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Abstract In the present study, we focus our attention to a specific type of composite,

constituted by two media, called the adherents, bonded together with a thin interphase

layer, called the adhesive. We assume that the composite constituents are made

of different multi-physic materials with highly contrasted constitutive properties.

The study considers a generic multi-physic coupling in a very general framework

and can be adapted to well-known multi-physic behaviors, such as piezoelectricity,

thermo-elasticity, as well as to multifield microstructural theories, such as micropolar

elasticity.
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18.1 Introduction

Structural bonding assembly has become an important technological solution over

the past few years and is increasingly replacing bolting assembly (Ascione et al,

2017) as shown in Fig. 18.1). The resulting structure has many advantages, such

as weight savings or the elimination of stress concentration. Similarly, in nature

there are many living or natural structures that are composed of substructures, cells

or soils for example, glued together. There are also many other examples of glued

structures in the field of bioengineering (Breschi et al, 2008) as illustrated in Fig. 18.2.

Understanding and modelling the bonding process then becomes a necessity.

Fig. 18.1 An example of bonding, for civil engineering structures.

Fig. 18.2 An example of adhesion, for dental structures.

An obvious common point between all these bonded composite structures is the

thinness of the adhesive compared to those of the substrates or adherents. This is

true for both industrial structures and living or natural structures. This thinness will

obviously lead to numerical modelling difficulties. Indeed, the mesh size of the

glue will mechanically lead to computations with a very large number of degrees

of freedom and therefore very expensive computations. These costs will increase

further if the adhesive surface is irregular and has a high roughness. Similarly, in the

presence of kinematic or behaviour non-linearities, in the presence of cracks, etc., the

costs become prohibitive. “Direct” calculations are then limited to academic cases
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(Dumont et al, 2014). There are two very different possibilities, either to develop

suitable numerical methods (Alart and Lebon, 1995; Alart et al, 1997; Barbie et al,

2015) or to set up macroscopic models of the adhesive’s behaviour. In this chapter,

we will focus on the second family of solutions.

There are at least two methodologies in the literature for obtaining constitutive

laws of adhesive (interface) behaviour. The most classic is the introduction of phe-

nomenological models, usually based on experimental results, such as Coulomb

models, compliances, etc. In this chapter, we will prefer to focus on deductive mod-

els. The idea of this methodology is to start from a micromechanical study of the

adhesive (interphase) and to deduce, using mathematical methods, an equivalent

macroscopic behaviour (interface).

In this chapter, we focus our attention to a bonded composite, constituted by

two adherents, bonded together with a thin adhesive. We assume that the composite

constituents are made of different multi-physic materials with highly contrasted

constitutive properties. The study considers a generic multi-physic coupling in a

very general framework and can be adapted to well-known multi-physic behaviors,

such as piezoelectricity, thermo-elasticity, as well as to multifield microstructural

theories, such as micropolar elasticity (see, e.g. Chatzigeorgiou et al, 2015). Several

works have suggested a generalization of the classical interface models, including

the effects of other physical (thermal, piezoelectric, etc.) interactions (dell’Isola and

Romano, 1987; Chen, 2008; Wang et al, 2017; Firooz and Javili, 2019; Saeb et al,

2019), and within the framework of linear multifield theories, such as higher order

continua theories (Placidi et al, 2014; Eremeyev, 2019).

The analysis has been carried out by means of the asymptotic expansions method,

using the thickness as a small parameter. This technique is based on the fact that

the thickness of the adhesive can be considered as a small parameter (intended to

tend towards zero) and denoted by ε in the following. The asymptotic analysis has

been applied to the rigorous derivation of simplified models for complex assemblies,

presenting thin interphases, in the field of linear elasticity (Lebon and Rizzoni

(2010); Dumont et al (2018); Rizzoni et al (2014); Serpilli and Lenci (2016)) as well

as in piezoelectricity, taking into account other physical interactions, micropolar

elasticity and poroelasticity (Serpilli et al (2013); Serpilli (2015, 2017, 2018, 2019)).

As mentioned above, the asymptotic methods allow to replace the adhesive layer

with a two-dimensional surface, the so-called imperfect interface, with non-classical

transmission conditions between the two adherents. By defining the small parameter

and constitutive properties of the middle layer, we perform an asymptotic analysis.

We assume that the multi-physic stiffness ratios between the adherents and the

adhesive depend on εp. As proposed by Caillerie (1970), we identify three critical

exponents p, corresponding to different imperfect interface models: p = 1, the

soft (also called lowly-conducting) multi-physic interface model; p = 0, the hard

(also called moderately-conducting) multi-physic interface model; p = −1, the

rigid (also called highly-conducting) multi-physic interface model. Following the

approach introduced by Rizzoni et al (2014), we characterize the order zero and the

order one transmission problems. Finally, a general multi-physic interface model is

developed, and numerically tested through the finite element method. In particular,
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in the framework of piezoelectricity, we compare the results obtained by modeling

the adhesive as an interphase, having a thin finite thickness, with the results obtained

with the general multi-physic interface model.

18.2 Statement of the Problem

We consider the composite assembly constituted of two solids Ωε
± ⊂ R

3, called

the adherents, bonded together by an intermediate thin layer Bε := S × (− ε
2
, ε
2
) of

thickness ε, called the adhesive, with cross-section S ⊂ R
2. In the followingBε and

S will be called interphase and interface, respectively. Let Sε
± be the plane contact

surfaces between the adhesive and the adherents and let Ωε := Ωε
+ ∪ Bε ∪ Ωε

−

denote the composite system comprising the interphase and the adherents (cf. Fig.

1.3a).

Fig. 18.3 Initial (a), rescaled (b) and limit (c) configurations of the composite.

We suppose that the composite is constituted by a multi-physic material, in

which different physical behaviors interact together, such as in piezoelectricity.

Its equilibrium state is determined by a collection of order parameters s
ε :=

(uε
1, . . . ,u

ε
N , ϕ

ε
1, . . . , ϕ

ε
M ):N vector state variables, namely u

ε
i , andM scalar state

variables, namely ϕε
k. With the multi-physic state s

ε, we associate its conjugated

physical quantity t
ε = t

ε(∇ε
s
ε), where ∇

ε
s
ε denotes the gradient of sε. The vec-

tor field t
ε := (σε

1, . . . ,σ
ε
N ,D

ε
1, . . . ,D

ε
M ) represents a generalized stress field. We

also consider the following homogeneous and linear constitutive law:

t
ε = K

ε
∇

ε
s
ε,

where K
ε is a generalized linear constitutive matrix. The constitutive tensor K

ε

satisfies suitable symmetry and positivity properties.

We assume that the adherents are subject to a generalized system of body

forces F
ε : Ωε

± → R
3N×M and surface forces G

ε : Γ ε
g → R

3N×M , where

Γ ε
g ⊂ (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−). Body and surface forces are neglected in adhesive

4



layer. On Γ ε
u := (∂Ωε

+ \Sε
+)∪ (∂Ωε

− \Sε
−)\Γ

ε
g homogeneous boundary conditions

are prescribed, so that sε = 0 on Γ ε
u . We assume that on Γlat := ∂S × (− ε

2
, ε
2
) ho-

mogeneous Neumann boundary conditions are applied. The differential formulation

of the governing equations has the following structure:

⎧

⎨

⎩

−div t
ε = F

ε in Ωε,
t
ε
n
ε = G

ε on Γ ε
g ,

s
ε = 0 on Γ ε

u ,
(18.1)

where tεnε := (σε
1n

ε, . . . ,σε
Nn

ε,Dε
1 ·n

ε, . . . ,Dε
M ·nε) represents the generalized

traction vector on the boundary Γ ε
g and n

ε the outer normal unit vector to Γ ε
g . Let us

introduce the functional space V (Ωε) := {sε ∈ H1(Ωε;R3N×M ); sε = 0 on Γ ε
u}.

The variational formulation of problem (18.1) defined on the variable domain Ωε

can be written as follows:

{

Find s
ε ∈ V (Ωε) such that

Āε
−(s

ε, rε) + Āε
+(s

ε, rε) + Âε(sε, rε) = Lε(rε),
(18.2)

for all rε := (vε
1, . . . ,v

ε
N , ψ

ε
1, . . . , ψ

ε
M ) ∈ V (Ωε), where defined by

Āε
±(s

ε, rε) :=

∫

Ωε
±

K̄
ε
∇

ε
s
ε ·∇ε

r
εdxε, Âε(sε, rε) :=

∫

Bε

K̂
ε
∇

ε
s
ε ·∇ε

r
εdxε,

Lε(rε) :=

∫

Ωε
±

F
ε · rεdxε +

∫

Γ ε
g

G
ε · rεdΓ ε.

18.3 Method of Asymptotic Expansion

In order to perform an asymptotic analysis of problem (18.2) when ε tends to zero,

we rewrite the problem on a fixed domainΩ independent of ε. By using the approach

of Ciarlet (1997), we consider the change of variables πε : x ∈ Ω �→ xε ∈ Ω
ε

given

by

πε :

{

π̄ε(x1, x2, x3) = (x1, x2, x3 ∓
1

2
(1− ε)), for all x ∈ Ω±,

π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupyΩ± := Ωε
± ± 1

2
(1− ε)e3

and the interphase B = {x ∈ R
3 : (x1, x2) ∈ S, |x3| <

1

2
}. The sets S± =

{x ∈ R
3 : (x1, x2) ∈ S, x3 = ± 1

2
} denote the interfaces between B and Ω±

and Ω = Ω+ ∪ Ω− ∪ B is the rescaled configuration of the composite. Lastly, Γg

and Γu indicate the images through πε of Γ ε
g and Γ ε

u (cf. Fig. 1.3b). Consequently,
∂

∂xε
α
= ∂

∂xα
and ∂

∂xε
3

= ∂
∂x3

in Ω±, ∂
∂xε

α
= ∂

∂xα
and ∂

∂xε
3

= 1

ε
∂

∂x3

in B.

We assume that the constitutive coefficients of Ωε
± are independent of ε, K̄ε =

K̄, while the constitutive coefficients of Bε depend on ε, K̂ε = εpK̂, with p ∈
{−1, 0, 1}. Finally, we assume that the forces are such thatLε(rε) = L(r). By virtue
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 of the previous hypothesis, the rescaled problem can be written in the following form:

{

Find s
ε ∈ V (Ω), such that

Ā−(s
ε, r) + Ā+(s

ε, r) + εp−1â(sε, r) + εpb̂(sε, r) + εp+1ĉ(sε, r) = L(r),
(18.3)

for all r ∈ V (Ω) := {s ∈ H1(Ω;R3N×M ); s = 0 on Γu}, where

Ā±(s
ε, r) :=

∫

Ω±

K̄∇s
ε ·∇rdx, â(sε, r) :=

∫

B

K̂33s
ε
,3 · r,3dx,

b̂(sε, r) :=

∫

B

{

K̂3αs
ε
,3 · r,α + K̂α3s

ε
,α · r,3

}

dx, ĉ(sε, r) :=

∫

B

K̂αβs
ε
,β · r,αdx,

and K̂ij denote the sub-matrices of K̂, defined by

K̂ =

[

K̂αβ K̂α3

K̂3α K̂33

]

, (K̂ij)
T = K̂ji.

We can now apply the asymptotic expansions method to the rescaled problem (18.3),

whose fundamental assumption relies in considering the solution s
ε of the problem

as a series of powers of ε:

s
ε = s

0 + εs1 + ε2s2 + . . . ,
s̄
ε = s̄

0 + εs̄1 + ε2s̄2 + . . . ,
ŝ
ε = ŝ

0 + εŝ1 + ε2ŝ2 + . . . .
(18.4)

where s̄
ε = s

ε ◦ π̄ε and ŝ
ε = s

ε ◦ π̂ε. By injecting (18.4) into the rescaled prob-

lem (18.3), and by identifying the terms with identical power of ε, we obtain, as

customary, a set of variational problems to be solved in order to characterize the

limit multi-physic state s0, the first order corrector term s
1 and their associated limit

problem, for p ∈ {−1, 0, 1}.

Following the approach described in Rizzoni et al (2014); Dumont et al (2018), we

introduce the matching conditions based on the continuity of the generalized traction

t
ε
e3 and multiphyisic state sε at the interfaces Sε

± in the initial configuration and on

the continuity of the traction and state t̄
ε
e3, s̄ε, t̂εe3, ŝε at the interfaces S± in the

rescaled configuration. Hence, one has

[[sε]] = [s̄ε]− ε〈〈sε,3〉〉+ o(ε), 〈〈sε〉〉 = 〈s̄ε〉 − ε
4
[[sε,3]],

[[tεe3]] = [t̄εe3]− ε〈〈tε,3e3〉〉+ o(ε), 〈〈tεe3〉〉 = 〈t̄εe3〉 −
ε
4
[[tε,3e3]],

(18.5)

where

〈f〉(x̃) := 1

2
(f(x̃, (1/2)+) + f(x̃,−(1/2)−), x̃ := (xα) ∈ S,

[f ] (x̃) := f(x̃, (1/2)+)− f(x̃,−(1/2)−),

〈〈f〉〉(x̃) := 1

2
(f(x̃, 0+) + f(x̃, 0−)),

[[f ]](x̃) := f(x̃, 0+)− f(x̃, 0−),

6



denote, respectively, the mean value and the jump functions at the interfaces.

18.4 Multi-Physic Interface Models

In this section we present the asymptotic models for multi-physic interfaces obtained

for the soft, hard and rigid cases at order 0 and order 1. For the sake of brevity, we

will skip all the mathematical computations carried out in the deduction of the limit

models.

18.4.1 The Soft Multi-Physic Interface

The transmission problems at order 0 and order 1 can be summarized as follows:

• Order 0

Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
0 = F in Ω±,

t̄
0
n = G on Γg,

s̄
0 = 0 on Γu,

Transmission conditions on S±
{

[s̄0] = (K̂33)
−1〈t̄0e3〉,

[t̄0e3] = 0.

• Order 1

Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
1 = 0 in Ω±,

t̄
1
n = 0 on Γg,

s̄
1 = 0 on Γu,

Transmission conditions on S±
{

[s̄1] = (K̂33)
−1

(

〈t̄1e3〉 − K̂α3〈s̄
0〉,α

)

,

[t̄1e3] = −K̂3α[s̄
0],α.

The transmission problems for a soft multi-physic interface at order 0 and order 1

represent a formal generalization of the soft interface models obtained by means of

the asymptotic methods in linear elasticity (see, e.g., Rizzoni et al, 2014; Dumont

et al, 2018) and in other multifield frameworks, such as poroelasticity (see Serpilli,

2019). At order 0, the interface behaves from a mechanical point of view as a series

of linear springs, reacting to the discontinuity of the multi-physic state between the

upper and bottom faces, while the generalized traction vector remains continuous.

At order 1, the interface conditions maintain a similar structure, but both the multi-

physic state and the traction vector are discontinuous through the interface. Moreover,

they depend on the in-plane derivatives of the jump and mean values of s̄0, which

can be considered a known source term, identified in the order 0 problem.
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18.4.2 The Hard Multi-Physic Interface

The hard interface transmission problems at order 0 and order 1 take the following

expressions:

• Order 0

Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
0 = F in Ω±,

t̄
0
n = G on Γg,

s̄
0 = 0 on Γu,

Transmission conditions on S±
{

[s̄0] = 0,

[t̄0e3] = 0.

• Order 1

Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
1 = 0 in Ω±,

t̄
1
n = 0 on Γg,

s̄
1 = 0 on Γu,

Transmission conditions on S±
⎧

⎨

⎩

[s̄1] = (K̂33)
−1

(

〈t̄0e3〉 − K̂α3〈s̄
0〉,α

)

,

[t̄1e3] = −
(

K̂3α[s̄
1],α + K̂αβ〈s̄

0〉,αβ

)

.

It is interesting to notice that the hard multi-physic interface problems is equivalent to

the ones derived in the case of linear elasticity in Lebon and Rizzoni (2010); Rizzoni

et al (2014); Dumont et al (2018). At order 0, we recover the classical continuity

conditions for both the multi-physic state and generalized traction vector. Thus, the

adherents are perfectly bonded together. At order 1, we encounter a mixed interface

model with a jump of the state and traction vector depending on the values of the

multi-physic state and traction vector at order 0. These order 0 terms, being known

from the solution of the previous problem, can be viewed as external source terms.

18.4.3 The Rigid Multi-Physic Interface

The differential formulations of the rigid interface problems at order 0 and order 1

take the following form:

• Order 0

Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
0 = F in Ω±,

t̄
0
n = G on Γg,

s̄
0 = 0 on Γu,

Transmission conditions on S±
{

[s̄0] = 0,

[t̄0e3] = −L̂αβ〈s̄
0〉,αβ .

• Order 1
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Governing equations
⎧

⎪

⎨

⎪

⎩

−div t̄
1 = 0 in Ω±,

t̄
1
n = 0 on Γg,

s̄
1 = 0 on Γu,

Transmission conditions on S±
{

[s̄1] = −(K̂33)
−1

K̂α3〈s̄
0〉,α,

[t̄1e3] = −K̂3α(K̂33)
−1〈t̄0e3〉,α − L̂αβ〈s̄

1〉,αβ ,

where L̂αβ := K̂αβ − K̂3α(K̂33)
−1

K̂β3. The rigid multi-physic interface problems

show the same features of the rigid interface asymptotic models obtained in different

frameworks in Bessoud et al (2009); Serpilli (2015, 2017, 2018, 2019). Concerning

the order 0 model, we obtain a continuity of the multi-physic state at the interface

level, while the traction vector is discontinuous and depends on the divergence of

a generalized membrane stress vector N0
α := L̂αβ〈s̄

0〉,β . The interface behaves as

a multi-physic membrane. The order 1 presents a discontinuity on both the multi-

physic state and traction vector. Analogously to the order 0 model, we obtain a

generalized equilibrium membrane problem defined on the plane of the interface.

18.4.4 The General Multi-Physic Interface

The approach of Rizzoni et al (2014) can be extended in order to obtain a condensed

form of the transmission conditions summarizing both the orders 0 and 1 of the soft,

hard and rigid cases in only one couple of equations in terms of the jump of the

multi-physic state and generalized tractions at the interface.

Therefore, we denote by s̃
ε := s̄

0 + εs̄1 + ε2s̄2 and t̃
ε := t̄

0 + εt̄1, two suitable

approximations for s̄ε and t̄
ε. Let us consider the rigid multi-physic interface con-

ditions, as starting point. After rescaling back the constitutive coefficients K̂ = εK̂ε

in Bε, we can write [s̃ε] and [t̃εe3]. Indeed, one has

[s̃ε] := [s̄0] + ε[s̄1] + ε2[s̄2] = −ε(K̂ε
33)

−1

(

K̂
ε
α3〈s̃

ε〉,α − 〈t̃εe3〉
)

+ o(ε2),
[

t̃
ε
e3

]

:= [t̄0e3] + ε[t̄1e3] = −εK̂ε
3α(K̂

ε
33)

−1〈t̃εe3〉,α − εL̂ε
αβ〈s̃

ε〉,αβ + o(ε2).

An alternative expression of the above transmission conditions can be given in terms

of 〈t̃εe3〉 and
[

t̃
ε
e3

]

, which will be useful to write the variational formulation of the

interface multi-physic problem:

〈t̃εe3〉 =
1

ε
K̂

ε
33[s̃

ε] + K̂
ε
α3〈s̃

ε〉,α + o(ε2),
[

t̃
ε
e3

]

= −K̂
ε
3α[s̃

ε],α − εK̂ε
αβ〈s̃

ε〉,αβ + o(ε2).
(18.6)

It is easy to prove that this interface law is general enough to describe the interface

laws at order 0 and order 1 prescribing the multi-physic state jump and traction jump

in the cases of the soft and hard interfaces, by choosing the following scalings for

the constitutive matrices: K̂ε = εK̂, for the soft case, and K̂
ε = K̂, for the hard case.
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The relations (18.6) can be transformed into interface equations defined on S, by

making use of the matching relations (18.5), up to higher order terms:

〈〈te3〉〉 =
1

ε
K̂33[[s]] + K̂α3〈〈s〉〉,α,

[[te3]] = −K̂3α[[s]],α − εK̂αβ〈〈s〉〉,αβ .
(18.7)

18.5 Finite Element Implementation and Numerical Test

In order to derive the variational form of the multi-physic problem, which will be

numerically tested through a finite element procedure, one can write the variational

form of the equilibrium problem on each sub-domain Ω+ and Ω−:

∫

Ω±

K̄∇s ·∇rdx−

∫

S

t(x̃, 0+)n(x̃, 0+) · rdΓ −

∫

S

t(x̃, 0−)n(x̃, 0−) · rdΓ =

=

∫

Ω±

F · rdx+

∫

Γg

G · rdΓ,

which can be rewritten as
∫

Ω±

K̄∇s ·∇rdx+

∫

S

[[te3 · r]]dx̃ = L(r),

letting e3 = n(x̃, 0−) = −n(x̃, 0+) and dΓ = dx̃. Then, using the property

[[ab]] = 〈〈a〉〉[[b]] + [[a]]〈〈b〉〉, relations (18.7) and after an integration by parts, we

obtain
{

Find s ∈W (Ω̃), such that

Ā−(s, r) + Ā+(s, r) +A(s, r) = L(r),
(18.8)

for all r ∈W (Ω̃) := {s ∈ H1(Ω̃;R3N×M ), s|S ∈ H1(S;R3N×M ), s = 0 onΓu},

with Ω̃ := Ω+ ∪ S ∪Ω− and

A(s, r) :=

∫

S

(

1

ε
K̂33[[s]] · [[r]] + K̂α3〈〈s〉〉,α · [[r]] + K̂3α[[s]] · 〈〈r〉〉,α+

+εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β

)

dx̃.

A standard finite element method is employed to solve this equation. In order to

take into account the jumps in the displacements across the interface, a ‘flat" finite

element is considered on the interface S that has all nodes on S, the first ones related

toΩ−, and the other ones related toΩ+. It is then possible to write a stiffness matrix

of this problem that is invertible and with standard error estimates (for more details,

see for example Nairn, 2007).
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Numerical Study: The Piezoelectric Composite Plate

The aim of this study is to numerically test the general interface law, expressed in

(18.8), comparing it to a three-dimensional analysis of the problem. As preliminary

test, we consider the piezoelectric case. The piezoelectric state at the equilibrium is

determined by the pair s := (u, ϕ), where u and ϕ represent the displacement field

and the electric potential. The generalized stress vector is given by t := (σ,D),
where σ and D denote, respectively, the Cauchy stress tensor and the electric dis-

placement.

Let us consider a piezoelectric three-phases composite plate, which occupies a

3D domain defined by Ω = [0, L1] × [0, L2] × [−h/2, h/2], with L1 = 10h and

L2 = 5h (see Fig. 1.4). The adhesive thickness is set to be ε.

Fig. 18.4 The geometry of the piezoelectric composite plate in the plane (x, z).

The adherents are constituted by PVDF (Polyvinylidene fluoride), a monoclinic

piezoelectric material with poling axis e3, while the adhesive is made of PZT-4, a

transversally isotropic piezoelectric material with poling axis e3. This constitutive

sub-matrices (Kij) are defined as follows:

K33 =

⎛

⎜

⎜

⎝

2c55 0 0 0
0 2c44 0 0
0 0 c33 e33
0 0 −e33 H33

⎞

⎟

⎟

⎠

, K12 =

⎛

⎜

⎜

⎝

0 2c66 + c12 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎠

,

K13 =

⎛

⎜

⎜

⎝

0 0 2c55 e15
0 0 0 0
c13 0 0 0
−e31 0 0 0

⎞

⎟

⎟

⎠

, K23 =

⎛

⎜

⎜

⎝

0 0 0 0
0 0 2c44 e24
0 c23 0 0
0 −e32 0 0

⎞

⎟

⎟

⎠

,
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K11 =

⎛

⎜

⎜

⎝

c11 0 0 0
0 2c66 0 0
0 0 2c55 e15
0 0 −e15 H11

⎞

⎟

⎟

⎠

, K22 =

⎛

⎜

⎜

⎝

2c66 0 0 0
0 c22 0 0
0 0 2c44 e24
0 0 −e24 H22

⎞

⎟

⎟

⎠

.

For the transversally isotropic material with poling axis e3, one has c11 = c22,

c13 = c23, c55 = c44, c66 = (c11 − c12)/2, e15 = e24, e31 = e32 and H11 = H22.

The elastic, dielectric and piezoelectric coefficients are listed in Table 18.1. The

Table 18.1 Piezoelectric material properties

Moduli PZT-4 PVDF

c11, GPa 139 238.24

c22, GPa 139 23.6

c33, GPa 115 10.64

c12, GPa 77.8 3.98

c13, GPa 74.3 2.19

c23, GPa 74.3 1.92

2c44, GPa 25.6 2.15

2c55, GPa 25.6 4.4

2c66, GPa 30.6 6.43

e31, C/m2
−5.2 −0.13

e32, C/m2
−5.2 −0.145

e33, C/m2 15.1 −0.276

e24, C/m2 12.7 −0.009

e15, C/m2 12.7 −0.135

H11, nF/m 13.06 0.111

H22, nF/m 13.06 0.106

H33, nF/m 11.51 0.106

piezoelectric composite plate is subject to surface uniform load equal to p = 1 kN/m2

on the top face, as shown in Fig. ??. We assume that no voltage is applied on the

upper and lower faces. In this case, the composite plates behaves as a sensor (see

Bonaldi et al, 2017).

The finite element simulations (made with GetFEM) are carried out using Q1

elements (linear on a cube), with 7280 nodes (29203 degrees of freedom) for the

three phases problem and 5824 nodes (23379 degrees of freedom) for the problem

with the interface law.

First, the influence of the relative thickness of the interphase ε
L

is investigated

in order to evaluate the accuracy of the various modeling proposed in the previous

sections. In particular, the quality of the solutions is evaluated considering the L2-

relative error e = ‖sε−smodel‖
‖sε‖ , where s

ε denotes the reference solution computed

12



using the three-phases problem with a fine finite element mesh, while smodel indicates

the solution of the interface model (18.8). The convergence of the general interface

model towards the three-phases one with respect to the thickness ratio ε
L

is presented

in Fig. 18.5. From the plot, it can be observed that, by reducing the thickness of

Fig. 18.5 Convergence results with respect to the thickness ε

L
.

the adhesive, the relative error has a drastic reduction and so, the proposed general

interface model provides an acceptable solution and it is able to correctly approximate

the solution s
ε. The convergence rate is ε3. Besides, even if the relative thickness

is of 1%, the relative error is equal to 7.65 · 10−2% for the displacement field and

9.06 · 10−4% for the electric potential, meaning that the general interface model can

also be used for moderately thick adhesive layers.

Now, let us fix the relative thickness ε
L

= 0.02. The numerical results for the

variables are provided using the dimensionless units. We set:

(Ui, Φ) =
E0

V
(ui,

ϕ

E0

) (Tij ,Dk) =
hE0

C00V
(σij , E0Dk),

where we have chosen, for numerical convenience, V = 50V , E0 = 109V m−1 and

C00 = 1GPa. The results are represented in Fig. 18.6, 18.7 and 18.8.

Figure 18.6 represents the trend of the displacement field and electric potential,

evaluated in x = L1/2, y = L2/2, z/h ∈ [−0.5, 0.5]. The plot shows a good

agreement between the solution of the general interface problem (dotted line) and

the solution of the three-phases problem (solid line). The composite plate behaves
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Fig. 18.6 Representation of the displacements and the electric potential on a section along the

z-axis.

mostly as a Kirchhoff-Love single-layer plate, taking also into account the transversal

deformation of the adhesive. From the electric point of view, the electric potential

is constant through the adhesive: this is due to the fact that the intermediate layer

(PZT-4) has a higher electrical conductivity with respect to upper and lower bodies

(PVDF), see Table 1, and, hence, it behaves as a highly conducting interface.

Figure 18.7 and Fig. 18.8 represent the trend of the jumps of the displacement and

electric potential and the jumps of the stress vector and normal electric displacement

along the x-axis, namely (x ∈ [0, L1], y = L2/2, z = 0), and y-axis, namely

(x = L1/2, y =∈ [0, L2], z = 0). The numerical simulations highlight that the

proposed model is able to describe the mechanical behavior of the composite. Few

solution oscillations can be found close to the lateral boundaries, due to the presence

of edges, which produce expected stress concentrations and singularities.

18.6 Concluding Remarks

General imperfect contact conditions have been proposed, simulating the behavior

of a thin interphase undergoing linear coupled multi-physic phenomena. These con-
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Fig. 18.7 Representation of the jumps in the displacements and the electric potential across the

interface on a section along the x-axis and y-axis.

ditions link the generalized traction vector field and its jump to the multi-physic

state vector field and its jump at the interface, which is the geometric limit of the

interphase as its thickness parameter ε goes to zero. Three interface models (soft,

hard and rigid) have been deduced by means of the asymptotic methods, by varying

the rigidity ratios between the adhesive and adherents and considering the order 0

and order 1 corrector terms. Furthermore, these three different models have been

condensed in one general imperfect interface model and its variational formula-

tion has been presented. The weak formulation represents a key step towards the

FEM simulation. A numerical example has been presented considering a piezoelec-

tric composite plate, subject to an electric potential difference at the top and bottom
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Fig. 18.8 Representation of the jumps of the stress vector and normal electric displacement across

the interface on a section along the x-axis and y-axis.
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faces. The numerical results show the convergence of the solution of the three-phases

model towards the solution of the proposed model as ε tends to zero, highlighting

the accuracy and "goodness" of the general interface conditions.
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