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Figure 1: In this scene, we use a near-UV light for illumination. While non-fluorescent materials only reflect shades of the illumination colour
(left), fluorescent surfaces also reemit a portion of the absorbed energy from incident light as a light at additional wavelengths, leading to
the colourful appearance of other objects in the scene. To represent fluorescent materials in a renderer, we typically use reradiation matrices
(centre), which have a significant memory overhead. Instead, we propose a more efficient representation of these matrices using Gaussian
mixture models (right – eight Gaussians). Although compact, this representation also provides compelling results even with such challenging
illumination.

Abstract
We propose a technique for efficient storage and importance sampling of fluorescent spectral data. Fluorescence is fully de-
scribed by a reradiation matrix, which for a given input wavelength indicates how much energy is reemitted at other wave-
lengths. However, such representation has a considerable memory footprint. To significantly reduce memory requirements, we
propose the use of Gaussian mixture models for the representation of reradiation matrices. Instead of the full-resolution matrix,
we work with a set of Gaussian parameters that also allow direct importance sampling. Furthermore, if accuracy is of concern,
a reradiation matrix can be used jointly with efficient importance sampling provided by the Gaussian mixture. In this paper,
we present our pipeline for efficient storage of bispectral data and provide its extensive evaluation on a large set of bispectral
measurements. We show that our method is robust and colour accurate even with its comparably minor memory requirements
and that it can be seamlessly integrated into a standard Monte Carlo path tracer.

CCS Concepts
• Computing methodologies → Reflectance modeling;
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1. Introduction

Traditionally, rendering pipelines mimic the human visual system
and rely on RGB or tristimulus values to compute light transport.
This approach, however, is insufficient if high colour accuracy or
reproduction of spectral effects is required. Resolving the wave-
length domain with additional bands, and thus performing spec-
tral rendering, allows handling of such cases at the expense of in-
creased computational demands. However, due to the increase in
computation power and algorithmic efficiency [WND∗14], spec-
tral rendering is becoming increasingly popular even in produc-
tion [PBC∗18]. In this paper, we focus on the reproduction diffi-
culties of one particular spectral effect: fluorescence.

Fluorescence is a phenomenon often found in natural elements
and chemical compounds. It has a significant impact on how we
perceive an object’s colour in terms of hue, saturation, and lumi-
nance because it transfers a part of non-visible or near-visible light
into a different part of the visible range. Therefore, the inclusion of
fluorescence can enhance material brightness, making the colour
appear more vivid compared to a pure reflection. While the impor-
tance of this effect for appearance modelling in computer graphics
has been known for years, it has not been used much in practice,
as adding it to graphics workflows – both on the side of user inter-
faces, as well as within rendering software proper – is a demanding
problem.

An issue preventing a more widespread adoption of fluorescence
is the significant memory footprint of its representation. To fully
describe fluorescent spectra, one typically uses reradiation matri-
ces [Don54], also called Donaldson matrices, representing reemis-
sion distributions for a given set of wavelengths. Although explic-
itly storing these data is manageable for a few fluorescent elements,
this does not scale for fine-grained material definitions such as flu-
orescent textures.

In recent years, there has been an increasing interest in flu-
orescence in the research community. For example, Jung et
al. [JWH∗19] used fluorescence to enlarge the colour gamut dur-
ing spectral uplifting in a fashion analogous to the use of optical
brighteners in real-world materials. However, due to the lack of bet-
ter alternatives, their method had to store a full reradiation matrix
for every texel, which in practice limited its usage to low-resolution
input images.

We have proposed a method for efficient storage and impor-
tance sampling of reradiation matrices using a Gaussian mixture
model in [HFW21]. This preliminary work was evaluated on three
measured fluorescent materials. In this revision, we present an ex-
tended evaluation using an additional database of measured materi-
als [GF00]. Further, we compare the previously proposed weighted
Expectation-Maximisation method with the weighted Bayesian ap-
proach of Gaussian mixture fitting. Finally, we provide additional
evaluation metrics to assess the fidelity of the fitted reradiation ma-
trices.

2. Previous work

Bispectral rendering Although not widely used, the concept of
fluorescence in computer graphics is not new. Glassner [Gla95] in-

troduced fluorescence and phosphorescence to the computer graph-
ics community and proposed a method to support those effects in
a Whitted ray tracer. Wilkie et al. [WTP01] proposed a path trac-
ing system capable of rendering both fluorescence and polarisa-
tion effects, but they relied on a defined number of spectral bands,
the wavelength not being part of the Monte Carlo integration. Mo-
jzík et al. [MFW18] made the wavelength domain part of the inte-
grand and adapted Hero Wavelength Spectral Sampling [WND∗14]
to their method capable of handling fluorescent media in a Monte
Carlo path tracer.

Colour gamut enlargement One of the challenges when using a
spectral renderer is the requirement of spectrally defined assets.
Assets are commonly defined in a tristimulus space (e.g., RGB,
XYZ) and cannot be used directly as the input of a spectral ren-
derer. To allow the usage of RGB assets in a spectral renderer, the
original RGB data needs to be ’uplifted’ to a spectral form. A wide
range of work addresses nonfluorescent spectral uplifting, assum-
ing smooth spectra [Smi99, JH19], or data-driven from measured
spectra [OYH18, TWF21]. Recently, Jung et al. [JWH∗19] pro-
posed an uplifting pipeline that additionally uses fluorescent spec-
tra to enhance the colour gamut. A significant drawback of this
bispectral uplifting method is its memory requirement. In the worst
case, when dealing with texture uplifting, each pixel needs to be
stored as a full reradiation matrix. However, this is not an intrinsic
drawback of the uplifting method, but an indicator that the repre-
sentation of fluorescent data in rendering technology required im-
provement.

Bispectral measurements Bispectral reflectance measurements
are not as widespread as BRDF measurements because their ac-
quisition is a lengthy process requiring expensive equipment. Ad-
ditionally, with the limited number of renderers supporting fluo-
rescence, there is little incentive to take bispectral material mea-
surements for computer graphics applications. However, few ex-
ceptions are noteworthy. [GF00] offers a database of reradiation
matrices of numerous materials, mainly papers and inks. They used
a Labsphere BFC-450 bispectral fluorescence colorimeter for the
measurements. We use this database to consolidate our earlier pub-
lished evaluation on the three reradiation matrices from Labsphere
distributed in ART [ART18] measured with the same device.

Bispectral material models Wilkie et al. [WWLP06] proposed
one of the early bispectral models adapted to current rendering
techniques. This model uses a layered BRDF with a diffuse fluo-
rescent component. Hullin et al. [HHA∗10] proposed an efficient
acquisition setup to capture bispectral bidirectional reflectance and
reradiation distribution functions (BRRDF). They guided their ac-
quisition by a Principal Component Analysis to lower the acquisi-
tion time. Based on this work, Jung et al. [JHMD18] derived a new
BRRDF. They exploited Kasha’s rule to represent their distribution
with three 1D distributions (absorption and emission spectra and
non-fluorescent reflectance) and two ratios (emitted to absorbed en-
ergy and reradiation to non-fluorescent reflectance).

Gaussian representations in rendering Gaussian distributions
are often used in rendering practice, as their sufficiently
large combination can approximate distributions of any shape.
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(a) Fluorophore characterised by
its absorption and reemission
spectrum. The offset between the
two spectra is called the Stokes
shift.
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(b) Fluorophore characterised by
its reradiation matrix. The diago-
nal (λi = λo) was removed to em-
phasise the fluorescent effect.

Figure 2: (a) If Kasha’s rule holds, the shape of a reemission spec-
trum is the same regardless of the incident excitation wavelength,
and absorption with reemission spectrum form a sufficient repre-
sentation of a fluorophore. (b) Otherwise, a reradiation matrix pro-
viding precise information about the reemission spectrum given an
incident wavelength has to be used at the cost of its significant
memory footprint.

Jakob et al. [JRJ11] represent radiance using a Gaussian mix-
ture and applied it to the rendering of volumetric media. Her-
holz et al. [HEV∗16] and Vorba et al. [VKŠ∗14] employ Gaus-
sian mixtures to represent importance sampling distributions for
path guiding. Herholz et al. [HES∗18] used Gaussian mixtures to
sample analytic BRDF models and measured BRDF data. Recently,
Xia et al. [XWHM20] used Gaussian representation to sample lay-
ered BSDFs.

3. Background

In this section, we review the core concepts used in the remainder
of this article. We explain the fluorescent effect, its properties, and
the typical representation of fluorescent data in a bispectral ren-
derer. We also review the basic notation of Gaussian mixture mod-
els, which we employ to represent reradiation matrices.

3.1. Fluorescence

Fluorescence is an effect where a fluorophore absorbs energy from
incident photons, causing excitation of its molecules which, during
their return to the ground state, may reemit part of this energy as
photons with lower energy. In contrast to phosphorescence, where
emission can transpire over a long time period, fluorescence occurs
in a few nanoseconds (10−9 to 10−7 s) and, as such, is considered
to be instantaneous in the context of computer graphics.

Fluorescence produces noticeable visual effects and is com-
monly used to increase the brightness and saturation of pigments
and dyes. This works by shifting light from the barely visible ultra-
violet region to longer wavelengths, where the human eye is more
sensitive.

A fluorophore can be characterised by its absorption and ree-
mission spectrum (Fig. 2a). The first defines which incident wave-
lengths are absorbed and lead to reemission events, with magni-
tudes representing the total intensity of the reemissions. The second
describes the amount of reemission across all incident wavelengths.

According to Kasha’s rule, the reemission spectrum shape can
be considered independent of the specific incident wavelength that
caused the excitation (reemission intensity scales). The difference
between the spectral positions of the band maxima of absorption
and reemission arising from the same electronic transition is called
a Stokes shift [MW97]. In practice, this shift usually corresponds to
a difference between the rightmost local absorption maximum and
the reemission maximum.

However, there are exceptions to Kasha’s rule, leading to the
need for reradiation matrices (Fig. 2b), which characterise, for each
incident wavelength (λi), a distribution of reemission wavelengths
(λi ̸= λo) and surface reflectance (λi = λo).

In the context of path tracing, a normalised reemission spectrum
(column excluding λi = λo) can be seen as a PDF of the wavelength
shift of an irradiation λi and a normalised absorption spectrum (row
excluding λi = λo) can be seen as a PDF of absorption of a wave-
length λi for a given outgoing radiation λo.

To preserve energy conservation, the sum of each column of the
reradiation matrix never exceeds 1. The resulting value corresponds
to the total albedo of the material at a given incident wavelength,
that is, the sum of surface reflectance and fluorescence reemission.

But, while reradiation matrix is more flexible and suited for com-
puter graphics applications, it has a significant memory footprint.

3.2. Gaussian Mixture Model

A Gaussian mixture model (GMM) is a parametric probabilistic
model representing a dataset as a linear superposition of Gaussian
distributions. This linear superposition is represented by:

p(x) =
K

∑
k=1

πkN (x | µk,Σk) (1)

where:

p(x) is the density of mixture of Gaussians,
N (x | µk,Σk) is a single Gaussian density,
πk is the mixing coefficient (weight) of each

Gaussian,
K is the number of Gaussians.

In this article, we model reradiation matrices as mixtures of 2-
dimensional multivariate Gaussian distributions:

N (x | µ,Σ) = 1
2π

√
|Σ|

e−
1
2 (x−µ)T

Σ
−1(x−µ) (2)

where:
µ is the mean,
Σ is the covariance matrix.

4. Method overview

Our technique consists of two related but distinct operations that
form an efficient fluorescence rendering pipeline (Fig. 3):

1. Fitting, where the reradiation matrices are fitted to GMMs (5).
2. Rendering, where the GMM representation is used to impor-

tance sample wavelength-shifting events (6).
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Figure 3: Fluorescence rendering pipeline employing our tech-
nique. We model a reradiation with a GMM in the fitting phase,
and then during the rendering phase, we importance sample wave-
length shifting events according to the GMM.

The pipeline starts with a fitting preprocessing step. Here, the
reradiation matrices representing fluorophores are filtered to re-
move invalid values and fitted to GMMs. During the render-
ing phase, we use these GMM representations for fluorescent
wavelength-shifting events, where a conditional GMM is impor-
tance sampled. Depending on the path direction, we either sample
based on absorption or reemission wavelengths.

Using a GMM to represent a bispectral reflectance drastically re-
duces its memory footprint in the renderer, as instead of relying on
a tabulated reradiation matrix, we only need to store a few parame-
ters of the mixture. This reduction is even more pronounced when
the rendering technique relies on random sampling, as additional
tabulated CDFs are necessary for efficient sampling of reradiation
matrices.

5. Fitting phase

In the fitting phase, we apply parametric density estimation to fit a
reradiation matrix into a GMM. Later, we show that we can ac-
curately reconstruct the reradiation matrix information from the
GMM on the fly.

5.1. Dataset filtering

Some measurements in the dataset include a significant amount
of noise, potentially lowering the accuracy of the fit. To mitigate
this problem, we filtered the reradiation matrices before the fitting
phase.

Although not ideal, we zeroed values under the diagonal (λi >
λo) and negative values above it, since these values in our dataset
correspond to measurement errors. We do not apply any further data
filtering during the fitting phase. A further improvement would be
possible with a proper characterisation of the acquisition device’s
noise ratio.

5.2. Fitting algorithms

In our previous publication, we used the implementation
of weighted Expectation-Maximisation (EM) provided by the

Pomegranate library [Sch]. In this revision, we instead use
weighted EM in the better-behaving scikit-learn [PVG∗11, sci21]
library and compare its fitting accuracy with the weighted Bayesian
fitting algorithm.

Weighted Expectation-Maximisation Expectation Maximisation
(EM) is a two-stage iterative algorithm suitable for the finding of
mixture model parameters. The E-step (expectation) performs an
estimation of the expected log-likelihood for a complete dataset.
The M-step (maximisation) maximises the expected complete log-
likelihood. The E-step and M-step are run iteratively until the ex-
pectation converges to the target. As a detailed introduction of
EM is beyond the scope of our work, we review only a sketch
of EM. For a detailed study on EM, please refer to [Bis06].
Vorba et al. [VKŠ∗14] also showcase an adaptation of EM to the
rendering context.

The EM algorithm works with a set of observation samples and
computes a mixture matching its distribution. But, the reradiation
matrix instead provides weights of samples of pairs (λi,λo). We
could use a large set of samples distributed according to these
weights, but then the accuracy of the representation would depend
on the size of the sample set, whereas bigger sample sets would
lead to higher memory consumption and a slower fitting process.

A more suitable approach is to use the weighted EM algo-
rithm [GAPFH16, VKŠ∗14] where all non-zero samples are used
as observation outcomes and weighted according to their respec-
tive values.

Variational Bayesian inference Variational inference follows the
principle of the EM algorithm. It is a two-stage iterative algorithm
that maximizes a posterior probability (MAP) instead of maximis-
ing local likelihood (ML) as in the EM. Apart from updating the
approximations in EM, the model evidence in variational inference
also includes a predefined lowest prior distribution. By maximis-
ing their posteriors using Bayesian inference in each iteration, the
variational inference model gives more stable results compared to
the EM, which can produce singularities and exhibit overfitting
[Bis06]. Implementation of weighted variational Bayesian infer-
ence in our pipeline directly follows the derivation of weighted
EM [HFW21].

Optimal number of Gaussians Choosing an optimal number of
Gaussians for the EM is a non-trivial problem, as with a higher
number of Gaussians, we may face overfitting issues. Bayesian in-
formation criterion (BIC) can mitigate overfitting by the introduc-
tion of a penalty for the number of parameters of the model.

Variational Bayesian inference can take advantage of the prede-
fined prior distribution, such as the Dirichlet process (used in the
scikit-learn implementation as default) to select the optimal num-
ber of clusters based on the fitted data.

We evaluate our fitting on different numbers of Gaussians for
EM as the selection may depend on the use case. Conversely, we
let Bayesian inference use a lower number of Gaussians than the
specified maximum if it opts to do so for improved accuracy of the
fit.
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5.3. Reradiation reconstruction

We can reconstruct the reradiation matrix from the GMM found
previously. Gaussian mixture gives a probability density function,
and so its integral is unity. Because the reradiation integral does not
hold this property, the resulting Gaussian mixture has to be scaled
to reconstruct the reradiation later on:

Φ(λi,λo) = S · p(λi,λo) (3)

where:

S is the scaling factor,
Φ(λi,λo) is the reradiation function,
p(λi,λo) is the probability density function of the GMM de-

fined in Eqn. 1,
λi,λo are the wavelengths of a given absorption and ree-

mission event.

There are different strategies to retrieve the scaling factor S. We
originally proposed two approaches:

Error minimisation The first strategy consists of a minimisation
process. S is set as a parameter to minimise the error between the
measured reradiation and the reconstructed mixture.

S = argmin
S

∑
Λi

∑
Λo

∥Φmeasured(λi,λo)−S · p(λi,λo)∥ (4)

The choice of a norm function has little influence on the result
when dealing with fluorescence – the data have a low dynamic
range. By definition, this strategy reduces the average reconstruc-
tion error.

Integral ratio The second strategy consists of defining S as the
ratio between the integral of the original dataset and the GMM.

S =

∫∫
Λ

Φmeasured(λi,λo)dλidλo∫∫
Λ

p(λi,λo)dλidλo
(5)

This method ensures that the reconstructed reradiation has the
same albedo as the original measured one.

Although this technique does not reduce the measurable recon-
struction error, its application provides better rendering results be-
cause our eyes are more sensitive to brightness variation than to a
slight chromaticity shift.

Strategy selection The strategy for scaling factor computation de-
pends on the target application. The integral ratio is better suited
for perceptual applications, such as rendering with tone mapping.
If the accuracy of the spectral reconstruction of the reradiation is
needed, then error minimisation is a better choice.

In this publication, we apply integral ratio scaling as it is more
closely related to the intended application of our method.

6. Rendering phase

When a fluorescent event occurs during the rendering phase, we
first need to sample an in-shifting or an out-shifting wavelength
depending on the ray direction. Then, we need to evaluate the at-
tenuation given a set of λi and λo wavelengths. The sampling phase
relies on conditional probability: either λi or λo is known, and we
have to sample a λo or a λi according to the direction of the ray,
that is, evaluate an in- or out-shifting event.

6.1. Conditional GMM

To sample a random wavelength shift after a fluorescent event, we
need to ’sample a slice’ on the multivariate Gaussian mixture. With
a fixed input wavelength λi, we construct the conditional param-
eters for the resulting Gaussian mixture and generate the random
variable as the output wavelength λo.

Our model is made of:

µk =

(
µka

µkb

)
, Σk =

(
σkaa σkab

σkba σkbb

)
(6)

where µk and Σk are the GMM parameters of the kth Gaussian.

We define T, the inversion of the kth covariance matrix as:

Tk = Σ
−1
k =

(
τkaa τkab

τkba τkbb

)
. (7)

The conditional probability that, given λi, we shift to λo in com-
ponent k is:

pk(λi→ λo) =N
(

λo | µkb|a
,τ−1

kbb

)
(8)

with : µkb|a
= µkb − τ

−1
kbb

τkba

(
λi−µka

)
. (9)

Then, the probability for the entire conditional GMM from a
given λi to λo is:

p(λi→ λo) =
K

∑
k=1

π
(λi)
k pk (λi→ λo) (10)

with : π
(λi)
k =

πkN
(
λo | µka ,σkaa

)
∑kN

(
λo | µka ,σkaa

) . (11)

Finally, we generate the random variable based on the new con-
ditional GMM model. First, we choose which Gaussian component
we will sample using the conditional mixing coefficients π

(λi)
k , and

then we generate the sample following the normal distribution of
the chosen kth Gaussian:

µ(λi)
k = µkb|a

, σ
(λi)
k = τ

−1
kbb

. (12)

We only discuss sampling on the light path, but the same ap-
proach can be symmetrically applied on an eye path.

6.2. Importance sampling

When a ray hits a fluorophore, two events can occur:

• the ray is reflected with the same wavelength as the incident ray
– no fluorescent event,
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Figure 4: Comparison of conditional PDFs derived from a reradi-
ation matrix and its corresponding GMM representation. The fig-
ure shows the expected distribution of the reemission wavelengths
λo when the HERPICHA material is illuminated at λi = 440 nm.
When a fluorescent event occurs, the outgoing wavelength λo is
sampled according to this conditional PDF. Notice the presence of
measurement noise lowering the highest values of the PDF derived
from the raw reradiation matrix after normalisation compared to
the PDF derived from the fitted GMM.

• the ray is absorbed and its energy reradiated to a different wave-
length – fluorescent event.

We first determine if a fluorescent event occurs based on the ra-
tio between reflectance and fluorescence for a given incident wave-
length. If a fluorescent event occurs, we use importance sampling
to select a Gaussian distribution from the mixture and a specific
wavelength from the distribution (Alg. 1).

Fig. 4 shows an example of a conditional PDF of outgoing wave-
lengths of a specific incident wavelength λi. Given an incident
wavelength, we can generate this distribution from GMM and use
it to importance sample the reemitted wavelength λo.

The probability of transition between absorption at wavelength
λi and reemission at wavelength λo is:

pshift(λi→ λo) =


Φ(λi,λi)

rt (λi)
if λi = λo(

1− Φ(λi,λi)
rt (λi)

)
·
(

∑
K
k=1 π

(λi)
k N (λo | µ(λi)

k ,σ
(λi)
k

)
rt(λi) =

∫
Λ

Φ(λi,λr)dλr (13)

where:
Φ(λi,λo) is the bispectral reflectance,
rt(λi) is the total reflected and reemitted energy given λi.

In our renderer, we use Hero Wavelength Spectral Sampling
(HWSS) [WND∗14]. The HWSS technique multiplexes multiple
wavelengths in a Monte Carlo (MC) sample. It differs from a simple
multiplexing approach by using a ’Hero’ component, which is used
to make all directional decisions. This technique drastically reduces
colour noise in contexts with a wavelength dependence on the di-
rectional decisions, such as in a participating medium. In the case
of fluorescence, we allow each of the wavelengths in the HWSS
vector to be independently importance sampled. If done directly,
we can find non-zero samples with a zero probability, which is in-
correct for a MC integrator. Mojzík et al. [MFW18] introduced a
balance term to avoid this artefact. We use the same term in our
implementation:

Algorithm 1: Random wavelength shifting. Given a λi, we
either have no fluorescent event, i.e. λi = λo or, we sample
a λo after a fluorescent event.

input : λi
output: λo and pdf := pshift(λi→ λo)

ξ1←U(0,1);
pdiag←

Φ(λi,λi)
rt (λi)

;

if ξ1 ≤ pdiag then
// Sample the main diagonal
λo← λi;
pdf← pdiag;

else
// Wavelength shifting event
/* Select one Gaussian from the

mixture */
ξ2←U(0,1);
s← 0;
for k← 1 to K do

s← s+π
(λi)
k ;

if s≤ ξ2 then
break;

end
end
/* Conditional sampling with the

rejection method */
do

λo←N
(

µ(λi)
k ,σ

(λi)
k

)
;

while λo ≤ λi ;
// Eqn. 13

pdf← (1− pdiag) ·
(

∑
K
k=1 π

(λi)
k N (λo | µ(λi)

k ,σ
(λi)
k

)
;

end

p j(λi j → λo j ) =
N

∏
k=1,k ̸= j

pshift(λik → λok ) (14)

where:

p j(λi j → λo j ) is the probability of jth HWSS sample,
pshift(λi→ λo) is the probability of shifting from λi to λo,
N is the size of the HWSS vector.

6.3. Implementation details

To evaluate the reradiation, we store the mean, covariance matrix,
and weight for each Gaussian of the mixture. We also need to store
the scaling factor S. The determinant and inverse of the covariance
matrix are precomputed to speed up the evaluation of the mixture
during rendering. The diagonal is stored in its original tabulated
form without any alteration.

To efficiently perform conditional wavelength shifting, we also
precompute two additional tabulated values to retrieve π

(λi)
k or

π
(λo)
k : the sum of rows and the sum of columns of the Gaussian

mixture. In our implementation, we use a 1 nm sampling rate.
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Although additional precomputed values increase the total mem-
ory footprint during rendering, it is still much smaller than the
memory required when using tabulated CDFs, which are necessary
for the use of reradiation matrices.

We use rejection sampling to guarantee that absorption wave-
lengths do not exceed reemission wavelengths. It proved sufficient
in our case, as we observed only a small number of rejected sam-
ples. Alternatively, truncated distributions could be used.

The implementation of our method is available on Gitlab.

7. Results and discussion

Our fluorophore representation consists of the original reradiation
matrix diagonal representing the reflectance spectrum and the scal-
ing factor S with the GMM representing the fluorescent effect. We
need to store seven values for each Gaussian of the mixture:

• a mixing coefficient π (1 element),
• a mean vector µ (2 elements),
• a covariance matrix Σ (2×2 elements).

7.1. Dataset

In our previous publication [HFW21], we evaluated our method
on three measured reradiation matrices distributed in the assets
of the ART rendering toolkit – originally provided by Labsphere
Inc. In this revision, we provide a more in-depth evaluation on a
much larger bispectral dataset. We additionally use the dataset from
RIT [GF00], which contains 144 measured reradiation matrices of
different materials.

All measurements in the resulting dataset come from the same
device: Labsphere BFC-450. The materials were sampled at 10 nm
precision with an absorption wavelength ranging from 300 to
780 nm and a reemission ranging from 380 to 780 nm, resulting
in 49×41 reradiation matrices.

One material measurement (IXCAXORA) was discarded from
our evaluations. Its reradiation matrix appears to be incorrect due
to human error. We still include this sample in the supplemental for
reference.

In this section, we provide the results of the evaluation on the
whole dataset but directly showcase only its small subset. Detailed
results of our method on all samples are available in the supple-
mental.

7.2. Illuminants

To evaluate the accuracy of our representation, we compare the re-
sults of our fitted model with the original tabulated data. We base
our accuracy evaluation on the CIE 2000 Delta E (∆E∗

00) [Com01]
between a rendering of the reference data and the corresponding
fits observed under a large set of illuminants.

We use two sets of illuminants and distinguish the results of each
group:

• Monochromatic illuminants: We evaluate the bispectral re-
flectance of each fluorophore under monochromatic illumination

from 300 to 780 nm to cover the full range of incident wave-
lengths in the dataset. The performance of our model is calcu-
lated as an average ∆E∗

00 of all monochromatic illuminants.
• CIE standard illuminants: We also evaluate the colour repro-

duction accuracy of our model under the CIE standard illumi-
nants, which cover often used illumination conditions in render-
ing practice.

Any measured differences between our model and pure reradia-
tion matrices are caused by our compact representation of the fluo-
rescence, as the reflectance spectrum is not modified.

7.3. Rendering and colour reproduction

While a Monte Carlo rendering provides additional information
about interreflection between different fluorescent materials and
self-interreflection, the choice of the scene and its setup also limit
the evaluation to particular configurations. And so, given the large
number of material measurements, we instead predominantly use
an analytical rendering method. Specifically, we evaluate the accu-
racy of the fitting on an analytically calculated interaction of light
with a fluorescent material represented as a reradiation matrix:

C =
∫

Λo

∫
Λi

φ(λi,λo)Li(λi)dλiC̄(λo)dλo (15)

where:
C is the computed outgoing colour,
λi,λo are the incident and outgoing wavelengths,
φ(λi,λo) is the reradiation matrix value for λi,λo,
Li(λi) is the illuminant radiance at λi,
C̄(λo) is the colour matching function at λo.

This equation is equivalent to a single light bounce configuration
on a Lambertian surface where both incident and outgoing direc-
tions are aligned with the surface normal. This configuration allows
us to assess the quality of the fits without any additional parameters
interfering with our evaluations.

The reradiation matrix corresponding to our fit can be con-
structed by evaluating the GMM at regular intervals for λi,λo. This
approach allows efficient generation of noise-free results for each
material in the dataset for a large variety of illumination types.

7.4. Rendering accuracy

Due to the fluorescent nature of our dataset, illumination conditions
have a significant impact on error, making an objective evaluation
difficult. Therefore, we evaluate our representation of fluorophores
under a wide variety of illuminants visualised as:

• Colour band: To visualise outgoing colour after interaction
of a monochromatic illumination with a fluorophore, we use a
’colour band’. It consists of three strips representing from top
to bottom: outgoing colour based on a reradiation matrix, out-
going colour based on our fitted model, and visualisation of
∆E∗

00 between these two. The colour bands cover the entire ex-
citation spectrum of the fluorophore (horizontal axis) and allow
wavelength-specific comparisons of the measured bispectral re-
flectance with our fit.

submitted to COMPUTER GRAPHICS Forum (8/2022).
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Figure 5: Comparison of analytical renderings based on our fitted model with EM and reradiation matrices. Five worst behaving fluorophores
on the fitting of 4 Gaussians based on the average ∆E∗

00 over the set of monochromatic illuminants from 300 to 780 nm are showcased. The
colour bands show the bispectral reflectance of the reradiation matrix and our corresponding fit under monochromatic illumination along
with ∆E∗

00 for each wavelength. The colour patches show bispectral reflectance of the fitted model embedded inside of a patch rendered with
a reradiation matrix. The worst performing (average ∆E∗

00) CIE standard illuminants on the whole dataset are displayed.
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• Colour patches: To compare the quality of our fit with the origi-
nal measured data, we use colour patches to visualise how well a
fluorescent material is represented under a specific CIE standard
illuminant. The fitted patch is embedded inside of a reference
patch. The colour values are divided by the Y value of the used
illuminant.

Fig. 5 shows the five worst fluorophore fits based on their aver-
age ∆E∗

00 for monochromatic illuminants at 4 Gaussians using EM.
While the colour difference is visible for some monochromatic il-
luminants, the difference is hardly noticeable for most CIE stan-
dard illuminants, especially with a higher number of Gaussians.
While 4 Gaussians would be suitable for most rendering purposes,
8 Gaussians already provide high accuracy within a small memory
footprint. This also applies to global illumination, as showcased in
Fig. 1.

This is supported by a comparison of the quality of the GMM fit
with respect to the number of Gaussians used (Fig. 6). Even though
the reconstruction of the original reradiation at 4 and 2 Gaussians is
very rough, it does not translate to big observable differences as our
visual system is much more sensitive to luminance discrepancies
than to chromaticity variations.

7.5. Average accuracy on the whole dataset

To compare the overall accuracy of the two fitting methods with a
varying number of Gaussians, we provide a ∆E∗

00 averaged across
the entire dataset.

Fitting methods comparison Figs. 7b & 8b show a consistent
decrease of the ∆E∗

00 with an increasing number of Gaussians.
Bayesian inference performs better with a lower number of Gaus-
sians, but is outperformed by EM from 8 Gaussians. This is caused
by the Bayesian inference implementation opting to use a lower
number of Gaussians for fitting than the allowed maximum.

Model accuracy Fig. 7a shows the average ∆E∗
00 over the en-

tire dataset for monochromatic illuminants ranging from 300 to
780 nm. The significant error observed in the lower parts of the
spectrum can be attributed to limitations of the ∆E∗

00 involving
colours with low luminance. In our case, this part of the spectrum
usually represents non-visible light or a negligible amount of rera-
diation, as absorption bands of fluorophores are often situated there.
Therefore, the practical influence of this error on real-world render-
ing applications is limited. The monochromatic illumination error
is visualised for a few selected fluorophores in Fig. 5 and the whole
dataset in the supplemental.

In Fig. 8a, we provide an evaluation of a more practical appli-
cation of our approach – rendering with CIE standard illuminants.
We show an average of the whole dataset for the ten worst perform-
ing illuminants while fitting 4 Gaussians with EM. On average, we
achieve a ∆E∗

00 lower than 1.1 for two, 0.6 for 4 and 0.3 for 8 Gaus-
sians.

7.6. Memory footprint

While retaining high accuracy, our method is memory efficient, re-
quiring only a fraction of the memory necessary for use of the raw
reradiation matrices.

In the most favourable case, we only have to store the upper tri-
angular part of the reradiation matrix due to the nature of fluores-
cent reradiation being of lower energy than excitation caused by the
incident illumination. For our dataset measured at 10 nm precision,
it is approximately 1150 values. If maximal precision was required,
each matrix could be interpolated to 1 nm precision, resulting in a
hundredfold increase in memory footprint. Additionally, to facili-
tate efficient importance sampling of wavelength-shifting events, it
is desirable to compute tabulated CDFs, effectively tripling the total
required memory when using reradiation matrices for rendering.

With our method, we only need a small set of GMM parameters
to both evaluate the reradiation on the fly and to importance sample
wavelength shifting events.

In practice, for a representation using N Gaussians, we need to
store 1+7 ·N values. For importance sampling, we need two addi-
tional 1D arrays to efficiently evaluate the conditional GMM. This
is much less than the two tabulated 2D CDFs required for a fluo-
rescent material when using a reradiation matrix. Additionally, if
desired, our method can be used solely for importance sampling
instead of tabulated CDFs.

The memory efficiency of our method becomes especially pro-
nounced when working with larger numbers of reradiation matri-
ces. It makes fluorescent textures where each pixel may have to
be represented by a reradiation matrix usable in rendering prac-
tice. This, in turn, facilitates the use of related techniques such
as enlargement of the colour gamut by uplifting of RGB textures
[JWH∗19].

8. Conclusion and future work

We presented a method for efficient storage of reradiation matri-
ces via GMM. We showed that this approach drastically lowers re-
quired memory for the rendering of fluorescence while retaining
colour reproduction accuracy matching that of the original data.
Further, the resulting GMM representation can be directly used in
Monte Carlo-based rendering pipelines, as it supports efficient im-
portance sampling.

We evaluated weighted EM and Bayesian inference fitting ap-
proaches on an extensive dataset of measured reradiation matrices
under all CIE standard illuminants and a wide range of monochro-
matic illuminants. Both fitting methods proved to provide a compa-
rable and highly accurate representation of fluorescent reradiation
with as little as 8 Gaussians for most practical rendering use cases.

Different models and fitting approaches could be explored, but
considering the rendering accuracy and small memory footprint of
the presented solution, the potential gains seem marginal.

We think that the main direction of future work is in the devel-
opment of a parametric fluorescence model. Such model would not
require tabulated CDFs – further lowering total memory require-
ments for efficient rendering of fluorophores. More importantly, it
would allow a smooth integration of editable fluorescent materials
into artistic workflows.
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Figure 6: Worst performing fluorophores’ reradiation matrices with absorption and reradiation spectra and corresponding fits of EM.
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Figure 7: Evaluation of the fitting accuracy on monochromatic illuminants. In the box plot. the box extends from first to third quartile, the
lines show the median and the triangles show the average value. The whiskers extend from quartile to 1.5 inter-quartile range.
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