); in contrast to a model
which is the result of an algorithm and is trained with specific pa-
rameters.

We use the term level to refer to the increasingly abstract nature
of concepts as well as to emphasize the sequential aspect of the ML
pipeline. Indeed, the lack of trustworthiness in each stage of the
pipeline cumulatively introduces instability in the predictions of a
model. Thus, trust issues (i.e., categories) that are relevant to two
or more of our TLs are assigned to the lowest TL possible. This
is similar to concerns about issues cascading from earlier to later
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levels within the nested model for visualization design and vali-
dation [Mun09], for instance. Figure 2 displays the connection be-
tween a typical ML pipeline (slightly adapted from the work of Sun
et al. [SLT17]) and the visualization techniques that enhance trust
in ML models in various phases. In the bottom layer of Figure 2,
we depict (in red) the ML pipeline comprising the distinct areas
where users are able to interact with (and choose from) a large pool
of alternatives or combinations of options. The layer above depicts
the visualization (in purple). The upper layer consists of the differ-
ent target groups that we address, the generation of knowledge, and
the usability of this knowledge in solving problems stemming from
real-life applications. Finally, the multiple categories of trust asso-
ciated with each of these levels are presented in green in Figure 2
and discussed in detail below.

• Raw data (TL1). The lowest trust level gathers categories
attached to the data collection itself. They belong to the com-
plex task of preparing the data for further analysis, commonly
referred to as data wrangling [KHP∗11].
Arguably, source reliability is the very first category that should
be visualized in a system. It should detect and handle the cases
that do not meet the quality expectations or that show unusual
behavior. For instance, detecting that some labels are unreliable
could guide the user in selecting ML algorithms that are resistant
to label noise [FV14]. However, perceiving source reliability is
not an easy task, as it involves visualization questions, such as
“how to visualize the data source involved in data collection?”,
but also the very statistical questions of measuring reliability.
As a proxy for this measure, one can visualize information, for
instance, “was a particular university involved in data collection,
was a domain expert such as a doctor present during the health
data collection, and were the sensors reliable and error-free?”
Hence, source reliability is strongly related to ensuring a trans-
parent collection process, the second category of this level. This
includes visualizing the data collection process, what systems
were used to collect the data, and how, why, and how objectively
that was done.
Issues about reliability of the data and of the collection process
can jeopardize, from the very start, the ML process and dimin-
ish the TLs set by users. If those issues remain undetected, they
can spoil the later phases, according to the classic “garbage in,
garbage out” principle. For instance in the case of unreliable la-
bels [FV14], reported error rates are also unreliable. This is be-
coming more relevant with the growing attention given to ad-
versarial machine learning, an ML research field which focuses
on adversarial inputs designed to break ML algorithms or mod-
els [GMP18, LL10].

• Data labeling & feature engineering (TL2). The next group
of categories has its focus beyond the raw data and into feature
engineering and labeling of the data. This is also partially related
to data wrangling. Trust issues at this level focus on data that are
overall considered to be reliable and clean. Trust can then be
enhanced by addressing subgroup or instance problems.
With uncertainty awareness and visualizations supporting it, the
data instances that do not fit can be filtered out, and any border-
line cases are highlighted to be explored by the users via visual
representations.

The category equality/data bias is related to the fairness category
discussed below. It concerns the possible sources of subgroup-
specific bias in the decision of an ML model. For instance, if a
subgroup of the population has characteristics that are signifi-
cantly different from the ones of the population as a whole, then
the decisions for members of this subgroup could be unfair com-
pared to the decisions for members of other subgroups. Visual-
ization methods can be used to explore interesting subgroups and
to pinpoint potential issues.
Comparison (of structures) [KCK17] implies the usage of visu-
alization techniques in order to compare different structures in
the data. As an example, experts in the biology domain would
like to compare different structures visually, and furthermore,
improve these representations with various encodings such as
color.
Guidance/recommendations [CGM19] is a good continuation of
the previous concept: trust can be improved by using visual-
ization tools that (1) recommend new labels in the unlabeled
data scenarios, for example, in semi-supervised learning and (2)
guide the user to manage the data by adding, removing, and/or
merging data features and instances.
Finally, for this level of trust, outlier detection, i.e., searching
and investigating extreme values that deviate from other obser-
vations of a data set, can be alleviated by visualization systems
(this is a major issue in ML [CBK09]). Detecting and manipu-
lating in a meaningful way an observation that diverges from an
overall pattern on a sample is a useful way to positively influence
the results and boost overall trust in the process. Notice that this
category focuses on particular instances, while the source relia-
bility category described previously, considers data globally.

• Learning method/algorithms (TL3). This group of cate-
gories concerns the ML algorithms themselves, as the third step
of the ML pipeline. Each category corresponds to a particular
way of enabling a better control, in broad sense, over ML algo-
rithms.
Familiarity is how visualization can support users in order to
help them getting familiar with a certain learning method. There
is a possibility that users are biased towards using an ML al-
gorithm they know instead of the others that might actually be
more appropriate. Improvement of familiarity by using visual-
ization could help to both limit this type of bias and to enhance
the users’ trust in algorithms they do not know well.
Interpretability and explainability are among the most common
and widespread categories—being found in most of the papers
that we identified. We further subdivide both into the following
categories:

– understand the reasons behind ML models’ behavior and why
they deviate from each other (understanding/explanation);

– diagnose causes of unsuccessful convergence or failure to
reach a satisfactory performance during the training phase
(debugging/diagnosis);

– guide experts (and novices) to boost the performance, trans-
parency, and quality of ML models (refinement/steering); and

– compare different algorithms (comparison).

It should be noted that the issue of interpretability and explain-
ability has been receiving a growing attention in the ML commu-
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nity. Algorithms are modified in order to produce models that are
easier to interpret. However, those models are frequently claimed
to be more interpretable based on general rules of thumb, such
as “rule-based systems are easier to understand than purely nu-
merical approaches” or “models using fewer features than others
are easier to understand”. Only the most recent papers tend to
include user-based studies [AGW18, CSWJ18]. Unfortunately,
they only explore quite simple visualization techniques such as
static scatterplots.
Knowledgeability translates to the question: if users are not
aware of an ML algorithm, then how are they supposed to use
it? Possible solutions to provide assistance to users in such situa-
tions include visualizations designed to compare different mod-
els or to provide details about each algorithm. However, the lack
of visualization literacy limits the possibilities for exploration of
an ML algorithm and effects negatively all the categories of this
phase [BRBF14, BBG19]. Model-agnostic (more general) visu-
alization techniques that consider multiple algorithms can also
support this challenge.
Last but not least, the category of fairness covers the analysis of
subgroup-specific effects in ML prediction, e.g., whether predic-
tions are equally accurate for various subgroups; for instance, fe-
males versus males, or if there are discrepancies that give a group
an advantage or a disadvantage compared to other groups. This
topic has recently received a lot of attention in the ML commu-
nity. It has been shown in particular that the most natural fairness
and performance criteria are generally incompatible [KMR17].
Thus, ML algorithms must make some compromises between
those criteria which justify the strong need for visually monitor-
ing/analyzing such trade-offs.

• Concrete model(s) (TL4). This final step of the ML pipeline
consists of turning its inputs, mainly a set of ML learning meth-
ods/algorithms, into a concrete model or a combination of mod-
els [SKKC19]. Trust issues related to this step concern mostly
performance related aspects, both in a static interpretation but
also in a dynamic/interactive way.
Experience is a primary crucial factor, since promoting person-
alized visualizations based on the experiences of a user alter and
might determine the selection. As an example, an expert in ML,
a novice user, and a specific domain expert have different needs,
and “what are their experiences and how can the visualization
adapt to that?” is an important question.
In situ comparison can be described as comparing different snap-
shots and/or internal structures of the same concrete model in
order to enhance trust.
Performance is another very common way to monitor the re-
sults of a model visually. Performance can objectively compare
a model with another. However, this is usually insufficient for a
complete understanding of the trade-off between different mod-
els.
What-if hypotheses appear when users search for impacts based
on their interactions. A potential question is: “What is the conse-
quence if we change one parameter and keep the rest stable for a
specific model, or select some points to explore further?”
Model bias and model variance are well-known concepts origi-
nating from statistics with regard to the bias-variance trade-off.
The bias is a systematic error created by the wrong hypotheses in

a model. High bias can cause a model to avoid seeing the relevant
associations between features and target outputs, thus underfit-
ting. The variance is a manifestation of the model’s sensitivity
or the lack thereof to the data, more precisely to the training set.
It could also be the result of parameterizations or perturbations.
High variance can result in a model which bears inside random
noise in the training data, rather than the intended outputs, hence
overfitting.

• Evaluation/user expectation (TL5). The last group of cat-
egories is subsequent to visualization tools and techniques that
oversee the ML pipeline, leading to knowledge generation in the
overall workflow. Evaluation of models and meeting user expec-
tations [CRMH12] is a key component for people to trust or not
ML model(s) for a task.
Agreement of colleagues is supported by visualizations with
provenance [OAB∗17,RESC16] and collaborative visualizations
which facilitate, for instance, ten experts from diverse domains
to agree that a model performed well. This purpose could be
served by provenance features and specific glyphs or snapshots,
along with web-based online tools and platforms. When using
visualizations, the choices of the visual metaphor and the vi-
sual variable (e.g., color instead of size) are important but can
supplement the process negatively with visualization bias. This
kind of bias was described, for example, by Lespinats and Au-
petit [LA11]. However, this issue is being addressed by multi-
ple ongoing research efforts in various subfields of visualiza-
tion which are outside of the scope of this survey [MHSW19,
XPGF19]. Thus, we have not included this perspective in our
categorization.
A measure against visualization bias that we consider instead is
the visualization evaluation [Mun09] that many authors of visu-
alization papers perform. Quantitative or qualitative methods are
used in the InfoVis and other communities to evaluate new vi-
sualization techniques. Both count as visualization evaluations,
even receiving feedback from ML experts and/or domain experts
before, during, or after the development of a visualization sys-
tem.
Moreover, results/metrics validation is the most common
method utilized by developers of visualization tools to indicate if
a model can be trusted and has reached user expectations. How-
ever, we believe that it is not sufficient on its own.
Finally, user bias is a rarely addressed category which tries to
understand the cognitive biases of users who have the power
to steer an automated process. Questions such as where, when,
and why a user has to interact with a model are still an open
challenge. A paper from Nalcaci et al. [NGB∗19], for example,
works with distinction bias and confirmation bias in visualiza-
tion systems that are related to user bias when viewing visual-
izations. Also, a recent survey from Dimara et al. [DFP∗20] tries
to connect the possibly-biased judgment and decision making of
humans with specific visualization tasks.

3. Related Surveys

The challenge of enhancing trust in ML models has not yet received
the same level of attention in systematic surveys as other topics, for
example, the understanding and interpretation of DR or deep learn-
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ing (DL). To the best of our knowledge, this is the only survey that
deals with InfoVis and VA techniques for enhancing the trustwor-
thiness of ML models. In order to confirm that, we carefully exam-
ined the online browser of the survey of surveys (SoS) paper from
McNabb and Laramee [ML17], which contains 86 survey papers
from main InfoVis venues. We have also investigated 18 additional
survey papers in our own recent SoS paper [CMJK20]. Our analy-
sis indicated that many of these surveys are about interpretable ML
models, especially regarding current popular subjects such as inter-
pretable and interactive ML (IML), predictive VA (PVA), DL, and
clustering and DR. None of these papers, however, has an explicit
focus on categorizing and/or analyzing techniques related especif-
ically to the subject of trust in ML models. Related issues, such as
accuracy, quality, errors, stress levels, or uncertainty in ML mod-
els, are touched upon by some of them, but in our work these issues
are discussed in more detail. Particularly, uncertainty in the data
and the visualization itself is a part of our TLs in the uncertainty
awareness and the visualization bias categories. One of the main
differences in our work is the focus on the transformation from un-
certainty to trust, which should happen progressively in all phases
of an ML pipeline. Some previous works offer brief literature re-
views and propose frameworks for human-centered IML with vi-
sualization [SSZ∗16, SSZ∗17], the problem of integrating ML into
VA [ERT∗17], trust in VA [SSK∗16], or comparison of DR tech-
niques from an ML point of view [VDMPVdH09]. Although inter-
esting, those papers fall outside the scope of the trust in ML models
subject. One of the motivations for this STAR came from our anal-
ysis of the future work sections of these surveys—10 out of the
18 surveys highlight the subject of enhancing trust in the context
of ML models, making this challenge one of the most emergent
and essential to solve. This body of work also forms the basis for
our methodological part of the literature research, presented in Sec-
tion 4.

3.1. Interpretable and Interactive Machine Learning

The work concerning the interpretability of ML models in the vi-
sualization community started to emerge around 15 years ago. This
opportunity was captured by Liu et al. [LWLZ17] who conducted
a survey that summarizes several ML visualization tools focus-
ing on three categories (understanding, diagnosis, and refinement).
This is different compared to our perspective and goal to categorize
only those papers that tackle the problem of enhancing trust in ML
models. The recent publication by Du et al. [DLH20] groups tech-
niques for interpretable ML into intrinsic and post-hoc, which can
be additionally divided into global and local interpretability. The
authors also suggest that these two types of interpretability bring
several advantages, for example, that users trust an algorithm and
a model’s prediction. However, they do not analyze in details the
different aspects of enhancing trust in ML models as we performed
in this STAR. Overall, these surveys (and the categories from Liu et
al. [LWLZ17], together with comparison) target the interpretability
and explainability at the level of ML algorithms, which are themes
under the umbrella of VIS4ML (visualization for ML) and com-
prise only a small subset of our proposed categorization.

Moreover, the topic of IML aided by visualizations has been dis-
cussed in many papers recently, as it was summarized in the surveys

by Amershi et al [ACKK14] and Dudley and Kristensson [DK18].
The former focused on the role of humans in IML and how much
users should interfere and interact with ML. They also suggested
at which stages this interaction could happen and categorized their
papers accordingly. Steering, refining, and adjusting the model with
domain knowledge are not trivial tasks and can introduce cumula-
tive biases into the process. Due to this, in this STAR our analy-
sis focuses on the biases that a user might introduce into a typical
ML pipeline. Furthermore, visualizations may introduce different
biases to the entire process, as discussed in the previous Section 2.
In such situations, the visualization design should be directed to-
wards conveying, or occasionally removing, any of these biases ini-
tially and not simply making it easier for users to interact with ML
models.

3.2. Predictive Visual Analytics

Lu et al. [LGH∗17] adopted the pipeline of PVA, which consists of
four basic blocks: (i) data pre-processing, (ii) feature selection and
generation, (iii) model training, and (iv) model selection and vali-
dation. These are complemented by two additional blocks that en-
able interaction with the pipeline: (v) visualization and (vi) adjust-
ment loop. The authors also outline several examples of quantitative
comparisons of techniques and methods before and after the use of
PVA. However, no analysis has been performed about trust issues
that are incrementally added in each step of the pipeline. Another
survey written by Lu et al. [LCM∗17] follows a similar approach
by classifying papers utilizing the same PVA pipeline, but with two
new classes: (a) prediction and (b) interaction. For instance, re-
gression, classification, clustering, and others are the primary sub-
categories of the prediction task; and explore, encode, connect, fil-
ter, and others, are subcategories of interaction. This work inspired
us to introduce the interaction technique subcategory of our basic
category, called visualization. One unique addition, though, is the
verbalize category, which describes how visualization and use of
words can assist each other by making the visual representation
more understandable to users and vice versa. Concluding, none of
these survey papers so far provide future opportunities touching the
subject of how visualization can boost ML models’ trustworthiness.

3.3. Deep Learning

Grün et al. [GRNT16] briefly explain how the papers they collected
are separated to their taxonomy for feature visualization methods.
The authors defined three discrete categories as follows: (i) input
modification methods, (ii) deconvolutional methods, and (iii) input
reconstruction methods. Undoubtedly, learned features of convolu-
tional neural networks (CNNs) are a first step to provide trust to
users for the models. But still, this step belongs to the interpretabil-
ity and explainability of a specific algorithm, i.e., very specialized
and targeted to CNNs. In our work, we cover not only CNNs but
every ML model with a focus on the data, learning algorithms, con-
crete models, users, and thus not only on the model. The two main
contributions of Seifert et al. [SAB∗17] are the analysis of insights
that can be retrieved from deep neural network (DNN) models with
the use of visualizations and the discussion about the visualization
techniques that are appropriate for each type of insight. In their pa-
per, they surveyed visualization papers and distributed them into
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five categories: (1) the visualization goals, (2) the visualization
methods, (3) the computer vision tasks, (4) the network architec-
ture types, and (5) the data sets that are used. This paper is the
only one that contains analyses for the data sets used in each vi-
sualization tool, which worked as a motivation for us to include a
data set analysis in our survey. However, their main contributions
do not touch the problem of trustworthiness, but more the correla-
tion of visualizations and patterns extraction (or insights gaining)
for DNNs. A summarization of the field of interpreting DL models
was performed by Samek et al. [SWM18], putting into the center
the increasing awareness of how interpretable and explainable ML
models should be in real life. The main goal of their survey is to
foster awareness of how useful it is to have interpretable and ex-
plainable ML models. General interpretability and explainability
play a role in increasing trustworthiness, but not a major one. The
different stages of the ML pipeline should be taken into account as
from early stages, bias and deviance can occur and grow when pro-
cessing through the pipeline. Zhang and Zhou [ZZ18] study their
papers starting from the visualization of CNN representations be-
tween network layers, over the diagnosis of CNN representations,
and finally examining issues of disentanglement of “the mixture of
patterns” of CNNs. They neither provide a distinct methodology of
categorization for their survey, nor insights on the problem of trust
as opposed to our survey.

Another batch of papers on DL assembles into Garcia et
al.’s [GTdS∗18] survey in which visualization tools addressing the
interpretability of models and explainability of features are de-
scribed. The authors focus on various types of neural networks
(NNs), such as CNNs and recurrent neural networks (RNNs), by
incorporating a mathematical viewing angle for explanations. They
emphasize the value of VA for the better understanding of NNs and
classify their papers into three categories: (a) network architecture
understanding, (b) visualization to support training analysis, and
(c) feature understanding. In a similar sense, (i) model understand-
ing, (ii) debugging, and (iii) refinement/steering are three directions
that Choo and Liu [CL18] consider. Model understanding aims to
communicate the rationale behind model predictions and spreads
light to the internal operations of DL models. In cases when the
DL models underperform or are unable to converge, debugging is
applied to resolve such issues. Finally, model refinement/steering
refers to methods that enable the interactive involvement of usu-
ally experienced experts who build and improve DL models. Com-
pared to our survey, only half of the learning methods are consid-
ered. Thus, their reader support is limited when it comes to show
how their algorithms actually work on several occasions. Yu and
Shi [YS18] examined visualization tools that support the user to
accomplish four high-level goals: (1) teaching concepts, (2) as-
sessment of the architecture, (3) debugging and improving models,
and (4) visual exploration of CNNS, RNNs, and other models. They
describe four different groups of people in their paper: (a) begin-
ners, (b) practitioners, (c) developers, and (d) experts, distributed
accordingly to the four aforementioned classes. These groups are
also considered in our work. Nonetheless, teaching concepts and
assessing the architectures of DNNs are particular concepts that
do not enhance trust explicitly. This is why we focus on multiple
other categories, such as models’ trade-off of bias and variance or
in situ comparisons of structures of the model, in general and not

exclusively for DL models. Hohman et al. [HKPC19] surveyed VA
tools that explore DL models by investigating papers into six cat-
egories answering the aspects of “who”, “why”, “what”, “when”,
“where”, and “how” of the collected papers. Their main focus is on
interpretability, explainability, and debugging models. The authors
conclude that just a few tools visualize the training process, but
solely consider the ML results. Our ML processing phase category
is motivated by this gap in the literature, i.e., we investigate this
challenge in our paper to gain new insights about the correlation of
trust and visualization in pre-processing, in-processing, and post-
processing of the overall ML processing phases. Finally, as many
explainable DL visualization tools incorporate clustering and DR
techniques to visualize DL internals, the results of these methods
should be validated on how trustworthy they are.

3.4. Clustering and Dimensionality Reduction

Sacha et al. [SZS∗17] propose, in their survey, a detailed catego-
rization with seven guiding scenarios for interactive DR: (i) data
selection and emphasis, (ii) annotation and labeling, (iii) data ma-
nipulation, (iv) feature selection and emphasis, (v) DR parameter
tuning, (vi) defining constraints, and (vii) DR type selection. During
the annotation and labeling phase, for example, hierarchical clus-
tering could assist in defining constraints which are then usable by
DR algorithms. Nonato and Aupetit [NA19] separate the visualiza-
tion tools for DR according to the categories linear and nonlinear,
single- versus multi-level, steerability, stability, and others. Due to
the complexity of our own categorization and our unique goals, we
chose to use only their first category (linear versus nonlinear), as
is common in previous work [VDMPVdH09]. Nonato and Aupetit
also describe different quality metrics that can be used to ensure
trust in the results of DR. However, as the results of our online
questionnaire suggested (cf. Section 2), comparing those quality
metrics alone is probably not sufficient. To conclude, the main goal
of these two surveys is not related to ML in general, and the lat-
ter one only discusses trust in terms of aggregated quality metrics.
This is a very restricted approach when compared to our concept
of trust, which should be ensured at various levels, such as data,
learning method, concrete model(s), visualizations themselves, and
covering users expectations.

4. Methodology of the Literature Search

In the following, we present the methodology used to iden-
tify and systematically structure the papers of our STAR. Our
work is inspired by the same methodology guidelines from Lu et
al. [LGH∗17], Garcia et al. [GTdS∗18], and Sacha et al. [SZS∗17]
presented in Section 3. In an initial pilot phase (cf. [Sny19]), we
extracted appropriate keywords from ten relevant papers [VSK∗15,
WJCC16], including those that deal with the problems of in-
terpretable/explainable ML (which are closely related to trust
in ML). The keywords were divided into two lists with the
goal to cover both trust and ML. For trust, the used keywords
were, in alphabetical order: “accuracy”, “assess”, “bias”, “black
box”, “confidence”, “diagnose”, “distort”, “error”, “explain”, “ex-
plore”, “feedback”, “guide”, “interact”, “noise”, “quality”, “robust-
ness”, “stress”, “trust” “uncertainty”, “validate”, “verify”, and their
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derivatives. For ML, the searched keywords were: “artificial intel-
ligence”, “classification”, “clustering”, “deep learning”, “dimen-
sionality reduction”, “machine learning”, “neural network”, “pro-
jections”, and all the types of ML (e.g., “supervised learning”).

The keywords from the two lists were combined into pairs, such
that each keyword from the first list was paired with each keyword
from the second. These paired keywords were used for seeking pa-
pers relevant to the focus of this survey in different venues (cf. Sec-
tion 4.1). A validation process was used in order to scan for new
papers and admit questionable cases, as described in Section 4.2.
Papers that were borderline cases and eventually excluded are dis-
cussed in Section 4.3.

4.1. Search and Repeatability

To gather our collection of papers, we manually searched for papers
published in the last 12 years (from January 2008 until January
2020). We started our search from InfoVis journals, conferences,
and workshops, and later extended it to well-known ML venues (the
complete list can be found at the end of this subsection). Moreover,
when seeking papers in ML-related venues (e.g., the International
Conference on Machine Learning, ICML), we included two addi-
tional keywords: “visual” and “visualization”.

Within the visualization domain, we checked the following re-
sources for publications:

Journals: IEEE TVCG, Computers & Graphics (C&G), Com-
puter Graphics Forum (CGF), IEEE Computer Graphics & Ap-
plications (CG&A), Information Visualization (IV), DiStill, and
Visual Informatics (VisInf).

Conferences: IEEE Visual Analytics in Science and Technol-
ogy (VAST), IEEE Visualization Conference (VIS) short papers
track, Eurographics Visualization (EuroVis), IEEE Pacific Visu-
alization (PacificVis), ACM Conference on Human Factors in
Computing Systems (CHI), and ACM Intelligent User Interfaces
(IUI).

Workshops: Visualization for AI Explainability (VISxAI), Euro-
Vis Workshop on Trustworthy Visualization (TrustVis), Interna-
tional EuroVis Workshop on Visual Analytics (EuroVA), Ma-
chine Learning Methods in Visualisation for Big Data (MLVis),
Visualization for Predictive Analytics (VPA), Visual Analytics
for Deep Learning (VADL), IEEE Large Scale Data Analysis and
Visualization (LDAV), and Visualization in Data Science (VDS).

Within the ML domain, we checked the following venues:

Conferences: ICML, Knowledge Discovery and Data Mining
(KDD), and European Symposium on Artificial Neural Net-
works, Computational Intelligence, and Machine Learning
(ESANN).

Workshops: ICML Workshop on Visualization for Deep Learn-
ing (DL), ICML Workshop on Human Interpretability in ML
(WHI), KDD Workshop on Interactive Data Exploration & An-
alytics (IDEA), NIPS Workshop on Interpreting, Explaining and
Visualizing Deep Learning.

The search was performed in online libraries, such as IEEE Xplore,
ACM Digital Library, and Eurographics Digital Library. As an ex-
ample of the number of results we got, both IEEE Transactions

on Visualization and Computer Graphics (TVCG) and IEEE Visual
Analytics in Science and Technology (VAST) together resulted in
around 750 publications. Due to the use of a couple of broad key-
word combinations in order to cover our main subject effectively,
some of the papers collected were not very relevant. They were
sorted out in the next phase of our methodology.

4.2. Validation

For the sake of completeness, we quickly browsed through each
individual paper’s related work section and tried to identify more
relevant papers (a process known as snowballing [Woh14]). With
this procedure, we found more papers belonging to other venues,
such as the Neurocomputing Journal, IEEE Transactions on Big
Data, ACM Transactions on Intelligent Systems and Technol-
ogy (ACM TIST), the European Conference on Computer Vision
(ECCV), Computational Visual Media (CVM), and the Workshop
on Human-In-the-Loop Data Analytics (HILDA), co-located with
the ACM SIGMOD/PODS conference. In more detail, this valida-
tion phase was performed in four steps:

1. we removed unrelated papers by reading the titles, abstracts, and
investigating the visualizations;

2. we split the papers into two categories: approved and uncertain;
3. uncertain papers were reviewed by at least two authors, and if

the reviewers agreed, they were moved to the approved papers;
4. for the remaining papers (i.e., where the two reviewers dis-

agreed), a third reviewer stepped in and decided if the paper
should be moved to the approved category or discarded perma-
nently.

The calculated amount of disagreement, i.e., the number of con-
flicts in the 70 uncertain cases, was less than 20% (approximately
1 out of 5 papers). This process led to 200 papers that made it into
the survey.

4.3. Borderline Cases

We have restricted our search to papers with visualization tech-
niques that explicitly focus on supporting trust in ML models,
and not on related perspectives (e.g., assisting the exploration
and labeling process of input data with visual means). There-
fore, papers such as those by Bernard et al. [BHZ∗18, BZSA18],
Gang et al. [GRM10], and Kucher et al. [KPSK17], although un-
doubtedly interesting, are out of the scope of our survey, since
their research contributions are exclusively based on labeling
data. Other partially-related papers [AASB19, AW12, BHGK14,
FBT∗10, SBTK08, ZSCC18] are also not included because they
focus on using clustering solely to explore the data, without ad-
dressing inherent problems of the method. For similar reasons,
the paper by Wenskovitch et al. [WCR∗18], that tries to con-
nect and aggregate benefits from clustering and DR methods, was
excluded. Moreover, papers on high-dimensional data clustering
or exploratory data analysis are not included (e.g., Behrisch et
al. [BKSS14], Lehmann et al. [LKZ∗15], Nam et al. [NHM∗07],
and Wu et al. [WCH∗15]). Finally, there are related works that
provide important contributions to the visualization community,
but do not study trust explicitly, and thus were not included:
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Figure 3: Histogram of the set of collected techniques/tools (200
in total) with regard to the publication year. (∗) Please note that
the data for 2020 is incomplete since the data collection for this
survey was completed in January 2020. (†) For 2007, we did not
perform a complete search; the single publication was found within
the related work section of another already-included paper.

improving the computational performance of algorithms (e.g., t-
SNE) [PHL∗16, PLvdM∗17], frameworks and conceptual designs
for closing the loop [SKBG∗18], investigating cognitive biases
with respect to users [CCR∗19], and enabling collaboration with
the use of annotations [CBY10].

5. General Overview of the Relations Between the Papers

This section begins with a meta-analysis of the spatiotemporal as-
pects of our collection of papers. The analysis shows, on the one
hand, that there is an increasing trend in trust-related subjects; on
the other hand, it also highlights the struggles of collaborations be-
tween visualization researchers and ML experts. Additionally, we
generated a co-authorship network to observe the connections of
the authors from all the papers. By exploring the network and its
missing links, we hope to bring researchers closer to form new col-
laborations towards research in the trustworthiness of ML models.

Time and venues. Our collection of papers comprises 200 en-
tries from a broad range of journals, conferences, and workshops.
The analysis of the temporal distribution (see Figure 3) shows a sta-
ble growth in interest in the topic since 2009, with a sharp increase
in 2018 and 2019 (and promising numbers also for 2020). The num-
bers for the publication venues identified can be seen in Table 2.
Visualization researchers seem to be very interested in working
with solutions to this problem and try to extend their work in ML
venues with the creation of new workshops. There is a large num-
ber of workshops on the topic, co-located with ML venues, which
indicates that researchers are interested in reaching out of their re-
spective areas in order to collaborate. However, the small number
of publications outside of visualization venues could possibly show
a struggle of visualization researchers to find and collaborate with
ML experts. It might also indicate that ML experts are not fully
aware of the possibilities that the visualization field provides.

Co-authorship analysis. We analyzed the co-authorship
network of the authors of our collection of papers using

Table 2: Number of visualization techniques # with regard to
the respective publication venues in visualization (left and middle
columns) and other disciplines (mostly ML venues; right column).
Journals are marked with ‘J’and workshops with ‘W’. The remain-
ing venues are conferences.

Visualization venue # Visualization venue # Other disciplines venue # 
IEEE TVCG J 56 EuroVis 3 WHI W (ICML) 3 
CGF J 33 VADL W (VIS) 3 ACM TIST J 2 
IEEE VAST 24 MLVis W (EuroVis) 3 ESANN 2 
ACM IUI 10 C&G J 2 HILDA W (ACM SIGMOD) 2 
EuroVA W (EuroVis) 9 Distill J 2 Neurocomputing J 1 
ACM CHI 8 IEEE VIS 2 IEEE Tran. on Big Data J 1 
IV J 6 VISxAI W (VIS) 2 KDD 1 
IEEE CG&A J 5 VisInf J 1 ECCV 1 
IEEE PacificVis 5 CVM J 1 DL W (ICML) 1 
VPA W (VIS) 4 LDAV W (VIS) 1 IDEA W (KDD) 1 
VDS W (VIS) 4 TrustVis W (EuroVis) 1   

 

Gephi [BHJ09], as presented in Figure 4. The goal was to identify
a potential lack of collaboration within the visualization and ML
communities. Enhancing collaboration between specific groups
may lead to improvements in the subject of boosting trust in ML
models with visualizations. The more connections an author has,
the bigger is the size of the resulting node, i.e., the in-degree val-
ues of the graph nodes are represented by node size in the drawing.
We colored the top eight clusters with the highest overall in-degree
for all the nodes of each cluster. Finally, we filtered the node la-
bels (authors first names and surnames) by setting a limit to the
in-degree value in order to reduce clutter. By looking at the result-
ing co-authorship network (see Figure 4 and S2), we can observe a
huge cluster in violet 1©. In this cluster, Huamin Qu, Remco Chang,
Daniel A. Keim, Cagatay Turkay, and Nan Cao seem to be the most
prominent authors, with many connections. If we consider differ-
ent subclusters in this massive cluster, Nan Cao is the bridge be-
tween some of the subclusters. Another cluster on the left (with
light green color 2©) is related to the big industries (such as Google
and Microsoft) with Fernanda B. Viégas, Martin Wattenberg, and
Steven M. Drucker as the most eye-catching names. Interestingly,
this industry cluster is very well separated from the remaining aca-
demic clusters. Potentially, the connection of this industry cluster
with the remaining clusters could have an impact on the research
output produced by the visualization community. There are many
smaller clusters of collaborating people, for example, the cluster
with David S. Ebert and Wei Chen 3©, Klaus Mueller 4©, Han-Wei
Shen 5©, Alexandru C. Telea 6©, Valerio Pascucci 7©, and others
(e.g., 8©) obviously serving as main coordinators.

6. In-Depth Categorization of Trust Against Facets of
Interactive Machine Learning

In this section, we discuss the process and results of our catego-
rization efforts. We introduce a multifaceted categorization system
with the aim to provide insights to the reader about various aspects
of the data and ML algorithms used in the underlying literature.
The main sources of input for the categorization were the previous
work from the surveys discussed in Section 3, the iterative process
of selecting papers (and excluding the borderline cases) described
in Section 4, and the feedback received from the online question-
naire (Section 2). The top two levels of the proposed hierarchy of
categories can be seen below, with 8 overarching aspects (6.1 to
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Figure 4: Co-authorship network visualization with the eight largest connected components ( 1©– 8©) highlighted in different colors. The node
size represents the in-degree centrality of each author. The labels are filtered based on the in-degree value in order to reduce clutter.

6.8), partitioned into 18 category groups (6.1.1 to 6.6.3, plus TL1
to TL5), resulting in a total of 119 individual categories.

• 6.1. Data
– 6.1.1. Domain (10 categories)
– 6.1.2. Target Variable (5 categories)

• 6.2. Machine Learning
– 6.2.1. ML Methods (16 categories)

– 6.2.2. ML Types (10 categories)
• 6.3. ML Processing Phase (3 categories)
• 6.4. Treatment Method (2 categories)
• 6.5. Visualization

– 6.5.1. Dimensionality (2 categories)
– 6.5.2. Visual Aspects (2 categories)
– 6.5.3. Visual Granularity (2 categories)
– 6.5.4. Visual Representation (19 categories)
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– 6.5.5. Interaction Technique (9 categories)
– 6.5.6. Visual Variable (6 categories)
• 6.6. Evaluation

– 6.6.1. User Study (2 categories)
– 6.6.2. User Feedback (2 categories)
– 6.6.3. Not Evaluated (1 category)
• 6.7. Trust Levels (TL) 1–5

– TL1: Raw Data (2 categories)
– TL2: Processed Data (5 categories)
– TL3: Learning Method (7 categories)
– TL4: Concrete Model (6 categories)
– TL5: Evaluation/User Expectation (4 categories)
• 6.8. Target Group (4 categories)

The complete overview of all categories is shown in Table 3 (also
in S3 as a mind map). The aspect and category group names are
preceded by the subsection numbers where they are introduced and
discussed. This is to avoid confusion and to reduce the cognitive
load of the reader.

Designing the categorization. Compared to previous surveys,
we created new categories to better cover the 200 papers we in-
cluded in our STAR. In the following list, we present the basic
purpose for each aspect, along with the core similarities and dif-
ferences when compared to the related surveys from Section 3.

• 6.1. Data tries to create a link between the input data/application
and the enhancement of trust in ML models. The first category
group we identified in this aspect is the data domain. We took the
inspiration from our previous publication [KPK18], but the cat-
egories are significantly different to fit the current subject. In the
case of the target variable, we conceived the idea of separating
the independent variable of each data set.
• 6.2. Machine Learning is an inherent component in boosting

the trustworthiness of ML models. We used several sources for
defining parts of the ML methods category group. Different neu-
ral networks methods, such as CNNs, RNNs, DCNs, and DNNs,
were contained in other works [SAB∗17, YS18]. Also, as men-
tioned in Section 3, linear and non-linear DR is an existing
categorization from [NA19], but ensemble learning and the re-
maining DL categories are new to our STAR. ML types, such
as classification, regression, and clustering, can be seen in the
work [LGH∗17], but we improved this short categorization by
using the complete supervised, unsupervised, semi-supervised,
and reinforcement learning distinction.
• 6.3. ML Processing Phase connects the ML and the visual-

ization aspects and shows when VA techniques are deployed
to improve the trustworthiness of the ML models. During and
after training categories can be found in the work of Hohman
et al. [HKPC19], which in our case are adjusted to the newly
introduced pre-processing, in-processing, and post-processing
phases.
• 6.4. Treatment Method deals with differences between model-

agnostic or model-specific approaches. Observing such distinc-
tions might indicate where the community should later focus
on to better boost the trust in ML models. Model-agnostic vs.
model-specific methods used in VA systems are first described in
our work, although Dudley and Kristensson [DK18] hinted about
model agnosticism.

• 6.5. Visualization is another inherent component of how in-
creasing trust in ML models can be achieved. Visualization de-
tails, such as dimensionality, can also be found in the work of
Kucher et al. [KK15]. However, we added visual aspects and
granularity. Visual representation was also inspired by Kucher
et al. [KK15] and many of the other related surveys. The ver-
balize category is a novel addition to pre-existing work, which
is part of the 6.5.5. Interaction Technique group described in the
work of Lu et al. [LCM∗17]. Finally, for this aspect, the work of
Kucher et al. [KPK18] covers all the visual variables used by us
except for opacity.
• 6.6. Evaluation of visualization can reduce the visualization

bias, thus boosting even further the application of VA systems
for ML. We are among the first who included this new aspect to
highlight the importance of evaluations in visualization systems,
tools, and techniques.
• 6.7. Trust Levels (TL) 1–5, introduced in Section 2, is the

most novel category group. Only TL3, which contains the in-
terpretability/explainability group of categories, is described in
previous works [LWLZ17, CL18]. Despite that, comparison is a
fresh addition to this group.
• 6.8. Target Group is equally important to the problem of en-

hancement of the trustworthiness in ML models as the input
(i.e., the data) and the actual visualization. This aspect is inspired
mainly by Yu and Shi’s paper [YS18].

Overall, this extensive categorization aims to completely unveil the
relationship between trust and the remaining categories, as can be
seen later in Figure 6 and Section 7.

Filling in the categorization. To ensure consistency during the
process of assigning the 200 papers to our categories in a first cy-
cle, we created a code of practice (see S4) as a base structure. This
base structure provides guidance to evaluate the individual papers
in the same way without misalignment between the authors of this
STAR. We also cleared and double-checked the resulting data for
any issues that could come up with the annotated data in a second
cycle. In particular, we looked for the following issues: (1) out-
liers, (2) typos, (3) discrepancies, and (4) inconsistencies between
different evaluators by inspecting and removing any obscure and
misclassified data cases. The fact that a large subset of the papers
(75%) were classified by the same author also maximizes the con-
sistency of their final categorization. Each classified paper belongs
to zero, one or more categories for every aspect depending on the
information the paper contains. Due to the page limits and read-
ability concerns, we cannot discuss all 200 papers in this section.
Instead, we only focus on the most prominent and (in our opinion)
most important ones. All 200 papers are referenced in Table 4 and
are part of the bibliography. The complete survey data set, includ-
ing the individual categorization for each paper, is provided in our
online survey browser (see Fig. 8) and in S5.

6.1. Data

Many visualization techniques have been tested with specific data
sets coming from different domains. However, just a few of them
specifically work for one type of data set, for instance, the systems
proposed by Bremm et al. [BvLBS11] and Wang et al. [WGZ∗19].
In this subsection, we present the most frequent data domains we
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Table 3: The categorization used in our survey. The total number of corresponding visualization techniques per category is shown in every
row, along with heatmap-style icons.

6.1.1. Domain 198
Biology 28
Business 19
Computer Vision 59
Computers 6
Health 30
Humanities 41
Nutrition 8
Simulation 8
Social / Socioeconomic 22
Other 93

6.1.2. Target Variable 199
Binary (categorical) 39
Multi-class (categorical) 128
Multi-label (categorical) 9
Continuous (regression problems) 24
Other 38

6.2.1. ML Methods 198
Convolutional Neural Network (CNN) 25
Deep Convolutional Network (DCN) 8
Deep Feed Forward (DFF) 10
Deep Neural Network (DNN) 19
Deep Q-Network (DQN) 9
Generative Adversarial Network (GAN) 10
Long Short-Term Memory (LSTM) 13
Recurrent Neural Network (RNN) 18
Variational Auto-Encoder (VAE) 14
Other (DL methods) 21
Linear (DR) 57
Non-linear (DR) 51
Bagging (ensemble learning) 27
Boosting (ensemble learning) 11
Stacking (ensemble learning) 6
Other (generic) 97

6.2.2. ML Types 197
Classification (supervised) 111
Regression (supervised) 20
Other (supervised) 7
Association (unsupervised) 5
Clustering (unsupervised) 41
Dimensionality Reduction (unsupervised) 66
Classification (semi-supervised) 13
Clustering (semi-supervised) 6
Classification (reinforcement) 1
Control (reinforcement) 3

Legend: 0 papers 100 papers 200 papers

6.3. ML Processing Phase 198
Pre-processing / Input 36
In-processing / Model 45
Post-processing / Output 162

6.4. Treatment Method 196
Model-agnostic / Black Box 144
Model-specific / White Box 70

6.5.1. Dimensionality 199
2D 196
3D 5

6.5.2. Visual Aspects 199
Computed 195
Mapped 109

6.5.3. Visual Granularity 200
Aggregated Information 183
Instance-based / Individual 146

6.5.4. Visual Representation 199
Bar Charts 82
Box Plots 11
Matrix 50
Glyphs / Icons / Thumbnails 63
Grid-based Approaches 19
Heatmaps 46
Histograms 56
Icicle Plots 6
Line Charts 56
Node-link Diagrams 47
Parallel Coordinates Plots (PCPs) 32
Pixel-based Approaches 8
Radial Layouts 22
Scatterplot Matrices (SPLOMs) 18
Scatterplot / Projections 115
Similarity Layouts 27
Tables / Lists 86
Treemaps 5
Other 59

6.5.5. Interaction Technique 185
Select 163
Explore / Browse 169
Reconfigure 74
Encode 112
Filter / Query 113
Abstract / Elaborate 177
Connect 128
Guide / Sheperd 48
Verbalize 9

6.5.6. Visual Variable 196
Color 195
Opacity 83
Position / Orientation 58
Shape 37
Size 68
Texture 17

6.6. Evaluation 200
Standard 38
Comparative 12
Before / During Development 36
After Development 47
Not Evaluated 102

6.7. Trust Levels (TL) 1–5 200
Source Reliability 11
Transparent Collection Process 6
Uncertainty Awareness 29
Equality / Data Bias 16
Comparison (of Structures) 86
Guidance / Recommendations 46
Outlier Detection 68
Familiarity 3
Understanding / Explanation 95
Debugging / Diagnosis 54
Refinement / Steering 69
Comparison 61
Knowledgeability 10
Fairness 6
Experience 7
In Situ Comparison 54
Performance 108
What-if Hypotheses 40
Model Bias 19
Model Variance 16
Agreement of Colleagues 9
Visualization Evaluation 87
Metrics Validation / Results 130
User Bias 7

6.8. Target Group 196
Beginners 41
Practitioners / Domain Experts 162
Developers 36
ML Experts 73

spotted and the nature of the target variable that should be predicted
by ML classifiers.

6.1.1. Domain

DeepVID, by Wang et al. [WGZ∗19], is an example that focuses
only on images (i.e., the overall field of computer vision). It shows

how ML models for image classification can be interpreted and de-
bugged with the use of simpler models (e.g., a linear model) in
DNNs. Since DNNs usually work well with image data, explor-
ing and diagnosing the training process of a DNN is an initial step
towards boosting trust in them. With regard to humanities data,
Sherkat et al. [SNMM18] propose a system that empowers users
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incorporating their feedback to define several diverse algorithms
for clustering. The supported interactions enable users to adjust
(or even create) new key terms, which are then used to supervise
the algorithms and cluster the different documents. Involving hu-
manities experts in user studies to evaluate the effectiveness of VA
systems can further increase trust. An example of operating with
health data is INFUSE [KPB14], which helps analysts to select
features and retrieve extra information based on a selection from a
collection of algorithms, cross-validations folds, and different ML
models. The visual representations assist domain experts (i.e., doc-
tors) in manipulating their medical records more precisely and im-
prove the accuracy of the results. In this case, the visualization tool
seems to be generalizable to other domains. In medicine, receiving
recommendations during the data processing phase is necessary to
ensure that no further biases are introduced in the input phase of
an ML model. This guidance is better achievable by feature explo-
ration and feature selection with the use of visualization. Bremm
et al. [BvLBS11] focus on biological data sets. In their paper, the
authors utilize scatterplot- and grid-based visualizations to facili-
tate selection and later comparison of data descriptors for unlabeled
biology-related data. Except for the comparison of data and struc-
tures, any uncertainties stemming from the data should be high-
lighted for the biologists to focus on them. As a consequence, this
extraction of patterns through visualization can increase their trust
in ML. A number of papers focus on various other data domains,
such as the works of Gleicher [Gle13], Sips et al. [SNLH09], and
Tatu et al. [TMF∗12].

6.1.2. Target Variable

In ML, the target (or response) variable is the characteristic known
during the learning phase that has to be predicted for new data by
the learned model. In classification problems, it can take a binary
value for two-class problems, a single label for multi-class prob-
lems, or even a set of labels for multi-label problems. In regres-
sion problems, it is generally a continuous variable. On the one
hand, Krause et al. [KDS∗17] propose a workflow to help practi-
tioners to examine, diagnose, and explain the decisions made by
a binary classifier. In their approach, instance-level explanations
are obtained based on local feature significance measures that ex-
plain single instances. With these findings as a basis, they develop
visualizations that lead the users to important areas of investiga-
tion. Extensions of this approach could evaluate the reliability of
the incoming data by comparing different areas and timeframes of
the data. On the other hand, a multi-class data set has been used
in ActiVis [KAKC18]. This visualization tool integrates coordi-
nated multiple views, such as a graph that provides an overview
of the model architecture, and a neuron activation view for ex-
ploring DNN models with user-defined subsets of instances. To
wrap up the decisions made based on the provided views, agree-
ment of colleagues could further enhance the trust in these com-
plex DNNs. Many approaches exist for regression problems, such
as those described in the publications of Fernstad et al. [FSJ13]
and Hohman et al. [HSD19]. For instance, Piringer et al. [PBK10]
describe a validation framework for regression models that enable
users to compare models and analyze regions with poor predictive
performances. The optimization of the so-called trade-off of bias
and variance is also crucial for regression problems.

Papers categorized as others on the target variable group con-
cern ML settings in which no target variable is available. These
are mostly related to DR and clustering problems. The method de-
signed by Zhou et al. [ZLH∗16], for example, combines both as-
pects to enable users to design new dimensions from data projec-
tions of subspaces, with the goal of maintaining important clus-
ter information. The newly adapted dimensions are included in the
analysis together with the original ones, to help users in form-
ing target-oriented subspaces that explain—as much as possible—
cluster structures.

6.2. Machine Learning

This subsection covers various ML methods that were divided
into three main classes: DL, DR, and ensemble learning. We also
discuss different ML types that we considered in our categoriza-
tion: supervised learning, unsupervised learning, semi-supervised
learning, and reinforcement learning.

6.2.1. Machine Learning Methods

In the area of DL, we observed two categories that are in the fo-
cus of most DL-related papers: CNNs and RNNs. CNNCompara-
tor [ZHP∗17] addresses the challenges of comparing CNNs and
enables users to freeze the tool for different epochs of a trained
CNN model (by using so-called snapshots). An epoch is com-
pleted when a data set is processed one time forward and backward
through an NN. Thus, CNNComparator provides insights into the
architectural design, and as a consequence, it enables better train-
ing of CNN models. For RNNs, RNNbow [CPM∗18] visualizes
the gradient flow while backpropagation occurs in the training of
RNNs. By visualizing the gradient, this tool offers insights into
how exactly the network is learning. Both papers explicitly en-
hance trust in different DL models by either comparing CNNs or
explaining RNNs to the users via visualization. In the DR subclass,
linear techniques surpass non-linear ones in volume (the former
was found in 57 papers vs. 51 for the latter). One example here
is the iPCA tool [JZF∗09]. It augments the principal component
analysis (PCA) algorithm with an interactive visualization system
that supports the investigation of relationships between the data and
the computed eigenspace. Overall, the tool employs views for ex-
ploring the data, the projections, the PCA’s eigenvectors, and the
correlations between them. Eventually, prominent uncertainties be-
come aware to users by examining all these relations. In another
example, AxiSketcher [KKW∗17] enables users to impose their do-
main knowledge on a visualization by allowing interaction using a
direct-manipulation technique over a t-SNE projection (non-linear
DR technique). Users can sketch lines over specific data points,
and the system composes new axes that represent a non-linear and
weighted mixture of multidimensional attributes. Thus, the com-
parison of clusters enables users to identify problematic cases (in
terms of trust) in a projection. For ensemble learning, bagging is
the most common category. iForest [ZWLC19] is a visualization
tool that accommodates users with an aggregated view showing
and summarizing the decision paths in random forests, which fi-
nally reveals the working mechanism of the ML model. Visualizing
and understanding the decision paths of random forest algorithms,
as well as how their performance was reached, serves as a foun-
dation for assessing the trust in bagging ensemble learning. Other,
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more general examples can be found in the works by Schneider et
al. [SJS∗18] and Sehgal et al. [SRG∗18].

6.2.2. Machine Learning Types

According to our analysis, supervised learning and classification
problems are extensively addressed by the visualization commu-
nity. For instance, a visualization system that works with choosing
the best classifiers is EnsembleMatrix [TLKT09]. It allows users
to directly interact with the visualizations in order to explore and
build combinations of models. Comparison of ML models and val-
idation metrics are key factors in increasing trust in them. Hyper-
MoVal [PBK10], already discussed in Section 6.1.2, focuses on re-
gression problems and provides several functionalities: comparing
the ground truth against predicted results, analyzing areas with a
poor fit, evaluating the physical plausibility of models, and com-
paring various classifiers. When users address regression problems,
the comparison of alternative ML models and steering each of them
can also improve the trustworthiness of the models. In unsuper-
vised learning, a clustering example is the visualization technique
developed by Turkay et al. [TPRH11], which visualizes the struc-
tural quality of several temporal clusters at a certain point in time
or over time. DimStiller [IMI∗10] is a system (belonging to the DR
subclass) that assists the user in converting the input dimensions in
a number of analytical steps into data tables that can be transformed
into each other with the help of so-called operators. Users can
manipulate those operators for parameter tuning and for guidance
to discover patterns in the local neighborhood of the data space.
Both DR and clustering visualization tools often utilize compari-
son of structures and emphasize patterns observable in projections.
Some rare cases are related to semi-supervised learning, such as
MacInnes et al. [MSW10] and Bernard et al. [BZL∗18]. Reinforce-
ment learning is covered by the work of Saldanha et al. [SPBA19],
for instance.

6.3. Machine Learning Processing Phase

VASSL [KKZE20] is a system that works with the pre-
processing/input phase and enhances the performance and scala-
bility of the manual labeling process by providing multiple co-
ordinated views and utilizing DR, sentiment analysis, and topic
modeling. The system allows users to select and further investi-
gate batches of accounts, which supports the discovery of spambot
cases that may not be detected when checked independently. For
the in-processing/model phase, Liu et al. [LSL∗17] designed a tool
that helps to better understand, diagnose, and steer deep CNNs.
They represent a deep CNN as a directed acyclic graph, and based
on this representation, a hybrid visualization has been developed to
disclose multiple aspects of each neuron and the intercommunica-
tions between them. The largest category with regard to the num-
ber of available visualizations is post-processing/output for visu-
alizing the final results, such as MultiClusterTree [VL09]. In their
tool, the authors propose a 2D radial layout that supports an in-
herent understanding of the distribution arrangement of a multidi-
mensional multivariate data set. Unique clusters can be explored
interactively by using parallel coordinates when being selected in
a cluster tree representation. The overall cluster distribution can be
explored, and better understanding of the relations between clus-
ters and the initial attributes is supported as well. As expected, the

input phase is highly related to TL2, the in-processing phase to un-
derstanding and steering categories of TL3, and the final phase to
metrics validation (TL5). Finally, Gil et al. [GHG∗19] and Sacha et
al. with VIS4ML [SKKC19] are two workflow papers that provide
an overview of all these phases.

6.4. Treatment Method

Model-agnostic techniques are twice as common as model-specific
techniques. With the former, we mean—in most of the cases—
visualization methods that treat ML models as black boxes. The
latter is usually connected to techniques specifically developed
to open these black boxes, and thus make the ML models to be
regarded as white boxes. An example of a model-agnostic visu-
alization tool is ATMSeer [WMJ∗19] with which users are able
to steer the search space of AutoML and explain the results. A
multi-granular visualization empowers users to observe the Au-
toML process, examine the explored ML models, and refine the
search space in realtime. In the white box case, the visualiza-
tion tool EasySVM [MCM∗17] facilitates users in tuning param-
eters, managing the training data, and extracting rules as a com-
ponent of the support vector machine (SVM) training process.
The goal of model-specific techniques is to explain the inner
workings of a particular ML model. However, some tools com-
bine both specific models and model-agnostic algorithms, such as
Chae et al. [CGR∗17], Roesch and Günther [RG19], Pezzotti et
al. [PHV∗18], and others [CWGW19, KKB19, MCMT14].

6.5. Visualization

Various approaches, types, and properties of visualization are used
in our 200 surveyed papers, often in combinations. The knowledge
of the most common techniques and approaches can guide early-
stage researches to choose the most important of them or senior
researchers to discover potential gaps in the literature. The selec-
tion of the best visualization approaches, types, and properties for
a given situation can effectively reduce potential visualization bias.
Successfully addressing questions such as “where, when, and why
should I use a 2D bar chart to present aggregated information in-
stead of another visual representation?”, for instance, can boost
trust in ML models. Carefully thinking about which data should
be visualized is similarly important. This section of our report de-
scribes all these aspects and introduces the corresponding category
groups.

6.5.1. Dimensionality

With regard to dimensionality of the visual display, almost all
visualizations (196) are 2D, such as [dBD∗12, JJ09, MXC∗20,
SDMT16]. An exception is the interactive visualization technique
by Coimbra et al. [CMN∗16] that adapts and improves biplots to
show the data attributes in the projected three-dimensional (3D)
space. They use interactive bar chart legends to present variables
that are visible from a given angle and also support users to decide
on the optimal position to examine a desired set of attributes.

6.5.2. Visual Aspects

The information to be visualized can either be directly mapped
from the data values themselves or be computed (algorithmically
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derived). ModelTracker [ACD∗15] extracts information contained
in conventional summary statistics and charts while letting users
examine errors and diagnose ML models. Hence, it contains com-
puted instead of mapped instances. Arendt et al. [ASW∗19] visual-
ize the classifier’s feedback after each iteration with their IML in-
terface. To address scalability issues of the visualization, this inter-
face communicates with the user by a small set of system-proposed
instances for each class.

6.5.3. Visual Granularity

Görtler et al. [GSS∗20] represent aggregated information in their
visualizations. They use a technique that performs DR on data that
is subject to uncertainty by using a generalization of standard PCA.
Their technique helps to discover high-dimensional characteristics
of probability distributions and also supports sensitivity analysis on
the uncertainty in the data. Zeiler and Fergus [ZF14] introduce a vi-
sualization technique that contributes to insight generation for the
general operation of the classifier in an instance-based manner, i.e.,
for individual data cases. Nevertheless, most visualization systems
and techniques involve both the exploration of aggregated informa-
tion and individual cases, e.g., presented by Choo et al. [CLKP10]
and the visualization tool BaobabView [vv11].

6.5.4. Visual Representation

Liu et al. [LXL∗18] combine multiple coordinated views to pro-
vide a thorough overview of a tree boosting model and enable the
effective debugging of a failed training process. One of their views
utilizes bar charts in order to rank the most valuable features that
affect the model’s performance. Ji et al. [JSR∗19] propose visual
exploration of a neural document embedding with the goal to gain
insights into the underlying embedding space and encourage this
utilization in standard infrared (IR) spectroscopy applications. In
their paper, they use a scatterplot visualization, i.e., a projection.
LSAView [CDS09] is a system for interactive, latent semantic anal-
ysis (LSA) models. Multiple views, linked matrix-graph views, and
data views in the form of lists are used to choose parameters and see
the effects of them. Other papers apply different visual representa-
tions, some rare cases are waterfall charts, violin charts, Voronoi
diagrams, and bipartite graphs [Aup07, HSD19, KKZE20, LA11,
LGG∗18, WGSY19, WGYS18, ZTR16].

6.5.5. Interaction Technique

Gehrmann et al. [GSK∗20] argue that both the visual interface and
model architecture of DL systems need to consider the interac-
tion design. They propose a collaborative semantic inference for
the constructive cooperation between humans and algorithms. Se-
mantic interactions permit a user both to understand and regulate
parts of a model’s reasoning process. All these interactions enable
the selection of particular sentences and then further exploration
of the content with suggestions stemming from the system side.
Abstract/elaborate is another interaction technique found in, e.g.,
Borland et al. [BWZ∗20] and can be interpreted as different granu-
larities that the visualization allows users to explore the data. Sev-
astjanova et al. [SBE∗18] argue that a combination of visualization
and verbalization methods is advantageous for generating wide and
versatile insights into the structure and decision-making processes

of ML models. For more details about the remaining interaction
techniques (e.g., [CD18a, CBB∗19, CLKP10, PSMD14, PLHL19,
ZWC∗18]), we refer to the survey of Lu et al. [LGH∗17].

6.5.6. Visual Variable

Ahmed et al. [AYMW11] use a qualitative color scheme in order to
encode cluster groupings in all views of their visualization tool for
steering mixed-dimensional KD-KMeans clustering. Color is used
in almost every paper we examined [CSG∗18, EASKC18, KS12,
ML14, PSF17, XCH∗16]. DeepCompare [MMD∗19] uses opacity
and size, which are the two second-most occurring visual variables.
Their tool visualizes the results of DL models, provides insights
into the model behavior and the assessment of trade-offs between
two such models. In more detail, the activation value of an NN is
encoded as size, while opacity is used to remove the highlighting
when specific cases are selected.

6.6. Evaluation

In this subsection, we explore how visualizations are evaluated in
our community and how many of them had been actually evaluated.
Surprisingly, around half of the visualizations were never evalu-
ated. The evaluation of visualizations is a fundamental component
to validate the usability of visualization tools and systems.

6.6.1. User Study

RuleMatrix [MQB19] is one of the approaches that follows a stan-
dard procedure for performing an evaluation in the InfoVis com-
munity. That is, various participants had to solve a series of tasks
by using the tool during which the accuracy and timing was mon-
itored to gain insight into the usability of the proposed solution.
The paper presents an interactive visualization technique to assist
novice users of ML to understand, examine, and verify the per-
formance of predictive models. FairSight [AL20] is another tool
designed to accomplish different concepts of fairness in ranking
decisions. To achieve that, FairSight distinguishes the required ac-
tions (understanding, computing, and others) that can possibly lead
to fairer decision making. It was compared against the What-If
Tool [WPB∗20] and found to perform better and result in more
benefits than the latter approach.

6.6.2. User Feedback

Cashman et al. [CHH∗19] worked with exploratory model anal-
ysis, which is defined as the process of finding and picking rele-
vant models that can be used to create predictions on a data source.
During development, they improved their tool and received user
feedback. Hazarika et al. [HLW∗20] used networks as surrogate
models for visual analysis, and after the development of their sys-
tem and techniques, a domain expert gave them feedback in or-
der to further improve the VA system at the end of the develop-
ment process. Ultimately, from the further analysis of the statis-
tics, we conclude that in five cases both domain and ML experts
used visualization tools and evaluated them. In 32 cases, e.g.,
[CS14,KCK∗19,LLL∗19,MvW11,XYC∗18], only domain experts
were asked; and in 19 cases only ML experts participated, such as
in [LSC∗18, NHP∗18].
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6.6.3. Not Evaluated

As described earlier, approximately half of the papers did not in-
clude any type of evaluation. However, we discovered one visual-
ization tool [KTC∗19] that was evaluated later in a new publica-
tion [KC19].

6.7. Trust Levels

The most novel components of the categorization presented in this
section are the different levels of trust we identified in the 200 in-
dividual papers. In Section 2, we divided the enhancement of trust
in ML models with the help of visualizations into five levels (raw
and processed data, learning method, concrete model, and user ex-
pectation).

6.7.1. Raw Data (TL1)

Source reliability often comes together with transparent collection
processes as in AnchorViz [CSV∗18], an interactive visualization
that facilitates erroneous regions detection through semantic data
exploration. By pinning anchors on top of the visualization, users
create a topology to lie upon data instances based on their rela-
tion to those nearby anchors. Examination of discrepancies be-
tween semantically related data points is another functionality of
the tool. This data exploration helps to observe source reliability
and if any strange effects occurred when the collection process hap-
pened. However, as can be seen from the data in Table 3, these two
categories are covered rarely by visualization tools.

6.7.2. Processed Data (TL2)

Uncertainty awareness and investigation is an established subject
of research in the visualization community with techniques such as
the one presented by Berger et al. [BPFG11]. The authors devel-
oped techniques that guide the user to potentially interesting pa-
rameter areas and visualize the intrinsic uncertainty of predictions
in 2D scatterplots and parallel coordinates. FairVis [CEH∗19] is
a recent paper that addresses a new problem which seems to be-
come a trend. Data bias and equality is a major issue and should
be—as much as possible—removed from our ML models. FairVis
facilitates users to review the fairness of ML models in interesting,
explored subgroups. iVisClustering [LKC∗12] is one of the many
visualization tools that allow the comparison of different structures
(clusters in this case) and guide/recommend the users by propos-
ing new clusters based on previous actions. With the help of such
visualizations, users can interactively refine clustering results in
various ways. Also, iVisClustering can fade away noisy data and
re-cluster the data accordingly to demonstrate a meaning represen-
tation. Zhao et al. [ZCW∗19] developed a tool that enables users to
recognize, explain, and choose outliers discovered by various algo-
rithms. Roughly one third of the papers cover outlier detection re-
lated topics (68 out of 200), such as [LWT∗15,RFFT17,SKB∗18].

6.7.3. Learning Method (TL3)

The work of Olah et al. [OSJ∗18] tries to familiarize users
with different DL algorithms. They test robust interfaces that
appear when users appropriately combine them and the rich
composition of this combinatorial solution space. In our STAR,

interpretability and explainability is separated into four cate-
gories: understanding/explanation, debugging/diagnosis, refine-
ment/steering, and comparison. These categories may even oc-
cur in pairs or triplets, depending on the visualization system and
technique. For instance, Liu et al. [LLS∗18] support understand-
ing/explanation of the reasons behind faulty predictions introduced
by adversarial attack examples. The basic concept is to analyze
groups of critical neurons and their connections of the adversar-
ial attacks and match them with those of the normal cases. Deep-
Tracker [LCJ∗18] facilitates the exploration of the intense dynam-
ics of CNN training processes and helps to identify the unique pat-
terns that are “buried” inside the enormous amount of information
in a training log (debugging process). Hamid et al. [HDK∗19] de-
scribe a visual ensemble analysis based on hyper-parameter space
and performance visualizations. These visualizations are mutually
used with associations’ explorations between topological arrange-
ments and allow the production of enough knowledge in order to
support users steering the process. Rieck and Leitte [RL15a] sug-
gest a comparative analysis of DR methods according to what level
of preservation of structural features in the high-dimensional space
remains in the 2D embeddings. Local and global structural fea-
tures are assessed in the original space, and specific DR methods
are chosen based on those findings. Manifold [ZWM∗19] is con-
ceived of a generic framework that does not rely on the internals of
particular ML models and only observes the input and the output.
With the comparison of various models and learning methods, it
allows users to become knowledgeable about their usability. Fair-
Sight [AL20] which was discussed earlier along with the What-If
Tool [WPB∗20] are both two recent examples of how fairness is a
trending unexplored subject in the community. The What-If Tool
(which was not discussed yet) enables domain experts to assess the
performance of models in hypothetical scenarios, analyze the sig-
nificance of several data features, and visualize model functionality
across many ML models and batches of input data. It also engages
practitioners in grading systems that are able to show multiple ML
fairness validation metrics.

6.7.4. Concrete Model (TL4)

Cashman et al. [CPCS20] researched the rapid exploration of model
architectures and parameters. To this end, they developed a VA
tool that allows a model developer to discover a DL model im-
mediately via exploration as well as rapid deployment and exam-
ination of NN architectures. By visually comparing models, be-
ginners might come to similar conclusions (e.g., that early stages
of convolutional layers perform well in feature extraction) as ML
experts who take advantage of their experience. In situ compari-
son, i.e., a comparison of two or more states of the same model,
is performed by Gamut [HHC∗19], for example. The benefit of
Gamut lies in the justification of why and how professional data
scientists interpret models and what they look for when compar-
ing their internal components. Our investigation showed that in-
terpretability is not a monolithic concept: data scientists have dif-
ferent reasons to interpret models and tailor explanations for spe-
cific audiences, often balancing competing concerns of simplic-
ity and completeness. Moreover, performance is one of the most
common techniques to choose from (see Table 3) when having dif-
ferent models. LoVis [ZWRH14] allows the user to progressively

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

construct and validate models that promote local pattern discovery
and summarization based on “complementarity”, “diversity”, and
“representativity” of models. What-if hypotheses are supported by
Clustrophile 2 [CD19], which guides users in a clustering-based
exploratory analysis. It also adapts incoming user feedback to im-
prove user recommendations, helps the interpretation of clusters,
and supports the rationalization of differences between clusterings.
Last but not least, papers that deal with issues related to model
bias and model variance usually occur together. Mühlbacher and
Piringer [MP13] present a framework for building regression mod-
els addressing these limitations. Analyzing prediction bias with
model residuals is one of the techniques used to limit the local pre-
diction bias of a model, i.e., avoiding the inclination towards un-
derestimation or overestimation. They also visualize the point-wise
variance of the predictions by using a pixel-based view.

6.7.5. Evaluation/User Expectation (TL5)

The Agreement of colleagues is related to provenance and the pos-
sibility to enable users to collaborate with each other. Wongsupha-
sawat et al. [WSW∗18] present a design study of the TensorFlow
Graph Visualizer, which is a module of the shareable TensorFlow
platform. This tool improves users’ understanding of complicated
ML architectures by visualizing data-flow graphs. These flows can
be investigated, and at each point in time, provenance can be con-
sidered as a way to return back to a previous situation. Visualiza-
tion evaluation, as mentioned earlier in Sect. 6.6, is activated when
the visualization techniques and tools are evaluated or if any type
of feedback is provided. Showing metrics validation/results is the
most common way of enhancing trust until now. Squares [RAL∗17]
is a performance visualization for multi-class classification prob-
lems. Squares supports estimating standard performance metrics
while demonstrating instance-based distribution information essen-
tial for supporting domain experts in prioritizing efforts. Further-
more, Fujiwara et al. [FKM20] implemented a VA method that
highlights the crucial dimensions of a cluster in a DR result. To ob-
tain the important dimensions, they introduce an improved method
of contrastive PCA. The method utilized is called ccPCA (con-
trasting clusters in PCA) and can compute each dimension’s rel-
evant contribution to one versus other clusters. An example that
implicitly checks user bias is the explAIner tool by Spinner et
al. [SSSEA20]. explAIner is a VA system based on a framework
that connects an iterative explainable ML pipeline with 8 global
observing and refinement mechanisms, including “quality monitor-
ing”, “provenance tracking”, or “trust building”. Additionally, Jent-
ner et al. [JSS∗18] propose the metaphorical narrative methodology
to translate mental models of the involved modeling and domain
experts to machine commands and vice versa. The authors provide
a human-machine interface and discuss crucial features, character-
istics, and pitfalls of their approach. With regard to user bias, the
research community has taken “small steps” with only a few papers
tackling this issue. However, explicit reports about this challenge
are still rare, unfortunately.

6.8. Target Group

In most cases, the visualization tools cover at least the target
group of domain experts/practitioners [EGG∗12,FMH16,FCS∗20,

GNRM08, HNH∗12, KPN16]. Then, other target groups such as
ML experts [JC17b, KJR∗18, SSK10, WLN∗17] and developers
are in the focus of the authors [KFC16, Mad19, RL15b, YZR∗18]
(commonly together). Beginners/novice users [JSO19, MXQR19,
SRM∗15, TLRB18] are rarely considered. To give two examples,
Bögl et al. [BAF∗14] support with TiMoVA-Predict several types
of predictions with a holistic VA approach that focuses on domain
experts. Providing different prediction capabilities allows for as-
sessing the predictions during the model selection process via an
interactive visual environment. Biologists and doctors, for instance,
are interested in being able to compare data structures and receive
guidance on where to focus on. Ma et al. [MXLM20] employ a
multi-faceted visualization schema intended to aid the analysis of
ML experts for the domain of adversarial attacks.

7. Survey Data Analysis

In the previous parts of our report, we explained our overall
methodology, provided high-level statistical information on the se-
lected papers, and introduced our categorization together with ex-
ample papers assigned to the individual categories. Now in this sec-
tion, we discuss lower-level analytical results based on the collected
papers and their metadata. In order to detect interesting connections
and important emerging topics among the 200 papers, we applied
topic modeling to all of them, following the visual text analysis
approach by Kucher et al. [KMK18]. While the topic modeling re-
sults might be subject to the algorithm and parameter choice con-
cerns to some extent, they provide information complementary to
the results of our manual investigations. Thus, the topic analysis
contributes both to the validation and the new insights regarding
the categorized publications. In addition, we investigate the rela-
tions between categories in general (again following the workflow
proposed by Kucher et al. [KPK18]) and explore the different data
sets used in the individual papers. All those analyses help us to
validate and further explore our categorization by creating new in-
sights that can be used as research opportunities for this subject (cf.
Section 8).

7.1. Topic Analysis

Methodology. First, we collected the PDF files of the selected
papers and converted them to plain text. After that step, we pre-
pared the text corpus by clearing the full texts from the author-
ship details and acknowledgments. Next, we processed them with
the latent Dirichlet allocation (LDA) algorithm [BNJ03, GS04]
(a common approach for topic modeling). In order to verify the
LDA results—because it might produce diverse results at different
executions—we ran the same process several times to get compa-
rable results. The results do not indicate a major deviation from the
main topic of each paper previously assigned by the manual catego-
rization process. Finally, our LDA results led to ten topics (limited
by us due to the lack of space and our attempt to choose a reason-
able number of topics). The top eight terms for each topic are dis-
played in Table 4 together with the papers belonging to a topic (see
S6 for further details). From the terms that occurred, we removed
any terms related to the structure of the analyzed texts and not to
the actual content, for instance, “figure” and “fig”. Our implemen-
tation is based on Python with NLTK [Bir06] for the pre-processing

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.



Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

Table 4: For each of the ten topics, we present the top eight terms that we extracted from the results of the latent Dirichlet allocation (LDA)
that has been applied to all papers. The suggested topic titles are shown in italics. Each topic is encoded by one specific color. In each topic,
we cite the papers that mostly belong to them.

 

Topic 1 
NNs hidden states and models’ 
parameter spaces visualization 

(in time series applications) 

 Topic 2 
network visualizations to 

investigate the behavior of 
projections and explore 

classes (for topic analysis) 

 Topic 3 
NNs models’ hyper-

parameters and reward 
visualization during training 

for image applications 

 Topic 4 
vector space, samples, 

and distributions 
visualization in 

projections and DR 

 Topic 5 
models’ predictions 

visualization in clustering 
(for text applications) 

keywords papers  keywords papers  keywords papers  keywords papers  keywords papers 

model [BAF*14, BAF*15, 
EASKC18, XCH*16, 
MCZ*17, MBD*11, 
MLMP18, Mad19, SBP19, 
SGPR18, TCE*19, 
TLKT09, ZTR16] 

13 papers 

 topic [BWZ*20, CAA*19, 
CWS*17, Gle13, 
KKZE20, TLRB18, 
VKA*18, WSW*18, vv11] 

9 papers 

 image [AMJ18, SPBA19, SSS*18, 
WGZ*19, YCN*15] 

5 papers 

 projection [ACD*15, AHH*14, 
CCZ*16, CD18b, 
EGG*12, GNRM08, 
GSS*20, IMI*10, 
JSR*19, KTC*19, 
LBT*18, LJLH19, 
SDMT16, SZL*18, 
WM18] 

15 papers 

 model [AYMW11, BDSF17, 
BPFG11, BvLBS, CD18a, 
CD19, CDS09, CWGW19, 
FMH16, FSJ13, GS14, 
HNH*12, HVP*19, JC17b, 
KEV*18, KKB19, KPB14, 
KPN16, LKC*12, LRL*18, 
MP13, MW10, PBK10, 
RG19, SBE*18, SKB*18, 
SMSL17, SNMM18, 
SRG*18, ZKM*19, 
ZWLC19, ZWRH14] 

32 papers 

view  node  model  dimension  cluster 
tree  network  training  view  clustering 
state  projection  input  sample  value 
hidden  behavior  network  vector  view 
hidden state  class  hyper  space  prediction 
time  edge  parameter  point  document 
parameter  tree  reward  distribution  variable 

         
Topic 6 

ML models’ explanations and 
visualization systems evaluation 

 Topic 7 
subspaces exploration and 
distances examination in 

clustering and DR 

 Topic 8 
models’ predictions and 
design prototyping in ML 

algorithms 

 Topic 9 
individual points, 

projection space, and 
outliers’ exploration 

 Topic 10 
NNs neurons’ activations 

visualization during 
training for image 

applications 
keywords papers  keywords papers  keywords papers  keywords papers  keywords papers 

model [ASW*19, BAL*15, BEF17, 
CEH*19, CHH*19, CS14, 
DCCE19, GHG*19, 
GSC16, GSK*20, HHC*19, 
HSD19, KPB16, JKM12, 
JSO19, JSS*18, JZF*09, 
KBWS15, KDS*17, KFC16, 
KJR*18, KLTH10, KPB18, 
KSH18, MMD*19, MSM*17, 
MSW10, PSF17, RAL*17, 
SKKC19, SLT17, SSK10, 
SSSEA20, TKDB17, 
TMF*12, TSL*16, WMJ*19, 
WPB*20, ZYB*16] 

39 papers 
 

 cluster [AEM11, BAPB*16, 
BLBC12, CBB*19, 
CHAS18, CLKP10, 
CSG*18, FCS*20, 
FKM20, JHB*17, JJ09, 
KDFB16, LMZ*14, 
LWBP14, LWT*15, 
ML14, MvW11, 
PSPM12, RL14, RL15a, 
RL15b, RL16, TPRH11, 
VL09, WLN*17, WLS19, 
XYC*18, YZR*18, 
ZLH*16, dBD*12] 

30 papers 

 model [CPCS20, CSV*18, GDM*19, 
KAKC18, KCK*19, LGG*18, 
LLL*19, MQB19, MXC*20, 
MXLM20, MXQR19, SGB*19, 
SJS*17, SJS*18, SPG14, 
WGSY19, XXM*19, ZWM*19] 

18 papers 

 point [AL20, Aup07, 
BHR*19, BZL*18, 
CMN*16, RSF*15, 
JPN15, KKW*17, 
KS12, LA11, 
MCMT14, PLHL19, 
RFT18, SNLH09, 
SRM*15, SvLB10, 
YMT17, ZCW*19, 
ZWC*18] 

19 papers 

 layer [AJY*18, CGR*17, 
CPM*18, HDK*19, 
HLW*20, HPRC20, LCJ*18, 
LLS*18, LSC*18, LSL*17, 
LXL*18, NHP*18, OSJ*18, 
PHV*18, PSMD14, 
RFFT17, SW17, WGYS18, 
ZF14, ZHP*17] 

20 papers 

learning  subspace  prediction  class  network 
system  dimension  instance  projection  neuron 
machine  point  view  space  model 
participant  view  prototype  view  training 
explanation  distance  algorithm  instance  activation 
instance  dimensional  learning  value  class 
machine learning  clustering  design  outlier  image 

of stop words and Gensim [ŘS10] for the topic modeling part. The
names of the topics were manually assigned by us after several dis-
cussion cycles considering both the top terms and the contents of
the papers in each topic. The results are then visualized with the as-
sistance from the interactive visualization tool described by Kucher
et al. [KMK18], see Figure 5. This visualization is based on a DR
projection which may not be the most reliable approach. However,
the ground truth labels taken from the LDA results match in almost
all the cases with the clusters formed by the embedding.

Topics. In the following description list, we shortly summarize
the ten topics (see Table 4) we identified:

Topic 1 – hidden states & parameter spaces. According
to our analysis, the common factor between the majority of
the 13 papers in this topic class is their focus on time series
data [BAF∗14, BAF∗15] and RNNs [SBP19] (in Strobelt et
al. [SGPR18]: long short-term memory networks). It seems
that the exploration of the hidden states of such networks
preserves lost information that could enhance trust [MCZ∗17]
with appropriate expert intervention. Another subtopic here is
the ML models’ parameter spaces exploration [TCE∗19], which
enables users to find the best parameters based on a series of
optimizations for certain goals. In this context, Mühlbacher et
al. [MLMP18] present an approach that visualizes the effects of
these parameters. As stated by these previous works, support for
the visual parameter search is still an open research challenge.

Topic 2 – investigation of the behavior. This topic class
contains 2 out of 9 papers on topic analysis applica-
tions [CAA∗19, KKZE20]. A common theme here is
network visualization used for explaining Bayesian net-
works [CWS∗17, VKA∗18] and decision trees [vv11]. Other
subtopics (which lead to research opportunities) are the ex-
ploration of behavior with regard to the decomposition of
projections, showing the internal parts of ML models (and how
classes are formed inside them), and the role of the user; they
are all covered by our categorization presented in Section 6.

Topic 3 – hyper-parameters & reward. All five papers in
this class (except one [SPBA19] related to reinforcement learn-
ing) make use of image data. They form a tight, green cluster in
Figure 5 and focus mainly on DL techniques [YCN∗15]. It is an
open challenge to decide which hyper-parameter value [SSS∗18,
WGZ∗19] is better for a particular NN and specific problem,
thus implying novel visualization techniques. For reinforcement
learning, instead, more research is needed for studying what be-
haviors are associated with the two types of reward (high and
low) and monitoring how they develop during training.

Topic 4 – vector space, samples, & distributions. In this
topic class, three papers [LBT∗18, LJLH19, SZL∗18] work
with vector space embeddings that illustrate similarities of
the data. Most of the 15 papers highlight the importance
of visualizing instances and samples [KTC∗19, SDMT16]
that form clusters in projections and explore the distribu-
tions [AHH∗14, CCZ∗16, CD18b] of points in DR techniques.
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6. ML models' explanations 

& visualizations evaluation

9. Points, 

projection space, 

& outliers' exploration

8. Models' predictions

& design prototyping

3. Hyper-parameters 

& reward

7. Subspaces exploration & 

distances examination

1. Hidden states & parameter spaces

2. Investigation of the behavior

10. Neurons' activations

5. Models' predictions

4. Vector space, 

samples, 

& distributions

Figure 5: Visual exploration of new interesting topics derived from the 200 papers. (a) Papers’ embedding generated with the t-SNE algorithm
and based on the corresponding topics. The black outlines were manually drawn on top, and the tags act as short versions of the 10 full
topic titles. (b) Bar chart of topics with each topic’s significance (scaled from 0 to 1). (c) Horizontal bar chart of top terms with the highest
relevance for all the topics. Here, topics are encoded with color and number (in parentheses); a single term can be found in several topics.

Finding ways to improve these visualizations is still an open
challenge in the InfoVis community.

Topic 5 – models’ predictions. Models’ predictions and re-
sults visualization with the use of quality and validation met-
rics [FSJ13,GS14] (depending on the ML type) composes a big,
more general topic class with 32 surveyed papers. A subgroup
in this class especially refers to clustering challenges [BDSF17,
KEV∗18] and open research questions such as: “do we have the
best clustering that could be achieved and if not, how can we
improve it?” (usually related to text applications) [CDS09].

Topic 6 – models’ explanations & visualization evaluation.
This topic is rather generic (with 39 papers allocated) as
it addresses the understanding/explanation of ML mod-
els [GHG∗19,TKDB17]. For many visualization tools belonging

to this topic class, we can observe that user studies (i.e., eval-
uations) [BAL∗15, BEF17, GSC16, KLTH10, SLT17, ZYB∗16]
have been performed with participants from different educa-
tional levels (novices, practitioners, ML experts, and so on).
Following the overall theme of this STAR, a straightforward
unsolved problem in this area is to find answers to how exactly
we shall progress with the development of visualization tools
for boosting the trust in ML models and their results.

Topic 7 – subspaces exploration & distances examination.
Clustering and DR are both covered together when exploring
subspaces [BAPB∗16, KDFB16, LMZ∗14]. Finding the correct
distance function, checking if these distances are preserved after
the projection from the high-dimensional space into the 2D
space, and matching the users’ cognitive expectations is clearly
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not a trivial task. As a result, many papers are published in this
area [AEM11, BLBC12, JHB∗17, WLS19], making this topic
class with 30 papers one of the most prominent in our analysis.
Topic 8 – models’ predictions & design prototyping.
Another generic topic class with 18 related papers con-
tains, among others, the subject of ML models’ predic-
tions [SJS∗17, XXM∗19] that has already been seen in Topic
5. The difference between this class and Topic 5 is the focus
of its related papers, which is on the instantiation of visual-
ization prototypes with different design choices that should
be carefully considered based on previous InfoVis research.
As such, updating the current methods with improved ver-
sions can lead to enhanced trust of visualizations and reduce
biases [GDM∗19, LGG∗18, SGB∗19].
Topic 9 – points, projection space, & outliers’ exploration.
With 68 papers in total, the area of outlier detection is
prominent in our categorization, see Table 3. This cate-
gory is even confirmed through the topic analysis (with 19
papers assigned) as many techniques work with outlier de-
tection [BHR∗19, JPN15, RSF∗15]. Another hot topic in the
visualization community is the visual analysis of relations
between points and dimensions within the various projection
spaces [Aup07, CMN∗16].
Topic 10 – neurons’ activations. When visualizing DL tech-
niques, the existing research has tried to address the activation
of neurons in NN and their visual representation [HDK∗19,
HLW∗20,HPRC20]. Different visualization techniques (e.g., 2D
saliency/activation maps) have been used to visualize the activa-
tions of such neurons in various DL models, especially for im-
age applications [AJY∗18]. This topic class consists of 20 papers
about visualizing the internal operations of NNs during the train-
ing phase. A possible research question in this context is: “what
else can be visualized (for instance, gradients [CPM∗18]) that
gives meaning to humans about the learning process of a NN?”

Topic embedding. The ten-dimensional data space of the topics
over all 200 papers has been reduced to two dimensions by using t-
SNE [vdMH08], i.e., two papers are positioned close to each other
if their topic relationships are alike, see Figure 5(a). The scales in
the depicted bar charts are from 0 to 1, with 1 being the highest rel-
evancy value of a topic in Figure 5(b) and of a term in Figure 5(c).
The black outlines in the 2D embedding (see Figure 5(a)) were ap-
pended manually.

As it can be derived from Figure 5(b), Topics 6 & 7 are the
most prominent ones, followed by Topics 5 & 9, 8 & 10, and the
others. In more detail, ML models’ explanation and visualization
systems evaluation (Topic 6) and subspaces exploration and dis-
tances examination in clustering and DR (Topic 7) are two dis-
cussed topics that cover approximately 35% of all papers. With re-
gard to Figure 5(c), some interesting top terms are—as expected—
“models” (ML), “image data” (computer vision, see even Table 5),
“layers” (DL), “clusters”, “topic” (analysis), “subspace”, “projec-
tions”, and “dimensions” (DR). By observing the t-SNE projection
in Figure 5(a), we can find more interesting insights. For instance,
the tightest cluster is color-encoded in green and related to NNs
models’ hyper-parameters and reward visualization during train-
ing for image applications (Topic 3). Another interesting result
is that the misclassification of orange (Topic 2) & pink (Topic 7)

points as well as of pink (Topic 7) & red (Topic 4) points in the
embedding happens due to three concept terms that are spread in
all three topics, namely, the terms “clustering”, “dimension”, and
“projections”. Furthermore, as Topic 6 is rather generic (ML mod-
els’ explanations), there are some points laid out in-between (i.e.,
mixed points) with Topics 1 (DL) & 9 (projections). Lastly, Topic
8 (models’ predictions & design prototyping) is also rather general,
because the points in the projection are spread through two other
topics (5 & 10); and this is probably because NNs are a subclass
of ML models and Topic 5 (models’ predictions) is very similar to
Topic 8.

Overall, we notice that the automatically generated topics intro-
duce new subcategories (and ideas) that have been discussed in par-
allel to our categorization and—in consequence—supported even
more the categorization of the papers described in the previous sec-
tion. For instance, Topics 1 and 10 represent VA tools focusing
on the visualization of the NNs hidden states and neurons’ acti-
vations respectively to facilitate the understanding/explanation of
them. In addition, Topic 1 covers examples for the comparison of
models based on the visualization of their parameter spaces. Simi-
larly, Topic 2 is related to the in situ comparison of concrete models
to investigate different behaviors of the ML models. Topic 3, in-
stead, focuses more on diagnosing/debugging the training process
for reinforcement learning, and Topic 4 reflects the comparison of
data structures with the use of projections and DR. The remain-
ing topics are explicitly connected to our TL categorization within
the corresponding topic list items above. We believe that this mix-
ture of coarse-grained manual categorization with a fine-grained
automatic refinement may help guiding potential readers to more
insights and analyze the surveyed papers even further.

7.2. Correlation and Summarization of Categories

Correlation between categories. We have conducted a cor-
relation analysis for the categories used in our collected survey
data set. Individual visualization papers were treated as obser-
vations, and categories (cf. Table 3 and S5) were treated as di-
mensions/variables. Linear correlation analysis was then used to
measure the association between pairs of categories. The result-
ing matrix in Figure 6 contains Pearson’s r coefficient values and
reveals specific patterns and intriguing cases of positive (green)
and negative (red) correlation between categories. Since the in-
terpretation of the coefficient values seems to differ in the litera-
ture [Coh88,Eva96,Tay90], we focus on values of correlations that
appear interesting to us despite a potentially strong or weak corre-
lation level. Due to the extensive size of the correlation matrix, we
include only a thumbnail of it and refer the reader to S7 for more
detail. In Figure 6, we present some strong, medium, and weak cor-
relation cases that caught our attention.

The strongest case of negative correlation in our data set is the
not evaluated category vs. user expectation for evaluation (cf. 6.6.
and 6.7.5.), which clearly highlights the need for further evalua-
tion of visualization tools and techniques. Further interesting cases
mainly include competing categories from the same group. For ex-
ample, model-agnostic techniques contradict model-specific tech-
niques, because they consider different visualization granularities
for a given ML model. 2D and 3D oppose each other as typically
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Important Findings Correlation 
not evaluated vs. user expectation for vis. evaluation -90% 
model-agnostic vs. model-specific -76% 
boosting & stacking +73% 
2D vs. 3D -66% 
source rel. & transp. col. process +60% 
DQN & control (reinforcement learning) +57% 
DL models +28% to +82% 
model bias & model variance +53% 
in-processing vs. post-processing -53% 
DL & ensemble learning +12% to +86% 
mapped & instance-based +48% 
multi-class vs. other (target variable) -46% 
multi-class & computer vision +37% 
visualization interactions -19% to +55% 
developers & ML experts +32% 
source rel. & classification & transp. col. process  +28% to +32% 
(developers & ML experts) vs. domain experts -27% to -29% 
developers & debugging +27% 
ML experts & in-processing +26% 
continuous data & business +25% 
beginners & familiarity +24% 
RNNs & humanities +23% 
developers & comparison of models +23% 
domain experts & in-processing -23% 
ML experts & matrix +21% 
domain experts & select +20% 
domain experts & tables / lists +19% 
linear DR & biology +19% 
domain experts & debugging -19% 
beginners & select -17% 
ML experts & knowledgeability +16% 
(beginners & ML experts) & understanding 14% to 17% 

(a) Correlation matrix overview (b) Table for showing important correlation findings 
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Figure 6: The matrix of correlation values for categories (see Ta-
ble 3) calculated from our survey data set. In subfigure (a), we show
the correlations for the categorization in a thumbnail version of the
correlation matrix. The entire correlation matrix for further explo-
ration can be found in S7. (b) To help the reader to see potentially
interesting findings, we list the cases in decreasing order of their
correlation strengths (independent of negative or positive correla-
tion). In both subfigures, we use red color for negative correlation
and green for positive. Cases highlighted in bold refer to groups of
categories in general (e.g., visualization interactions).

only one of them exists in a visualization approach. Moreover, tech-
niques that focus on data exploration, explanation, and manipula-
tion related to the in-processing phases of an ML pipeline are very
different compared to systems that monitor the results in the post-
processing phase of an ML model. The strong negative correlation
between multi-class and other target variables might point to an
effect that comes from our own categorization procedure: when
papers could not be mapped to a concrete target variable (multi-
class, for instance), then the other category has been assigned, e.g.,
to show the irrelevance of the target variable for a visualization
technique. The category domain experts is negatively correlated to
managing models during the in-processing ML phase, which makes
sense as they do often not know much about how models work.
Similarly, developers and ML experts together are weakly but neg-
atively correlated with domain experts confirming the previous ac-
quisition. Other insights are that beginners are not usually using
selection as interaction technique and domain experts do not work
with diagnosing/debugging ML models as they do not have the ex-
perience and/or knowledge following the previous inference.

Cases with positive correlation start in Figure 6(b) with stack-
ing which is highly correlated with boosting ensemble learning as
the former sometimes includes the latter technique. All DL tech-
niques among each other have on average a medium positive cor-
relation, which shows that they have much more in common com-

pared to other ML methods, for example, DR. The same is true
for the group of visualization interactions to a slightly less extend.
When source reliability is taken into account and researched by
scientists, then the transparent collection process is usually exam-
ined together. Deep Q-networks (DQNs) are positively correlated to
and seem to be normally used together with reinforcement learning
methods, particularly with the subtype control. Furthermore, when
model bias challenges are addressed by visualization, then model
variance is another category that is addressed simultaneously. En-
semble learning along with DL are positively correlated, as the for-
mer includes the latter in many cases (a fact already mentioned be-
fore). Mapped instances lead to instance-based visualizations, in
general. With regard to domains, continuous target variables and
business are positively correlated (potentially due to trend predic-
tions); as well as computer vision and multi-class data in an even
stronger fashion. The latter correlation is also supported by our
data set analysis (see Table 5). Finally, visualization interactions
are positively correlated among each other, with the exception of
verbalization which is negatively correlated with the remaining cat-
egories in this group. This possibly means that verbalization is not
frequently used by the VA system developers. For more details, we
refer the reader to Figure 6(b) and supplementary material S7.

Popular approaches. The statistics in Table 3 support our ex-
pectations of the most common aspects of existing visualization
techniques for enhancing the trustworthiness of ML models. For
our first aspect (6.1. Data), computer vision, humanities, health,
and biology seem the most prominent domains in the surveyed
papers. Multi-class classification is the most common target vari-
able in our discussed techniques. Furthermore (6.2. ML), linear
and then non-linear DR techniques are commonly used, followed
by bagging (ensemble learning) and CNNs from the DL class.
The vast majority of the papers address supervised learning and
specifically classification problems, and in second position DR and
clustering which belong to unsupervised learning. (6.3. and 6.4.)
Post-processing and model-agnostic visualization techniques cover
around 75% of all papers. (6.5.) With regard to visual aspects
and granularity, almost all techniques used have at least a com-
ponent which is computed and not mapped/derived from the data
directly; and aggregated information is slightly more common than
instance-based/individual exploration of instances.

The absolute majority of the visualizations rely only on 2D rep-
resentations, and color is the visual channel most commonly used
for encoding information in the corresponding visualization sys-
tems, tools, and techniques. The rather large number of techniques
using opacity to hide points/instances and size/area to encode data
attributes can be explained by the extensive usage of scatterplots.
Other popular visualizations are bar charts, custom glyphs and
specialized icons, histograms, and finally, line charts. More tra-
ditional visual representations, such as tables, lists, and matrices,
are working in pairs with instance-based exploration techniques,
which are far less complicated than the previously mentioned vi-
sualizations. On the interaction side, selection, exploration, and
abstraction/elaboration are the three most prominent categories
found in many papers, followed by other interaction techniques,
such as connecting all the different views, filtering out or search-
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Figure 7: Sparkline representation of relative category popularity over time during 2007–2020. Each bar represents the support for a specific
category (cf. Table 3) in relation to the total count of techniques in the same year in our data set.
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ing for specific instances, and encoding. (6.6.) Around half of the
visualization techniques that we analyzed have not been evaluated.

The trust levels (6.7.) show that more works tackle source
reliability problems rather than the transparent collection pro-
cess challenge (as seen in TL1). For the second level (TL2), re-
searchers focus on the comparison of structures and outlier detec-
tion. In the third level (TL3), understanding, steering, comparing,
and debugging ML methods are quite popular. These aforemen-
tioned categories can be considered under the umbrella of inter-
pretable/explainable ML methods. For TL4, performance, in situ
comparison, and what-if hypotheses are other very often occurring
categories connected with the selection process of an individual ML
model. Ultimately in TL5, metrics validation and results observa-
tion at the final stage of the processing phase is the most frequent
category with 130 papers. Last but not least for 6.8., the visualiza-
tion systems and techniques have as a main target group, usually
practitioners/domain experts, followed by ML experts with large
distance. The analysis above sheds light into the reasons why a few
approaches seem to be more popular than others. The ML side uses
mostly performance, metrics validation, and results to monitor and
boost trust in the ML models. In contrast, the visualization side
focuses more on traditional visual representations and/or multivari-
ate, scalable visualizations that the experts are more willing to use.

Temporal trends. While the analyses presented above focus on
the overall statistics, we have also analyzed the temporal trends for
individual categories based on the collected data. Figure 7 provides
a sparkline-style representation of the information about each cat-
egory’s support (i.e., the count of corresponding techniques) over
time. The values are normalized by the total count of techniques
for each respective year between 2007 and 2020 (for example, 3
out of 9 papers from 2010 used computer vision data to demon-
strate the usability of their tools). The resulting representation in
Figure 7 allows us to confirm, for instance, that the ML processing
phase visualized consistently most often is post-processing rather
than in-processing or pre-processing. Combination of such tempo-
ral trends with the overall statistics also allows us to identify and
further discuss the usage of currently underrepresented categories.

Underrepresented categories. Multi-label data and computer-
related data (from software or hardware) are two underrepresented
categories that show no trend for a potential increase according to
Figure 7. For ML methods, approaches such as stacking ensemble
learning, deep convolutional networks (DCNs), and DQNs are also
not covered in detail. Nevertheless, there is a very small increas-
ing trend for them observable in Figure 7. Explicit techniques ad-
dressing problems that come with stacking ensemble learning were
not found in any paper, thus indicating a new research opportunity.
For ML types, the subcategory of solving classification problems
while using reinforcement learning is almost never visualized and
actually never addressed explicitly by the visualization community.
Other underrepresented categories here are reinforcement learning
and control, and association for unsupervised learning.

For the visual representation, the treemaps and icicle plots
categories are virtually not supported by the data. Further tech-
niques that belong to the last category within visual representa-
tion (“other”) and are fairly underrepresented are waterfall charts,

bipartite visualizations, and lastly area charts (as also mentioned
in Section 6). For the interaction techniques, the category of ver-
balization emerged in 2010 and has not attracted much support
in the publications; even though recently in 2018, Sevastjanova et
al. [SBE∗18] argued about the importance of its existence. More-
over, texture is the least usual way to represent the data visually in
comparison to the others. Comparative evaluations are the rarest
way of evaluating visualizations, which is rather logical because
not every technique has an obvious opposing one.

The real challenges start when we check the trust levels aspect
because many techniques are underrepresented, which means there
are several research opportunities in the area. Transparent collec-
tion processes, source reliability, and equality/data bias are usually
not covered by papers. Other problems, such as how visualization
can assist with the familiarity a user has for a learning method,
should also be in the research agenda of our community. Fairness
(and previously mentioned equality for the data) of the learning
methods seem to be in the spotlight according to the temporal statis-
tics (see Figure 7). Finally, developers (i.e., model builders) and
beginners are the two most underrepresented target groups in the
papers we analyzed. Knowledgeability about learning methods and
details available to different types of users is not well supported.
As a result, customization and reconfiguration of visualizations that
take into account the experience of users in order to choose a spe-
cific ML model are not researched to the required extent. Further-
more, a few techniques enable agreement of colleagues and study
about the consequences of using provenance in visualization tools
in order to cover our discussed subject. User bias is ignored in al-
most all of the visual systems.

All of the underrepresented categories discussed above might be
candidates for open challenges, as can be seen in Section 8.2. From
an ML perspective, the most real-world challenges are about ei-
ther classification or regression problems. Consequently, other ML
types are not researched to the same level. From the visualization
perspective, a large amount of time and effort is necessary to de-
sign and perform a “proper" visualization evaluation [LTBS∗18].
Moreover, as long as the visualization tools do not focus on begin-
ners, familiarity with and knowledgeability of the algorithms are
left aside by visualization researchers.

7.3. Data Set Analysis

Methodology. For the data set analysis, we consider only non-
synthetic (i.e., not artificial) data sets which can be accessed online.
We also include data sets that can be requested from the paper au-
thors. For the individual data features, we take further into account
the labels (i.e., classes), if they are existent. Overall, details about
a data set were collected relying on the description provided by
the authors of a paper, for example, how they collected and stored
the data. In any other case, we omitted the data sets. All data sets
are sorted first according to the number of occurrences in the 200
papers, and then by year to show the most recent first.

Results. The result of this process can be observed in Table 5.
In the listed 38 cases, the data sets are used in at least two pa-
pers, and the remaining 106 entries are used once only (cf. S8). In
total, we managed to identify 144 non-synthetic data sets in our
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Table 5: Overview of data sets ordered according to their usage. A “#” in the columns indicates the number of papers in this survey using a
particular data set; the data sets are then further grouped based on this number.

 

 Data Set Year Domain # Instances # Features Target 
Variable # References 

MNIST [LBBH98] 1998 Computer Vision 70,000 784 (28x28) Classification 
(10 classes) 17 

[AMJ18, BZL*18, CHAS18, FKM20, 
HDK*19, JC17b, LSL*17, MXLM20, 
PLHL19, PHV*18, RAL*17, SLT17, 
SSSEA20, WGYS18, WGZ*19, 
XYC*18, CD18b] 

Iris [And36] 1936 Biology 150 5 Classification 
(3 classes) 12 

[BZL*18, GSS*20, CHAS18, 
JHB*17, JZF*09, RL16, SDMT16, 
SMSL17, SNLH09, WLN*17, 
WM18, FCS*20] 

Wine Quality (red & white) [CCA*09] 2009 Business & 
Physicochemical 6,497 12 Classification 

& Regression 10 

[BLBC12, CMN*16, FKM20, 
HHC*19, JZF*09, SMSL17, 
SNLH09, TLRB18, ZCW*19, 
SRM*15] 

ImageNet [DDS*09] 2009 Computer Vision Depends (e.g., 1,350,000) Depends 
Classification 

(1,000 
classes) 

8 
[AJY*18, AMJ18, ASW*19, 
HPRC20, JC17b, YCN*15, ZF14, 
LCJ*18] 

Food and Nutrition [USD19] 2019 Nutrition Depends (e.g., 7,637) Depends (e.g., 14) Clustering 7 [FKM20, KDFB16, KKW*17, 
TMF∗12, WLN*17, WLS19, ZLH*16] 

CIFAR-10 [Kri09] 2009 Computer Vision 60,000 1,024 (32x32) Classification 
(10 classes) 6 [CPCS20, HDK*19, JC17b, 

LSC*18, LSL*17, WSW*18] 
20 Newsgroups [Lan95] 1995 News & Humanities 18,828 2 Classification 

(20 classes) 6 [ASW*19, KBWS15, KLTH10, 
LKC*12, SLT17, SNMM18] 

Yelp Open Data Sets [Yel19] 2019 Reviews & Other Depends (e.g., 6,685,900) Depends (e.g., 9) Clustering, 
Classification 4 [MCZ*17, MXC*20, MXQR19, 

TKDB17] 
Google’s Quick Draw [JRK*16] 2016 Computer Vision 50,000,000 784 (28x28) Classification 

(345 classes) 4 [CD18b, CPCS20, WGYS18, 
WGZ*19] 

Reuters-21578 [RSW02] 2002 News & Humanities 21,578 5 Classification 4 [LGG*18, KS12, SNMM18, SSK10] 
Optical Recognition of Hand. Digits [AK98] 1998 Computer Vision 5,620 64 Classification 

(10 classes) 4 [BAPB*16, BDSF17, KEV*18, LA11] 

Census (Income) [DG17, YRW07] 1994 Social 48,842 14 Classification 
 4 [MBD*11, GNRM08, WPB*20, 

MLMP18] 
Boston Housing Prices [HR78] 1978 Business 506 13 Regression 4 [AMJ18, ASW*19, HHC*19, 

SNLH09] 
Numbeo Quality of Life Index [NUM15] 2015 Socioeconomic 86 7 Clustering 3 [KKW*17, ZWC*18, ZCW*19] 
OECD Better Life Index [Lin14] 2014 Socioeconomic 34 24 (11 main) Clustering 3 [CD18b, CD19, SDMT16] 
House Prices [Coc11] 2011 Business 2,919 81 Regression 3 [DCCE19, KPB18, SRG*18] 

Caltech-101 [FFFP04] 2004 Computer Vision 3,030 Depends (e.g., 60,000) Classification 
(101 classes) 3 [KLTH10, TLKT09, ZF14] 

Communities and Crime [RB02] 2002 Social 1994 128 Regression 3 [FKM20, FSJ13, KDFB16] 
Corel Image Features [DG17] 1999 Computer Vision 68,040 

 89 Clustering 3 [MCMT14, PSPM12, SDMT16] 

Image Segmentation [DG17] 1990 Computer Vision 2,310 20 Classification 
(7 classes) 3 [CMN*16, JPN15, vv11] 

COMPAS Recidivism Risk Score [COM19] 2019 Justice Depends Depends 
Classification 
(2 classes), 
Clustering 

2 [AMJ18, CEH*19] 

USPS Hand. [USP17] 2017 Computer Vision 9,298 256 (16x16) Classification 2 [LWT*15, ZTR16] 

Titanic [Tit15] 2015 Life 712 10 Classification 
(2 classes) 2 [HHC*19, ZWLC19] 

Parkinson’s Disease [GTS*08, PPM14] 2014 Health Depends (e.g., 8,652) Depends (e.g., 37) Clustering 2 [CD18a, CD19] 

Tennis Major Tournament [DG17] 2014 Sports 127 42 
Classification, 
Regression, 
Clustering 

2 [FKM20, LRL*18] 

ALL [PSPM12] 2012 Publications 2,814 1 Clustering 2 [CMN*16, PSPM12] 
Software Projects Quality [MSM*10] 2010 Computers 6,773 12 Clustering 2 [CMN*16, SRM*15] 
Combustion Simulation [HSPC06] 2006 Simulation 2,800 10 Clustering 2 [LWBP14, LWT*15] 
University Ranking [DG17] 1988 Education & Status 285 18 Classification 2 [JHB∗17, KEV*18] 
Synthetic Faces [TSL00] 2000 Artificial Intelligence 698 4,096 (64x64) Clustering 2 [RL15a, RL15b] 
Concrete Compressive Strength [Yeh98] 1998 Construction 1,030 9 Regression 2 [LMZ*14, RL15b] 
Adult [DG17] 1996 Social 48,842 14 Classification 2 [CEH*19, SJS*18] 
German Credit [DG17] 1994 Financial 1,000 20 Classification 2 [AL20, ZWLC19] 
ISOLET [DG17] 1994 Computers 7,797 617 Classification 2 [Aup07, SvLB10] 
Waveform Database Generator [BFOS84] 1984 Telecommunications 5,000 22 Classification 

(3 classes) 2 [BAPB*16, LMZ*14] 

Auto MPG [DG17] 1993 Business 398 9 Regression 2 [XYC*18, WLS19] 
Penn Treebank [MMS93] 1993 Humanities 60,774 36 Classification 2 [SGPR18, SBP19] 

Breast Cancer Winconsin [BM92] 1992 Health 699 10 Classification 
(2 classes) 2 [MQB19, XXM*19] 

Others (i.e., data sets that are used once) 106 additional unique entries, see supplementary material S8 

200 surveyed papers. The most frequently occurred data sets are
MNIST [LBBH98], Iris [And36], Wine Quality [CCA∗09], Ima-
geNet [DDS∗09], Food and Nutrition [USD19], CIFAR-10 [Kri09],
and 20 Newsgroups [Lan95]. 3 out of these 7 data sets are about
computer vision and are usually used in papers that work with DL
and NNs. Validating our previous categorization, classification and
then clustering problems are the more occuring target variables,

and finally regression. The number of instances and features can be
found in our table along with the number of classes for some cases
(if available). The individual papers that used the data sets are listed
in the rightmost column of Table 5; and references to the data set
providers are given together with the name of the data sets in the
first column.
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Figure 8: The user interface of TrustMLVis Browser (available at trustmlvis.lnu.se), an interactive survey browser accompanying this article.

8. Discussion and Research Opportunities

In this section, we discuss our online survey browser. Afterwards,
we move on to research opportunities based on the data-driven anal-
yses presented in Section 7.

8.1. Interactive exploration with a survey browser

Our work on this survey has been complemented by the devel-
opment of an interactive survey browser [BKW16, KK14, KK15,
KPK18, Sch11, TA13] similar to our group’s previous contribu-
tions on text and sentiment visualization. TrustMLVis Browser is
available as a web application, and its user interface (see Figure 8)
comprises (1) a grid of thumbnails representing visualization tech-
niques and (2) an interaction panel supporting category-, time-,
and text-based filtering. The user can access the details and bibli-
ographic information about a specific technique by clicking on the
corresponding thumbnail. Several dialogs with the overall statistics
for the complete data set (cf. Table 3) and the supplementary ma-
terials are available via the links at the top of the web page. We
encourage the readers of this article to explore the data with the
survey browser and to suggest further candidate entries by using
the corresponding “Add entry” dialog.

8.2. Research Opportunities

The impact of bias. By looking at our categorization, we can
infer that some level of bias might be represented in all our de-
fined trust levels in different forms: (a) data bias (equality), (b)
previous familiarity with algorithms, (c) model bias, and (d) user
bias. Also, it is known that visualization techniques ordinarily do
not scale very well when analyzing massive volumes of data. Fur-
thermore, some of the ML approaches have inherent challenges to
face, for example, the curse of dimensionality [Bel03] in case of

DR. Thus, considerable levels of selection bias might be uninten-
tionally ignored by the user, for instance, when users have to choose
from a selection while not seeing the entire picture and/or the al-
ternatives [GSC16, LA11]. Hence, the research question here is:
“what novel solutions can help users to minimize the impact of
bias with regard to the data?” A potential answer would be to con-
sider various interaction logs with the VA system. Data generated
as part of the analysis process could be considered as well. This
data together with the logs could be processed automatically with
additional independent ML models and potentially guide users to
improvements of the underlying ML models used in the data analy-
sis process. Hence, the ways of combining automatic methods with
smart visualizations [Shn20] are still not revealed and should be
further evaluated with empirical studies as well as quantitative and
qualitative experiments.

Alternatives and combination. Visualization is often used
as the medium enabling human-computer interactions (HCI). It
usually encourages the development and application of multi-
disciplinary methods originating from different areas of research.
To find an equilibrium state between human and computer control-
ling the ML process is not a trivial task [Shn20]. Researchers that
are intimate with ML models and visualizations are capable of ap-
propriately promoting the joint development of visual explanations
for ML models. Furthermore, there is a possibility to employ ver-
balization (as discussed before) as a complementary tool alongside
visualization for explaining ML models. The challenges of devel-
oping visualization systems involving such text explanations and
finding the right balance between these two approaches are still
open [SBE∗18]. Here, we foresee an open research challenge upon
how to combine visualizations, verbalization (text explanations),
and voice commands (AI assistants) that should together perform
overlapping tasks in complex visualization systems and propose
task solutions to the users. As can be seen with our categoriza-
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tion, analysts usually deal with data manipulation problems which
can lead to compromising the trust, for example, (1) comparison
of structures, (2) guidance in data selection, (3) outlier detection,
(4) comparison of algorithms, and (5) in-situ comparison of con-
crete model structures. The aforementioned methods might provide
a possible remedy for such compromises of trust.

Security vulnerabilities. When research is conducted in ML,
there is always a factor that is not often taken into account at first:
“how do we secure ML models from unethical attacks?” An in-
stance of this idea is published by Ma et al. [MXLM20], explain-
ing how visualization can assist in avoiding vulnerabilities of ad-
versarial attacks in ML. Specifically, their focus is on how to avoid
data poisoning attacks from the models, data instances, features,
and local structures perspectives with the use of their VA approach.
Nowadays, visualization systems are deployed online for users to
access them easily. Such internet-accessibility leads to further prob-
lems concerning security vulnerabilities. This is one of the advan-
tages of TensorFlow.js, which utilizes the WebGL-accelerated im-
plementation of JavaScript in web browsers to implement and use
ML models on local computers.

Fairness of the decisions. Going beyond interpretability to-
wards more explainability is another open challenge. However,
general proposals of frameworks in the visualization community
combining ML and visualizations have been already described in
recent research papers [MXQR19,SSSEA20]. These global frame-
works were divided into smaller parts by other works that compare
DL methods, for instance [MMD∗19]. Further tools explore lo-
cal trends instead of global patterns [ZWRH14]. Two further open
questions reaching beyond interpretability and explainability are
“how fair were all those decisions and what if we have chosen an-
other path?” and “how can fairness be translated between the trust
levels?” (cf. the work by Ahn and Lin [AL20]).

Ways of communication and collaboration. Increasing the
users’ trust in ML models is not a trivial task. Visualization can
assist in this challenge in multiple ways. A good starting point is
employing simple techniques, such as querying specific data in-
stances and areas of interest, in a user-friendly way [HNH∗12].
However, the issue of improving trustworthiness in ML with vi-
sualization is also related to the issue of improving the trust for
visualization itself [BRBF14, BBG19]. To achieve the best out-
come when evaluating visualization designs, the input data, the
goals, and the target group of a visualization should be under the
spotlight. On the optimistic side, many papers exist that try to
tackle the challenges of evaluation and design choices for visualiza-
tions [FAAM16,KPHL16,Kos16,LTBS∗18,MSSW16,QH16]. De-
velopment of further guidelines and best practices for (1) how peo-
ple within different scientific fields and varying backgrounds and
experiences should communicate, and (2) which visualization tech-
niques and systems should be established as a standardized inter-
action medium between them, present another open challenge. As
previously discussed, Jentner et al. [JSS∗18] suggest that metaphor-
ical narratives can explain the ML models to various target groups
in a user-friendly way, but further research is required in this regard.

Almost unexplored areas. Related to the non-trust level classes
(which implicitly influence trust), we believe that all underrepre-
sented categories can pose as new ideas for novel research. For ex-

ample, visualization researchers have still not provided sufficient
support for some specific NNs, such as convolutional deep belief
networks (CDBNs), deep residual networks (DRNs), and multi-
column DNNs (MCDNNs). Also in ensemble learning, visualiza-
tion tools that target solely the boosting techniques are quite rare,
e.g., gradient boosting and adaptive boosting (AdaBoost) appear
not to be covered to the same level as random forests. Another ex-
ample of such a category is stacking ensemble learning, i.e., con-
structing a combination (a stack) of different models that should
become the input for other meta-model(s). Employing visualiza-
tion to facilitate the experts in developing and using such stacks in
a trustworthy way without resorting to trial and error is also an open
research challenge. Additionally, regression problems are also far
less covered than classification. In unsupervised learning, associa-
tion/pattern mining is uncommonly investigated by visual tools. To
conclude this paragraph, reinforcement learning approaches are al-
most ignored with only a few available papers covering this area of
how visualization can help to monitor an automatically controlled
learning process [SPBA19]. In reinforcement learning, classifica-
tion tasks, i.e., letting an agent act on the inputs and learn value
functions [WvPS11], are not once addressed by visualization.

9. Conclusion

In this survey, we study the state of the art in enhancing trust in ma-
chine learning (ML) models with the use of visualizations. We in-
troduced the background necessary for defining trustworthiness of
ML models and explained the methodology used to select relevant
papers in the literature. Based on the selected 200 peer-reviewed
publications that introduce a large variety of visualization tech-
niques to increase trust in ML models and their results, we pro-
posed a fine-grained categorization comprising 8 high-level aspects
partitioned into 18 category groups that on their part contain 119
categories in total. In addition, we performed a topic analysis to be
able to discover connections and emerging topics among the 200
papers. Further analyses of the categorized data involved category
correlations, temporal trends, and data sets used in the respective
publications. In order to make our categorization and the assign-
ment of papers into categories accessible for the public, an inter-
active survey browser—called TrustMLVis Browser—was imple-
mented and made available online. It supports the readers of this
STAR in the exploration of the rich information provided in this
work, thus facilitating future research in enhancing trustworthiness
of ML models with the help of interactive visualizations. Our find-
ings indicate the growing interest for developing visualizations in
ML to improve trustworthiness in the context of various data do-
mains, tasks, and multidisciplinary applications. As future work,
we intend to continue extending and refining the survey data set,
categorization, and corresponding analyses, as well as maintaining
the online survey browser.
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[AA97] ALIMOĞLU F., ALPAYDIN E.: Combining multiple represen-
tations and classifiers for pen-based handwritten digit recognition. In
Proceedings of the Fourth International Conference on Document Anal-
ysis and Recognition (1997), vol. 2 of ICDAR ’97, IEEE, pp. 637–640.
doi:10.1109/ICDAR.1997.620583. 25

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/ICDAR.1997.620583


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[AASB19] ABBAS M. M., AUPETIT M., SEDLMAIR M., BENSMAIL
H.: ClustMe: A visual quality measure for ranking monochrome scatter-
plots based on cluster patterns. Computer Graphics Forum 38, 3 (June
2019), 225–236. doi:10.1111/cgf.13684. 10

[ACD∗15] AMERSHI S., CHICKERING M., DRUCKER S. M., LEE B.,
SIMARD P., SUH J.: ModelTracker: Redesigning performance analysis
tools for machine learning. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems (2015), CHI ’15,
ACM, pp. 337–346. doi:10.1145/2702123.2702509. 17

[ACKK14] AMERSHI S., CAKMAK M., KNOX W. B., KULESZA T.:
Power to the people: The role of humans in interactive machine learn-
ing. AI Magazine 35, 4 (Dec. 2014), 105–120. doi:10.1609/
aimag.v35i4.2513. 8

[AEM11] ALBUQUERQUE G., EISEMANN M., MAGNOR M.:
Perception-based visual quality measures. In Proceedings of the
IEEE Conference on Visual Analytics Science and Technology (2011),
VAST ’11, IEEE, pp. 13–20. doi:10.1109/VAST.2011.6102437.
22

[AGW18] ADEL T., GHAHRAMANI Z., WELLER A.: Discovering in-
terpretable representations for both deep generative and discriminative
models. In Proceedings of the 35th International Conference on Machine
Learning (2018), vol. 80 of Proceedings of Machine Learning Research,
PMLR, pp. 50–59. URL: http://proceedings.mlr.press/
v80/adel18a.html. 7

[AHH∗14] ALSALLAKH B., HANBURY A., HAUSER H., MIKSCH S.,
RAUBER A.: Visual methods for analyzing probabilistic classification
data. IEEE Transactions on Visualization and Computer Graphics 20,
12 (Dec. 2014), 1703–1712. doi:10.1109/TVCG.2014.2346660.
20

[AJY∗18] ALSALLAKH B., JOURABLOO A., YE M., LIU X., REN L.:
Do convolutional neural networks learn class hierarchy? IEEE Transac-
tions on Visualization and Computer Graphics 24, 1 (Jan. 2018), 152–
162. doi:10.1109/TVCG.2017.2744683. 22

[AK98] ALPAYDIN E., KAYNAK C.: Cascaded classifiers. Kybernetika
34, 4 (July 1998), 369–374. URL: https://dml.cz/handle/
10338.dmlcz/135217. 25

[AL20] AHN Y., LIN Y.: FairSight: Visual analytics for fairness
in decision making. IEEE Transactions on Visualization and Com-
puter Graphics 26, 1 (Jan. 2020), 1086–1095. doi:10.1109/
TVCG.2019.2934262. 17, 18, 28

[AMJ18] ALVAREZ-MELIS D., JAAKKOLA T. S.: On the robustness of
interpretability methods. In Proceedings of the ICML Workshop on Hu-
man Interpretability in Machine Learning (2018), WHI ’18. arXiv:
1806.08049. 15

[And36] ANDERSON E.: The species problem in Iris. Annals of the
Missouri Botanical Garden 23, 3 (Sept. 1936), 457–509. URL: http:
//jstor.org/stable/2394164. 25, 26

[Arr05] MIT-BIH Arrhythmia Database, 2005. Accessed January 10,
2020. URL: https://sdo.gsfc.nasa.gov/. 25

[Art18] ARTICLE 29 DATA PROTECTION WORKING PARTY: Guide-
lines on automated individual decision-making and profiling for the pur-
poses of Regulation 2016/679 (WP251rev.01), Feb. 2018. Accessed
January 10, 2020. URL: https://ec.europa.eu/newsroom/
article29/item-detail.cfm?item_id=612053. 1

[ASDG∗00] ARGENZIANO G., SOYER H. P., DE GIORGIO V., PIC-
COLO D., CARLI P., DELFINO M., FERRARI A., HOFMANN-
WELLENHOF R., MASSI D., MAZZOCCHETTI G., SCALVENZI M.,
WOLF I. H.: Interactive Atlas of Dermoscopy. Edra Medical
Publishing and New Media, Milan, Italy, 2000. URL: https://
espace.library.uq.edu.au/view/UQ:229410. 25

[ASW∗19] ARENDT D., SALDANHA E., WESSLEN R., VOLKOVA S.,
DOU W.: Towards rapid interactive machine learning: Evaluating trade-
offs of classification without representation. In Proceedings of the 24th
International Conference on Intelligent User Interfaces (2019), IUI ’19,
ACM, pp. 591–602. doi:10.1145/3301275.3302280. 17

[Aup07] AUPETIT M.: Visualizing distortions and recovering topology in
continuous projection techniques. Neurocomputing 70, 7–9 (Mar. 2007),
1304–1330. doi:10.1016/j.neucom.2006.11.018. 17, 22

[AW12] AHMED Z., WEAVER C.: An adaptive parameter space-filling
algorithm for highly interactive cluster exploration. In Proceedings of the
IEEE Conference on Visual Analytics Science and Technology (2012),
VAST ’12, IEEE, pp. 13–22. doi:10.1109/VAST.2012.6400493.
10

[AYMW11] AHMED Z., YOST P., MCGOVERN A., WEAVER C.: Steer-
able clustering for visual analysis of ecosystems. In Proceedings of the
EuroVis Workshop on Visual Analytics (2011), EuroVA ’11, The Euro-
graphics Association. doi:10.2312/PE/EuroVAST/EuroVA11/
049-052. 17

[BAF∗14] BÖGL M., AIGNER W., FILZMOSER P., GSCHWANDTNER
T., LAMMARSCH T., MIKSCH S., RIND A.: Visual analytics methods
to guide diagnostics for time series model predictions. In Proceedings of
the IEEE VIS Workshop on Visualization for Predictive Analytics (2014),
VPA ’14. URL: http://predictive-workshop.github.io/.
19, 20

[BAF∗15] BÖGL M., AIGNER W., FILZMOSER P., GSCHWANDTNER
T., LAMMARSCH T., MIKSCH S., RIND A.: Integrating predictions in
time series model selection. In Proceedings of the EuroVis Workshop
on Visual Analytics (2015), EuroVA ’15, The Eurographics Association.
doi:10.2312/eurova.20151107. 20

[BAL∗15] BROOKS M., AMERSHI S., LEE B., DRUCKER S. M.,
KAPOOR A., SIMARD P.: FeatureInsight: Visual support for error-driven
feature ideation in text classification. In Proceedings of the IEEE Con-
ference on Visual Analytics Science and Technology (2015), VAST ’15,
IEEE, pp. 105–112. doi:10.1109/VAST.2015.7347637. 21

[BAPB∗16] BOUDJELOUD-ASSALA L., PINHEIRO P., BLANSCHÉ A.,
TAMISIER T., OTJACQUES B.: Interactive and iterative visual cluster-
ing. Information Visualization 15, 3 (2016), 181–197. doi:10.1177/
1473871615571951. 21

[BBG19] BÖRNER K., BUECKLE A., GINDA M.: Data visualization
literacy: Definitions, conceptual frameworks, exercises, and assessments.
Proceedings of the National Academy of Sciences 116, 6 (2019), 1857–
1864. doi:10.1073/pnas.1807180116. 7, 28

[BDSF17] BERNARD J., DOBERMANN E., SEDLMAIR M., FELLNER
D. W.: Combining cluster and outlier analysis with visual analyt-
ics. In Proceedings of the EuroVis Workshop on Visual Analytics
(2017), EuroVA ’17, The Eurographics Association. doi:10.2312/
eurova.20171114. 21

[Bec16] BECKER K.: Identifying the gender of a voice using ma-
chine learning, 2016. Accessed January 10, 2020. URL: http:
//primaryobjects.com/2016/06/22/identifying-the-
gender-of-a-voice-using-machine-learning/. 25

[BEF17] BADAM S. K., ELMQVIST N., FEKETE J.-D.: Steering the
craft: UI elements and visualizations for supporting progressive visual
analytics. Computer Graphics Forum 36, 3 (June 2017), 491–502. doi:
10.1111/cgf.13205. 21

[Bel03] BELLMAN R. E.: Dynamic Programming. Dover Publications,
Inc., Mineola, NY, USA, 2003. 27

[Bes12] Best City Contest, 2012. Accessed January 10, 2020. URL:
http://eiu2012contest.blogspot.com/. 25

[BFOS84] BREIMAN L., FRIEDMAN J. H., OLSHEN R. A., STONE
C. J.: Classification and Regression Trees. The Wadsworth Statis-
tics/Probability Series. Wadsworth & Brooks/Cole Advanced Books &
Software, Monterey, CA, USA, 1984. URL: https://cds.cern.ch/
record/2253780. 25

[BHGK14] BEHAM M., HERZNER W., GRÖLLER M. E., KEHRER J.:
Cupid: Cluster-based exploration of geometry generators with parallel
coordinates and radial trees. IEEE Transactions on Visualization and
Computer Graphics 20, 12 (Dec. 2014), 1693–1702. doi:10.1109/
TVCG.2014.2346626. 10

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1111/cgf.13684
https://doi.org/10.1145/2702123.2702509
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1609/aimag.v35i4.2513
https://doi.org/10.1109/VAST.2011.6102437
http://proceedings.mlr.press/v80/adel18a.html
http://proceedings.mlr.press/v80/adel18a.html
https://doi.org/10.1109/TVCG.2014.2346660
https://doi.org/10.1109/TVCG.2017.2744683
https://dml.cz/handle/10338.dmlcz/135217
https://dml.cz/handle/10338.dmlcz/135217
https://doi.org/10.1109/TVCG.2019.2934262
https://doi.org/10.1109/TVCG.2019.2934262
http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/1806.08049
http://jstor.org/stable/2394164
http://jstor.org/stable/2394164
https://sdo.gsfc.nasa.gov/
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053
https://ec.europa.eu/newsroom/article29/item-detail.cfm?item_id=612053
https://espace.library.uq.edu.au/view/UQ:229410
https://espace.library.uq.edu.au/view/UQ:229410
https://doi.org/10.1145/3301275.3302280
https://doi.org/10.1016/j.neucom.2006.11.018
https://doi.org/10.1109/VAST.2012.6400493
https://doi.org/10.2312/PE/EuroVAST/EuroVA11/049-052
https://doi.org/10.2312/PE/EuroVAST/EuroVA11/049-052
http://predictive-workshop.github.io/
https://doi.org/10.2312/eurova.20151107
https://doi.org/10.1109/VAST.2015.7347637
https://doi.org/10.1177/1473871615571951
https://doi.org/10.1177/1473871615571951
https://doi.org/10.1073/pnas.1807180116
https://doi.org/10.2312/eurova.20171114
https://doi.org/10.2312/eurova.20171114
http://primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/
http://primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/
http://primaryobjects.com/2016/06/22/identifying-the-gender-of-a-voice-using-machine-learning/
https://doi.org/10.1111/cgf.13205
https://doi.org/10.1111/cgf.13205
http://eiu2012contest.blogspot.com/
https://cds.cern.ch/record/2253780
https://cds.cern.ch/record/2253780
https://doi.org/10.1109/TVCG.2014.2346626
https://doi.org/10.1109/TVCG.2014.2346626


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[BHJ09] BASTIAN M., HEYMANN S., JACOMY M.: Gephi: An open
source software for exploring and manipulating networks. In Pro-
ceedings of the International AAAI Conference on Weblogs and Social
Media (2009), ICWSM ’09, AAAI, pp. 361–362. URL: https://
aaai.org/ocs/index.php/ICWSM/09/paper/view/154. 11

[BHK97] BELHUMEUR P. N., HESPANHA J. P., KRIEGMAN D. J.:
Eigenfaces vs. Fisherfaces: Recognition using class specific linear pro-
jection. IEEE Transactions on Pattern Analysis and Machine Intelligence
19, 7 (July 1997), 711–720. doi:10.1109/34.598228. 25

[BHR∗19] BERNARD J., HUTTER M., RITTER C., LEHMANN M.,
SEDLMAIR M., ZEPPELZAUER M.: Visual analysis of degree-of-
interest functions to support selection strategies for instance label-
ing. In Proceedings of the EuroVis Workshop on Visual Analytics
(2019), EuroVA ’19, The Eurographics Association. doi:10.2312/
eurova.20191116. 22

[BHZ∗18] BERNARD J., HUTTER M., ZEPPELZAUER M., FELLNER
D., SEDLMAIR M.: Comparing visual-interactive labeling with ac-
tive learning: An experimental study. IEEE Transactions on Visual-
ization and Computer Graphics 24, 1 (Jan. 2018), 298–308. doi:
10.1109/TVCG.2017.2744818. 10

[Bir06] BIRD S.: NLTK: The natural language toolkit. In Pro-
ceedings of the COLING/ACL — Interactive Presentation Sessions
(2006), COLING-ACL ’06, ACL, pp. 69–72. doi:10.3115/
1225403.1225421. 19

[BKSS14] BEHRISCH M., KORKMAZ F., SHAO L., SCHRECK T.:
Feedback-driven interactive exploration of large multidimensional data
supported by visual classifier. In Proceedings of the IEEE Conference
on Visual Analytics Science and Technology (2014), VAST ’14, IEEE,
pp. 43–52. doi:10.1109/VAST.2014.7042480. 10

[BKW16] BECK F., KOCH S., WEISKOPF D.: Visual analysis and dis-
semination of scientific literature collections with SurVis. IEEE Trans-
actions on Visualization and Computer Graphics 22, 1 (Jan. 2016), 180–
189. doi:10.1109/TVCG.2015.2467757. 27

[BL09] BERTINI E., LALANNE D.: Surveying the complementary role
of automatic data analysis and visualization in knowledge discovery. In
Proceedings of the ACM SIGKDD Workshop on Visual Analytics and
Knowledge Discovery: Integrating Automated Analysis with Interactive
Exploration (2009), VAKD ’09, ACM, pp. 12–20. doi:10.1145/
1562849.1562851. 2

[BLBC12] BROWN E. T., LIU J., BRODLEY C. E., CHANG R.:
Dis-Function: Learning distance functions interactively. In Pro-
ceedings of the IEEE Conference on Visual Analytics Science and
Technology (2012), VAST ’12, IEEE, pp. 83–92. doi:10.1109/
VAST.2012.6400486. 22

[BM92] BENNETT K. P., MANGASARIAN O. L.: Robust linear pro-
gramming discrimination of two linearly inseparable sets. Optimiza-
tion Methods and Software 1, 1 (Apr. 1992), 23–34. doi:10.1080/
10556789208805504. 25

[BNJ03] BLEI D. M., NG A. Y., JORDAN M. I.: Latent Dirichlet alloca-
tion. Journal of Machine Learning Research 3 (Mar. 2003), 993–1022.
URL: http://jmlr.org/papers/v3/blei03a.html. 19

[BPD16] BPD Field Interrogation and Observation (FIO) dataset, 2016.
Accessed January 10, 2020. URL: https://data.boston.gov/
dataset/boston-police-department-fio. 25

[BPFG11] BERGER W., PIRINGER H., FILZMOSER P., GRÖLLER E.:
Uncertainty-aware exploration of continuous parameter spaces using
multivariate prediction. Computer Graphics Forum 30, 3 (June 2011),
911–920. doi:10.1111/j.1467-8659.2011.01940.x. 18

[BR10] BROEMSTRUP T., REUTER N.: Molecular dynamics simulations
of mixed acidic/zwitterionic phospholipid bilayers. Biophysical Journal
99, 3 (Aug. 2010), 825–833. doi:10.1016/j.bpj.2010.04.064. 25

[BRBF14] BOY J., RENSINK R. A., BERTINI E., FEKETE J.-D.: A
principled way of assessing visualization literacy. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (Dec. 2014), 1963–1972.
doi:10.1109/TVCG.2014.2346984. 7, 28

[BTB14] BRUNI E., TRAN N. K., BARONI M.: Multimodal distribu-
tional semantics. Journal of Artificial Intelligence Research 49, 1 (Jan.
2014), 1–47. doi:10.1613/jair.4135. 25

[BvLBS11] BREMM S., VON LANDESBERGER T., BERNARD J.,
SCHRECK T.: Assisted descriptor selection based on visual comparative
data analysis. Computer Graphics Forum 30, 3 (June 2011), 891–900.
doi:10.1111/j.1467-8659.2011.01938.x. 13, 15

[BWZ∗20] BORLAND D., WANG W., ZHANG J., SHRESTHA J.,
GOTZ D.: Selection bias tracking and detailed subset comparison
for high-dimensional data. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (Jan. 2020), 429–439. doi:10.1109/
TVCG.2019.2934209. 17

[BZL∗18] BERNARD J., ZEPPELZAUER M., LEHMANN M., MÜLLER
M., SEDLMAIR M.: Towards user-centered active learning algo-
rithms. Computer Graphics Forum 37, 3 (June 2018), 121–132. doi:
10.1111/cgf.13406. 16

[BZSA18] BERNARD J., ZEPPELZAUER M., SEDLMAIR M., AIGNER
W.: VIAL: A unified process for visual interactive labeling. The Visual
Computer 34, 9 (Sept. 2018), 1189–1207. doi:10.1007/s00371-
018-1500-3. 10

[CAA∗19] CHEN S., ANDRIENKO N., ANDRIENKO G., ADILOVA
L., BARLET J., KINDERMANN J., NGUYEN P. H., THONNARD O.,
TURKAY C.: LDA ensembles for interactive exploration and categoriza-
tion of behaviors. IEEE Transactions on Visualization and Computer
Graphics (2019). doi:10.1109/TVCG.2019.2904069. 20

[Cad09] Cadaster Challenge, 2009. Accessed January 10, 2020. URL:
http://www.cadaster.eu/node/67.html. 25

[CBB∗19] CHEGINI M., BERNARD J., BERGER P., SOURIN A., AN-
DREWS K., SCHRECK T.: Interactive labelling of a multivariate dataset
for supervised machine learning using linked visualisations, clustering,
and active learning. Visual Informatics 3, 1 (Mar. 2019), 9–17. Proceed-
ings of PacificVAST 2019. doi:10.1016/j.visinf.2019.03.002.
17

[CBK09] CHANDOLA V., BANERJEE A., KUMAR V.: Anomaly detec-
tion: A survey. ACM Computing Surveys 41, 3 (July 2009). doi:
10.1145/1541880.1541882. 6

[CBY10] CHEN Y., BARLOWE S., YANG J.: Click2Annotate: Au-
tomated insight externalization with rich semantics. In Proceed-
ings of the IEEE Symposium on Visual Analytics Science and Tech-
nology (2010), VAST ’10, IEEE, pp. 155–162. doi:10.1109/
VAST.2010.5652885. 11

[CCA∗09] CORTEZ P., CERDEIRA A., ALMEIDA F., MATOS T., REIS
J.: Modeling wine preferences by data mining from physicochemical
properties. Decision Support Systems 47, 4 (Nov. 2009), 547–553. Smart
Business Networks: Concepts and Empirical Evidence. doi:10.1016/
j.dss.2009.05.016. 25, 26

[CCR∗19] CHOI I. K., CHILDERS T., RAVEENDRANATH N. K.,
MISHRA S., HARRIS K., REDA K.: Concept-driven visual analytics:
An exploratory study of model- and hypothesis-based reasoning with
visualizations. In Proceedings of the CHI Conference on Human Fac-
tors in Computing Systems (2019), CHI ’19, ACM, pp. 68:1–68:14.
doi:10.1145/3290605.3300298. 11

[CCZ∗16] CHEN Y., CHEN Q., ZHAO M., BOYER S., VEERAMACHA-
NENI K., QU H.: DropoutSeer: Visualizing learning patterns in mas-
sive open online courses for dropout reasoning and prediction. In
Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (2016), VAST ’16, IEEE, pp. 111–120. doi:10.1109/
VAST.2016.7883517. 20

[CD92] CHASE M. A., DUMMER G. M.: The role of sports as a
social status determinant for children. Research Quarterly for Ex-
ercise and Sport 63, 4 (Dec. 1992), 418–424. doi:10.1080/
02701367.1992.10608764. 25

[CD18a] CAVALLO M., DEMIRALP Ç.: Track Xplorer: A system
for visual analysis of sensor-based motor activity predictions. Com-
puter Graphics Forum 37, 3 (June 2018), 339–349. doi:10.1111/
cgf.13424. 17

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://doi.org/10.1109/34.598228
https://doi.org/10.2312/eurova.20191116
https://doi.org/10.2312/eurova.20191116
https://doi.org/10.1109/TVCG.2017.2744818
https://doi.org/10.1109/TVCG.2017.2744818
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.3115/1225403.1225421
https://doi.org/10.1109/VAST.2014.7042480
https://doi.org/10.1109/TVCG.2015.2467757
https://doi.org/10.1145/1562849.1562851
https://doi.org/10.1145/1562849.1562851
https://doi.org/10.1109/VAST.2012.6400486
https://doi.org/10.1109/VAST.2012.6400486
https://doi.org/10.1080/10556789208805504
https://doi.org/10.1080/10556789208805504
http://jmlr.org/papers/v3/blei03a.html
https://data.boston.gov/dataset/boston-police-department-fio
https://data.boston.gov/dataset/boston-police-department-fio
https://doi.org/10.1111/j.1467-8659.2011.01940.x
https://doi.org/10.1016/j.bpj.2010.04.064
https://doi.org/10.1109/TVCG.2014.2346984
https://doi.org/10.1613/jair.4135
https://doi.org/10.1111/j.1467-8659.2011.01938.x
https://doi.org/10.1109/TVCG.2019.2934209
https://doi.org/10.1109/TVCG.2019.2934209
https://doi.org/10.1111/cgf.13406
https://doi.org/10.1111/cgf.13406
https://doi.org/10.1007/s00371-018-1500-3
https://doi.org/10.1007/s00371-018-1500-3
https://doi.org/10.1109/TVCG.2019.2904069
http://www.cadaster.eu/node/67.html
https://doi.org/10.1016/j.visinf.2019.03.002
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1109/VAST.2010.5652885
https://doi.org/10.1109/VAST.2010.5652885
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1016/j.dss.2009.05.016
https://doi.org/10.1145/3290605.3300298
https://doi.org/10.1109/VAST.2016.7883517
https://doi.org/10.1109/VAST.2016.7883517
https://doi.org/10.1080/02701367.1992.10608764
https://doi.org/10.1080/02701367.1992.10608764
https://doi.org/10.1111/cgf.13424
https://doi.org/10.1111/cgf.13424


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[CD18b] CAVALLO M., DEMIRALP Ç.: A visual interaction framework
for dimensionality reduction based data exploration. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems
(2018), CHI ’18, ACM. doi:10.1145/3173574.3174209. 20

[CD19] CAVALLO M., DEMIRALP Ç.: Clustrophile 2: Guided vi-
sual clustering analysis. IEEE Transactions on Visualization and
Computer Graphics 25, 1 (Jan. 2019), 267–276. doi:10.1109/
TVCG.2018.2864477. 19

[CDF∗98] CRAVEN M., DIPASQUO D., FREITAG D., MCCALLUM A.,
MITCHELL T., NIGAM K., SLATTERY S.: Learning to extract symbolic
knowledge from the World Wide Web. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applica-
tions of Artificial Intelligence (1998), AAAI ’98/IAAI ’98, American
Association for Artificial Intelligence, pp. 509–516. doi:10.5555/
295240.295725. 25

[CDPP∗17] CRESCI S., DI PIETRO R., PETROCCHI M., SPOGNARDI
A., TESCONI M.: The paradigm-shift of social spambots: Evidence,
theories, and tools for the arms race. In Proceedings of the 26th Inter-
national Conference on World Wide Web Companion (2017), WWW ’17
Companion, International World Wide Web Conferences Steering Com-
mittee, pp. 963–972. doi:10.1145/3041021.3055135. 25

[CDS09] CROSSNO P. J., DUNLAVY D. M., SHEAD T. M.: LSAView:
A tool for visual exploration of latent semantic modeling. In Pro-
ceedings of the IEEE Symposium on Visual Analytics Science and
Technology (2009), VAST ’09, IEEE, pp. 83–90. doi:10.1109/
VAST.2009.5333428. 17, 21

[CEH∗19] CABRERA Á. A., EPPERSON W., HOHMAN F., KAHNG M.,
MORGENSTERN J., CHAU D. H.: FairVis: Visual analytics for dis-
covering intersectional bias in machine learning. In Proceedings of the
IEEE Conference on Visual Analytics Science and Technology (2019),
VAST ’19, IEEE. arXiv:1904.05419. 18

[CGF12] CETTOLO M., GIRARDI C., FEDERICO M.: WIT3: Web in-
ventory of transcribed and translated talks. In Proceedings of the 16th
Annual Conference of the European Association for Machine Trans-
lation (May 2012), EAMT ’12, EAMT, pp. 261–268. URL: http:
//mt-archive.info/EAMT-2012-complete.pdf. 25

[CGM19] CENEDA D., GSCHWANDTNER T., MIKSCH S.: A review of
guidance approaches in visual data analysis: A multifocal perspective.
Computer Graphics Forum 38, 3 (2019), 861–879. doi:10.1111/
cgf.13730. 6

[CGR∗17] CHAE J., GAO S., RAMANTHAN A., STEED C., TOURASSI
G. D.: Visualization for classification in deep neural networks. In Pro-
ceedings of the Workshop on Visual Analytics for Deep Learning (2017),
VADL ’17. URL: https://vadl2017.github.io/. 16

[CHAS18] CUTURA R., HOLZER S., AUPETIT M., SEDLMAIR
M.: VisCoDeR: A tool for visually comparing dimensionality
reduction algorithms. In Proceedings of the European Sympo-
sium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (Jan. 2018), ESANN ’18, Ciaco - i6doc.com,
pp. 105–110. URL: https://www.elen.ucl.ac.be/esann/
proceedings/papers.php?ann=2018. 17

[CHH∗19] CASHMAN D., HUMAYOUN S. R., HEIMERL F., PARK K.,
DAS S., THOMPSON J. R., SAKET B., MOSCA A., STASKO J., EN-
DERT A., GLEICHER M., CHANG R.: A user-based visual analytics
workflow for exploratory model analysis. Computer Graphics Forum
38, 3 (June 2019), 185–199. doi:10.1111/cgf.13681. 17

[CHPY06] COHEN A. M., HERSH W. R., PETERSON K., YEN P.-Y.:
Reducing workload in systematic review preparation using automated
citation classification. Journal of the American Medical Informatics As-
sociation 13, 2 (Mar. 2006), 206–219. doi:10.1197/jamia.M1929.
25

[CJH19] CAI C. J., JONGEJAN J., HOLBROOK J.: The effects of
example-based explanations in a machine learning interface. In Pro-
ceedings of the 24th International Conference on Intelligent User
Interfaces (2019), IUI ’19, ACM, pp. 258–262. doi:10.1145/
3301275.3302289. 2

[CL18] CHOO J., LIU S.: Visual analytics for explainable deep learning.
IEEE Computer Graphics and Applications 38, 4 (July 2018), 84–92.
doi:10.1109/MCG.2018.042731661. 9, 13

[CLKP10] CHOO J., LEE H., KIHM J., PARK H.: iVisClassifier: An
interactive visual analytics system for classification based on supervised
dimension reduction. In Proceedings of the IEEE Symposium on Visual
Analytics Science and Technology (2010), VAST ’10, IEEE, pp. 27–34.
doi:10.1109/VAST.2010.5652443. 17

[CM07] CORTEZ P., MORAIS A.: A data mining approach to predict
forest fires using meteorological data. In New Trends in Artificial In-
telligence: Proceedings of the 13th Portuguese Conference on Artificial
Intelligence (2007), EPIA ’07, APPIA, pp. 512–523. 25

[CMJK20] CHATZIMPARMPAS A., MARTINS R. M., JUSUFI I., KER-
REN A.: A survey of surveys on the use of visualization for inter-
preting machine learning models. Information Visualization (2020).
doi:10.1177/1473871620904671. 8

[CMN∗16] COIMBRA D. B., MARTINS R. M., NEVES T. T., TELEA
A. C., PAULOVICH F. V.: Explaining three-dimensional dimensionality
reduction plots. Information Visualization 15, 2 (Apr. 2016), 154–172.
doi:10.1177/1473871615600010. 16, 22

[Coc11] COCK D. D.: Ames, Iowa: Alternative to the Boston
Housing Data as an end of semester regression project. Jour-
nal of Statistics Education 19, 3 (Nov. 2011). doi:10.1080/
10691898.2011.11889627. 25

[Coh88] COHEN L. H.: Measurement of life events. In Life Events
and Psychological Functioning: Theoretical and Methodological Issues.
SAGE Publications, Thousand Oaks, CA, USA, 1988, pp. 11–30. 22

[COM19] COMPAS recidivism risk score data and analysis—
ProPublica, 2019. Accessed January 10, 2020. URL:
https://propublica.org/datastore/dataset/compas-
recidivism-risk-score-data-and-analysis. 25

[CPCS20] CASHMAN D., PERER A., CHANG R., STROBELT H.: Ab-
late, variate, and contemplate: Visual analytics for discovering neural ar-
chitectures. IEEE Transactions on Visualization and Computer Graphics
26, 1 (Jan. 2020), 863–873. doi:10.1109/TVCG.2019.2934261.
18

[CPM∗18] CASHMAN D., PATTERSON G., MOSCA A., WATTS N.,
ROBINSON S., CHANG R.: RNNbow: Visualizing learning via back-
propagation gradients in RNNs. IEEE Computer Graphics and Applica-
tions 38, 6 (Nov. 2018), 39–50. doi:10.1109/MCG.2018.2878902.
15, 22

[CRMH12] CHUANG J., RAMAGE D., MANNING C., HEER J.: Inter-
pretation and trust: Designing model-driven visualizations for text anal-
ysis. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (2012), CHI ’12, ACM, pp. 443–452. doi:
10.1145/2207676.2207738. 3, 7

[CRRS08] CHANG M.-W., RATINOV L.-A., ROTH D., SRIKUMAR V.:
Importance of semantic representation: Dataless classification. In Pro-
ceedings of the Twenty-Third AAAI Conference on Artificial Intelli-
gence (2008), AAAI ’08, AAAI Press. URL: https://aaai.org/
Library/AAAI/2008/aaai08-132.php. 25

[CS14] CHUANG J., SOCHER R.: Interactive visualizations for deep
learning. In Proceedings of the IEEE VIS Workshop on Visualization for
Predictive Analytics (2014), VPA ’14. URL: http://predictive-
workshop.github.io/. 17

[CSG∗18] CHEGINI M., SHAO L., GREGOR R., LEHMANN D. J., AN-
DREWS K., SCHRECK T.: Interactive visual exploration of local patterns
in large scatterplot spaces. Computer Graphics Forum 37, 3 (June 2018),
99–109. doi:10.1111/cgf.13404. 17

[CSV∗18] CHEN N.-C., SUH J., VERWEY J., RAMOS G., DRUCKER
S., SIMARD P.: AnchorViz: Facilitating classifier error discovery
through interactive semantic data exploration. In Proceedings of the 23rd
International Conference on Intelligent User Interfaces (2018), IUI ’18,
ACM, pp. 269–280. doi:10.1145/3172944.3172950. 18

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/3173574.3174209
https://doi.org/10.1109/TVCG.2018.2864477
https://doi.org/10.1109/TVCG.2018.2864477
https://doi.org/10.5555/295240.295725
https://doi.org/10.5555/295240.295725
https://doi.org/10.1145/3041021.3055135
https://doi.org/10.1109/VAST.2009.5333428
https://doi.org/10.1109/VAST.2009.5333428
http://arxiv.org/abs/1904.05419
http://mt-archive.info/EAMT-2012-complete.pdf
http://mt-archive.info/EAMT-2012-complete.pdf
https://doi.org/10.1111/cgf.13730
https://doi.org/10.1111/cgf.13730
https://vadl2017.github.io/
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2018
https://www.elen.ucl.ac.be/esann/proceedings/papers.php?ann=2018
https://doi.org/10.1111/cgf.13681
https://doi.org/10.1197/jamia.M1929
https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1145/3301275.3302289
https://doi.org/10.1109/MCG.2018.042731661
https://doi.org/10.1109/VAST.2010.5652443
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871615600010
https://doi.org/10.1080/10691898.2011.11889627
https://doi.org/10.1080/10691898.2011.11889627
https://propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
https://doi.org/10.1109/TVCG.2019.2934261
https://doi.org/10.1109/MCG.2018.2878902
https://doi.org/10.1145/2207676.2207738
https://doi.org/10.1145/2207676.2207738
https://aaai.org/Library/AAAI/2008/aaai08-132.php
https://aaai.org/Library/AAAI/2008/aaai08-132.php
http://predictive-workshop.github.io/
http://predictive-workshop.github.io/
https://doi.org/10.1111/cgf.13404
https://doi.org/10.1145/3172944.3172950


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[CSWJ18] CHEN J., SONG L., WAINWRIGHT M., JORDAN M.: Learn-
ing to explain: An information-theoretic perspective on model interpre-
tation. In Proceedings of the 35th International Conference on Machine
Learning (2018), vol. 80 of Proceedings of Machine Learning Research,
PMLR, pp. 883–892. URL: http://proceedings.mlr.press/
v80/chen18j.html. 7

[CWGW19] CABALLERO H. S. G., WESTENBERG M. A., GEBRE B.,
WIJK J. J. V.: V-Awake: A visual analytics approach for correcting sleep
predictions from deep learning models. Computer Graphics Forum 38,
3 (June 2019), 1–12. doi:10.1111/cgf.13667. 16

[CWS∗17] CYPKO M., WOJDZIAK J., STOEHR M., KIRCHNER B.,
PREIM B., DIETZ A., LEMKE H. U., OELTZE-JAFRA S.: Visual verifi-
cation of cancer staging for therapy decision support. Computer Graph-
ics Forum 36, 3 (June 2017), 109–120. doi:10.1111/cgf.13172.
20

[Dal20] Descriptive mAchine Learning EXplanations (DALEX),
2020. Accessed January 10, 2020. URL: https://
modeloriented.github.io/DALEX/. 2

[Dar20] Defense Advanced Research Projects Agency — Explain-
able Artificial Intelligence (XAI) program information, 2020. Ac-
cessed January 10, 2020. URL: https://darpa.mil/program/
explainable-artificial-intelligence. 1

[dBD∗12] DOS SANTOS AMORIM E. P., BRAZIL E. V., DANIELS J.,
JOIA P., NONATO L. G., SOUSA M. C.: iLAMP: Exploring high-
dimensional spacing through backward multidimensional projection. In
Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (2012), VAST ’12, IEEE, pp. 53–62. doi:10.1109/
VAST.2012.6400489. 16

[DCCE19] DAS S., CASHMAN D., CHANG R., ENDERT A.: BEAMES:
Interactive multi-model steering, selection, and inspection for regression
tasks. IEEE Computer Graphics and Applications 39, 9 (Sept. 2019).
doi:10.1109/MCG.2019.2922592. 17

[DDS∗09] DENG J., DONG W., SOCHER R., LI L.-J., LI K., FEI-
FEI L.: ImageNet: A large-scale hierarchical image database. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2009), CVPR ’09, IEEE, pp. 248–255. doi:10.1109/
CVPR.2009.5206848. 25, 26

[DFP∗20] DIMARA E., FRANCONERI S., PLAISANT C., BEZERIANOS
A., DRAGICEVIC P.: A task-based taxonomy of cognitive biases for
information visualization. IEEE Transactions on Visualization and
Computer Graphics 26, 2 (Feb. 2020), 1413–1432. doi:10.1109/
TVCG.2018.2872577. 7

[DG17] DUA D., GRAFF C.: UCI Machine Learning Repository, 2017.
URL: http://archive.ics.uci.edu/ml. 4, 25

[DGL89] DUFF I. S., GRIMES R. G., LEWIS J. G.: Sparse matrix test
problems. ACM Transactions on Mathematical Software 15, 1 (Mar.
1989), 1–14. doi:10.1145/62038.62043. 25

[DK18] DUDLEY J. J., KRISTENSSON P. O.: A review of user interface
design for interactive machine learning. ACM Transactions on Interac-
tive Intelligent Systems 8, 2 (June 2018), 8:1–8:37. doi:10.1145/
3185517. 8, 13

[DLH20] DU M., LIU N., HU X.: Techniques for interpretable machine
learning. Communications of the ACM 63, 1 (Jan. 2020), 68–77. doi:
10.1145/3359786. 8

[DP98] DIEKMANN R., PREIS R.: AG-Monien Graph, 1998. Accessed
January 10, 2020. URL: http://cise.ufl.edu/research/
sparse/matrices/AG-Monien/airfoil1_dual.html. 25

[EASKC18] EL-ASSADY M., SEVASTJANOVA R., KEIM D., COLLINS
C.: ThreadReconstructor: Modeling reply-chains to untangle conversa-
tional text through visual analytics. Computer Graphics Forum 37, 3
(June 2018), 351–365. doi:10.1111/cgf.13425. 17

[EC16] EUROPEAN PARLIAMENT, COUNCIL OF THE EUROPEAN
UNION: Regulation (EU) 2016/679 of the European Parliament and
of the Council of 27 April 2016 on the protection of natural persons

with regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/EC (General Data Pro-
tection Regulation), Apr. 2016. Accessed January 10, 2020. URL:
https://eur-lex.europa.eu/eli/reg/2016/679/oj. 1

[EDF87] EIN-DOR P., FELDMESSER J.: Attributes of the performance of
central processing units: A relative performance prediction model. Com-
munications of the ACM 30, 4 (Apr. 1987), 308–317. doi:10.1145/
32232.32234. 25

[EDF08] ELMQVIST N., DRAGICEVIC P., FEKETE J.-D.: Rolling the
dice: Multidimensional visual exploration using scatterplot matrix navi-
gation. IEEE Transactions on Visualization and Computer Graphics 14,
6 (Nov. 2008), 1539–1148. doi:10.1109/TVCG.2008.153. 25

[EGG∗12] ENGEL D., GREFF K., GARTH C., BEIN K., WEXLER A.,
HAMANN B., HAGEN H.: Visual steering and verification of mass spec-
trometry data factorization in air quality research. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (Dec. 2012), 2275–2284.
doi:10.1109/TVCG.2012.280. 19

[EK09] EVANS A. M., KRUEGER J. I.: The psychology (and economics)
of trust. Social and Personality Psychology Compass 3, 6 (Dec. 2009),
1003–1017. doi:10.1111/j.1751-9004.2009.00232.x. 3

[ELSG08] ESS A., LEIBE B., SCHINDLER K., GOOL L. V.: A mobile
vision system for robust multi-person tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2008),
CVPR ’08, IEEE. doi:10.1109/CVPR.2008.4587581. 25

[Eng18] English Premier League players dataset, 2017/18, 2018.
Accessed January 10, 2020. URL: https://kaggle.com/
mauryashubham/english-premier-league-players-
dataset. 25

[ERT∗17] ENDERT A., RIBARSKY W., TURKAY C., WONG B. W.,
NABNEY I., BLANCO I. D., ROSSI F.: The state of the art in integrating
machine learning into visual analytics. Computer Graphics Forum 36, 8
(2017), 458–486. doi:10.1111/cgf.13092. 8

[ESS18] European Social Survey (ESS), 2018. Accessed January 10,
2020. URL: https://europeansocialsurvey.org/. 25

[Eva96] EVANS J. D.: Straightforward Statistics for the Behavioral Sci-
ences. Brooks/Cole Publishing, Pacific Grove, CA, USA, 1996. 22

[FAAM16] FEDERICO P., AMOR-AMORÓS A., MIKSCH S.: A nested
workflow model for visual analytics design and validation. In Proceed-
ings of the Sixth Workshop on Beyond Time and Errors on Novel Evalu-
ation Methods for Visualization (2016), BELIV ’16, ACM, pp. 104–111.
doi:10.1145/2993901.2993915. 28

[FBG19] FENG S., BOYD-GRABER J.: What can AI do for me?:
Evaluating machine learning interpretations in cooperative play. In
Proceedings of the 24th International Conference on Intelligent User
Interfaces (2019), IUI ’19, ACM, pp. 229–239. doi:10.1145/
3301275.3302265. 2

[FBT∗10] FERDOSI B. J., BUDDELMEIJER H., TRAGER S., WILKIN-
SON M. H. F., ROERDINK J. B. T. M.: Finding and visualizing relevant
subspaces for clustering high-dimensional astronomical data using con-
nected morphological operators. In Proceedings of the IEEE Symposium
on Visual Analytics Science and Technology (2010), VAST ’10, IEEE,
pp. 35–42. doi:10.1109/VAST.2010.5652450. 10

[FBVV09] FREIRE A. L., BARRETO G. A., VELOSO M., VARELA
A. T.: Short-term memory mechanisms in neural network learning
of robot navigation tasks: A case study. In Proceedings of the 6th
Latin American Robotics Symposium (2009), LARS ’09, IEEE. doi:
10.1109/LARS.2009.5418323. 25

[FCS∗20] FUJIWARA T., CHOU J., SHILPIKA S., XU P., REN L., MA
K.-L.: An incremental dimensionality reduction method for visualizing
streaming multidimensional data. IEEE Transactions on Visualization
and Computer Graphics 26, 1 (Jan. 2020), 418–428. doi:10.1109/
TVCG.2019.2934433. 19

[FFFP04] FEI-FEI L., FERGUS R., PERONA P.: Learning generative
visual models from few training examples: An incremental Bayesian

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://proceedings.mlr.press/v80/chen18j.html
http://proceedings.mlr.press/v80/chen18j.html
https://doi.org/10.1111/cgf.13667
https://doi.org/10.1111/cgf.13172
https://modeloriented.github.io/DALEX/
https://modeloriented.github.io/DALEX/
https://darpa.mil/program/explainable-artificial-intelligence
https://darpa.mil/program/explainable-artificial-intelligence
https://doi.org/10.1109/VAST.2012.6400489
https://doi.org/10.1109/VAST.2012.6400489
https://doi.org/10.1109/MCG.2019.2922592
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/TVCG.2018.2872577
https://doi.org/10.1109/TVCG.2018.2872577
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/62038.62043
https://doi.org/10.1145/3185517
https://doi.org/10.1145/3185517
https://doi.org/10.1145/3359786
https://doi.org/10.1145/3359786
http://cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1_dual.html
http://cise.ufl.edu/research/sparse/matrices/AG-Monien/airfoil1_dual.html
https://doi.org/10.1111/cgf.13425
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://doi.org/10.1145/32232.32234
https://doi.org/10.1145/32232.32234
https://doi.org/10.1109/TVCG.2008.153
https://doi.org/10.1109/TVCG.2012.280
https://doi.org/10.1111/j.1751-9004.2009.00232.x
https://doi.org/10.1109/CVPR.2008.4587581
https://kaggle.com/mauryashubham/english-premier-league-players-dataset
https://kaggle.com/mauryashubham/english-premier-league-players-dataset
https://kaggle.com/mauryashubham/english-premier-league-players-dataset
https://doi.org/10.1111/cgf.13092
https://europeansocialsurvey.org/
https://doi.org/10.1145/2993901.2993915
https://doi.org/10.1145/3301275.3302265
https://doi.org/10.1145/3301275.3302265
https://doi.org/10.1109/VAST.2010.5652450
https://doi.org/10.1109/LARS.2009.5418323
https://doi.org/10.1109/LARS.2009.5418323
https://doi.org/10.1109/TVCG.2019.2934433
https://doi.org/10.1109/TVCG.2019.2934433


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

approach tested on 101 object categories. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (2004), CVPRW ’04, IEEE. doi:10.1109/
CVPR.2004.383. 25

[FGM∗01] FINKELSTEIN L., GABRILOVICH E., MATIAS Y., RIVLIN
E., SOLAN Z., WOLFMAN G., RUPPIN E.: Placing search in context:
The concept revisited. In Proceedings of the 10th International Con-
ference on World Wide Web (2001), WWW ’01, ACM, pp. 406–414.
doi:10.1145/371920.372094. 25

[FKM20] FUJIWARA T., KWON O., MA K.-L.: Supporting analysis of
dimensionality reduction results with contrastive learning. IEEE Trans-
actions on Visualization and Computer Graphics 26, 1 (Jan. 2020), 45–
55. doi:10.1109/TVCG.2019.2934251. 19

[FMH16] FRÖHLER B., MÖLLER T., HEINZL C.: GEMSe:
Visualization-guided exploration of multi-channel segmentation algo-
rithms. Computer Graphics Forum 35, 3 (June 2016), 191–200. doi:
10.1111/cgf.12895. 19

[Fri02] FRIEDMAN J. H.: Stochastic gradient boosting. Computational
Statistics & Data Analysis 38, 4 (Feb. 2002), 367–378. doi:10.1016/
S0167-9473(01)00065-2. 25

[FSJ13] FERNSTAD S. J., SHAW J., JOHANSSON J.: Quality-based guid-
ance for exploratory dimensionality reduction. Information Visualization
12, 1 (Jan. 2013), 44–64. doi:10.1177/1473871612460526. 15,
21

[FT99] FOGG B. J., TSENG H.: The elements of computer credibility.
In Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems (1999), CHI ’99, ACM, pp. 80–87. doi:10.1145/
302979.303001. 3

[FTG14] FANAEE-T H., GAMA J.: Event labeling combining ensemble
detectors and background knowledge. Progress in Artificial Intelligence
2, 2 (June 2014), 113–127. doi:10.1007/s13748-013-0040-3.
25

[FV14] FRENAY B., VERLEYSEN M.: Classification in the presence
of label noise: A survey. IEEE Transactions on Neural Networks
and Learning Systems 25, 5 (May 2014), 845–869. doi:10.1109/
TNNLS.2013.2292894. 6

[FVC15] FERNANDES K., VINAGRE P., CORTEZ P.: A proactive in-
telligent decision support system for predicting the popularity of on-
line news. In Progress in Artificial Intelligence: Proceedings of the
17th Portuguese Conference on Artificial Intelligence (EPIA ’15) (2015),
vol. 9273 of LNCS, Springer International Publishing, pp. 535–546.
doi:10.1007/978-3-319-23485-4_53. 25

[GBY∗18] GILPIN L. H., BAU D., YUAN B. Z., BAJWA A., SPECTER
M., KAGAL L.: Explaining explanations: An overview of interpretability
of machine learning. In Proceedings of the IEEE International Confer-
ence on Data Science and Advanced Analytics (2018), DSAA ’18, IEEE,
pp. 80–89. doi:10.1109/DSAA.2018.00018. 2

[GC05] GREENE D., CUNNINGHAM P.: Producing accurate inter-
pretable clusters from high-dimensional data. In Knowledge Discovery
in Databases: Proceedings of the 9th European Conference on Princi-
ples and Practice of Knowledge Discovery in Databases (PKDD ’05)
(2005), vol. 3721 of LNCS, Springer Berlin Heidelberg, pp. 486–494.
doi:10.1007/11564126_49. 25

[GDG11] GRGIC M., DELAC K., GRGIC S.: SCface — Surveillance
Cameras Face Database. Multimedia Tools Applications 51, 3 (Feb.
2011), 863–879. doi:10.1007/s11042-009-0417-2. 25

[GDM∗19] GUO S., DU F., MALIK S., KOH E., KIM S., LIU Z.,
KIM D., ZHA H., CAO N.: Visualizing uncertainty and alternatives
in event sequence predictions. In Proceedings of the 2019 CHI Confer-
ence on Human Factors in Computing Systems (2019), CHI ’19, ACM,
pp. 573:1–573:12. doi:10.1145/3290605.3300803. 22

[GHG∗19] GIL Y., HONAKER J., GUPTA S., MA Y., D’ORAZIO V.,
GARIJO D., GADEWAR S., YANG Q., JAHANSHAD N.: Towards
human-guided machine learning. In Proceedings of the 24th Interna-
tional Conference on Intelligent User Interfaces (2019), IUI ’19, ACM,
pp. 614–624. doi:10.1145/3301275.3302324. 16, 21

[GHP07] GRIFFIN G., HOLUB A., PERONA P.: Caltech-256 Object Cat-
egory Dataset, 2007. URL: https://resolver.caltech.edu/
CaltechAUTHORS:CNS-TR-2007-001. 25

[GKN05] GANSNER E. R., KOREN Y., NORTH S. C.: Topological fish-
eye views for visualizing large graphs. IEEE Transactions on Visu-
alization and Computer Graphics 11, 4 (July 2005), 457–468. doi:
10.1109/TVCG.2005.66. 25

[Gle13] GLEICHER M.: Explainers: Expert explorations with crafted pro-
jections. IEEE Transactions on Visualization and Computer Graphics
19, 12 (Dec. 2013), 2042–2051. doi:10.1109/TVCG.2013.157. 15

[GM04] GABRILOVICH E., MARKOVITCH S.: Text categorization with
many redundant features: Using aggressive feature selection to make
SVMs competitive with C4.5. In Proceedings of the 21st International
Conference on Machine Learning (2004), ICML ’04, ACM. doi:
10.1145/1015330.1015388. 25

[GMP18] GOODFELLOW I., MCDANIEL P., PAPERNOT N.: Making ma-
chine learning robust against adversarial inputs. Communications of the
ACM 61, 7 (June 2018), 56–66. doi:10.1145/3134599. 6

[GNRM08] GARG S., NAM J. E., RAMAKRISHNAN I. V., MUELLER
K.: Model-driven visual analytics. In Proceedings of the IEEE Sym-
posium on Visual Analytics Science and Technology (2008), VAST ’08,
IEEE, pp. 19–26. doi:10.1109/VAST.2008.4677352. 19

[Goo20] Google Cloud Explainable AI, 2020. Accessed January 10,
2020. URL: https://cloud.google.com/explainable-ai/.
2

[GRM10] GARG S., RAMAKRISHNAN I. V., MUELLER K.: A visual
analytics approach to model learning. In Proceedings of the IEEE Sym-
posium on Visual Analytics Science and Technology (2010), VAST ’10,
IEEE, pp. 67–74. doi:10.1109/VAST.2010.5652484. 10

[GRNT16] GRÜN F., RUPPRECHT C., NAVAB N., TOMBARI F.: A tax-
onomy and library for visualizing learned features in convolutional neu-
ral networks. In Proceedings of the ICML Workshop on Visualization for
Deep Learning (2016), DL ’16. arXiv:1606.07757. 8

[GS04] GRIFFITHS T. L., STEYVERS M.: Finding scientific topics. Pro-
ceedings of the National Academy of Sciences 101, suppl 1 (2004), 5228–
5235. doi:10.1073/pnas.0307752101. 19

[GS14] GOTZ D., SUN J.: Visualizing accuracy to improve predic-
tive model performance. Proceedings of the IEEE VIS Workshop
on Visualization for Predictive Analytics (2014). URL: http://
predictive-workshop.github.io/. 21

[GSC16] GOTZ D., SUN S., CAO N.: Adaptive contextualization:
Combating bias during high-dimensional visualization and data selec-
tion. In Proceedings of the 21st International Conference on Intelligent
User Interfaces (2016), IUI ’16, ACM, pp. 85–95. doi:10.1145/
2856767.2856779. 21, 27

[GSK∗20] GEHRMANN S., STROBELT H., KRÜGER R., PFISTER H.,
RUSH A. M.: Visual interaction with deep learning models through
collaborative semantic inference. IEEE Transactions on Visualization
and Computer Graphics 26, 1 (Jan. 2020), 884–894. doi:10.1109/
TVCG.2019.2934595. 17

[GSS∗20] GÖRTLER J., SPINNER T., STREEB D., WEISKOPF D.,
DEUSSEN O.: Uncertainty-aware principal component analysis. IEEE
Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020),
822–831. doi:10.1109/TVCG.2019.2934812. 17

[GTdS∗18] GARCIA R., TELEA A. C., DA SILVA B. C., TØRRESEN
J., AO LUIZ DIHL COMBA J.: A task-and-technique centered survey
on visual analytics for deep learning model engineering. Computers &
Graphics 77 (2018), 30–49. doi:10.1016/j.cag.2018.09.018. 9

[GTS∗08] GOETZ C. G., TILLEY B. C., SHAFTMAN S. R., STEBBINS
G. T., FAHN S., MARTINEZ-MARTIN P., POEWE W., SAMPAIO C.,
STERN M. B., DODEL R., DUBOIS B., HOLLOWAY R., JANKOVIC
J., KULISEVSKY J., LANG A. E., LEES A., LEURGANS S., LEWITT
P. A., NYENHUIS D., OLANOW C. W., RASCOL O., SCHRAG A.,

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1145/371920.372094
https://doi.org/10.1109/TVCG.2019.2934251
https://doi.org/10.1111/cgf.12895
https://doi.org/10.1111/cgf.12895
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1177/1473871612460526
https://doi.org/10.1145/302979.303001
https://doi.org/10.1145/302979.303001
https://doi.org/10.1007/s13748-013-0040-3
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1109/TNNLS.2013.2292894
https://doi.org/10.1007/978-3-319-23485-4_53
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1007/11564126_49
https://doi.org/10.1007/s11042-009-0417-2
https://doi.org/10.1145/3290605.3300803
https://doi.org/10.1145/3301275.3302324
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001
https://doi.org/10.1109/TVCG.2005.66
https://doi.org/10.1109/TVCG.2005.66
https://doi.org/10.1109/TVCG.2013.157
https://doi.org/10.1145/1015330.1015388
https://doi.org/10.1145/1015330.1015388
https://doi.org/10.1145/3134599
https://doi.org/10.1109/VAST.2008.4677352
https://cloud.google.com/explainable-ai/
https://doi.org/10.1109/VAST.2010.5652484
http://arxiv.org/abs/1606.07757
https://doi.org/10.1073/pnas.0307752101
http://predictive-workshop.github.io/
http://predictive-workshop.github.io/
https://doi.org/10.1145/2856767.2856779
https://doi.org/10.1145/2856767.2856779
https://doi.org/10.1109/TVCG.2019.2934595
https://doi.org/10.1109/TVCG.2019.2934595
https://doi.org/10.1109/TVCG.2019.2934812
https://doi.org/10.1016/j.cag.2018.09.018


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

TERESI J. A., VAN HILTEN J. J., LAPELLE N.: Movement Disor-
der Society-sponsored revision of the Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS): Scale presentation and clinimetric testing re-
sults. Movement Disorders 23, 15 (Nov. 2008), 2129–2170. doi:
10.1002/mds.22340. 25

[HB15] HOFF K. A., BASHIR M.: Trust in automation: Integrating em-
pirical evidence on factors that influence trust. Human Factors 57, 3
(May 2015), 407–434. doi:10.1177/0018720814547570. 3

[HDK∗19] HAMID S., DERSTROFF A., KLEMM S., NGO Q. Q., JIANG
X., LINSEN L.: Visual ensemble analysis to study the influence of
hyper-parameters on training deep neural networks. In Proceedings
of the EuroVis Workshop on Machine Learning Methods in Visualisa-
tion for Big Data (2019), MLVis ’19, The Eurographics Association.
doi:10.2312/mlvis.20191160. 18, 22

[HGC15] HIGUERA C., GARDINER K. J., CIOS K. J.: Self-organizing
feature maps identify proteins critical to learning in a mouse model of
Down syndrome. PLOS ONE 10, 6 (June 2015). doi:10.1371/
journal.pone.0129126. 25

[HHC∗19] HOHMAN F., HEAD A., CARUANA R., DELINE R.,
DRUCKER S. M.: Gamut: A design probe to understand how data
scientists understand machine learning models. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Sys-
tems (2019), CHI ’19, ACM, pp. 579:1–579:13. doi:10.1145/
3290605.3300809. 18

[Hic14] HICKEY W.: A statistical analysis of the work of Bob
Ross, 2014. Accessed January 10, 2020. URL: https:
//fivethirtyeight.com/features/a-statistical-
analysis-of-the-work-of-bob-ross/. 25

[HJBU13] HOFFMAN R. R., JOHNSON M., BRADSHAW J. M., UNDER-
BRINK A.: Trust in automation. IEEE Intelligent Systems 28, 1 (Jan.–
Feb. 2013), 84–88. doi:10.1109/MIS.2013.24. 3

[HKPC19] HOHMAN F., KAHNG M., PIENTA R., CHAU D. H.: Visual
analytics in deep learning: An interrogative survey for the next frontiers.
IEEE Transactions on Visualization and Computer Graphics 25, 8 (Aug.
2019), 2674–2693. doi:10.1109/TVCG.2018.2843369. 9, 13

[HLW∗20] HAZARIKA S., LI H., WANG K., SHEN H., CHOU C.:
NNVA: Neural network assisted visual analysis of yeast cell polarization
simulation. IEEE Transactions on Visualization and Computer Graphics
26, 1 (Jan. 2020), 34–44. doi:10.1109/TVCG.2019.2934591. 17,
22

[HNH∗12] HÖFERLIN B., NETZEL R., HÖFERLIN M., WEISKOPF D.,
HEIDEMANN G.: Inter-active learning of ad-hoc classifiers for video
visual analytics. In Proceedings of the IEEE Conference on Visual An-
alytics Science and Technology (2012), VAST ’12, IEEE, pp. 23–32.
doi:10.1109/VAST.2012.6400492. 19, 28

[How18] HOWARD A.: Investigations into the human-AI trust phe-
nomenon. Plenary invited talk at NeurIPS ’18, Dec. 2018. 4

[HPRC20] HOHMAN F., PARK H., ROBINSON C., CHAU D. H.: Sum-
mit: Scaling deep learning interpretability by visualizing activation and
attribution summarizations. IEEE Transactions on Visualization and
Computer Graphics 26, 1 (Jan. 2020), 1096–1106. doi:10.1109/
TVCG.2019.2934659. 22

[HR78] HARRISON D., RUBINFELD D. L.: Hedonic housing prices
and the demand for clean air. Journal of Environmental Economics
and Management 5, 1 (Mar. 1978), 81–102. doi:10.1016/0095-
0696(78)90006-2. 25

[HRK15] HILL F., REICHART R., KORHONEN A.: SimLex-999: Eval-
uating semantic models with (genuine) similarity estimation. Com-
putational Linguistics 41, 4 (Dec. 2015), 665–695. doi:10.1162/
COLI_a_00237. 25

[HSD19] HOHMAN F., SRINIVASAN A., DRUCKER S. M.: TeleGam:
Combining visualization and verbalization for interpretable machine
learning. In 2019 IEEE Visualization Conference (VIS) (Oct 2019),
pp. 151–155. doi:10.1109/VISUAL.2019.8933695. 15, 17

[HSPC06] HAWKES E. R., SANKARAN R., PÉBAY P. P., CHEN J. H.:
Direct numerical simulation of ignition front propagation in a constant
volume with temperature inhomogeneities: II. Parametric study. Com-
bustion and Flame 145, 1–2 (Apr. 2006), 145–159. doi:10.1016/
j.combustflame.2005.09.018. 25

[Huu00] HUUSKONEN J.: Estimation of aqueous solubility for a diverse
set of organic compounds based on molecular topology. Journal of
Chemical Information and Computer Sciences 40, 3 (May 2000), 773–
777. doi:10.1021/ci9901338. 25

[HV81] HENDERSON H. V., VELLEMAN P. F.: Building multiple re-
gression models interactively. Biometrics 37, 2 (June 1981), 391–411.
doi:10.2307/2530428. 25

[HVP∗19] HÖLLT T., VILANOVA A., PEZZOTTI N., LELIEVELDT
B., HAUSER H.: Focus+context exploration of hierarchical embed-
dings. Computer Graphics Forum 38, 3 (June 2019), 569–579. doi:
10.1111/cgf.13711. 15

[Hyp19] Hyperspectral remote sensing scenes, 2019.
Accessed January 10, 2020. URL: http:
//ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes. 25

[i-L19] i-Lids multicamera tracking — UK government, 2019. Ac-
cessed January 10, 2020. URL: http://homeoffice.gov.uk/
science-research/hosdb/i-lids/. 25

[Ima19] ImageCLEF — The CLEF cross language image retrieval
track, 2019. Accessed January 10, 2020. URL: https://
imageclef.org/. 25

[IMI∗10] INGRAM S., MUNZNER T., IRVINE V., TORY M., BERGNER
S., MÖLLER T.: DimStiller: Workflows for dimensional analysis and
reduction. In Proceedings of the IEEE Symposium on Visual Analyt-
ics Science and Technology (2010), VAST ’10, IEEE, pp. 3–10. doi:
10.1109/VAST.2010.5652392. 16

[Inf17] InfoVis and VAST papers, 2017. Accessed January 10,
2020. URL: https://cc.gatech.edu/gvu/ii/jigsaw/
datafiles.html. 25

[JC17a] JASSBY A. D., CLOERN J. E.: WQ: Exploring water quality
monitoring data, 2017. Accessed January 10, 2020. URL: https:
//cran.rstudio.com/web/packages/wql/. 25

[JC17b] JIANG B., CANNY J.: Interactive machine learning via a GPU-
accelerated toolkit. In Proceedings of the 22nd International Conference
on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 535–546. doi:
10.1145/3025171.3025172. 19

[JHB∗17] JÄCKLE D., HUND M., BEHRISCH M., KEIM D. A.,
SCHRECK T.: Pattern Trails: Visual analysis of pattern transitions in
subspaces. In Proceedings of the IEEE Conference on Visual Analyt-
ics Science and Technology (2017), VAST ’17, IEEE, pp. 1–12. doi:
10.1109/VAST.2017.8585613. 22

[JJ09] JOHANSSON S., JOHANSSON J.: Interactive dimensionality re-
duction through user-defined combinations of quality metrics. IEEE
Transactions on Visualization and Computer Graphics 15, 6 (Nov. 2009),
993–1000. doi:10.1109/TVCG.2009.153. 16

[JKM12] JANKOWSKA M., KEŠELJ V., MILIOS E.: Relative N-gram
signatures: Document visualization at the level of character N-grams. In
Proceedings of the IEEE Conference on Visual Analytics Science and
Technology (2012), VAST ’12, IEEE, pp. 103–112. doi:10.1109/
VAST.2012.6400484. 13

[JPN15] JOIA P., PETRONETTO F., NONATO L.: Uncovering representa-
tive groups in multidimensional projections. Computer Graphics Forum
34, 3 (June 2015), 281–290. doi:10.1111/cgf.12640. 22

[JRK∗16] JONGEJAN J., ROWLEY H., KAWASHIMA T., KIM J., FOX-
GIEG N.: Quick, Draw! by Google Creative Lab, 2016. Accessed Jan-
uary 10, 2020. URL: https://experiments.withgoogle.com/
quick-draw. 25

[JSO19] JANIK A., SANKARAN K., ORTIZ A.: Interpreting black-box

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1002/mds.22340
https://doi.org/10.1002/mds.22340
https://doi.org/10.1177/0018720814547570
https://doi.org/10.2312/mlvis.20191160
https://doi.org/10.1371/journal.pone.0129126
https://doi.org/10.1371/journal.pone.0129126
https://doi.org/10.1145/3290605.3300809
https://doi.org/10.1145/3290605.3300809
https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/
https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/
https://fivethirtyeight.com/features/a-statistical-analysis-of-the-work-of-bob-ross/
https://doi.org/10.1109/MIS.2013.24
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2019.2934591
https://doi.org/10.1109/VAST.2012.6400492
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1016/0095-0696(78)90006-2
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1162/COLI_a_00237
https://doi.org/10.1109/VISUAL.2019.8933695
https://doi.org/10.1016/j.combustflame.2005.09.018
https://doi.org/10.1016/j.combustflame.2005.09.018
https://doi.org/10.1021/ci9901338
https://doi.org/10.2307/2530428
https://doi.org/10.1111/cgf.13711
https://doi.org/10.1111/cgf.13711
http://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://homeoffice.gov.uk/science-research/hosdb/i-lids/
http://homeoffice.gov.uk/science-research/hosdb/i-lids/
https://imageclef.org/
https://imageclef.org/
https://doi.org/10.1109/VAST.2010.5652392
https://doi.org/10.1109/VAST.2010.5652392
https://cc.gatech.edu/gvu/ii/jigsaw/datafiles.html
https://cc.gatech.edu/gvu/ii/jigsaw/datafiles.html
https://cran.rstudio.com/web/packages/wql/
https://cran.rstudio.com/web/packages/wql/
https://doi.org/10.1145/3025171.3025172
https://doi.org/10.1145/3025171.3025172
https://doi.org/10.1109/VAST.2017.8585613
https://doi.org/10.1109/VAST.2017.8585613
https://doi.org/10.1109/TVCG.2009.153
https://doi.org/10.1109/VAST.2012.6400484
https://doi.org/10.1109/VAST.2012.6400484
https://doi.org/10.1111/cgf.12640
https://experiments.withgoogle.com/quick-draw
https://experiments.withgoogle.com/quick-draw


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

semantic segmentation models in remote sensing applications. In Pro-
ceedings of the EuroVis Workshop on Machine Learning Methods in Vi-
sualisation for Big Data (2019), MLVis ’19, The Eurographics Associa-
tion. doi:10.2312/mlvis.20191158. 1, 19

[JSR∗19] JI X., SHEN H., RITTER A., MACHIRAJU R., YEN P.: Visual
exploration of neural document embedding in information retrieval: Se-
mantics and feature selection. IEEE Transactions on Visualization and
Computer Graphics 25, 6 (June 2019), 2181–2192. doi:10.1109/
TVCG.2019.2903946. 17

[JSS∗18] JENTNER W., SEVASTJANOVA R., STOFFEL F., KEIM D. A.,
BERNARD J., EL-ASSADY M.: Minions, sheep, and fruits: Metaphorical
narratives to explain artificial intelligence and build trust. In Proceedings
of the IEEE VIS Workshop on Visualization for AI Explainability (2018),
VISxAI ’18. URL: https://visxai.io/. 19, 28

[JZF∗09] JEONG D. H., ZIEMKIEWICZ C., FISHER B., RIBARSKY W.,
CHANG R.: iPCA: An interactive system for PCA-based visual ana-
lytics. Computer Graphics Forum 28, 3 (June 2009), 767–774. doi:
10.1111/j.1467-8659.2009.01475.x. 15

[KAKC18] KAHNG M., ANDREWS P. Y., KALRO A., CHAU D. H.: Ac-
tiVis: Visual exploration of industry-scale deep neural network models.
IEEE Transactions on Visualization and Computer Graphics 24, 1 (Jan.
2018), 88–97. doi:10.1109/TVCG.2017.2744718. 15

[KBR84] KONONENKO I., BRATKO I., ROŠKAR E.: Experiments in au-
tomatic learning of medical diagnostic rules. In Proceedings of the Inter-
national School for the Synthesis of Expert Knowledge Workshop (1984).
25

[KBWS15] KULESZA T., BURNETT M., WONG W.-K., STUMPF S.:
Principles of explanatory debugging to personalize interactive machine
learning. In Proceedings of the 20th International Conference on In-
telligent User Interfaces (2015), IUI ’15, ACM, pp. 126–137. doi:
10.1145/2678025.2701399. 13

[KC19] KAHNG M., CHAU D. H.: How does visualization help peo-
ple learn deep learning? Evaluation of GAN Lab. In Proceedings
of IEEE VIS Workshop on Evaluation of Interactive Visual Machine
Learning Systems (2019), EVIVA-ML ’19. URL: https://eviva-
ml.github.io/. 18

[KCK17] KIM K., CARLIS J. V., KEEFE D. F.: Comparison tech-
niques utilized in spatial 3D and 4D data visualizations: A survey and
future directions. Computers & Graphics 67 (2017), 138–147. doi:
10.1016/j.cag.2017.05.005. 6

[KCK∗19] KWON B. C., CHOI M., KIM J. T., CHOI E., KIM Y. B.,
KWON S., SUN J., CHOO J.: RetainVis: Visual analytics with inter-
pretable and interactive recurrent neural networks on electronic medical
records. IEEE Transactions on Visualization and Computer Graphics 25,
1 (Jan. 2019), 299–309. doi:10.1109/TVCG.2018.2865027. 17

[KDFB16] KRAUSE J., DASGUPTA A., FEKETE J.-D., BERTINI E.:
SeekAView: An intelligent dimensionality reduction strategy for navi-
gating high-dimensional data spaces. In Proceedings of the IEEE Sym-
posium on Large Data Analysis and Visualization (2016), LDAV ’16,
IEEE, pp. 11–19. doi:10.1109/LDAV.2016.7874305. 21

[KDS∗17] KRAUSE J., DASGUPTA A., SWARTZ J.,
APHINYANAPHONGS Y., BERTINI E.: A workflow for visual
diagnostics of binary classifiers using instance-level explana-
tions. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (2017), VAST ’17, IEEE, pp. 162–172.
doi:10.1109/VAST.2017.8585720. 1, 15

[KEV∗18] KWON B. C., EYSENBACH B., VERMA J., NG K., DE FIL-
IPPI C., STEWART W. F., PERER A.: Clustervision: Visual supervi-
sion of unsupervised clustering. IEEE Transactions on Visualization
and Computer Graphics 24, 1 (Jan. 2018), 142–151. doi:10.1109/
TVCG.2017.2745085. 21

[KFC16] KAHNG M., FANG D., CHAU D. H.: Visual exploration of
machine learning results using data cube analysis. In Proceedings of the
Workshop on Human-In-the-Loop Data Analytics (2016), HILDA ’16,
ACM, pp. 1:1–1:6. doi:10.1145/2939502.2939503. 19

[KHP∗11] KANDEL S., HEER J., PLAISANT C., KENNEDY J., VAN
HAM F., RICHE N. H., WEAVER C., LEE B., BRODBECK D., BUONO
P.: Research directions in data wrangling: Visualizations and transfor-
mations for usable and credible data. Information Visualization 10, 4
(Oct. 2011), 271–288. doi:10.1177/1473871611415994. 6

[KJR∗18] KAUER T., JOGLEKAR S., REDI M., AIELLO L. M., QUER-
CIA D.: Mapping and visualizing deep-learning urban beautification.
IEEE Computer Graphics and Applications 38, 5 (Sept. 2018), 70–83.
doi:10.1109/MCG.2018.053491732. 19

[KK14] KUCHER K., KERREN A.: Text visualization browser: A visual
survey of text visualization techniques. In Poster Abstracts of IEEE VIS
(2014). 27

[KK15] KUCHER K., KERREN A.: Text visualization techniques: Tax-
onomy, visual survey, and community insights. In Proceedings of the
8th IEEE Pacific Visualization Symposium (2015), PacificVis ’15, IEEE,
pp. 117–121. doi:10.1109/PACIFICVIS.2015.7156366. 13, 27

[KKB19] KINKELDEY C., KORJAKOW T., BENJAMIN J. J.: Towards
supporting interpretability of clustering results with uncertainty visual-
ization. In Proceedings of the EuroVis Workshop on Trustworthy Visu-
alization (2019), TrustVis ’19, The Eurographics Association. doi:
10.2312/trvis.20191183. 16

[KKK14] KIM L., KIM J.-A., KIM S.: A guide for the utilization of
Health Insurance Review and Assessment Service National Patient Sam-
ples. Epidemiology and Health 36 (July 2014). doi:10.4178/epih/
e2014008. 25

[KKS∗19] KELLY C. J., KARTHIKESALINGAM A., SULEYMAN M.,
CORRADO G., KING D.: Key challenges for delivering clinical im-
pact with artificial intelligence. BMC Medicine 17, 1 (2019), 195.
doi:10.1186/s12916-019-1426-2. 1

[KKW∗17] KWON B. C., KIM H., WALL E., CHOO J., PARK H., EN-
DERT A.: AxiSketcher: Interactive nonlinear axis mapping of visual-
izations through user drawings. IEEE Transactions on Visualization
and Computer Graphics 23, 1 (Jan. 2017), 221–230. doi:10.1109/
TVCG.2016.2598446. 15

[KKZE20] KHAYAT M., KARIMZADEH M., ZHAO J., EBERT D. S.:
VASSL: A visual analytics toolkit for social spambot labeling. IEEE
Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020),
874–883. doi:10.1109/TVCG.2019.2934266. 16, 17, 20

[KLTH10] KAPOOR A., LEE B., TAN D., HORVITZ E.: Interactive op-
timization for steering machine classification. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (2010),
CHI ’10, ACM, pp. 1343–1352. doi:10.1145/1753326.1753529.
21

[KMK18] KUCHER K., MARTINS R. M., KERREN A.: Analysis of
VINCI 2009–2017 proceedings. In Proceedings of the 11th Inter-
national Symposium on Visual Information Communication and In-
teraction (2018), VINCI ’18, ACM, pp. 97–101. doi:10.1145/
3231622.3231641. 19, 20

[KMR17] KLEINBERG J., MULLAINATHAN S., RAGHAVAN M.: Inher-
ent trade-offs in the fair determination of risk scores. In Proceedings of
the 8th Innovations in Theoretical Computer Science Conference (ITCS
2017) (2017), vol. 67 of Leibniz International Proceedings in Informatics
(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 43:1–
43:23. URL: http://drops.dagstuhl.de/opus/volltexte/
2017/8156, doi:10.4230/LIPIcs.ITCS.2017.43. 7

[Kos16] KOSARA R.: An empire built on sand: Reexamining what we
think we know about visualization. In Proceedings of the Sixth Work-
shop on Beyond Time and Errors on Novel Evaluation Methods for Vi-
sualization (2016), BELIV ’16, ACM, pp. 162–168. doi:10.1145/
2993901.2993909. 28

[KPB14] KRAUSE J., PERER A., BERTINI E.: INFUSE: Interactive fea-
ture selection for predictive modeling of high dimensional data. IEEE
Transactions on Visualization and Computer Graphics 20, 12 (Dec.
2014), 1614–1623. doi:10.1109/TVCG.2014.2346482. 2, 15

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.2312/mlvis.20191158
https://doi.org/10.1109/TVCG.2019.2903946
https://doi.org/10.1109/TVCG.2019.2903946
https://visxai.io/
https://doi.org/10.1111/j.1467-8659.2009.01475.x
https://doi.org/10.1111/j.1467-8659.2009.01475.x
https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1145/2678025.2701399
https://doi.org/10.1145/2678025.2701399
https://eviva-ml.github.io/
https://eviva-ml.github.io/
https://doi.org/10.1016/j.cag.2017.05.005
https://doi.org/10.1016/j.cag.2017.05.005
https://doi.org/10.1109/TVCG.2018.2865027
https://doi.org/10.1109/LDAV.2016.7874305
https://doi.org/10.1109/VAST.2017.8585720
https://doi.org/10.1109/TVCG.2017.2745085
https://doi.org/10.1109/TVCG.2017.2745085
https://doi.org/10.1145/2939502.2939503
https://doi.org/10.1177/1473871611415994
https://doi.org/10.1109/MCG.2018.053491732
https://doi.org/10.1109/PACIFICVIS.2015.7156366
https://doi.org/10.2312/trvis.20191183
https://doi.org/10.2312/trvis.20191183
https://doi.org/10.4178/epih/e2014008
https://doi.org/10.4178/epih/e2014008
https://doi.org/10.1186/s12916-019-1426-2
https://doi.org/10.1109/TVCG.2016.2598446
https://doi.org/10.1109/TVCG.2016.2598446
https://doi.org/10.1109/TVCG.2019.2934266
https://doi.org/10.1145/1753326.1753529
https://doi.org/10.1145/3231622.3231641
https://doi.org/10.1145/3231622.3231641
http://drops.dagstuhl.de/opus/volltexte/2017/8156
http://drops.dagstuhl.de/opus/volltexte/2017/8156
https://doi.org/10.4230/LIPIcs.ITCS.2017.43
https://doi.org/10.1145/2993901.2993909
https://doi.org/10.1145/2993901.2993909
https://doi.org/10.1109/TVCG.2014.2346482


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[KPB16] KRAUSE J., PERER A., BERTINI E.: Using visual analytics
to interpret predictive machine learning models. In Proceedings of the
ICML Workshop on Human Interpretability in Machine Learning (2016),
WHI ’16. arXiv:1606.05685. 17

[KPB18] KRAUSE J., PERER A., BERTINI E.: A user study on
the effect of aggregating explanations for interpreting machine learn-
ing models. In Proceedings of the KDD Workshop on Interactive
Data Exploration and Analytics (2018), IDEA ’18. URL: http://
poloclub.gatech.edu/idea2018/. 13

[KPHL16] KNUDSEN S., PEDERSEN J. G., HERDAL T., LARSEN J. E.:
Using concrete and realistic data in evaluating initial visualization de-
signs. In Proceedings of the Sixth Workshop on Beyond Time and
Errors on Novel Evaluation Methods for Visualization (New York,
NY, USA, 2016), BELIV ’16, ACM, pp. 27–35. doi:10.1145/
2993901.2993917. 28

[KPK18] KUCHER K., PARADIS C., KERREN A.: The state of the art in
sentiment visualization. Computer Graphics Forum 37, 1 (Feb. 2018),
71–96. doi:10.1111/cgf.13217. 13, 19, 27

[KPN16] KRAUSE J., PERER A., NG K.: Interacting with predic-
tions: Visual inspection of black-box machine learning models. In Pro-
ceedings of the 2016 CHI Conference on Human Factors in Comput-
ing Systems (2016), CHI ’16, ACM, pp. 5686–5697. doi:10.1145/
2858036.2858529. 19

[KPSK17] KUCHER K., PARADIS C., SAHLGREN M., KERREN A.: Ac-
tive learning and visual analytics for stance classification with ALVA.
ACM Transactions on Interactive Intelligent Systems 7, 3 (Oct. 2017),
14:1–14:31. doi:10.1145/3132169. 10

[Kri09] KRIZHEVSKY A.: Learning Multiple Layers of Features from
Tiny Images. Tech. rep., University of Toronto, 2009. 25, 26

[KS12] KIENREICH W., SEIFERT C.: Visual exploration of feature-class
matrices for classification problems. In Proceedings of the EuroVis Work-
shop on Visual Analytics (2012), EuroVA ’12, The Eurographics Associ-
ation. doi:10.2312/PE/EuroVAST/EuroVA12/037-041. 17

[KSH18] KARER B., SCHELER I., HAGEN H.: Panning for insight:
Amplifying insight through tight integration of machine learning, data
mining, and visualization. In Proceedings of the EuroVis Work-
shop on Machine Learning Methods in Visualisation for Big Data
(2018), MLVis ’18, The Eurographics Association. doi:10.2312/
mlvis.20181130. 13

[KTC∗19] KAHNG M., THORAT N., CHAU D. H., VIÉGAS F. B., WAT-
TENBERG M.: GAN Lab: Understanding complex deep generative
models using interactive visual experimentation. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (Jan. 2019), 310–320.
doi:10.1109/TVCG.2018.2864500. 18, 20

[KZT∗00] KEMP B., ZWINDERMAN A. H., TUK B., KAMPHUISEN H.
A. C., OBERYE J. J. L.: Analysis of a sleep-dependent neuronal feed-
back loop: The slow-wave microcontinuity of the EEG. IEEE Transac-
tions on Biomedical Engineering 47, 9 (Sept. 2000), 1185–1194. doi:
10.1109/10.867928. 25

[LA11] LESPINATS S., AUPETIT M.: CheckViz: Sanity check and topo-
logical clues for linear and non-linear mappings. Computer Graph-
ics Forum 30, 1 (Mar. 2011), 113–125. doi:10.1111/j.1467-
8659.2010.01835.x. 7, 17, 27

[Lan95] LANG K.: NewsWeeder: Learning to filter netnews. In Proceed-
ings of the Twelfth International Conference on International Conference
on Machine Learning (1995), ICML ’95, Morgan Kaufmann Publishers
Inc., pp. 331–339. doi:10.5555/3091622.3091662. 25, 26

[LBBH98] LECUN Y., BOTTOU L., BENGIO Y., HAFFNER P.: Gradient-
based learning applied to document recognition. Proceedings of the
IEEE 86, 11 (Nov. 1998), 2278–2324. doi:10.1109/5.726791. 25,
26

[LBT∗18] LIU S., BREMER P., THIAGARAJAN J. J., SRIKUMAR V.,
WANG B., LIVNAT Y., PASCUCCI V.: Visual exploration of semantic
relationships in neural word embeddings. IEEE Transactions on Visu-
alization and Computer Graphics 24, 1 (Jan. 2018), 553–562. doi:
10.1109/TVCG.2017.2745141. 20

[LCJ∗18] LIU D., CUI W., JIN K., GUO Y., QU H.: DeepTracker: Vi-
sualizing the training process of convolutional neural networks. ACM
Transactions on Intelligent Systems and Technology 10, 1 (Nov. 2018),
6:1–6:25. doi:10.1145/3200489. 18

[LCM∗17] LU J., CHEN W., MA Y., KE J., LI Z., ZHANG F., MA-
CIEJEWSKI R.: Recent progress and trends in predictive visual an-
alytics. Frontiers of Computer Science 11, 2 (Apr. 2017), 192–207.
doi:10.1007/s11704-016-6028-y. 8, 13

[LGG∗18] LIN H., GAO S., GOTZ D., DU F., HE J., CAO N.: RCLens:
Interactive rare category exploration and identification. IEEE Transac-
tions on Visualization and Computer Graphics 24, 7 (July 2018), 2223–
2237. doi:10.1109/TVCG.2017.2711030. 17, 22

[LGH∗17] LU Y., GARCIA R., HANSEN B., GLEICHER M., MA-
CIEJEWSKI R.: The state-of-the-art in predictive visual analytics. Com-
puter Graphics Forum 36, 3 (June 2017), 539–562. doi:10.1111/
cgf.13210. 8, 9, 13, 17

[LHF∗18] LYONS J., HO N., FRIEDMAN J., ALARCON G., GUZNOV
S.: Trust of learning systems: Considerations for code, algorithms, and
affordances for learning. In Human and Machine Learning: Visible,
Explainable, Trustworthy and Transparent. Springer International Pub-
lishing, 2018, pp. 265–278. doi:10.1007/978-3-319-90403-
0_13. 3

[Lin14] LIND N.: Better Life Index. In Encyclopedia of Quality of
Life and Well-Being Research. Springer Netherlands, Dordrecht, 2014,
pp. 381–382. doi:10.1007/978-94-007-0753-5_3623. 25

[LJLH19] LIU Y., JUN E., LI Q., HEER J.: Latent space cartography:
Visual analysis of vector space embeddings. Computer Graphics Forum
38, 3 (June 2019), 67–78. doi:10.1111/cgf.13672. 20

[LKC∗12] LEE H., KIHM J., CHOO J., STASKO J., PARK H.: iVis-
Clustering: An interactive visual document clustering via topic mod-
eling. Computer Graphics Forum 31, 3pt3 (June 2012), 1155–1164.
doi:10.1111/j.1467-8659.2012.03108.x. 18

[LKZ∗15] LEHMANN D. J., KEMMLER F., ZHYHALAVA T., KIRSCHKE
M., THEISEL H.: Visualnostics: Visual guidance pictograms for analyz-
ing projections of high-dimensional data. Computer Graphics Forum 34,
3 (June 2015), 291–300. doi:10.1111/cgf.12641. 10

[LL07] LENDASSE A., LIITIAINEN E.: Variable scaling for time se-
ries prediction: Application to the ESTSP’07 and the NN3 forecast-
ing competitions. In Proceedings of the International Joint Confer-
ence on Neural Networks (2007), IJCNN ’07, IEEE, pp. 2812–2816.
doi:10.1109/IJCNN.2007.4371405. 25

[LL10] LASKOV P., LIPPMANN R.: Machine learning in adversarial en-
vironments. Machine Learning 81, 2 (Nov. 2010), 115–119. doi:
10.1007/s10994-010-5207-6. 6

[LLL∗19] LIU S., LI Z., LI T., SRIKUMAR V., PASCUCCI V., BREMER
P.: NLIZE: A perturbation-driven visual interrogation tool for analyzing
and interpreting natural language inference models. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (Jan. 2019), 651–660.
doi:10.1109/TVCG.2018.2865230. 17

[LLS∗18] LIU M., LIU S., SU H., CAO K., ZHU J.: Analyzing the noise
robustness of deep neural networks. In Proceedings of the IEEE Con-
ference on Visual Analytics Science and Technology (2018), VAST ’18,
IEEE, pp. 60–71. doi:10.1109/VAST.2018.8802509. 18

[LLWT15] LIU Z., LUO P., WANG X., TANG X.: Deep learning face
attributes in the wild. In Proceedings of the IEEE International Con-
ference on Computer Vision (2015), ICCV ’15, IEEE, pp. 3730–3738.
doi:10.1109/ICCV.2015.425. 25

[LMZ∗14] LEE J. H., MCDONNELL K. T., ZELENYUK A., IMRE D.,
MUELLER K.: A structure-based distance metric for high-dimensional
space exploration with multidimensional scaling. IEEE Transactions on
Visualization and Computer Graphics 20, 3 (Mar. 2014), 351–364. doi:
10.1109/TVCG.2013.101. 21

[LR02] LI X., ROTH D.: Learning question classifiers. In Proceed-
ings of the 19th International Conference on Computational Linguis-

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

http://arxiv.org/abs/1606.05685
http://poloclub.gatech.edu/idea2018/
http://poloclub.gatech.edu/idea2018/
https://doi.org/10.1145/2993901.2993917
https://doi.org/10.1145/2993901.2993917
https://doi.org/10.1111/cgf.13217
https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/2858036.2858529
https://doi.org/10.1145/3132169
https://doi.org/10.2312/PE/EuroVAST/EuroVA12/037-041
https://doi.org/10.2312/mlvis.20181130
https://doi.org/10.2312/mlvis.20181130
https://doi.org/10.1109/TVCG.2018.2864500
https://doi.org/10.1109/10.867928
https://doi.org/10.1109/10.867928
https://doi.org/10.1111/j.1467-8659.2010.01835.x
https://doi.org/10.1111/j.1467-8659.2010.01835.x
https://doi.org/10.5555/3091622.3091662
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TVCG.2017.2745141
https://doi.org/10.1109/TVCG.2017.2745141
https://doi.org/10.1145/3200489
https://doi.org/10.1007/s11704-016-6028-y
https://doi.org/10.1109/TVCG.2017.2711030
https://doi.org/10.1111/cgf.13210
https://doi.org/10.1111/cgf.13210
https://doi.org/10.1007/978-3-319-90403-0_13
https://doi.org/10.1007/978-3-319-90403-0_13
https://doi.org/10.1007/978-94-007-0753-5_3623
https://doi.org/10.1111/cgf.13672
https://doi.org/10.1111/j.1467-8659.2012.03108.x
https://doi.org/10.1111/cgf.12641
https://doi.org/10.1109/IJCNN.2007.4371405
https://doi.org/10.1007/s10994-010-5207-6
https://doi.org/10.1007/s10994-010-5207-6
https://doi.org/10.1109/TVCG.2018.2865230
https://doi.org/10.1109/VAST.2018.8802509
https://doi.org/10.1109/ICCV.2015.425
https://doi.org/10.1109/TVCG.2013.101
https://doi.org/10.1109/TVCG.2013.101


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

tics — Volume 1 (2002), COLING ’02, ACL, pp. 1–7. doi:10.3115/
1072228.1072378. 25

[LRL∗18] LAUGEL T., RENARD X., LESOT M.-J., MARSALA C.,
DETYNIECKI M.: Defining locality for surrogates in post-hoc in-
terpretablity. In Proceedings of the ICML Workshop on Human
Interpretability in Machine Learning (2018), WHI ’18. arXiv:
1806.07498. 15

[LS04] LEE J. D., SEE K. A.: Trust in automation: Designing for ap-
propriate reliance. Human Factors 46, 1 (Mar. 2004), 50–80. doi:
10.1518/hfes.46.1.50_30392. 3

[LSC∗18] LIU M., SHI J., CAO K., ZHU J., LIU S.: Analyzing the
training processes of deep generative models. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (Jan. 2018), 77–87. doi:
10.1109/TVCG.2017.2744938. 17

[LSL∗17] LIU M., SHI J., LI Z., LI C., ZHU J., LIU S.: Towards better
analysis of deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 91–100. doi:
10.1109/TVCG.2016.2598831. 16

[LTBS∗18] LÜCKE-TIEKE H., BEUTH M., SCHADER P., MAY T.,
BERNARD J., KOHLHAMMER J.: Lowering the barrier for success-
ful replication and evaluation. In Proceedings of the IEEE Work-
shop on Evaluation and Beyond — Methodological Approaches for Vi-
sualization (2018), BELIV ’18, IEEE, pp. 60–68. doi:10.1109/
BELIV.2018.8634201. 25, 28

[LWBP14] LIU S., WANG B., BREMER P.-T., PASCUCCI V.: Distortion-
guided structure-driven interactive exploration of high-dimensional data.
Computer Graphics Forum 33, 3 (June 2014), 101–110. doi:
10.1111/cgf.12366. 15

[LWLZ17] LIU S., WANG X., LIU M., ZHU J.: Towards bet-
ter analysis of machine learning models: A visual analytics perspec-
tive. Visual Informatics 1, 1 (Mar. 2017), 48–56. doi:10.1016/
j.visinf.2017.01.006. 8, 13

[LWT∗15] LIU S., WANG B., THIAGARAJAN J. J., BREMER P.-T.,
PASCUCCI V.: Visual exploration of high-dimensional data through sub-
space analysis and dynamic projections. Computer Graphics Forum 34,
3 (June 2015), 271–280. doi:10.1111/cgf.12639. 18

[LXL∗18] LIU S., XIAO J., LIU J., WANG X., WU J., ZHU J.: Visual
diagnosis of tree boosting methods. IEEE Transactions on Visualization
and Computer Graphics 24, 1 (Jan. 2018), 163–173. doi:10.1109/
TVCG.2017.2744378. 17

[Mad19] MADSEN A.: Visualizing memorization in RNNs. Distill
(2019). doi:10.23915/distill.00016. 19

[MAW19] MAWI working group traffic archive, 2019. Accessed January
10, 2020. URL: https://mawi.wide.ad.jp/mawi/. 25

[MB02] MARTI U.-V., BUNKE H.: The IAM-database: An English sen-
tence database for offline handwriting recognition. International Jour-
nal on Document Analysis and Recognition 5, 1 (Nov. 2002), 39–46.
doi:10.1007/s100320200071. 25

[MBD∗11] MAY T., BANNACH A., DAVEY J., RUPPERT T.,
KOHLHAMMER J.: Guiding feature subset selection with an interactive
visualization. In Proceedings of the IEEE Conference on Visual Ana-
lytics Science and Technology (2011), VAST ’11, IEEE, pp. 111–120.
doi:10.1109/VAST.2011.6102448. 15

[MBW11] MUNZNER T., BARSKY A., WILLIAMS M.: Reflec-
tions on QuestVis: A visualization system for an environmental sus-
tainability model. In Scientific Visualization: Interactions, Fea-
tures, Metaphors (2011), vol. 2 of Dagstuhl Follow-Ups, Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, pp. 240–259. URL: http:
//drops.dagstuhl.de/opus/volltexte/2011/3297, doi:
10.4230/DFU.Vol2.SciViz.2011.240. 25

[MCM∗17] MA Y., CHEN W., MA X., XU J., HUANG X., MACIEJEW-
SKI R., TUNG A. K. H.: EasySVM: A visual analysis approach for
open-box support vector machines. Computational Visual Media 3, 2
(2017), 161–175. doi:10.1007/s41095-017-0077-5. 16

[MCMT14] MARTINS R. M., COIMBRA D. B., MINGHIM R., TELEA
A. C.: Visual analysis of dimensionality reduction quality for param-
eterized projections. Computers & Graphics 41 (June 2014), 26–42.
doi:10.1016/j.cag.2014.01.006. 16

[MCR14] MORO S., CORTEZ P., RITA P.: A data-driven approach to
predict the success of bank telemarketing. Decision Support Systems 62
(June 2014), 22–31. doi:10.1016/j.dss.2014.03.001. 25

[MCZ∗17] MING Y., CAO S., ZHANG R., LI Z., CHEN Y., SONG
Y., QU H.: Understanding hidden memories of recurrent neural net-
works. In Proceedings of the IEEE Conference on Visual Analytics
Science and Technology (2017), VAST ’17, IEEE, pp. 13–24. doi:
10.1109/VAST.2017.8585721. 20

[MDS95] MAYER R. C., DAVIS J. H., SCHOORMAN F. D.: An integra-
tive model of organizational trust. Academy of Management Review 20,
3 (July 1995), 709–734. doi:10.5465/amr.1995.9508080335. 3

[MHSW19] MAYR E., HYNEK N., SALISU S., WINDHAGER F.: Trust
in information visualization. In Proceedings of the EuroVis Workshop on
Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Asso-
ciation. doi:10.2312/trvis.20191187. 7

[ML14] MOLCHANOV V., LINSEN L.: Interactive design of multidimen-
sional data projection layout. In Proceedings of the EG/VGTC Confer-
ence on Visualization — Short Papers (2014), EuroVis ’14, The Euro-
graphics Association. doi:10.2312/eurovisshort.20141152.
17

[ML17] MCNABB L., LARAMEE R. S.: Survey of Surveys (SoS)
— Mapping the landscape of survey papers in information visualiza-
tion. Computer Graphics Forum 36, 3 (June 2017), 589–617. doi:
10.1111/cgf.13212. 8

[MLMP18] MÜHLBACHER T., LINHARDT L., MÖLLER T., PIRINGER
H.: TreePOD: Sensitivity-aware selection of pareto-optimal decision
trees. IEEE Transactions on Visualization and Computer Graphics 24, 1
(Jan. 2018), 174–183. doi:10.1109/TVCG.2017.2745158. 20

[MMD∗19] MURUGESAN S., MALIK S., DU F., KOH E., LAI T. M.:
DeepCompare: Visual and interactive comparison of deep learning
model performance. IEEE Computer Graphics and Applications 39, 5
(Sept. 2019), 47–59. doi:10.1109/MCG.2019.2919033. 17, 28

[MMS93] MARCUS M. P., MARCINKIEWICZ M. A., SANTORINI B.:
Building a large annotated corpus of English: The Penn Treebank. Com-
putational Linguistics 19, 2 (June 1993), 313–330. doi:10.5555/
972470.972475. 25

[MP13] MÜHLBACHER T., PIRINGER H.: A partition-based framework
for building and validating regression models. IEEE Transactions on
Visualization and Computer Graphics 19, 12 (Dec. 2013), 1962–1971.
doi:10.1109/TVCG.2013.125. 19

[MPG∗14] MÜHLBACHER T., PIRINGER H., GRATZL S., SEDLMAIR
M., STREIT M.: Opening the black box: Strategies for increased user in-
volvement in existing algorithm implementations. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (Dec. 2014), 1643–1652.
doi:10.1109/TVCG.2014.2346578. 2

[MQB19] MING Y., QU H., BERTINI E.: RuleMatrix: Visualizing and
understanding classifiers with rules. IEEE Transactions on Visualization
and Computer Graphics 25, 1 (Jan. 2019), 342–352. doi:10.1109/
TVCG.2018.2864812. 17

[MRB∗13] MANSOURI K., RINGSTED T., BALLABIO D., TODESCHINI
R., CONSONNI V.: Quantitative structure–activity relationship mod-
els for ready biodegradability of chemicals. Journal of Chemical In-
formation and Modeling 53, 4 (Apr. 2013), 867–878. doi:10.1021/
ci4000213. 25

[MRO∗12] MACEACHREN A. M., ROTH R. E., O’BRIEN J., LI B.,
SWINGLEY D., GAHEGAN M.: Visual semiotics & uncertainty visu-
alization: An empirical study. IEEE Transactions on Visualization and
Computer Graphics 18, 12 (Dec. 2012), 2496–2505. doi:10.1109/
TVCG.2012.279. 4

[MSF∗09] MATTHÄUS F., SMITH V. A., FOGTMAN A., SOMMER

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
http://arxiv.org/abs/1806.07498
http://arxiv.org/abs/1806.07498
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1109/TVCG.2017.2744938
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/BELIV.2018.8634201
https://doi.org/10.1109/BELIV.2018.8634201
https://doi.org/10.1111/cgf.12366
https://doi.org/10.1111/cgf.12366
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1016/j.visinf.2017.01.006
https://doi.org/10.1111/cgf.12639
https://doi.org/10.1109/TVCG.2017.2744378
https://doi.org/10.1109/TVCG.2017.2744378
https://doi.org/10.23915/distill.00016
https://mawi.wide.ad.jp/mawi/
https://doi.org/10.1007/s100320200071
https://doi.org/10.1109/VAST.2011.6102448
http://drops.dagstuhl.de/opus/volltexte/2011/3297
http://drops.dagstuhl.de/opus/volltexte/2011/3297
https://doi.org/10.4230/DFU.Vol2.SciViz.2011.240
https://doi.org/10.4230/DFU.Vol2.SciViz.2011.240
https://doi.org/10.1007/s41095-017-0077-5
https://doi.org/10.1016/j.cag.2014.01.006
https://doi.org/10.1016/j.dss.2014.03.001
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.1109/VAST.2017.8585721
https://doi.org/10.5465/amr.1995.9508080335
https://doi.org/10.2312/trvis.20191187
https://doi.org/10.2312/eurovisshort.20141152
https://doi.org/10.1111/cgf.13212
https://doi.org/10.1111/cgf.13212
https://doi.org/10.1109/TVCG.2017.2745158
https://doi.org/10.1109/MCG.2019.2919033
https://doi.org/10.5555/972470.972475
https://doi.org/10.5555/972470.972475
https://doi.org/10.1109/TVCG.2013.125
https://doi.org/10.1109/TVCG.2014.2346578
https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10.1109/TVCG.2018.2864812
https://doi.org/10.1021/ci4000213
https://doi.org/10.1021/ci4000213
https://doi.org/10.1109/TVCG.2012.279
https://doi.org/10.1109/TVCG.2012.279


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

W. H., LEONARDI-ESSMANN F., LOURDUSAMY A., REIMERS M. A.,
SPANAGEL R., GEBICKE-HAERTER P. J.: Interactive molecular net-
works obtained by computer-aided conversion of microarray data from
brains of alcohol-drinking rats. Pharmacopsychiatry 42 (May 2009),
S118–S128. doi:10.1055/s-0029-1216348. 25

[MSM∗10] MEIRELLES P., SANTOS JR. C., MIRANDA J., KON F.,
TERCEIRO A., CHAVEZ C.: A study of the relationships between source
code metrics and attractiveness in free software projects. In Proceedings
of the Brazilian Symposium on Software Engineering (2010), SBES ’10,
IEEE, pp. 11–20. doi:10.1109/SBES.2010.27. 25

[MSM∗17] MICALLEF L., SUNDIN I., MARTTINEN P., AMMAD-UD
DIN M., PELTOLA T., SOARE M., JACUCCI G., KASKI S.: Interac-
tive elicitation of knowledge on feature relevance improves predictions
in small data sets. In Proceedings of the 22nd International Confer-
ence on Intelligent User Interfaces (2017), IUI ’17, ACM, pp. 547–552.
doi:10.1145/3025171.3025181. 13

[MSSW16] MAYR E., SCHREDER G., SMUC M., WINDHAGER F.:
Looking at the representations in our mind: Measuring mental mod-
els of information visualizations. In Proceedings of the Sixth Work-
shop on Beyond Time and Errors on Novel Evaluation Methods for Vi-
sualization (2016), BELIV ’16, ACM, pp. 96–103. doi:10.1145/
2993901.2993914. 28

[MSW10] MACINNES J., SANTOSA S., WRIGHT W.: Visual classifi-
cation: Expert knowledge guides machine learning. IEEE Computer
Graphics and Applications 30, 1 (Jan. 2010), 8–14. doi:10.1109/
MCG.2010.18. 16

[MTCA17] MAGGIORI E., TARABALKA Y., CHARPIAT G., ALLIEZ P.:
Can semantic labeling methods generalize to any city? The Inria Aerial
Image Labeling Benchmark. In Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium (2017), IGARSS ’17, IEEE,
pp. 3226–3229. doi:10.1109/IGARSS.2017.8127684. 25

[Mun09] MUNZNER T.: A nested model for visualization design and val-
idation. IEEE Transactions on Visualization and Computer Graphics 15,
6 (Nov. 2009), 921–928. doi:10.1109/TVCG.2009.111. 4, 6, 7

[MvW11] MIGUT M. A., VAN GEMERT J. C., WORRING M.: Inter-
active decision making using dissimilarity to visually represented pro-
totypes. In Proceedings of the IEEE Conference on Visual Analyt-
ics Science and Technology (2011), VAST ’11, IEEE, pp. 141–149.
doi:10.1109/VAST.2011.6102451. 17

[MW10] MIGUT M., WORRING M.: Visual exploration of classifica-
tion models for risk assessment. In Proceedings of the IEEE Symposium
on Visual Analytics Science and Technology (2010), VAST ’10, IEEE,
pp. 11–18. doi:10.1109/VAST.2010.5652398. 13

[MXC∗20] MING Y., XU P., CHENG F., QU H., REN L.: ProtoSteer:
Steering deep sequence model with prototypes. IEEE Transactions on
Visualization and Computer Graphics 26, 1 (Jan. 2020), 238–248. doi:
10.1109/TVCG.2019.2934267. 16

[MXLM20] MA Y., XIE T., LI J., MACIEJEWSKI R.: Explaining vulner-
abilities to adversarial machine learning through visual analytics. IEEE
Transactions on Visualization and Computer Graphics 26, 1 (Jan. 2020),
1075–1085. doi:10.1109/TVCG.2019.2934631. 19, 28

[MXQR19] MING Y., XU P., QU H., REN L.: Interpretable and steer-
able sequence learning via prototypes. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (2019), KDD ’19, ACM, pp. 903–913. doi:10.1145/
3292500.3330908. 19, 28

[MYA∗13] MANDELLI D., YILMAZ A., ALDEMIR T., METZROTH K.,
DENNING R.: Scenario clustering and dynamic probabilistic risk assess-
ment. Reliability Engineering & System Safety 115 (July 2013), 146–
160. doi:10.1016/j.ress.2013.02.013. 25

[MYZ13] MIKOLOV T., YIH W.-T., ZWEIG G.: Linguistic regulari-
ties in continuous space word representations. In Proceedings of the
Annual Conference of the North American Chapter of the Association
for Computational Linguistics (2013), NAACL-HLT ’13, ACL, pp. 746–
751. URL: https://aclweb.org/anthology/N13-1090. 25

[NA19] NONATO L. G., AUPETIT M.: Multidimensional projection
for visual analytics: Linking techniques with distortions, tasks, and
layout enrichment. IEEE Transactions on Visualization and Com-
puter Graphics 25, 8 (Aug. 2019), 2650–2673. doi:10.1109/
TVCG.2018.2846735. 9, 13

[New17] New York Times articles, 2017. Accessed January 10,
2020. URL: http://kaggle.com/nzalake52/new-york-
times-articles. 25

[NGB∗19] NALCACI A. A., GIRGIN D., BALKI S., TALAY F., BOZ
H. A., BALCISOY S.: Detection of confirmation and distinction biases
in visual analytics systems. In Proceedings of the EuroVis Workshop on
Trustworthy Visualization (2019), TrustVis ’19, The Eurographics Asso-
ciation. doi:10.2312/trvis.20191185. 7

[NGDM∗19] NIETO Y., GACÍA-DÍAZ V., MONTENEGRO C.,
GONZÁLEZ C. C., GONZÁLEZ CRESPO R.: Usage of ma-
chine learning for strategic decision making at higher edu-
cational institutions. IEEE Access 7 (2019), 75007–75017.
doi:10.1109/ACCESS.2019.2919343. 1

[NHM∗07] NAM E. J., HAN Y., MUELLER K., ZELENYUK A., IMRE
D.: ClusterSculptor: A visual analytics tool for high-dimensional data.
In Proceedings of the IEEE Symposium on Visual Analytics Science
and Technology (2007), VAST ’07, IEEE, pp. 75–82. doi:10.1109/
VAST.2007.4388999. 10

[NHP∗18] NIE S., HEALEY C., PADIA K., LEEMAN-MUNK S., BEN-
SON J., CAIRA D., SETHI S., DEVARAJAN R.: Visualizing deep neu-
ral networks for text analytics. In Proceedings of the IEEE Pacific
Visualization Symposium (2018), PacificVis ’18, IEEE, pp. 180–189.
doi:10.1109/PacificVis.2018.00031. 17

[N.I17] N. I. P. Systems — NIPS 2017: Adversarial attacks and de-
fences, 2017. Accessed January 10, 2020. URL: https://nips.cc/
Conferences/2017/CompetitionTrack. 25

[NM13] NAM J. E., MUELLER K.: TripAdvisorN−D: A tourism-inspired
high-dimensional space exploration framework with overview and detail.
IEEE Transactions on Visualization and Computer Graphics 19, 2 (Feb.
2013), 291–305. doi:10.1109/TVCG.2012.65. 25

[NNM96] NENE S. A., NAYAR S. K., MURASE H.: Columbia Uni-
versity Image Library (COIL-20). Tech. Rep. CUCS-005-96, Columbia
University, Feb. 1996. URL: http://cs.columbia.edu/CAVE/
software/softlib/coil-20.php. 25

[NUM15] NUMBEO — Quality of life, 2015. Accessed January 10,
2020. URL: https://numbeo.com/quality-of-life/. 25

[NW08] NORMAN M., WHALEN D.: IEEE Visualization 2008 Con-
test data, 2008. Accessed January 10, 2020. URL: http://
sciviscontest.ieeevis.org/2008/. 25

[NZ06] NILSBACK M.-E., ZISSERMAN A.: A visual vocabulary for
flower classification. In Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition (2006), vol. 2 of
CVPR ’06, IEEE, pp. 1447–1454. doi:10.1109/CVPR.2006.42. 25

[OAB∗17] OLIVEIRA W., AMBRÓSIO L. M., BRAGA R., STRÖELE
V., DAVID J. M., CAMPOS F.: A framework for provenance analysis
and visualization. Procedia Computer Science 108 (2017), 1592–1601.
doi:10.1016/j.procs.2017.05.216. 7

[OOA10] OLUSOLA A. A., OLADELE A. S., ABOSEDE D. O.: Analy-
sis of KDD ’99 Intrusion Detection Dataset for selection of relevance
features. In Proceedings of the World Congress on Engineering and
Computer Science (2010), WCECS ’10, International Association of En-
gineers, pp. 162–168. URL: http://iaeng.org/publication/
WCECS2010/. 25

[Ope14] OpenML — arsenic-female-bladder data set, 2014. Accessed
January 10, 2020. URL: https://openml.org/d/949. 25

[Ope19] Open Directory Project — Webpages and categories, 2019. Ac-
cessed January 10, 2020. URL: https://dmoz-odp.org/. 25

[OSJ∗18] OLAH C., SATYANARAYAN A., JOHNSON I., CARTER S.,
SCHUBERT L., YE K., MORDVINTSEV A.: The building blocks of in-
terpretability. Distill (2018). doi:10.23915/distill.00010. 18

© 2020 The Author(s)
Computer Graphics Forum © 2020 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1055/s-0029-1216348
https://doi.org/10.1109/SBES.2010.27
https://doi.org/10.1145/3025171.3025181
https://doi.org/10.1145/2993901.2993914
https://doi.org/10.1145/2993901.2993914
https://doi.org/10.1109/MCG.2010.18
https://doi.org/10.1109/MCG.2010.18
https://doi.org/10.1109/IGARSS.2017.8127684
https://doi.org/10.1109/TVCG.2009.111
https://doi.org/10.1109/VAST.2011.6102451
https://doi.org/10.1109/VAST.2010.5652398
https://doi.org/10.1109/TVCG.2019.2934267
https://doi.org/10.1109/TVCG.2019.2934267
https://doi.org/10.1109/TVCG.2019.2934631
https://doi.org/10.1145/3292500.3330908
https://doi.org/10.1145/3292500.3330908
https://doi.org/10.1016/j.ress.2013.02.013
https://aclweb.org/anthology/N13-1090
https://doi.org/10.1109/TVCG.2018.2846735
https://doi.org/10.1109/TVCG.2018.2846735
http://kaggle.com/nzalake52/new-york-times-articles
http://kaggle.com/nzalake52/new-york-times-articles
https://doi.org/10.2312/trvis.20191185
https://doi.org/10.1109/ACCESS.2019.2919343
https://doi.org/10.1109/VAST.2007.4388999
https://doi.org/10.1109/VAST.2007.4388999
https://doi.org/10.1109/PacificVis.2018.00031
https://nips.cc/Conferences/2017/CompetitionTrack
https://nips.cc/Conferences/2017/CompetitionTrack
https://doi.org/10.1109/TVCG.2012.65
http://cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://numbeo.com/quality-of-life/
http://sciviscontest.ieeevis.org/2008/
http://sciviscontest.ieeevis.org/2008/
https://doi.org/10.1109/CVPR.2006.42
https://doi.org/10.1016/j.procs.2017.05.216
http://iaeng.org/publication/WCECS2010/
http://iaeng.org/publication/WCECS2010/
https://openml.org/d/949
https://dmoz-odp.org/
https://doi.org/10.23915/distill.00010


Chatzimparmpas et al. / Enhancing Trust in Machine Learning Models with the Use of Visualizations

[Ott14] Otto Group Product Classification Challenge, 2014. Accessed
January 10, 2020. URL: https://kaggle.com/c/otto-group-
product-classification-challenge. 25

[OY03] OVER P., YEN J.: An introduction to DUC-2003: Intrinsic eval-
uation of generic news text summarization systems. In Proceedings of
the HLT 2003 Workshop on Text Summarization (2003), DUC ’03, NIST.
URL: https://duc.nist.gov/pubs.html#2003. 25

[PBK10] PIRINGER H., BERGER W., KRASSER J.: HyperMoVal: In-
teractive visual validation of regression models for real-time simula-
tion. Computer Graphics Forum 29, 3 (June 2010), 983–992. doi:
10.1111/j.1467-8659.2009.01684.x. 15, 16

[PCJB15] POZZOLO A. D., CAELEN O., JOHNSON R. A., BONTEMPI
G.: Calibrating probability with undersampling for unbalanced clas-
sification. In Proceedings of the IEEE Symposium Series on Com-
putational Intelligence (2015), SSCI ’15, IEEE, pp. 159–166. doi:
10.1109/SSCI.2015.33. 25

[PHL∗16] PEZZOTTI N., HÖLLT T., LELIEVELDT B. P. F., EISEMANN
E., VILANOVA A.: Hierarchical stochastic neighbor embedding. Com-
puter Graphics Forum 35, 3 (June 2016), 21–30. doi:10.1111/
cgf.12878. 11

[PHV∗18] PEZZOTTI N., HÖLLT T., VAN GEMERT J., LELIEVELDT
B. P. F., EISEMANN E., VILANOVA A.: DeepEyes: Progressive vi-
sual analytics for designing deep neural networks. IEEE Transactions
on Visualization and Computer Graphics 24, 1 (Jan. 2018), 98–108.
doi:10.1109/TVCG.2017.2744358. 16

[PL05] PANG B., LEE L.: Seeing stars: Exploiting class relationships
for sentiment categorization with respect to rating scales. In Proceed-
ings of the 43rd Annual Meeting of the Association for Computational
Linguistics (2005), ACL ’05, ACL, pp. 115–124. doi:10.3115/
1219840.1219855. 25

[PL08] PANG B., LEE L.: Opinion mining and sentiment analysis. Foun-
dations and Trends in Information Retrieval 2, 1–2 (Jan. 2008), 1–135.
doi:10.1561/1500000011. 25

[PLHL19] PARK C., LEE J., HAN H., LEE K.: ComDia+: An inter-
active visual analytics system for comparing, diagnosing, and improv-
ing multiclass classifiers. In Proceedings of the IEEE Pacific Visual-
ization Symposium (2019), PacificVis ’19, IEEE, pp. 313–317. doi:
10.1109/PacificVis.2019.00044. 17

[PLvdM∗17] PEZZOTTI N., LELIEVELDT B. P. F., VAN DER MAATEN
L., HÖLLT T., EISEMANN E., VILANOVA A.: Approximated and user
steerable tSNE for progressive visual analytics. IEEE Transactions on
Visualization and Computer Graphics 23, 7 (July 2017), 1739–1752.
doi:10.1109/TVCG.2016.2570755. 11

[PNML08] PAULOVICH F. V., NONATO L. G., MINGHIM R., LEV-
KOWITZ H.: Least Square Projection: A fast high-precision multidimen-
sional projection technique and its application to document mapping.
IEEE Transactions on Visualization and Computer Graphics 14, 3 (May
2008), 564–575. doi:10.1109/TVCG.2007.70443. 25

[PPM14] Parkinson’s disease — Parkinsons Progression Markers Ini-
tiative (PPMI), 2014. Accessed January 10, 2020. URL: http:
//www.ppmi-info.org/. 25

[PSF17] PELTONEN J., STRAHL J., FLORÉEN P.: Negative relevance
feedback for exploratory search with visual interactive intent model-
ing. In Proceedings of the 22nd International Conference on Intel-
ligent User Interfaces (2017), IUI ’17, ACM, pp. 149–159. doi:
10.1145/3025171.3025222. 17

[PSMD14] PADUA L., SCHULZE H., MATKOVIĆ K., DELRIEUX C.:
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