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Abstract

Mixtures of von Mises-Fisher distributions can be used to cluster data on the
unit hypersphere. This is particularly adapted for high-dimensional directional
data such as texts. We propose in this article to estimate a von Mises mixture
using a l1 penalized likelihood. This leads to sparse prototypes that improve
clustering interpretability. We introduce an expectation-maximisation (EM)
algorithm for this estimation and explore the trade-off between the sparsity
term and the likelihood one with a path following algorithm. The model’s
behaviour is studied on simulated data and, we show the advantages of
the approach on real data benchmark. We also introduce a new data set
on financial reports and exhibit the benefits of our method for exploratory
analysis.

Keywords: clustering, mixtures, von Mises-Fisher, expectation maximization,
high dimensional data, path following strategy, model selection

1. Introduction

High dimensional data are difficult to study as many classical machine
learning techniques are impaired by the so called curse of dimensionality
[4, 12]. One of the manifestation of this curse is the tendency of distances
to concentrate: pairwise distances between observations have both a large
mean and a small variance (see [5, 17]). This shows also that a multivariate
Gaussian distribution is mostly concentrated on a central sphere.

As a consequence, the classical Gaussian mixture model is generally not
adapted to high-dimensional data and numerous variants have been proposed
to cluster such data, see e.g. [8, 26, 34] and in particular the survey [7]. One
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of the main strategy to adapt Gaussian mixtures to high dimensional settings
is to reduce in some way the relevant dimensions of the components of the
mixture. For instance in [8], the authors propose a method in which each
component of the Gaussian mixture is associated to a specific low-dimensional
projection. In this sense, it can be seen as a generalization of the principle of
principal component analysis mixture [32].

This strategy can be applied in a more direct way for a particular case
of high-dimensional data, the so-called directional data [24] for which the
correlation between two vectors is more informative than the norm of their
difference (i.e. the Euclidean distance). This type of data appears naturally
in the classical vector representation of texts, as well as microarray analysis
and recommender systems. In addition of the need for a specific similarity
measure, those data have frequently more variables than the number of
observations. This constrains strongly the type of Gaussian mixture than can
be considered as e.g. the covariance matrix of the data is degenerate. For
those data Gaussian-type models are doubly non adapted: they suffer from
the adverse effects of high dimensionality and are based on a non adapted
underlying metric.

A natural way to handle directional data is to carry out a normalisation
that places them on the unit hyper-sphere. Notice that the concentration
phenomenon recalled above has already a tendency to push all observations on
such a hyper-sphere. This gives to the directional model a broader application
domain in high dimensional spaces. Then one can use clustering techniques
that address specifically the fact the data are spherical, such as spherical
k-means [15]. In particular, the von Mises-Fisher distribution can be used as
the building block for mixture models for directional data.

The von Mises-Fisher (vMF) distribution is a probability distribution on
the unit hypersphere which is close to the wrapped version of the normal
distribution but is also simpler and more tractable. It uses two parameters:
a directional mean and a concentration parameter κ which play similar roles
as the mean and the precision (inverse of the variance) in the Gaussian
distribution. Its density is given by

f(x|µ, κ) = cd(κ) expκµ
Tx,

where cd(κ) is the normalizing constant. Interestingly the inner product
µTx can be seen as a form of projection to a one dimensional subspace,
emphasizing the link between this approach and the ones developed to adapt
Gaussian mixtures to high dimensional data.
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Early application of the von Mises-Fisher (vMF) distribution were limited
to low-dimensional data due to the difficulty of estimating the κ concentration
parameter which involves inverting ratios of Bessel functions (see e.g. [25]).
However Banerjee et al. introduced in [2] a new estimation technique for the
concentration parameter and showed that it was adapted for high dimensional
spherical data. It was shown in [2, 35] that mixtures of vMF distribution are
particularly adapted for directional data clustering. This early work has led
to the development of numerous applications of vMF distribution such as
the spherical topic model [27], inspired by Latent Dirichlet Allocation, and
Bayesian variations of spherical mixture models in [18].

In order to improve further mixture of vMF distributions, [30] introduced
structure and sparsity in the directional means. The approach is inspired by
co-clustering and enforces a diagonal structure on the matrix of directional
means (after a proper reordering). In the case of text data analysis, this
amounts to finding clusters of texts that are characterized by a specific
vocabulary. An improvement of the algorithm was introduced in [29]: a
conscience mechanism prevents the method from generating highly skewed
cluster size distributions.

In the present article, we aim also at producing sparse directional means
but we follow a different strategy. In particular, we consider that the co-
clustering structure is too strict in some applications where some of the
clusters should be able to share vocabulary (using again text clustering as the
typical application of directional data clustering). Following [26], we propose
to use a l1 penalty for a mixture of von Mises-Fisher distributions to enforce
the sparsity in the directional means and thus improve the understanding of
classification results for high-dimensional data. Our solution is based on a
modification of the Expectation-Maximisation (EM) algorithm [13] proposed
by [2]. Moreover, we propose an efficient methodology for tuning the penalty
parameter that handles the trade off between the likelihood and the sparsity
of the solution. It combines a path following strategy with the use of model
selection criteria to select such a trade off. As in [30, 29], reordering the
columns of the matrix of directional means, enables us to display those means
in an organized fashion, emphasizing common aspects (e.g. vocabulary) and
exclusive ones.

The rest of the paper is organized as follows. In Section 2 we recall the
mixture of von Mises-Fisher distributions model from [2]. In Section 3 we
describe our l1 regularized variant together with the modified EM algorithm
and the path following strategy adapted for selecting the regularization
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trade-off. In Section 4 we analyze the behavior of the proposed model in
details, using artificial data. Section 5 is dedicated to a comparison of the
proposed model with reference models on both simulated data and a real
world benchmark. Finally, Section 6 proposes an application of our model on
a recent text database about 8-K reports.

2. Mixture of von Mises-Fisher distribution

We present briefly in this section the mixture of von Mises-Fisher distribu-
tions model from [2]. This generative model provides a distribution on Sd−1,
the (d− 1) dimensional unit sphere embedded in Rd, that is

Sd−1 =
{
x ∈ Rd| ‖x‖2 = 1

}
,

where ‖.‖2 denotes the l2 (Euclidean) norm in Rd.

2.1. The von Mises-Fisher (vMF) distribution

The von Mises-Fisher distribution is defined on Sd−1 (d ≥ 2) by the
following probability density function

f(x|µ, κ) = cd(κ) expκµ
Tx, (1)

where µ ∈ Sd−1 is the directional mean of the distribution and κ ≥ 0 its
concentration parameter. The normalization term cd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (2)

where Ir denotes the modified Bessel function of the first kind and order r.

2.2. Maximum likelihood estimates

As shown in e.g. [2], the maximum likelihood estimates (MLE) of the
directional mean of a vMF from a sample of N independent identically
distributed observations X = (xi)1≤i≤N is straightforward as we have

µ̂ =

∑n
i=1 xi

‖
∑n

i=1 xi‖2
. (3)
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However, the estimation of κ is only indirect. One can show indeed that κ̂ is
the solution of the following equation

Id/2(κ̂)

Id/2−1(κ̂)
=

1

n

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

, (4)

which has no closed form solution. We follow the strategy of [2] which
estimates κ via

κ̃ =
r̄d− r̄3

1− r̄2
, (5)

with

r̄ =
1

n

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
2

. (6)

Notice that we use this approach as it provides a good trade-off between
complexity and accuracy, but more advanced numerical schemes can be used,
see for instance [20] for a discussion about them.

2.3. Mixture of vMF

To model multimodal distributions on the sphere, we use a mixture of K
vMF distributions whose probability density function is given by

f(x|Θ) =
K∑
k=1

αkfk(x|θk), (7)

where each fk is a vMF density function θk = (µk, κk) and where Θ gathers the
K directional means (µk)1≤k≤K , the K concentration parameters (κk)1≤k≤K
and the mixture proportions (αk)1≤k≤K with αk ≥ 0 and

∑k
k=1 αk = 1.

The parameters Θ can be estimated from a data set by maximum likelihood
using the EM algorithm, as show in [2]. We derive a variation of the algorithm
adapted to our proposed regularized estimation in Section 3.

3. Mixture of sparse vMF

Following [26], we propose to replace the standard maximum likelihood
estimate (MLE) of Θ by a l1 regularized MLE. This induces sparsity in the
directional means and, consequently, ease the interpretation of the results.
We derive the EM algorithm (Algorithm 2) and the path following strategy in
the present section. We also discuss information criteria for model selection.
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3.1. A penalized likelihood for sparse directional means

3.1.1. Mixture representation

We use the classical represent of a mixture via latent variables. We assume
that the full data set consists of N independent and identically distributed
pairs (xi, zi)1≤i≤N = (X,Z). The (zi)i≤i≤N are the latent unobserved vari-
ables while the (xi)1≤i≤N are observed. Each zi follows a categorical distribu-
tion over {1, . . . , K} with parameter α = (αk)1≤k≤K , i.e. P(zi = k|α) = αk.

Then the conditional density of xi given zi = k is fk, the k-th component
of the vMF mixture, i.e.

p(xi|zi = k,Θ) = fk(xi|θk) = cd(κk) expκkµ
T
k xi . (8)

Obviously, this leads to the marginal distribution of p(xi|Θ) given by equation
(7) and the log-likelihood of the observed data is therefore

L(Θ|X) =
n∑
i=1

ln

(
K∑
k=1

αkfk(xi|θk)

)
. (9)

To ease the derivation of the EM algorithm we introduce the classical one
hot encoding representation of the hidden variables: zi is represented by the
binary vector zi with

∑K
k=1 zik = 1 and such that zi = k ⇔ zij = 0 for j 6= k

and zik = 1. Then the log-likelihood of the complete data is given by

L(Θ|X,Z) =
n∑
i=1

K∑
k=1

zik (lnαk + ln fk(xi|θk)) . (10)

3.1.2. Penalized likelihood

We propose to penalize the log-likelihood by the l1 norms of the directional
means allowing thus to increase their sparsity. More precisely, we estimate Θ
by maximizing the following penalized log-likelihood

Lp(Θ|X) = L(Θ|X)− β
K∑
k=1

‖µk‖1 , (11)

where β regulates the trade-off between likelihood and sparsity, and where
‖.‖1 denotes the l1 norm. As we will use the complete log-likelihood in the
EM algorithm, we introduce its penalized version as follows

Lp(Θ|X,Z) = L(Θ|X,Z)− β
K∑
k=1

‖µk‖1 . (12)

6



3.2. EM algorithm

We derive in this section the proposed EM algorithm. As proposed
originally in [13], the Expectation-Maximization algorithm estimates the
parameters of a model from incomplete data by maximizing the (penalized)
log-likelihood via an alternating scheme (see the generic Algorithm 1). In the
Expectation phase (E), one computes the expectation of the complete log-
likelihood with respect to the latent unobserved variables. The distribution
used for the expectation is the posterior distribution of the latent variables
given the observed data and the current estimate of the parameters. In
the Maximization phase (M), the expectation computed in the E phase is
maximized with respect to the parameters, providing a new estimate. This
two phase process is repeated until convergence of the log-likelihood.

Algorithm 1 Generic EM algorithm

Initialise Θ(0) randomly
m← 0
repeat

E phase
Compute q(m)(Z) = P(Z|X,Θ(m))
Compute Q(Θ|Θ(m)) = EZ∼q(m) (L(Θ|X,Z))
M phase
Compute Θ(m+1) = arg maxΘQ(Θ|Θ(m))
m← m+ 1

until convergence of L(Θ(m+1)|X)

3.2.1. E phase

We follow both [26] and [2] to derive the EM algorithm for our penalized
estimator. In the expectation step of the EM, we compute the expectation
of lnLp(Θ|X,Z) with respect to a distribution over the latent variables Z.
Obviously

EZ∼q (Lp(Θ|X,Z)) = EZ∼q (L(Θ|X,Z))− β
K∑
k=1

‖µk‖1 , (13)

for any distribution q as the penalty term does not depend on Z. Then the
E phase for the penalized likelihood estimation almost identical to the one
derived in [26] without penalization.
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We need first to compute q(m)(Z). By independence of the pairs (xi, zi)1≤i≤N ,
we have

q(m)(Z) =
N∏
i=1

P(zi|xi,Θ(m)). (14)

Then, using assumptions from Section 3.1.1, we have

P(zi = k|xi,Θ(m)) =
α
(m)
k fk(xi, θ

(m)
k )∑K

l=1 α
(m)
l fl(xi, θ

(m)
l )

. (15)

Moreover, using the linearity of the expectation and equation (10), we have

Q(Θ|Θ(m)) = EZ∼q(m) (L(Θ|X,Z)) ,

=
n∑
i=1

K∑
k=1

EZ∼q(m)(zik) (lnαk + ln fk(xi|θk)) ,

=
n∑
i=1

K∑
k=1

P(zi = k|xi,Θ(m)) (lnαk + ln fk(xi|θk)) ,

=
n∑
i=1

K∑
k=1

τ
(m)
ik (lnαk + ln fk(xi|θk)) , (16)

where we have introduced the notation

τ
(m)
ik = P(zi = k|xi,Θ(m)). (17)

Finally, we have

Qp(Θ|Θ(m)) =
n∑
i=1

K∑
k=1

τ
(m)
ik (lnαk + ln fk(xi|θk))− β

K∑
k=1

‖µk‖1 . (18)

3.2.2. M phase

In the M phase, we maximize QP (Θ|Θ(m)) with respect to Θ. To do so,
we introduce the following Lagrangian function

L(Θ, ζ,λ|Θ(m)) = Qp(Θ|Θ(m)) + ζ

(
K∑
k=1

αk − 1

)
+

K∑
k=1

λk(1−‖µk‖22), (19)
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in which the multipliers enforce the equality constraints. We look for stationary
points of the Lagrangian by setting the partial derivatives with respect to the
parameters to zero.

A straightforward derivation shows that the partial derivatives of L with
respect to the αk are equal to zero if and only if

∀k, αk =
1

n

n∑
i=1

τ
(m)
ik . (20)

This is the standard M phase update obtained in [2], an obvious fact consid-
ering that the penalization term does not apply to the αk.

The case of the other parameters is more complicated. A derivation pro-
vided in Appendix A shows that for Θ is a stationary point of the Lagrangian
if for all k, κk and µk are such that

Id/2(κk)

Id/2−1(κk)
= µTk

∑n
i=1 τ

(m)
ik xi∑n

i=1 τ
(m)
ik

, (21)

and

µkj =
sign

(
r
(m)
kj

)
2λk

max(κk|r(m)
kj | − β, 0), (22)

where
r
(m)
k =

∑
i

τ
(m)
ik xi, (23)

and

λk =
1

2

√√√√ d∑
j=1

(max(κk|r(m)
kj | − β, 0))2. (24)

Unfortunately, equation (21), the equations (22) for all j and equation (24)
are coupled, and no close form formula can be used to compute directly a
solution.

In the particular case where β = 0 (i.e. no regularization), µkj simplifies

to
κkr

(m)
kj

2λk
, which implies λk = 1

2

√∑d
j=1 κ

2
k(r

(m)
kj )2. In turns this simplifies to

µk =

∑
i τ

(m)
ik xi∥∥∥∑i τ
(m)
ik xi

∥∥∥
2

,
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and thus µk does not depend on κk. This is used in [2] to obtain closed form
equations for the M phase.

However in our case where β > 0, we cannot leverage such uncoupling
of the equations. Therefore we propose to solve the M phase approximately,
using a fixed point strategy. Using the current estimate of κk, we compute
an updated estimation of µk using equations (22) and (24). Then we update
κk using the estimator recalled in Section 2.2, i.e.

κk =
dρk − ρ3k
1− ρ2k

, (25)

with

ρk =
µTk r

(m)
k∑

i τ
(m)
ik

. (26)

As pointed out in Section 2.2, more advanced numerical schemes can be
used to estimate κk. They can be plugged in the EM algorithm without any
difficulty as they simply solve equation (21).

We iterate those two updates until convergence. Notice that to enforce
consistency of this strategy with the closed form equations from [2] in the
case where β = 0, we must update µk and then κk. The reverse sequence
does not generate consistent updates.

The final EM algorithm is summarised in Algorithm 2. Implementation
details are discussed in Appendix B.
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Algorithm 2 EM for penalized likelihood estimation

Require: β ≥ 0 (the regularisation parameter)
Require: Θinit (an optional initialisation value for Θ(0))

Initialise Θ(0) to Θinit or randomly (see Algorithm 4)
m← 0
repeat

τ
(m)
ik ← α

(m)
k fk(xi, θ

(m)
k )∑K

l=1 α
(m)
l fl(xi, θ

(m)
l )

r
(m)
k ←

n∑
i=1

τ
(m)
ik xi

α
(m+1)
k ← 1

n

n∑
i=1

τ
(m)
ik

κ
(m+1)
k ← κ

(m)
k

repeat

µ
(m+1)
kj ←

sign
(
r
(m)
kj

)
√∑d

j=1(max(κ
(m+1)
k |r(m)

kj | − β, 0))2
max(κ

(m+1)
k |r(m)

kj | − β, 0)

ρk ←
µ

(m+1)
k

T
r
(m)
k∑n

i=1 τ
(m)
ik

κ
(m+1)
k ← dρk − ρ3k

1− ρ2k

until convergence of κ
(m+1)
k and µk

(m+1)

m← m+ 1
until convergence of L(Θ(m+1)|X)

3.2.3. Shared κ

As shown e.g. in [20], in high dimensional settings, the components
of mixtures of vMF tend to overspecialize to subsets of the data as their
concentration parameters become very large. The problem can be reduced by
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using a single κ parameter shared among all the components. In this case,
the collection of K equations (21) are replaced by the single equation

Id/2(κ)

Id/2−1(κ)
=

1

N

K∑
k=1

µTk

(
n∑
i=1

τ
(m)
ik xi

)
. (27)

Then equation (22) is replaced by

µkj =
sign

(
r
(m)
kj

)
2λk

max(κ|r(m)
kj | − β, 0), (28)

and equation (24) by

λk =
1

2

√√√√ d∑
j=1

(max(κ|r(m)
kj | − β, 0))2.. (29)

The rest of Algorithm 2 remains unchanged.

3.3. Path following strategy

Algorithm 2 can be applied for any fixed value of β. A possible strategy
for exploring the effect of β would be to apply the algorithm from scratch
for different values, for instance regularly spaced on a grid. To reduce the
computational burden, improve convergence and provide consistency between
the models, we propose on the contrary to adopt a path following strategy.

The key idea is to start with a non sparse solution for β = 0 and to
increase progressively the value of β, restarting each time Algorithm 2 from the
previous solution. In addition, meaningful increments to β can be computed
from equation (22): we can indeed look for a minimal increase of β that is
guaranteed to increase the sparsity of the directional means (at least during
the first iteration of Algorithm 2).

Let us denote Θ {β} the parameter estimated by applying Algorithm
2 until convergence for a given value of β. For instance µkj {0} is the j-
coordinate of directional mean of the k component when β = 0. By a natural
extension rk {β} is the result of applying equation (23) to Θ {β} (using
equations (17) and (15)).

To illustrate the calculation of meaningful increments to β, let us first
consider the initial solution obtained with β0 = 0 and let us define β1 as
follows

β1 = min
1≤k≤K,1≤j≤d,κk{0}|r{0}kj |>0

κk {0} |rkj {0}|. (30)
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Let us consider 0 < β < β1 and the first iteration of Algorithm 2 initialized
with Θ(0) = Θ {0}. The E phase does not depend on β and none of the
quantities computed in this phase change from Θ {0} (as Algorithm 2 con-
verged). This is also the case for the first part of the M phase and the κk
and the µk remain unchanged (e.g. κ

(1)
k = κk {0}). Then consider the update

to µ
(1)
kj . According to equation (22), µkj {0} = 0 can only be a consequence

of rkj {0} = 0. Then for any value of β > 0, µ
(1)
kj = 0. On the contrary,

if |rkj {0} | > 0, then |µ(1)
kj | > 0 for any β < β1 as a consequence of the

definition of β1 and of equation (22). Obviously |µ(1)
kj | < |µkj {0} | because of

the shrinkage effect induced by β > 0 in equation (22), but unless β ≥ β1,
the directional mean sparsity will not increase during this first step of the
algorithm. The full effects of setting β to a non zero value cannot be predicted
from this simple analysis, and the sparsity might increase because of the
modification of the κk and of the τij induced by the shrinkage. Nevertheless,
setting β to β1 is the smallest increase from β0 that is guaranteed to increase
the sparsity of the solution during the first step of the algorithm.

A similar reasoning shows that we can guarantee an increase in sparsity
(in the first step of the algorithm) when starting with Θ {βp−1} by choosing
βp given by

βp = βp−1 + min
h,j,κk{βp−1}|rkj{βp−1}|−βp−1>0

κk {βp−1} |rkj {βp−1} | − βp−1. (31)

In practice, we propose to start with β0 = 0 and to iterate updates based
on equation (31) to generate a series of solutions. To avoid taking too many
steps on this path, we set values smaller than the chosen numerical precision
threshold to zero after updating β. The final path following algorithm is
given in Algorithm 3. In this summary, EM(β) is a call to Algorithm 2 with
a random initialisation for Θ(0), while EM(β,Θ) uses Θ as the initial value
of Θ(0).

In practice, the number of steps taken by the algorithm can be as high as
the number of dimensions multiply by K, when coordinates are set to zero
almost one by one. In order to reduce the computational burden, one can
enforce minimal (relative) increase of β between two steps. It is also possible
to limit the path to P steps (as in Algorithm 3) or to keep exploring it until
the maximal sparsity is reached (only one non zero parameter per directional
mean). Those heuristics will be used in the experiments.
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Algorithm 3 Path following

Require: P > 0 (the number of β to explore on the path)
Require: ε > 0 (the numerical precision below which directional means

coordinates are set to 0)
β0 ← 0
Θ {0} ← EM(β0)
for p = 1 to P − 1 do

βp ← βp−1 + min
h,j,κk{βp−1}|rkj{βp−1}|−βp−1>0

κk {βp−1}
∣∣rkj {βp−1}∣∣− βp−1

Θ {βp} ← EM(βp,Θ {βp−1})

if |µkj| < ε then
µkj ← 0

end if
end for

3.4. Model selection

Following [6, 28] we propose to use information criteria for model selection,
especially in order to set the value of β. Former studies [6, 28] have been
somewhat inconclusive concerning the ability of the Akaike Information
Criterion [1] (AIC), the Bayesian Information Criterion [31] (BIC) and their
variants to select systematically an appropriate number of components. For
mixtures of vMF, the AIC tends to overfit by selecting too many components,
while the BIC tends to underfit unless the number of observations is sufficient
large (several times the number of dimensions). For the co-clustering variant
of mixtures of vMF proposed in [30], AIC seems to be the most appropriate
solution considering the small number of free parameters of this model (see
[28]).

The limitations of the AIC and of the BIC in high dimensional settings is
well known, and several variations have been proposed to address the problem
in the context of supervised learning (mainly linear regression). Variants
include the Risk Inflation Criterion (RIC, [16]) and its specific extension to
high dimensional settings the RICc [33], as well as the extended BIC (EBIC
[10, 11]). Other variants can be found in e.g. [6].
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The general formula for those criteria is given by

IC(Θ {β}) = φ(n, d)× C(Θ {β})− 2× logL(Θ {β} |X), (32)

where C(Θ {β}) is the number of free parameters in the model and φ(n, d) is a
criterion dependent coefficient that may depend on the number of observations
n and their dimension d. Table 1 gives the definition of the coefficient function
for a selection of the criteria considered in the present paper.

Criterion φ(n, d)

AIC [1] 2
BIC [31] log n
RIC [16] 2 log d
RICc [33] 2(log d+ log log d)
EBIC [10] log n+ 2γ log d

Table 1: Coefficients for the different criteria: n is the number of observations and d their
dimension. The parameter γ of the EBIC is set to 0.5 as recommended in [10].

When β = 0, C(Θ {0}) is easy to compute. When the κ are unconstrained,
they contribute K free parameters (and a single parameter when a common
κ is used). The α sum to one, and thus contribute K − 1 free parameters.
When β = 0, the directional means are simply constrained by their unitary
norm and thus contribute K(d− 1) free parameters1.

Unfortunately, estimating the number of free parameters for the directional
means under regularisation is not obvious. It has been shown in [36] that in
the case of lasso regression, a consistent estimator of the degree of freedom of
the model is given by counting the number of non-zero terms in the regression.
However, the authors emphasize that this result does not generalize to other
settings, such as for instance elastic net. As a consequence, we propose to
use as the number of free parameters for a given directional mean µ

Cdm(µk) = max

(
1,

d∑
j=1

Iµkj 6=0 − 1

)
, (33)

in which I is the characteristic function. In the particular case where only a
single coordinate is non zero because of a strong regularisation, the unitary

1Notice that [6, 28] overlook the unitary norm constraint and consider Kd parameters.
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norm constraint reduces the set of possible values for this coordinate to
{−1, 1}. We still consider this as a free parameter and thus we set C(µ) to
one in this particular case (hence the max operator in the definition). Then
the number of free parameters is given by

C(Θ {β}) = (2K − 1) +
K∑
k=1

Cdm(µk {β}). (34)

In practice, we propose to use the BIC or the AIC to select the optimal β
on the regularisation path. We propose to use other criteria as guides for
selecting interesting configurations in terms of the number of components in
the mixture. Because of the inherent difficulty in estimating a model in the
high dimension low number of observations case, we cannot recommend to
focus on a single criterion.

3.5. Exploratory use

Once a the parameters of the model have been estimating, they can be
used for two exploratory tasks.

Firstly, As is classical in mixture models, the τ
(m)
ik from Equation (17) can

be used to define a hard/crisp clustering of the observations into K clusters.

The cluster index of observation xi, c
(m)
i , is given by

c
(m)
i = arg max

1≤k≤K
τ
(m)
ik . (35)

They can also be used directly to detect ambiguous assignments.
Secondly, the directional means themselves can provide interesting insights

on the data. As we consider high dimensional data, a direct analysis is difficult
and we propose to rely on a graphical representation, as used in e.g. [30, 29].
The key idea is to represent the directional means (or the full data set) as
an image in which the grey level of a pixel encodes the value of a coordinate:
the j-pixel of the i-th row of the image represents µij (or xij). This type of
pixel-oriented visualisation [21] must use some form of ordering to provide
insights on the data.

The coordinates are ordered with the help of the sparsity pattern of the
directional means. We introduce first a binary version of the directional
means given by

bkj = Iµkj 6=0, (36)
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and the counts of non zero coordinates

nj =
K∑
k=1

bkj. (37)

Then we use lexical ordering defined as follows. Dimension j is smaller than
dimension j′, j ≺ j′, if

1. nj > nj′ : we start with dimensions that are non zero for all directional
means;

2. or when nj = nj′ :
(a) if ∃k ∀l < k blj = blj′ and bkj > bkj′
(b) or ∀kbkj = bkj′ and

K∑
k=1

|µkj| >
K∑
k=1

|µkj′ | . (38)

Inside a block of dimensions with the same nj , dimensions are grouped based
on common non zero pattern (i.e. on identical bkj) and then on the intensity of
the non zero coordinates. This ordering is somewhat arbitrary but it leads to
readable pixel representations. In particular, it emphasizes common non zero
values (i.e. common vocabulary in the case of text data) as well as exclusive
dimension (i.e. words used only by some texts). To further emphasize the
different groups of dimensions, we chose for each group of pixels with the
same nj a different hue.

Rows are ordered in decreasing size of the corresponding clusters, i.e.
according to the αk. Both ordering can be applied to the data set. In this
case, we use an arbitrary ordering of the observations inside their cluster.

3.6. Summary and proposed methodology
In summary, we propose to build a sparse mixture of vMF as follows:

1. select a set of candidate values for K the number of components K;
2. for each K ∈ K

(a) run algorithm 3 to obtain a collection of regularisation values and
their associated parameters ΘK {β};

(b) keep the dense solution ΘK {0} and the best sparse solution
ΘK {β∗K} according to the AIC/BIC;

3. select the best K, K∗, according to an information criterion applied to
the dense model ΘK {0};

4. the final model is described by ΘK∗ {β∗K∗}.
In Sections 4 and 5, we study this procedure and compare it with variations.
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4. Analysis of the proposed methodology

We present in this Section experiments that illustrate the behavior of our
methodology on simulated data. Banerjee et al. already demonstrated in
[2] the interest of the mixture of von Mises-Fisher distribution compared to
other clustering solutions for directional data. Therefore the main focuses of
our evaluation are the behavior of the path following algorithm, the effects of
the regularisation approach and the relevance of the information criteria for
model selection. Our goal is to justify the choices that lead to the procedure
proposed in Section 3.6.

The section is structured as follows. The data generation procedure is
described in Section 4.1. Section 4.2 discusses the behavior of the path
following strategy on a simple example and shows that this strategy is
preferable to alternative solutions such as a grid based search. Section 4.3
analyses in details the behavior of the proposed model using a medium scale
simulation study.

4.1. Simulated data generation

To study the behavior of the model, we use simulated data sets that are
generated by mixtures of von Mises-Fisher distributions. We generate the
parameters of the distributions in a semi-random way that enables us to
control the separation between the components. The general procedure for a
mixture of K components in dimension d is the following one:

• we sample 20×K random vectors uniformly on the unit hypersphere
Sd−1;

• we extract from those vectors K maximally separated vectors by min-
imizing their pairwise inner products in a greedy way: those are the
directional means of the mixture (µk)1≤k≤K ;

• in most of the simulations, we sparsify the directional means by setting
to zero a randomly selected subset of their coordinates. We make sure
to keep non zero directional means and to have them all distinct;

• we chose κ in such a way to ensure a given degree of overlapping
between the components. The overlapping is measured as the error rate
of crisp assignments obtained by the model using the true parameters
compared to the ground truth. For a dimension d = 100, we use a base
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κ = 17.34 to obtain 2.5% of overlapping, and κ = 15.09 to obtain 5% of
overlapping.

• for each component, κk is sampled from the Gaussian distribution
N (µ = κ, σ = 0.025× κ);

• the final concentration of each component of the mixture is adjusted
for intrinsic separability. This consists in using κ′k defined by

κ′k =
2κk

1−maxl 6=k µTkµl
. (39)

For simplicity, we use systematically a balanced mixture with αk = 1
K

.

4.2. Path following strategy illustration

We illustrate in this section the behavior of the path following algorithm
(Algorithm 3) on a simple example. We use K∗ = 4 components in dimension
d = 10, with a separation of 5% (κ = 5.37). We generateN = 500 observations,
which makes the estimation relatively easy considering the low dimension of
the data (we do not introduce sparsity in the directional means). We run our
path following algorithm from the best configuration (in terms of likelihood)
among 10 random initial configurations.

Figures 1 and 2 show the behavior of the algorithm. In this particular
example, the path contains 13 steps. During the final step, the EM algorithm
did not converge to a configuration with 4 components, as expected when the
sparsity becomes too important. While no sparsity was enforced during the
generation of the data set, it was nevertheless worthwhile to set some of the
components to zero as it lead to a small decrease of the BIC (around step 5).

To evaluate the interest of the path following algorithm on this simple
example, we compare four different approaches:

1. our proposed path following Algorithm 3;

2. directly applying the EM Algorithm 2 using the βs computed by the path,
restarting each time the algorithm from the dense initial configuration
(β = 0) used by the path following algorithm;

3. directly applying the EM Algorithm 2 using the βs computed by the
path, starting from 10 random initial configurations for each β;
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Figure 1: Evolution of β and of the sparsity of the solution during the path following
algorithm.
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Figure 2: Evolution of the log likelihood and of the BIC of the solution during the path
following algorithm.
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4. directly applying the EM Algorithm 2 using a regular grid of 50 values
for β between 0 and the maximum value obtained by the path following
algorithm, restarting each time the algorithm from the dense initial
configuration (β = 0).

Solution 2 generates exactly the same estimates as the ones obtained
by the path following algorithm but in a longer running time (25% more
iterations of the EM algorithm).

Solution 3 generates also identical results as the ones obtained by the
path following algorithm. However, we used obviously roughly ten times
more computational resources and in addition a large number of the initial
configurations did not allow the EM algorithm to converge for larger values
of β, as seen on Figure 3.
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Figure 3: Number of converging EM runs (among 10) in solution 3 as a function of β
(represented here by the step in the path following algorithm).

Notice finally that the values of β are quite unpredictable. Without the
path following strategy, we would have had to study the effect of βs sampled
from an arbitrary grid of values, as tested in solution 4. Results are presented
on Figures 4 and 5. They show an identical behavior of the grid based search
and of the path following algorithm in terms of likelihood and BIC. Some
sparsity levels might be missed during the path following (compare Figure 4
and Figure 1), but this is easily fixable by testing some additional values for
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β inside intervals where the jump in sparsity is large.
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Figure 4: Sparsity of the solution as a function of β.

In summary, the path following algorithm provides efficiently a good
sampling of the values of β that have a significant effect on the sparsity of
the solution. If finer grain analysis is needed, one can sample the intervals
between values on the path that show a large modification in the sparsity of
the solution.

4.3. Simulation study

In this section, we study in a more systematic way the behavior of the
proposed methodology. Our goal is to evaluate the computational burden of
testing several βs via the path following strategy (Section 4.3.1), to confirm
and complement previous results about model selection with information
criteria (Section 4.3.2), to study to what extent those criteria can be used
to select an optimal β (Section 4.3.3) and finally to assess the difficulty of
recovering a planted sparse structure (Section 4.3.4).

The study is based on the d = 100 dimensional case, with K∗ = 4
components and for two degrees of overlapping between the components (2.5
% and 5 %), three level of sparsity in the directional means ( 5 %, 10 % and 15
%) and two data size (200 and 1000 observations, respectively). Notice that
while the directional means are sparse, this is not the case of the observations
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Figure 5: Log likelihood and of the BIC of the solution as a function of β. The red dots
are the configurations obtained by the path following algorithm.

themselves unless the κs are set to significantly larger values than the ones we
use. We report here only the results obtained for component specific values
of κ as the ones obtained with a shared κ do not depart significantly from
them in this setting.

We report statistics obtained by generating 100 data sets for each of
the configurations under consideration. In each run, the model is obtained
by running the EM algorithm from ten random initial configurations (see
Appendix B) and by keeping the best final configuration according to the
(penalized) likelihood. The path following algorithm is started from this best
configuration and is parameterised to ensure a minimum relative increase of
10−3 between two consecutive values of β.

4.3.1. Path characteristics and computational burden

The behavior of the path following algorithm is summarized by Figure
7 which shows the distribution of the number of steps taken on the path
as well as the distribution of the total number of iterations of the EM
algorithm. Compared to the dense case (i.e. to the initialisation of the
algorithm) represented on Figure 6, following the path increases significantly
the computational burden. However, the increase is far less important that
what could be expected from the number of different values of β considered
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during the path exploration. Indeed, the median number of EM iterations
needed to obtain an initial dense configuration is larger than 500 (for K ≥ 2),
while it is smaller than 10000 for the subsequent path exploration. This 20
times ratio, is significantly smaller than the median number of steps (at least
150 for K ≥ 2). In other words, restarting from the previous configuration
when β is increased is very efficient: in general the new stable configuration
is obtained using a small number of iterations of the EM, significantly less
than the ones needed to obtain the first dense model.

The results shown here for N = 200 observations are representative of the
results obtained with more observations. The number of iterations tend to
grow for larger K when n increases, but that does not change significantly
the number of steps on the path or the ratio between the number of EM
iterations in the dense case and on the path.

2
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0 500 1000 1500 2000
Iterations

K

Number of EM iterations without regularization

Figure 6: Distributions of the number of EM iterations needed to obtain the first model
with β = 0 over 600 data sets with d = 100 and N = 200, as a function of K, the number of
components. The figure aggregates results for all values of the separation and the sparsity.

In summary, the simulation confirms the results obtained in Section 4.2:
the computational burden of estimating several models for different values of
β is large but the path following strategy helps mitigating this cost.
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Figure 7: Distributions of the number of steps (a.k.a. values of β) and of the total number
of EM iterations over 600 data sets with d = 100 and N = 200, as a function of K, the
number of components. The figures aggregate results for all values of the separation and
the sparsity.
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4.3.2. Model selection: number of components

As explained in Section 3.4, previous studies on mixtures of vMF have
been somewhat inconclusive about the ability of information criteria to the
select the number of components of the mixture. We confirm the complex
behavior of the two main criteria (AIC and BIC) in this section.

For each of the 100 replications, we apply the proposed methodology : we
keep the original dense model as a reference. Then we select along the β path
the best model according to each of the information criterion presented in
Section 3.4. Finally, we report the number of components selected in this two
cases (dense versus sparse) by minimizing the information criteria. Notice
that in the dense case, we have a single model evaluated by multiple criteria,
while in the sparse case, each criterion selects a different model on the path.

Figures 8 and 9 show the results of this approach in the dense case and
in the sparse one (for AIC and BIC), with N = 200 observations. As the
sparsification reduces the number of effective parameters without reducing
too much the likelihood, it favors models with more components. In this
setting, this proves beneficial for the BIC but drives already the AIC in its
overfitting regime.
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Figure 8: Dense case: number of times each K is selected as the best configuration by
AIC or BIC for N = 200 observations and β = 0, across overlapping values (in column)
and directional mean sparsity (in row).
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Figure 9: Sparse case: number of times each K is selected as the best configuration by
AIC or BIC for N = 200 observations for the optimal β selected by each criterion, across
overlapping values (in column) and directional mean sparsity (in row).

Unfortunately, this overfitting behavior of AIC manifests even more in
the simpler case with N = 1000 observations (see Figures 10 and 11), while
BIC on the contrary is able to recover the true number of components, with
and without sparsity enforcement.

The simulation study tends to favor the BIC, but this is probably an
effect of the reasonable ratio between the dimension d = 100 and the number
of observations N = 200 and N = 1000. Experiments in Section 5 and
6 will show examples of a less appropriate behavior of the BIC in more
adverse setting, when d is large compared to n. This confirms previous results
summarized in Section 3.4, which tend to show that information criteria can
only be use to guide the exploration of the data for this type of mixture
models.

We have not included in this section the results obtained for other in-
formation criteria recalled in Section 3.4. On simulated data, they perform
uniformly worse than the AIC and the BIC in the small number of observa-
tions regime (N = 200 for d = 100) and roughly identically to the BIC in the
large number of observations case (N = 1000). We investigate their practical
relevance on real world data in Section 5 and 6.
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Figure 10: Dense case: number of times each K is selected as the best configuration by
AIC or BIC for N = 1000 observations and β = 0, across overlapping values (in column)
and directional mean sparsity (in row).
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Figure 11: Sparse case: number of times each K is selected as the best configuration by
AIC or BIC for N = 1000 observations for the optimal β selected by each criterion, across
overlapping values (in column) and directional mean sparsity (in row).
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4.3.3. Selection on the path

We study now the effect of selecting the best β with the BIC or the AIC.
We use as performance metric the adjusted rand index (ARI) between the
ground truth and the crisp assignments produced by the different models.
Figure 12 shows the results for N = 200 observations. In this case, the BIC
tends to over sparsify the directional means compared to the ARI, especially
when the K = 4, the true number of components.

The phenomenon is linked to the difficultly of the estimation, as shown
on Figure 13 with N = 1000 observations. When we have more observations,
when the true directional means are sparser or when the components overlap
less, the ARI drop between BIC and AIC is less pronounced.

It is also linked to the sparsity achievable given the number of observations,
as illustrated by Figures 14 and 15. Indeed with more observations, estimations
of the directional mean components are tighter and the non zero ones need
a larger value of β to be removed. The compromise between sparsity and
likelihood is more pronounced toward dense models.

4.3.4. Sparse directional mean recovery

Finally, Figure 16 shows the precision and recall of the optimal AIC and
BIC models for 100 data sets with N = 1000 and d = 100. They are measured
by comparing the classification of the coordinates of the directional means
into two classes (zero and non zero components) with the true classification
induced by sparsifying the directional components during the artificial data
generation (notice that this makes sense only when K = K∗). The low value
of the precision confirms the tendency of both criteria to select too sparse
representations. On a sufficiently large data set, the BIC as a significantly
better recall than the AIC, but with significant loss in precision. Results
for smaller data sets tend to be worse in precision and roughly equivalent in
recall.

4.4. Conclusion

In summary, the path following strategy is an efficient way of exploring
the sparsification of the solutions. In the low number of observations regime,
the use of regularisation enables to select an optimal number of components
using the BIC. However in this regime, it also tends to select too sparse
directional means compared to the true parameters. Due to the large number
of parameters and the high dimension of the data under consideration, this
is not surprising, but the experiments show that care should be exercised
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Figure 12: Adjusted rand index distribution for the optimal dense model (in red) and for
the optimal sparse models according to the AIC (green) and BIC (blue), as a function of
K, the number of components, for N = 200. Panels are organised based on overlapping
(vertically) and on sparsity (horizontally).
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Figure 13: Adjusted rand index distribution for the optimal dense model (in red) and for
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K, the number of components, for N = 1000. Panels are organised based on overlapping
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when using this type of model (regularized or not). The information criteria
offer only some general hints for the selection of the best models. In an data
exploration point of view, this means that one should consider a collection of
models obtained by applying the proposed procedure with different choice of
information criterion. The sparsity of directional means is also to be consider
with caution.

5. Comparison with reference models

In this section, we compare our model to two reference models designed
for directional data, the spherical k-means algorithm [14] and a model based
co-clustering algorithm, dbmovMFs, proposed in [30].

We describe briefly the reference models in Section 5.1. Section 5.2
compares the models on the artificial data introduced in Section 4.3, while
Section 5.3 compares them on the popular benchmark CSTR.

5.1. Reference models

5.1.1. Spherical k-means (Sk-means)

The spherical k-means algorithm (Sk-means), originally proposed in [14], is
a simple adaptation of the k-means algorithm to the cosine dissimilarity. Let us
a consider a collection of N observations X = (xi)1≤i≤N on the hypersphere
Sd−1. Given a number of clusters K, Sk-means tries to find a set of K
prototypes (µk)1≤k≤K in Sd−1 and a clustering/membership Z = (zi)1≤i≤N ,
that assigns xi to cluster zi ∈ {1, . . . , K} such that the coherence

Q((µk)1≤k≤K , (zi)1≤i≤N) =
N∑
i=1

µTkixi (40)

is maximal.
Several methods have been proposed to maximize the coherence (see e.g.

[19]). The original method proposed in [14] is Lloyd-Forgy style fixed-point
algorithm which iterates between determining optimal memberships for fixed
prototypes, and computing optimal prototypes for fixed memberships. In
particular the prototypes are the normalized average of the points assigned
to their cluster. We used this method in the following experiences (as
implemented in the R package skmeans [19]). Apart from the number of
clusters K, the spherical k-means algorithm has no meta-parameter.
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5.1.2. Diagonal Block vMF mixture model (dbmovMFs)

The diagonal block vMF mixture model (dbmovMFs) was proposed in
[30]. It can be seen as a constrained version of the classical mixture of vMF
distribution. The key idea is to enforce on the directional means a block
structure that mimics the one used in co-clustering algorithms. Technically,
this is done by introducing a crisp clustering on the dimensions/columns,
represented by a crisp assignment matrix W = (wjk)1≤j≤d,1≤k≤K , where
wjk = 1 if dimension j is assigned to cluster k and 0 if not (notice that there
are as many column clusters as there are components in the mixture).

The directional means are strongly constrained to a diagonal structure,
that is

µkj = wjkµk, (41)

where µk is real number. Thus µk has a zero coordinate on all the dimensions
that are not assigned to dimension cluster k, and a fixed value µk on dimensions
that are in this cluster. As a consequence, the complete data likelihood as
the following form

N∏
i=1

K∏
k=1

(
αkcd(κk)×

d∏
j=1

(expκkµkxij)wjk

)zik

. (42)

This complete data likelihood is used as the basis of a EM algorithm described
in [30]. The algorithm has some common aspect to the one proposed in [2]
but also include a specific phase of column cluster update. We use the authors
implementation2. Notice that the authors proposed several variants of the
EM algorithm, but also showed in [30] that the best results are obtained by
the classical EM. Therefore we use it in all our experiments. Apart from the
number of components K, dbmovMFs has no meta-parameter.

5.2. Simulated data

We compare in this section our model to Sk-means and dbmovMFs on
the simulated data used in Section 4.3. For each configuration (data size,
sparsity and separation), we run Sk-means and dbmovMFs in a similar way
as we applied our model: both algorithms are initialized randomly 10 times
and the best model is kept according to its specific quality metric (largest
coherence for the Sk-means and largest likelihood for dbmovMFs). The

2https://github.com/dbmovMFs/DirecCoclus/
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random initialisation is similar to the one described in algorithm 4 (random
directional means selected from the data set followed by an initial crisp
clustering).

DbmovMFs performs extremely poorly on the simulated data, mainly
because the sparsity constraints associated to the diagonal block structure are
too restrictive. In fact, the EM algorithm fails to converge for a significant
part of the initialisation, especially for higher values of K: some of the
components of the mixture become empty. Notice that this never happens
for Sk-means or for our algorithm. Figure 17 illustrates the phenomenon
by displaying for each K and each setting, the ratio between the number of
converging runs of dbmovMFs and the total of attempted runs. The results
are reported for N = 200 observations but they are even worse for N = 1000.

In terms of recovering the ground truth as measured by the ARI, both
Sk-means and dbmovMFs performances are generally below than the dense
solution obtained by our methodology, as shown on Figures 18 and 19. Db-
movMFs performs extremely poorly and is unable to recover the planted
structure. Spherical k-means results are identical to those of our approach
for N = 1000 and K = 4. In other configurations (a smaller data set or a
mispecification of the number of clusters) that are always inferior, excepted
in the particular case of K = 2.

Notice that the setting is very favorable for Sk-means as the clusters are
balanced and use quite similar concentration values κk. As pointed out in
[30], the performances of Sk-means tend to deteriorate when the true clusters
are unbalanced. We have confirmed this behavior by generating another
collection of artificial data exactly as in Section 4.3 but with

α =

(
1

2
,
1

4
,
1

8
,
1

8

)
.

Results are provided in Figure 20 the case of N = 1000 observations. The
proposed model recovers the true clustering uniformly better than the Sk-
means (the results for N = 200, omitted, show a larger separation between
the methods).

In conclusion, experiments on artificial data show, as expected, that the
patterns generated by a mixture of vMF distributions are difficult to recover
for Sk-means and nearly impossible to recover for dbmovMFs. The spherical
k-means works reasonably well when the data set contains enough observations
and when the clusters are balanced, but is outperformed by our approach
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Figure 17: Convergence rates for dbmovMFs for N = 200 and d = 100. Panels are
organised based on overlapping (vertically) and on sparsity (horizontally).
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Figure 18: Adjusted rand index distribution for the optimal dense model (in red), for the
spherical k-means algorithm (in orange) and for dbmovMFs (in purple), as a function of
K, the number of components, for N = 200. Panels are organised based on overlapping
(vertically) and on sparsity (horizontally).
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Figure 19: Adjusted rand index distribution for the optimal dense model (in red), for the
spherical k-means algorithm (in orange) and for dbmovMFs (in purple), as a function of
K, the number of components, for N = 1000. Panels are organised based on overlapping
(vertically) and on sparsity (horizontally).
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Figure 20: Unbalanced clusters: adjusted rand index distribution for the optimal dense
model (in red) and for the spherical k-means algorithm (in orange), as a function of K,
the number of components, for N = 1000. Panels are organised based on overlapping
(vertically) and on sparsity (horizontally).
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most of the time. The block structure imposed by dbmovMFs is too strong
for it to deal with data with limited sparsity.

5.3. Computer Science Technical Reports (CSTR)

The CSTR data set, proposed in [23]3, is a good example of a rather
high dimensional but small data set with N = 475 examples in dimension
d = 1000. It has been produced from a selection of 475 abstracts of technical
reports4 published by the Department of Computer Science at the University
of Rochester between 1991 and 2002. The reports are represented on an
undisclosed dictionary of 1000 words, with a binary encoding (a word is
present or not in an abstract). Based on the research areas developed by the
CS department at the time of the collection, the abstracts are grouped in
K = 4 classes (Natural Language Processing, Robotics/Vision, Systems, and
Theory).

We use this real world data set to compare our approach to Sk-means and
dbmovMFs.

5.3.1. Experimental protocol

While CSTR has been used frequently as a benchmark, some care must be
exercised in doing so. Indeed the classes of the CSTR data set are not clusters
as shown by a simple experiment: using as the initial partition the true classes,
an application of the standard spherical k-means algorithm [19] leads to a
different partition after convergence. The adjusted rand index (ARI) between
the two partitions is of 0.835. As shown on the confusion matrix between
the two partitions (see Table 2), two of the classes are somewhat difficult to
recover from a clustering point of view.

The behavior of the mixture of vMF distributions on CSTR is similar to
the one of the spherical k-means. Using the same initialisation, we obtain
after convergence an ARI of 0.818 with component specific κs and of 0.837
with a common κ. The confusions matrices (omitted) are almost identical
to the spherical k-means one. As a consequence, an ARI around 0.84 should
be considered as the maximum a method can reach on this data set. Higher

3Available for instance here at this URL https://github.com/dbmovMFs/

DirecCoclus/tree/master/Data
4Reports can be downloaded from the department web site https://www.cs.rochester.

edu/research/technical_reports.html
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1 2 3 4

1 71 26 3 1
2 0 70 1 0
3 0 1 176 1
4 0 2 5 118

Table 2: Confusion matrix between the classes of the CSTR data set (in row) and the
classes obtained by the spherical k-means (in column).

results could be only a matter of chance or obtained with a notion of cluster
that is more aligned with the ground truth classes.

Another difficulty is the small size of the data set compared to its number
of features. This increases the variance of the estimates provided by any
algorithm and as a consequence, the final clustering obtained by different
methods from a random initialization tend to be much more dependent on
this initial configuration than in the case of a simpler data set (as e.g. in the
artificial data experiments reported above). To provide meaningful results,
we proceed as follows. For each algorithm, we use a common set of 50
random initial configurations (obtained with algorithm 4): this ensure that
the algorithms are used under exactly the same testing conditions. After
convergence of a given algorithm, we keep the best configuration in terms of
the quality criterion of this algorithm (e.g. the likelihood for mixture models)
and report the ARI of the corresponding clustering. We repeat this procedure
50 times (thus considering 250 random initial configurations) to assess the
variability of the results.

5.3.2. Results for the dense models: ARI

Figure 21 and Table 3 summarize the results obtained by the spherical
k-means, dbmovMFs and the two dense variants of the mixtures of vMF. The
mixture with component specific concentration parameters has by far the
largest variability and the worst results. The adverse effects of a too high value
for the concentration parameter on real world data was already established
in e.g. [20, 30]. As far as we know, the very strong sensitivity of the results
to the initial configuration is a new result (as far as we know). Both issues
are solved by using a shared concentration parameter. The variability of the
results is then smaller than the one observed for the spherical k-means and
on the optimal configuration with K = 4, the results are roughly identical.
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Figure 21: Adjusted Rand Index between the CSTR classes and the clusters obtained by
Sk-means, mixture of vMF distributions with a common κ parameter (shared kappa) and
mixture of vMF distributions with component specific κs (free kappa), and dbmovMFs for
different values of K.
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In particular, a paired t-test does not show significant differences at a 1%
level between the spherical k-means and the shared κ mixture of vMF for
K ∈ {3, 4, 5, 6}.

SK-means Shared κ Free κ dbmovMFs
K mean sd mean sd mean sd mean sd

2 0.471 4.52 10−3 0.344 2.95 10−3 0.395 3.28 10−4 0.442 6.28 10−2

3 0.757 1.31 10−2 0.756 3.83 10−3 0.567 1.89 10−2 0.772 7.35 10−3

4 0.802 1.77 10−2 0.804 1.22 10−2 0.519 4.48 10−2 0.803 1.72 10−2

5 0.659 4.05 10−2 0.650 2.11 10−2 0.497 8.78 10−2 0.716 4.06 10−2

6 0.572 4.59 10−2 0.569 2.24 10−2 0.520 9.51 10−2 0.663 4.15 10−2

7 0.535 5.21 10−2 0.493 2.82 10−2 0.463 8.28 10−2 0.625 5.18 10−2

8 0.481 4.99 10−2 0.448 3.13 10−2 0.441 7.37 10−2 0.588 6.16 10−2

Table 3: Adjusted Rand Index between the CSTR classes and the clusters obtained by the
models under study.

As shown in [30], the block structure enforced by dbmovMFs is also an
efficient way of controlling the adverse effects of the concentration parameters.
While the results for K = 4 are identical to the ones obtained by other
methods, dbmovMFs is far more robust to a misspecification of the number
of components. Apart for K = 2 where the spherical k-means provide the
best ARI (significant difference at a 1% level), in all other configurations with
K 6= 4, the ARI obtained by the dbmovMFs is significantly larger than the
ones obtained by other methods.

DbmovMFs appears therefore to provide a more robust solution than dense
models such as classical mixtures of vMF distributions and than spherical
k-means, thanks to its good behavior under mispecification of the number of
clusters. Notice however that it had extremely poor results on denser data,
as shown on the simulated data.

5.3.3. Results for the dense models: model selection

Figures 22 and 23 display the behavior of the model selection criteria for
the shared κ mixture of vMF and for dbmovMFs. They show quite different
behaviors. For the vMF distribution strongly penalized criteria should be
used to recover the best models, while on the contrary, the small number of
parameters of the co-clustering approach leads to a better behavior of the
AIC.
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Figure 22: Model selection criteria for the mixture of vMF distributions with a common κ
parameter: the blue curve is the mean value, while the grey envelop displays a 2 standard
deviation tube around it.
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Figure 23: Model selection criteria for dbmovMFs: the blue curve is the mean value, while
the grey envelop displays a 2 standard deviation tube around it.
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Those quite different behaviors do not give a major advantage of one
algorithm over the other on the CSTR data set. We will see in Section 6 that
dbmovMFs is probably overpenalized even by the AIC for more complex data
sets and that vMF mixtures are probably underpenalized even by e.g. the
RIC. This confirms the limitations of information criterion for this type of
unsupervised high dimensional models. As a consequence we argue that they
should be used to guide the exploration rather than as a proof of existence of
a specific number of clusters.

5.3.4. Sparse models

On a second step, we compute the β path for each of the 50 replications
of our procedure, starting each time from the best initialization obtained
from the 50 random initial configurations. We restrict ourselves to the shared
κ model. Figure 24 and Table 4 summarize the results. In terms of sparse
model selection, AIC, BIC and EBIC provide good compromises between the
ARI and the sparsity. Both RIC and RICs select a too sparse model.
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Figure 24: Adjusted rand index and sparsity for the models selected on the β path using
the different model complexity criteria. The “dense” configuration corresponds to the
solution obtained without regularization. DbmovMFs results are given for reference.

A very important point is that none of the criteria is able to provide an
all-in-one selection. Indeed, as shown on Figure 22, the number of components
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Criterion/model mean sd

dbmovMFs 0.803 1.723× 10−2

Dense 0.804 1.217× 10−2

AIC 0.807 1.083× 10−2

BIC 0.808 9.483× 10−3

EBIC 0.803 7.687× 10−3

RIC 0.797 7.991× 10−3

RICc 0.750 1.248× 10−2

Table 4: Adjusted Rand Index between the CSTR classes and the clusters obtained by the
sparse models under study.

should be selected with EBIC or RIC (and possibly with RICc), as both
AIC and BIC are monotonically decreasing with the number of components.
However, if we compute the β path for different number of components and
keep as the selected model the ones that minimize each criteria, this behavior
applies to all criteria. In other words, the regularization is compensating
for the increased number of components. Thus one should first select the
number of components based on EBIC or RIC, and then select the sparsity
level with BIC or EBIC, keeping the number of components fixed. Both
sparse models selected by AIC and BIC are significantly better than the dense
model (according to a paired t-test at a 1% level). The BIC results are only
significantly better than the dbmovMFs results at a 10% level.

In summary, using the proposed approach allows to reach similar perfor-
mances as dbmovMFs without enforcing a specific sparsity structure. On the
contrary, the sparsity is learned from the data without performance loss.

5.3.5. Data exploration

We use in this section the visualisation method described in Section 3.5
in order to display the sparsity structure discovered by the proposed method
(we restrict the illustration to K = 4).

Figure 25 represents the block structure obtained by dbmovMFs algorithm
of [30]. As expected, this is a very crude model that does favor sparsity over
revealing shared coordinates and finer structure. For the point of view of
dbmovMFs, the reports are described by a collection of specific vocabulary
with for instance the largest cluster (top row) using the largest “private”
vocabulary (top right rectangle).

Figure 26 represents the full data set using the same ordering: it shows
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Figure 25: Representation of the directional means obtained by dbmovMFs on the CSTR
data set.

clearly that the coclustering provides only a crude approximation of actual
structure of the data. For instance, the smallest cluster (bottom row of
Figure 26) uses all the words/dimensions that should be specific to the other
clusters. Dark vertical lines on the figure show that some words/dimensions
are common to all clusters. The diagonal structure enforced by dbmovMFs
is very useful to bring stability to the model estimation and to recover the
overall clustering structure, but it appears to be to simplistic to capture the
true sparsity structure.

Figure 26: Representation of the CSTR data set reorganized as the directional means
obtained by dbmovMFs.

Figure 27 shows the structure of the directional means for the mixture of
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vMF obtained without regularization. As shown be the colors, there are four
blocks of dimension: from the block of dimensions/words common to all texts
on the left to the block of cluster specific words. The two intermediate blocks
corresponds respectively to vocabulary shared by 3 clusters and 2 clusters.
This representation confirms that there are indeed specific coordinates but it
shows that the clusters share dimensions in a large proportion, confirming
that dbmovMFs hides most of the structure.

Figure 27: Representation of the directional means obtained by the mixture of vMF with
shared κ on the CSTR data set.

Figure 28 represents the directional means obtained by selecting with the
BIC the best sparse model along the β path. The result is a compromise
between the strictly diagonal structure obtained by dbmovMFs and the
denser solution obtained without regularisation. It isolate better the specific
dimensions/vocabulary while keeping a smaller subset of shared dimensions.
Notice also that we have now a fifth block of dimensions: those can be
considered as noise dimensions as the corresponding coordinates are uniformly
null in the directional means.

This is confirmed by Figure 29 that shows the data set reorder in the
same way as the directional means according to the sparse mixture of vMF.
The reordering reveals in a clearer way the underlying structure of the data.
In particular the pink area which corresponds to the diagonal substructure
with “private” vocabulary is far less noisy than in the case of dbmovMFs.

5.4. Conclusion

The comparisons conducted in the Section have shown several important
results. On relatively dense data, the spherical k-means and the mixture
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Figure 28: Representation of the directional means obtained by the mixture of vMF with
shared κ and regularisation on the CSTR data set.

Figure 29: Representation of the CSTR data set reorganized as the directional means
obtained by the mixture of vMF with shared κ and regularisation.
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of vMF distribution behave in a similar way. The mixture model is more
flexible in terms of unbalanced between the clusters and recovers them with
less data than the spherical k-means as a consequence of modeling explicitly
the concentration of each cluster. On the contrary, the strong constraints of
dbmovMFs prevents it from inferring a correct structure for relatively dense
data.

On sparse data, dbmovMFs tends to be more stable and more robust
against mispecification than both spherical k-means and vMF distribution
mixtures. The mixture model with component specific concentration parame-
ters should be avoided when the number of observations is not significantly
larger than the dimensions. A shared concentration parameter is sufficient to
bring stability to the mixture model, but mispecification remains a problem.
Overall, the best results are obtained by the sparse mixture proposed in
the paper. In terms of recovering the clustering structure it obtains results
roughly identical to the ones obtained by the other models, but it reveals
patterns in the directional means that are more consistent with the data than
the diagonal structure imposed by dbmovMFs.

6. Exploratory analysis on 8-K reports 2015 - 2019 for Wells Fargo

Following [22] and completing the database proposed by [3], we create a
dataset which focus on 8-K reports. An 8-K is a report of unscheduled material
events or corporate changes at a company that could be of importance to the
shareholders or the Securities and Exchange Commission (SEC). Also known
as a Form 8K, the report notifies the public of events, including acquisitions,
bankruptcy, the resignation of directors, or changes in the fiscal year5. We
have compiled this dataset, thanks to SEC’s EDGAR tool6, for the years 2015
- 2019 on all companies from the Standard and Poors 5007.

The corpus contains 37, 238 reports issued by 592 companies. The texts
were pre-processed by applying a classical pipeline:

• removal of non-alphanumeric characters;

5A complete list can be found at https://www.sec.gov/fast-answers/

answersform8khtm.html
6https://www.sec.gov/edgar/searchedgar/companysearch.html
7It is a stock market index tracking the performance of 500 large companies listed on

stock exchanges in the United States.
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• lemmatisation;

• removal of words appearing less than 100 times and stopwords: we
obtain a dictionary of 70223 distinct roots for the whole corpus.

The number of reports produced over the period varies greatly depending
on the company concerned. A preliminary analysis shows that the vocabulary
of the texts depends heavily on the company, in particular because of the
different sectors of activity but above all depending on the context (economic,
social, etc.). We therefore carry out the exploration company by company
and in particular for this article to focus on Wells Fargo8 (WFC) as they
published the most during this period.

This company published 672 reports for the years 2015 and 2019 and out
of 25 possible events, only 7 are represented, with a domination of the event
financial statements and exhibits, which tends to show that these reports
are mainly about the financial state of the company (see table 5 for event
titles and their frequencies). Note that reports can share multiple events.
Only 4377 words (roots) are used in the reports and this dataset is as follow
N = 672 in dimension d = 4377.

Code Type Frequencies

1 Financial Statements and Exhibits 658
2 Results of Operations and Financial Condition 24
3 Amendments to Articles of Incorporation or

Bylaws; Change in Fiscal Year
19

4 Departure of Directors or Certain Officers; Elec-
tion of Directors; Appointment of Certain Of-
ficers: Compensatory Arrangements of Certain
Officers

27

5 Submission of Matters to a Vote of Security
Holders

5

6 Other Events 36
7 Amendments to the Registrant’s Code of Ethics,

or Waiver of a Provision of the Code of Ethics
2

Table 5: Wells Fargo Events

In what follows, we will first analyse our dataset with the reference models
and then with our own.

8Wells Fargo is an American multinational financial services company.
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6.1. Reference models

As the number of clusters K is unknown in this case, we used different
methods depending on the reference models. For dbmovMFs, AIC was used
and it selected K = 3, as seen in Figure 30. Whereas for Sk-means, we used
the Calinski-Harabasz index [9] and obtained K = 2.
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Figure 30: Model selection criteria for dbmovMFs concerning the analysis of Wells Fargo:
the blue curve is the mean value, while the grey envelop displays a 2 standard deviation
tube around it.

Table 6 shows the distribution of reports by cluster obtained by both
algorithms. We can note that in both cases, one class is predominant and
the second class of Sk-means is dispersed in the three classes of dbmovMFs.
Moreover, an ARI of more than 80% shows the similarities between these two
clustering.

For these reasons, we will now focus on the analysis of the clustering
obtained with dbmovMFs.
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Clusters
Algorithms 1 2 3

Sk-means 570 102 -
dbmovMFs 22 53 597

Table 6: Distribution of reports by cluster obtained by dbmovMFs selectionned by AIC
and Sk-means with the Calinski-Harabasz index.

Figure 31 represents the block structure obtained by dbmovMFs. As
observed previously, the dbmovMFs solution hides most of the structure and
does not facilitate a detailed analysis.

Figure 31: Representation of the directional means obtained by dbmovMFs on the Wells
Fargo data set.

Figure 32 shows the distribution of events by cluster. It appears that
the 1 is largely composed by financial reports with events as Financial
Statements and Exhibits and Results of Operations and Financial Condition.
From Figure 33, we can assert that reports of this class are quarterly reports.
Class 2 is mainly concerned by specific events such as Departure of Directors
or Certain Officers; Election of Directors; Appointment of Certain Officers:
Compensatory Arrangements of Certain Officers or Submission of Matters
to a Vote of Security Holders. Figure 33 exhibits that this class appears
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when the company has had to face a negative context and has wanted to
reorganise. Class 3, consisting mainly of the event Financial Statements and
Exhibits, concerns the company’s various financial communications. However,
unlike the detailed analysis possible with the mixture of vMF that we develop
below, it is very difficult here to see the different aspects of its financial
communication and the financial products it issues.
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Figure 32: Distribution of events by cluster in the Wells Fargo dataset obtained with
dbmovMFs.

6.2. Mixture of vMF with a common κ parameter

To select the number of clusters K, we proceed as exposed previously
using the mixture of vMF with a common κ parameter. As the first step, we
select the number of components thanks to the RICc to obtain K = 14 as
shown in Figure 34.

In the second step, the sparsity level was selected using the path following
strategy with a maximum of 1000 steps and the minimal relative increase
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Figure 33: Distribution of the reports’ number per cluster by month in the Wells Fargo
dataset obtained with dbmovMFs.
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Figure 34: Model selection criteria for the mixture of vMF distributions with a common κ
parameter concerning the analysis of Wells Fargo: the blue curve is the mean value, while
the grey envelop displays a 2 standard deviation tube around it.
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between two values of β set to 0.01. A β of 1072.253 and a sparsity of 82.16%
were obtained. Figures 35 represents the directional means. Figure 36 exhibits
the data set reorganized as directional means. It reveals in a clearer way the
underlying structure of the data.

Figure 35: Representation of the directional means obtained by the mixture of vMF with
shared κ and regularisation on the Wells Fargo data set.

Table 7 shows the distribution of reports by cluster obtained. The result
is very different from those obtained previously with ARIs below 9% in
comparison to clusterings of dbmovMFs and Sk-means. We can note that
cluster 3 is the biggest one with 156 reports while clusters 1 and 4 are
composed of very few of them and must be focused on one topic. Moreover,
It appears that class 13 is identical to class 1 found by dbmovMFs.

For its part, table 8 shows the unique words by cluster and those in
common. The latter makes sense in that they contain generic terms in the
company’s reports, such as its name or the name of a financial instrument for
example. More interesting are the unique words for each cluster as they form
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Figure 36: Representation of the Wells Fargo data set reorganized as directional means
obtained by the mixture of vMF with shared κ and regularisation.

Clusters
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Nb. 8-K 4 80 156 7 12 78 32 60 42 98 24 28 22 29

Table 7: Distribution of reports by cluster obtained by the sparse model selectionned by
RICc with the path following approach.
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coherent subjects. Note the exception for clusters 5 and 10, which share all
their representatives’ words with at least another cluster.

For instance, unique words of cluster 1 - abstention, cast, ratify, shareowner
- are from the annual meeting lexicon. Figure 39 shows that this cluster is
entirely composed of the Submission of Matters to a Vote of Security Holders
event which takes place annually as visible in Figure 40. Figure 37 shows an
extract of a report from Cluster 1 published by Wells Fargo on 1 May 20159.
Words in blue represent the common words between all Clusters and in red,
the ones specific to this Cluster.

Cluster 1 2 3 4 5
1 abstention cast ratify shareowner -
2 continuance bankrupt insolvent receiver annually
3 vme monthly shewchuk sonia cqr
4 advisable convene nonassessable - -
5 - - - -
6 sector bad homebuilders gold miner
7 untrue omission canadian directive representation
8 adr absent determinable fluctuation bloomberg
9 domainitemtype false thinterestinshareof shr text

10 - - - - -
11 defendant chair bonus rsrs hear
12 mack banker unauthorized parent controller
13 portfolio revenue offs sep jun
14 gics spin otc bulletin antidilution

commun security company any well fargo

Table 8: Unique words for each cluster obtained by the sparse model selectionned by RICc
with the path following approach. The row commun shows words shared by all clusters.

If we now look at Cluster 11, which appears randomly over time in Figure
40, it is composed of events Financial Statements and Exhibits, Other Events
and especially Departure of Directors or Certain Officers; Election of Directors;
Appointment of Certain Officers: Compensatory Arrangements of Certain
Officers. This cluster focuses on changes in the board and their possible
consequences on the company’s results. Figure 38 shows an extract of a report
from Cluster 11 published by Wells Fargo on 12 October 201610 notifying the

9The full text is available at https://www.sec.gov/Archives/edgar/data/

0000072971/000119312515166149/d920037d8k.htm
10The full text is available at https://www.sec.gov/Archives/edgar/data/

0000072971/000119312516736870/d271369d8k.htm
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Event : Submission of Matters to a Vote of Security Holders.;

Text : [. . . ] wells fargo company held its annual meeting of
stockholders on april 28, 2015. at the meeting, stockholders
elected all 16 of the directors nominated by the board of
directors as each director received a greater number of votes
cast for his or her election than votes cast [. . . ] ratify the
appointment of kpmg llp as independent registered public
accounting firm for 2015 [. . . ].

Figure 37: Example of a Cluster 1 8-K report published on 1 May 2015. Words show the
commun ones between all cluster and words, the ones specific to cluster 1.

departure of CEO John Stumpf in the wake of numerous scandals11. It is
interesting to note that the unique words of this Cluster express this context.
First, the word chair refers to a person who sits on the Board of Directors.
Second, the term defendant implies legal proceedings. Finally, terms bonus
and rsrs12 mention compensation due to the turnover of board members.

Event : Departure of Directors or Certain Officers; Election of
Directors; Appointment of Certain Officers: Compensatory
Arrangements of Certain Officers & Financial Statements
and Exhibits.;

Text : [. . . ] on october 12, 2016, john g. stumpf notified wells
fargo company ) of his decision to retire as chairman and
chief executive officer and a director of the company, effective
immediately. [. . . ] elected director elizabeth a. duke as the
company s non-executive vice chair. [. . . ].

Figure 38: Example of a Cluster 11 8-K report published on 12 October 2016. Words show
the commun ones between all cluster and words, the ones specific to cluster 11.

Let us now focus on clusters that are made up of the same single event

11Example of scandal faced by Wells Fargo https://www.cnbc.com/2016/10/20/

wells-fargo-just-lost-its-accreditation-with-the-better-business-bureau.

html.
12RSRs is the acronym for Restricted Share Rights.
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Figure 39: Distribution of events by cluster in the Wells Fargo dataset with the model
obtained by the path following approach.

64



0

5

10

15

2015−01 2015−09 2016−05 2017−01 2017−09 2018−05 2019−01 2019−09

Publication date

8−
K

 n
um

be
r

Cluster

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 40: Distribution of the reports’ number per cluster by month in the Wells Fargo
dataset with the model obtained by the path following approach.
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type and do not have unique terms such as clusters 5 and 10, as seen in
Figure 39. Figure 40 shows that these clusters appear differently over time.
Cluster 5 focuses mainly on the period before the resignation of the CEO, i.e.
before October 2016, while cluster 10 is found significantly in two periods,
i.e. between July 2015 and March 2017 but also between April 2018 and
July 2019. These two periods correspond to many legal cases but also to
setbacks in business for Wells Fargo. These include high exposure to the fall
in oil prices in January 2016 and numerous settlements of fines for fraudulent
business practices in April 2018 and concerning the sub-prime crisis in August
2018. An in-depth reading of the texts of these clusters reveals a common
subject between them, namely medium-term notes, but of different series and
different underlying assets. Cluster 10 is related to medium-term notes, series
K, linked to indexes based on Emerging Markets such as the iShares MSCI
Emerging Markets ETF 13 or developped market as the MSCI EAFE Index 14.
Cluster 5 is associated to medium-term notes, series N, linked to reference
rates15. These clusters, therefore, show that the company has issued different
types of debt to cope with its context and ensure its financing needs.

Finally, the previous analysis shows the advantages of our method compar-
ing to dbmovMFs for an exploratory analysis. It exhibits the specialisation
of each of the clusters which allows an easy understanding of the different
events that impact a company over time. Moreover, when they exist, unique
words to each cluster give a precise idea of the main subject of said cluster.
For their part, shared terms between all clusters provide an overview of the
corpus’ subject.

7. Conclusion

In this article, we have proposed to estimate a mixture of von Mises-Fisher
distributions using a l1 penalized likelihood. This model attempts to learn
sparse directional means without enforcing a diagonal structure, contrarily to

13The iShares MSCI Emerging Markets ETF seeks to track the investment results of an
index composed of large- and mid-capitalization emerging market equities.

14The MSCI EAFE Index is an equity index which captures large and mid cap repre-
sentation across 21 Developed Markets countries around the world, excluding the US and
Canada.

15More details available at: https://saf.wellsfargoadvisors.com/emx/dctm/

Marketing/Marketing_Materials/Fixed_Income_Bonds/e7434.pdf
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dbmovMFs. Sparse directional means provide a way to understand the data
structure and to interpret the clustering induced by the mixture model.

The maximisation of the penalized likelihood is implemented via expectation-
maximization. To avoid estimating parameters from scratch for different
trade-offs between the likelihood and the penalty term, we introduced a path
following approach that detect automatically important change in the sparsity
of the solutions. We showed that selecting the best trade-off can then be
done using the BIC. We also confirmed previous results about the difficulty
of selecting the number of components of the mixture in the high dimensional
case with a relatively low number of observations. Finally, we proposed a
pixel oriented visualisation technique to represent sparse directional means
and provide a first insight on the structure of the data.

Extensive qualitative and quantitative experiments on differents data sets,
including a new dataset of Wells Fargo 8-K reports, demonstrate the practical
interest of the proposed model. Indeed, the sparsity of the directional means
obtained eases the interpretation of results while achieving similar or better
results in terms of ARI.

However, our results also confirm that dbmovMFs remains more stable
than a mixture of vMF distributions, essentially as a consequence of its
low concentration parameters. As the diagonal structure enforced on the
directional means is very strong, the clusters obtained by dbmovMFs remain
somewhat vague. As shown in our experiments, the directional means obtained
by dbmovMFs are only remotely representative of the true structure of the
data. Using a shared concentration parameter, we managed to bring mixtures
of vMF distributions on par with dbmovMFs when the model is correctly
specified in terms of cluster number. In the future, we will investigate other
ways to constrain the concentration parameters in order to improve the
stability of our model without compromising the quality of the directional
means. A possible solution would be to use a regularisation term on the
concentration parameters, but this introduces at least two difficulties. Firstly
the maximisation phase will be much more complicated, considering that it
would introduce a regularisation term in an already difficult numerical problem
(summarized by equation (21)). Secondly, when all the other parameters
are held constant, the likelihood increases with increasing values of the
concentration parameters. It would therefore be necessary to introduce a way
to define an optimal trade-off between regularizing the concentrations and
maximizing the likelihood. As the regularisation will have to effect on the
number of parameters, information criteria will be of no help in this setting.
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Finally, let us mention that the path-following strategy proposed in this
work could be easily adapted to other penalized models such as the Gaussian
mixture proposed in [26].

Appendix A. Derivation of the EM algorithm

We derive in this Section the first order optimality conditions of the M
phase of the EM algorithm.

Appendix A.1. Stationary point equations associated to the κk

The Lagrangian (19) has partial derivatives with respect to κk given by

∂

∂κk
L(Θ, ζ,λ|Θ(m)) =

N∑
i=1

τ
(m)
ik

(
c′d(κk)

cd(κk)
+ µTkxi

)
. (A.1)

To simplify this expression, we follow [2] and compute

c′d(κk) =
1

(2π)s+1I2s (κk)

(
sκs−1k Is(κk)− κskI ′s(κk)

)
, (A.2)

where s = d
2
− 1 and I ′s is the derivative of modified Bessel function of the

first kind and order s. As recalled in [2], this derivative is such that

κkIs+1(κk) = κkI
′
s(κk)− sIs(κk), (A.3)

and thus

c′d(κk) = − κskIs+1(κk)

(2π)s+1I2s (κk)
, (A.4)

leading to
c′d(κk)

cd(κk)
= −Is+1(κk)

Is(κk)
. (A.5)

Then ∂
∂κk
L(Θ, ζ,λ|Θ(m)) = 0 is equivalent to

Id/2(κk)

Id/2−1(κk)
= µTk

∑n
i=1 τ

(m)
ik xi∑n

i=1 τ
(m)
ik

. (A.6)
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Appendix A.2. Stationary point equations associated to the µk
For the directional means, we have to consider the sub-gradient of the

Lagrangian function. We have

∂µkjL(Θ, ζ,λ|Θ(m)) = κk

(
n∑
i=1

τ
(m)
ik xij

)
− 2λkµkj − β∂µkj |µkj|. (A.7)

Using the well known property of the sub-gradient of the absolute value, we
obtain

∂µkjL(Θ, ζ,λ|Θ(m)) =


{κkr(m)

kj − 2λkµkj + β} when µkj < 0,

{κkr(m)
kj − εβ|ε ∈ [−1; 1]} when µkj = 0,

{κkr(m)
kj − 2λkµkj − β} when µkj > 0,

(A.8)

where
r
(m)
k =

∑
i

τ
(m)
ik xi. (A.9)

The first-order optimality condition is 0 ∈ ∂µkjL(Θ, ζ,λ|Θ(m)), which leads
to the following analysis.

If we look for a positive solution µkj > 0, the optimality condition is
fulfilled when

µkj =
κkr

(m)
kj − β
2λk

. (A.10)

This solution is compatible with µkj > 0 if κkr
(m)
kj − β > 0, that is when

r
(m)
kj > β

κk
. In this case we have also

µkj = sign
(
r
(m)
kj

) κk|r(m)
kj | − β
2λk

. (A.11)

If we look for a negative solution µkj < 0, then the optimality condition is
fulfilled when

µkj =
κkr

(m)
kj + β

2λk
. (A.12)

This is compatible with the hypothesis µkj < 0 if κkr
(m)
kj + β < 0, that is

r
(m)
kj < − β

κk
. In this case, we have again

µkj = sign
(
r
(m)
kj

) κk|r(m)
kj | − β
2λk

. (A.13)
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Finally, a zero value, µkj = 0, fulfills the optimality condition if

0 ∈
[
κkr

(m)
kj + β;κkr

(m)
kj − β

]
.

This is the case when − β
κk
≤ r

(m)
kj ≤

β
κk

, that is when κk|r(m)
kj | − β ≤ 0.

In summary, the first-order optimality condition is fulfilled when

µkj =
sign

(
r
(m)
kj

)
2λk

max(κk|r(m)
kj | − β, 0). (A.14)

The Lagrange multipliers are computed using the equality constraints ‖µk‖22 =
1. This gives ∥∥∥∥∥∥

d∑
j=1

sign
(
r
(m)
kj

)
2λk

max(κk|r(m)
kj | − β, 0)

∥∥∥∥∥∥
2

2

= 1,

1

4λ2k

d∑
j=1

(max(κk|r(m)
kj | − β, 0))2 = 1,

and thus

λk =
1

2

√√√√ d∑
j=1

(max(κk|r(m)
kj | − β, 0))2. (A.15)

Appendix B. Implementation details

We discuss in this Section important technical details about the concrete
implementation of Algorithm 2.

Firstly, it is well known that initialisation plays an important part in EM
algorithms. In our case, a simple strategy was sufficient to obtain satisfactory
results. We proceed by selecting uniformly at random without replacement K
observations in the data set X which serve as initial values for the (µk)1≤k≤K .
Then we perform crisp assignments of all the observations to their closest
directional mean (with respect to the inner product, i.e. the cosine similarity).
This enables us to compute initial values of α as the ratio of observations
assigned to each prototype. Finally, we compute initial values of κ using the
EM estimator, i.e. solving equation (21) using for the τik the crisp assignment
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Algorithm 4 EM initialisation

Select uniformly at random (µk)1≤k≤K among the rows of X without
replacement
ci ← arg max1≤k≤K µ

T
kxi

τik ← Ik=ci
αk = 1

n

∑n
i=1 τik

set κk to the solution of

Id/2(κk)

Id/2−1(κk)
= µTk

∑n
i=1 τikxi∑n
i=1 τik

.

matrix. Algorithm 4 summarizes the process. Notice that the final estimation
can fail and the full process may have to be repeated several time in order to
produce a proper initial configuration (see below for details).

Secondly, mixture models can fall into problematic local configurations. As
pointed out in [2], κk can become unbounded if the corresponding component
focuses on a single observation, in a similar behavior as the one observed
for mixture of Gaussian distributions when the standard deviation of the
component vanishes. As in [2], we prevent this issue by capping κk to a large
value (106 in our experiments).

On the contrary, a component of the mixture can also become useless
when κk → 0. This corresponds to the component converging to a uniform
distribution. This behavior is easily detected as it manifests by having the
right hand side of equation (21) taking a value larger or equal to 1. We
monitor this quantity and interrupt the algorithm when such a situation is
encountered. We report in this case a convergence issue. Notice that the
initialisation process described above can also fail for this reason.

Finally, when β > 0, equation (22) can produce a zero “directional mean”:
this means in practice that the M step has failed. When we detect this issue,
we stop the algorithm and report a convergence issue.
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