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Large scale Gaussian processes with Matheron’s
update rule and Karhunen-Loève expansion

Hassan Maatouk and Didier Rullière and Xavier Bay

Abstract Gaussian processes have become essential for nonparametric function esti-
mation and are widely used in many fields, like machine learning. In this paper, large
scale Gaussian process regression (GPR) is investigated. This problem is related to
the simulation of high-dimensional Gaussian vectors truncated on the intersection
of a set of hyperplanes. The main idea is to combine both Matheron’s update rule
(MUR) and Karhunen-Lovève expansion (KLE). First, by the MUR we show that
simulating from the posterior distribution can be achieved without computing the
posterior covariance matrix and its decomposition. Second, by splitting the input
domain into smallest nonoverlapping subdomains, the KLE coefficients are con-
ditioned in order to guarantee the correlation structure in the entire domain. The
parallelization of this technique is developed and the advantages are highlighted.
Through this, the computational complexity is drastically reduced. The mean-square
global block error is computed. It provides accurate results when using a family of
covariance functions with compact support. Some numerical examples to study the
performance of the proposed approach are included.
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1 Introduction

Due to their flexibility, Gaussian processes (GPs) are widely used in many fields like
geostatistics [5, 9], finance [1, 7] and econometrics [4] and have become very popular
in the context ofmachine learning [16, 17]. In this paper, large scale Gaussian process
regression (GPR) is investigated. This problem is related to the simulation of high-
dimensional Gaussian vectors constrained on a set of intersection of hyperplanes.
The direct approach is based on computing the posterior distribution and using
the location scale transformation of the posterior covariance matrix (i.e., the scaling
matrix). After computing the scalingmatrix, we sample from a standard multivariate
normal (MVN) distribution [11]. Computing the scaling matrix is possible via for
example eigendecomposition or Cholesky factorization. When the dimension of the
Gaussian vector is high, this approach becomes numerically heavy. This is due to
the fact that the computational complexity scales cubically with the dimension of
the random vector [6].

The methodology presented in this paper is quite different. It is based on com-
bining both Matheron’s update rule (MUR) and Karhunen-Loève expansion (KLE).
In the first hand, the MUR, initially discovered in geostatistics [9] and later in astro-
physics [8] is developed. Contrarily to the direct approach, it is based on generating
from the prior distribution and adding an update part to obtain the target posterior
distribution. The advantage of this approach is that we sample before conditioning
rather than after. Therefore, there is no need to compute the posterior covariance
matrix and its decomposition. In [3], the MUR is used to efficiently sampling MVN
distribution whose covariance (precision) matrix can be decomposed as a positive-
definite matrix minus (plus) a low-rank symmetric matrix. The main idea is to
sample from a block diagonal covariance matrix. Recently, in the context of ma-
chine learning, the authors in [17] use the MUR for GPR. This approach is denoted
pathwise conditioning. In the second hand, the KLE can be seen as an efficient way
to sample random fields, which is based on computing the eigendecomposition of
the covariance operator [10]. In high dimensions, the eigendecomposition becomes
numerically heavy. To address this problem, the idea is to split the input domain into
smallest nonoverlapping subdomains and to condition the KLE coefficients in order
to respect the given correlation in the entire domain [2, 13].

In the present paper, we investigate the advantage of the MUR in the context
of GPR. Then, we develop the large scale KLE for sampling the prior distribution.
The parallelization of this approach is studied, resulting in a significant reduction of
computational complexity. Finally, the mean-square global block error introduced
by the proposed approach is calculated.

The article is structured as follows: in Sect. 2 GPR is briefly reviewed. Section 3
is devoted to the MUR in the context of GPR. In Sect. 4, the large scale KLE is
developed where the parallelization is investigated and the introduced errors are
computed. In Sect. 5, the performance of the proposed approach is shown through
numerical examples.
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2 Gaussian process regression

For any x ∈ Rd, suppose (Z(x)) is a GP with mean function µ and covariance
function k, i.e., Z ∼ GP(µ, k). Then

Z(x) = µ(x) + Y (x), ∀x ∈ Rd,

where (Y (x)) is a zero-mean GP with covariance function k, i.e., Y ∼ GP(0, k)

k(x,x′) = Cov(Y (x), Y (x′)), ∀x,x′ ∈ Rd.

Given a training data set D = {(xi, yi), i = 1, . . . , n} of size n, where xi denotes
an input vector of dimension d and yi denotes a scalar output (data). The input
vectors are aggregated in the n × d design matrix X = [x1, . . . ,xn]

> and the data
are collected in the vector y = [y1, . . . , yn]

>, so we can write D = {(X,y)}. The
following regression problem is considered

yi = f(xi) + εi, εi
i.i.d.∼ N (0, σ2

noise),

where f is an unknown latent function generates the data and εi is an additive
independent identically distributed Gaussian noise with constant noise variance
σ2
noise estimated via the maximum likelihood [16]. A GP prior distribution on the

unknown function f is assumed. Conditionally on the data y = [y1, . . . , yn]
>, the

conditional process remains a GP

{Y |Y (X) + ε = y} ∼ GP(µc, c),

where ε = [ε1, . . . , εn]
> is a zero-mean Gaussian noise vector and the conditional

mean and covariance functions µc and c are given as follows:

µc(x) = E [Y (x)|y] = k(x,X)>(k(X,X) + σ2
noiseIn)−1y; (1)

c(x,x′) = k(x,x′)− k(x,X)>(k(X,X) + σ2
noiseIn)−1k(x′,X);

with In the n×n identity matrix. Let us recall that k(X,X) is the covariance matrix
of Y (X) and k(x,X) is the vector of covariance between Y (x) and Y (X).

In the simple special case where the observations are noise-free [14], that is we
know {(xi, fi)|i = 1, . . . , n}, with fi = f(xi), the predictive equations for GPR (1)
are conserved where we replace σ2

noise by zero and y by f , with f = [f1, . . . , fn]
>.

Table 1 shows some popular covariance functions in one-dimensional case (i.e.,
x, x′ ∈ R). They are widely used in machine learning community [16], and ordered
by decreasing degree of smoothness, where θ is the correlation length parameter.

In the next section, the MUR is briefly reviewed, as well as, the advantages of
this method for the GPR are highlighted.
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Table 1 Some popular covariance functions with their degree of smoothness [16]

Name Expression Class
Squared Exponential exp

(
− (x−x′)2

2θ2

)
C∞

Matérn ν = 5/2
(
1 +

√
5|x−x′|
θ

+ 5(x−x′)2
3θ2

)
exp

(
−
√

5|x−x′|
θ

)
C2

Matérn ν = 3/2
(
1 +

√
3|x−x′|
θ

)
exp

(
−
√

3|x−x′|
θ

)
C1

Exponential exp
(
− |x−x

′|
θ

)
C0

3 Matheron’s update rule for Gaussian process regression

As said in the introduction, the MUR presented in this section has first appeared in
geostatistics [9]. Let us briefly recall this method. SupposeX1 andX2 are jointly
Gaussian random variables. Then, the random vectorX1 conditional onX2 = x2

can be expressed as

{X1|X2 = x2}
d
=X1 +ΣX1,X2

Σ−1X2,X2
(x2 −X2),

where ΣX1,X2 = Cov(X1,X2) is the covariance betweenX1 andX2. As men-
tioned in [17], a key difference with the direct approach is that we now sample before
conditioning, rather than after, which is the key of the main idea developed in the
present paper.

In the following proposition, we give the well-known MUR result for GPR.

Proposition 1 (MUR for GPR)
Using previous notations, (Y (x)) is a zero-mean GP with covariance function k.

Then, Y conditioned on data {Y (X) + ε = y} can be expressed as follows:

{Y |Y (X) + ε = y}(·) d
= Y (·)︸︷︷︸

prior

+ k(·,X)>(k(X,X) + σ2
noiseIn)−1(y − Y (X))︸ ︷︷ ︸

update

,(2)

where y − Y (X) represents the residual.

The sampling scheme of the posterior distribution {Y |Y (X) + ε = y}(·) using
the MUR is given in the following algorithm.

Algorithm 1: Sampling scheme by MUR of {Y |Y (X) + ε = y}(·)
• sample Y (·) ∼ GP(0, k);
• return Y (·) + k(·,X)>(k(X,X) + σ2

noiseIn)−1(y − Y (X)).

Corollary 1 Suppose Y is simulated with Algorithm 1, then it is distributed as
{Y |Y (X) + ε = y}.
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Proof The proof is a simple consequence of Proposition 1.

Let us give some remarks:

• By the MUR, we sample from the prior (first step in Algorithm 1) which is an
advantage especially when the corresponding unconstrained (precision) matrix is
diagonal or low-rank.

• By theMUR, the stationary property is preserved in the sampling procedure unlike
the direct approach where the posterior covariance matrix must be computed
which is not stationary anymore, cf. Sect. 4 below.

• The MUR provides numerical stability compared to standard approaches. This is
because, after sampling the prior, we directly map it onto the set of observations,
cf. Fig. 2 below.

• As demonstrated in Proposition 1, the MUR can be applied within the framework
of GPR, whether the data is observed with or without noise.
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Fig. 1 Visual guide of the MUR. Top left: one path of unconstrained Gaussian prior together with
the observations (black dots). Top right: the corresponding update path from (2) has been added
(black dashed-curve). Bottom: the posterior paths (gray solid curves) obtained by adding the prior
and the update as in (2)

In Fig. 1, the visual guide of the MUR is presented. The simple case where
the observations are noise-free is considered. The Matérn covariance function with
regularity parameter ν = 5/2 and correlation length parameter θ = 0.2 (cf. Table 1)
is used. Top left: the prior (black solid curve) zero-mean GP Y ∼ GP(0, k) together
with the observations (black dots) have been shown. Let us mention that the prior
does not interpolate the observations. Top right: the update part (black dashed-curve)
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of the MUR (2) has been added. As expected, the update part follows the trend of the
observations. Bottom: the posterior paths (gray solid curves) have been illustrated
by adding the prior to the update as in (2). Each posterior sample path is obtained
by adding a prior sample path to the update one. The posterior sample paths verify
the interpolation conditions. One sample path of the prior and the update is shown
for clarity. However, fifty sample paths of the posterior distribution are shown in the
bottom panel of Fig. 1.
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Fig. 2 The numerical error of the residual Y (X)−f using different approaches. For the Cholesky
approach, a nugget effect of order 10−12 has been added in order to avoid numerical problems

The stability of the MUR is now investigated. In Fig. 2, the boxplot of the numer-
ical residual error Y (X) − f using the MUR and different standard approaches are
shown for ten thousand replicates. Let us mention that a nugget effect of order 10−12
was added to the Cholesky factorization to avoid numerical problems. As expected,
the MUR provides accurate results. Additionally, based on numerical experiments,
the MUR outperforms eigendecomposition and Cholesky factorization in terms of
stability. This is because in the second step of the MUR algorithm, we map directly
onto the set of observations.

When the input domainD is large and a fine distretization is used, simulating the
prior (first step in Algorithm 1) using standard approaches (eigendecomposition and
Cholesky factorization) becomes numerically heavy. The computational complexity
grows cubically with the dimension of the associated Gaussian vector [6]. To sidestep
this problem, we show in the next section how the prior GP can be simulated
efficiently using the KLE update.

4 Karhunen-Loève expansion update

Let us briefly recall the standard KLE [10, 15]. In this section, the GP (Y (x))x∈D
is assumed stationary. For simplicity, the input domain D is supposed to be the unit
interval [0, 1].
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4.1 Standard Karhunen-Loève expansion

According to previous notations, (Y (x))x∈D is a zero-mean (GP), whose stationary
covariance function is k(|x− x′|), i.e., Y ∼ GP(0, k), where

k(|x− x′|) = Cov(Y (x), Y (x′)) = E[Y (x)Y (x′)], ∀x, x′ ∈ D.

The eigendecomposition of the covariance function on the domain D is:∫
D
k(|x− x′|)ϕi(x)dx = λiϕi(x

′), ∀i ∈ N, ∀x, x′ ∈ D. (3)

The deterministic functions {ϕi} and the coefficients {λi} are respectively the
eigenfunctions and eigenvalues of the covariance function k(| · |) on the domain D.
Let us recall that the eigenvalues are real and nonnegative since the covariance is
symmetric and positive semi-definite:∫

D

∫
D
k(|x− x′|)g(x)g(x′)dxdx′ ≥ 0

for any g having finite L2 norm on D. Let us recall also that the eigenfunctions
{ϕi(·)} form a complete orthonormal basis functions set [15]. This means that∫

D
ϕi(x)ϕj(x)dx = δij ,

where δij represents the Kronecker delta, equal to 1 if i = j and 0 otherwise.
By the KLE, the GP (Y (x)) can be written as (see e.g., [15] Sect. 1.2):

Y (x) =

+∞∑
i=1

√
λiϕi(x)ζi, ∀x ∈ D,

where the KLE coefficients {ζi} are zero-mean uncorrelated Gaussian random vari-
ables (thus independent) with unit variance, i.e., ζi

i.i.d.∼ N (0, 1). The KLE coeffi-
cients are defined as the projection of the GP (Y (x)) onto the KLE eigenfunctions:

ζi =
1√
λi

∫
D
ϕi(x)Y (x)dx;

E[ζi] = 0 and E[ζiζj ] = δij .

One can define an approximation of the GP (Y (x)) on the domain D using a
truncated sum of p ≥ 1 terms, obtained from the KLE.

Y (x) ≈
p∑

i=1

√
λiϕi(x)ζi =: Y p(x), ∀x ∈ D.
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This approximation with a finite number of terms is called truncated KLE. Let us
finish this section by recalling that the mean-square truncation error ε2KL is related to
the sum of the eigenvalues, as given by the following equation:

ε2KL =

E

[∫
D
(Y (x)− Y p(x))

2
dx

]
E

[∫
D
Y (x)2dx

] = 1−
∑p

i=1 λi∑+∞
i=1 λi

.

This error decreases when the number of terms retained in the expansion increases.
When the domainD is discretized intoN equally spaced points, the eigendecom-

position (3) leads to a N ×N eigenvalue problem. When the domain is huge and a
fine discretization is used, the eigendecomposition becomes expensive with compu-
tational complexity of orderO(N3). The idea in the following sections is to split the
input domain D in smallest nonoverlapping subdomains. The KLE coefficients are
conditioned so that (Y (x)) follows the given correlation structure. By the stationary
property of the GP (Y (x))x∈D, we show that only the eigendecomposition of the
first subdomain is needed. The parallelization of this approach is studied in Sect. 4.3,
resulting in a significant reduction of computational complexity.

4.2 Large scale Karhunen-Loève expansion

In this section, the GP (Y (x))x∈D is assumed stationary. The approach developed
in [12, 13] is first considered. For simplicity, the domain D = [0,MS] is split
in M equal sized subdomains Dm = ((m − 1)S,mS] for any block parameter
m ∈ {1, . . . ,M}. The extension to subdomains with different lengths has been
investigated (cf. Sect. 2.2 in [12]). The main idea is to generate M independent
samples, each covering its corresponding subdomain, and then impose a correlation
between theKLE coefficients of any two connected subdomains.Wewill denote byY
the process constructed in this way and by {ζi} its corresponding KLE coefficients.
For anym ∈ {1, . . . ,M} and x ∈ Dm, let

Y m(x) :=
+∞∑
i=1

√
γiφi(x− (m− 1)S)ζ

(m)

i

be the proposed KLE covering the mth subdomain Dm, where the deterministic
functions {φi(·)} and the coefficients {γi} are respectively the eigenfunctions and
eigenvalues of the covariance function k(| · |) on the first subdomain D1 = [0, S]

and {ζ(m)

i } are the conditional KLE coefficients. This implies that only the eigende-
composition of the first subdomain is necessary for the construction of the proposed
approach. Before showing how the conditional coefficients ζ(m)

i are constructed, let
us give the following notation:
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Y m ∪ Y m′

)
(x) = Y m(x)1Dm(x) + Y m′(x)1Dm′ (x),

for any x ∈ D andm,m′ ∈ {1, . . . ,M}, where 1Dm is the indicator function, equal
to 1 if x ∈ Dm and 0 otherwise. In practice, we suppose that p ≥ 1 terms are retained
in the expansion:

Y
p

m(x) =

p∑
i=1

√
γiφi(x− (m− 1)S)ζ

(m)

i , ∀x ∈ Dm. (4)

Let (Y p
m(x)) and (Y p

m+1(x)) be two independent processes covering respectively
the Dm and Dm+1 subdomains, for anym ∈ {1, . . . ,M − 1}. Thus,

Y p
m(x) =

p∑
i=1

√
λiφi(x− (m− 1)S)ζ

(m)
i , with x ∈ ((m− 1)S,mS];

Y p
m+1(x) =

p∑
i=1

√
λiφi(x−mS)ζ(m+1)

i , with x ∈ (mS, (m+ 1)S];

where theKLEcoefficients ζ(m)
i and ζ(m+1)

i are two independent replicates following
a standard normal distribution N (0, 1). Since the two sets ζ(m) =

{
ζ
(m)
i

}
i
and

ζ(m+1) =
{
ζ
(m+1)
i

}
i
are independently generated, the two GPs are uncorrelated:

E
[
ζ
(m)
i ζ

(m+1)
j

]
= 0, ∀i, j ∈ {1, . . . , p} ⇒ E

[
Y p
m(x)Y p

m+1(t)
]
= 0,

for all x ∈ Dm and t ∈ Dm+1. Let us give the following result proved in [12].

Proposition 2 (Distribution on blocks)
Under the stationary property of the GP (Y (x)), we suppose that themth condi-

tional coefficients set ζ(m) is computed as follows

ζ
(m)

=K>ζ
(m−1)

+Lζ(m), ∀m ∈ {2, . . . ,M}, (5)

where ζ(1) = ζ(1) andK and L are defined as

Ki,j :=
1

√
γiγj

∫ S

0

∫ S

0

k(|x− x′ − S|)φi(x)φj(x′)dxdx′; (6)

LL> := Ip −K>K;

with Ip the p× p identity matrix. Then

• the two processesY and (Y m−1∪Y m) have the same distribution onDm−1∪Dm,
for anym ∈ {2, . . . ,M}.

• For anym′ ≥ m
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(
ζ
(m)

, ζ
(m′)

)
=Km′−m

Cov
(
ζ
(m)
)
= Ip

whereK0 is the identity matrix andK is the coupling matrix defined in Eq. (6).

Proof Let us consider the simple case where m = 2. In the first hand, we have for
any (s, t) ∈ D1 ×D2,

Cov(Y (s), Y (t)) = E[Y (s)Y (t)] = k(|s− t|).

In the second one, we have

E
[
Y 1(s)Y 2(t)

]
=

+∞∑
i,j=1

√
γiγjφi(s)φj(t− S)E

[
ζ
(1)

i ζ
(2)

j

]

=

+∞∑
i,j=1

φi(s)φj(t− S)
∫ S

x=0

∫ 2S

x′=S

φi(x)φj(x
′ − S)k(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

+∞∑
i=1

φi(s)φi(x)

+∞∑
j=1

φj(t− S)φj(x′ − S)k(|x− x′|)dxdx′

=

∫ S

0

∫ 2S

S

δ(s− x)δ(t− x′)k(|x− x′|)dxdx′ = k(|s− t|),

where δ(·) is the Dirac delta function. Conversely, we have

Cov
(
ζ
(1)

i , ζ
(2)

j

)
= Cov

(
1
√
γi

∫ S

0

φi(x)Y 1(x)dx,
1
√
γj

∫ 2S

S

φj(t− S)Y 2(t)dt

)

=
1

√
γiγj

∫ S

x=0

∫ 2S

t=S

k(|x− t|)φi(x)φj(t− S)dxdt

=
1

√
γiγj

∫ S

x=0

∫ S

x′=0

k (|x− x′ − S|)φi(x)φj (x′) dxdx′.

The general case can be proved in a similar way. The proof of the second item of the
proposition is obvious.

Let us give some comments on these results: From Eq. (5), the mth conditional
coefficient ζ(m) is computed using the left hand side previous conditional coefficient
ζ
(m−1) and the right hand side unconditional coefficient ζ(m). The coupling matrix
K ensures that the distribution of the original GP (Y (x)) is equal to that of the
approximated process Y m at any two connected subdomains Dm−1 ∪ Dm. From
the stationary of the GP (Y (x)), the matrix K is computed once for any arbitrary
number of subdomains. The approximation error between Y and Y m is studied in
the following section (see, Proposition 4).
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Fig. 3 Left: GP sample paths prior where the domain is split in three subdomains. Solid curves
(before) and dashed-curves (after) conditioning. Right: the posterior paths (gray solid curves)
obtained using the MUR as in (2) by adding the prior (balck solid curve) to the update (black
dashed curve)

In Fig. 3, we illustrate the method presented in this section for sampling the prior
(left panel) and we applied it to theMUR to get the target posterior distribution (right
panel). The same parameters used in Fig. 1 are also used in this figure. The black
dots represent the observations. In the left panel of Fig. 3, the domain D is split in
three subdomains, i.e., M = 3. The solid curves represent the sample paths of the
prior before conditioning which are uncorrelated (i.e., Y1, Y2 and Y3). The dashed
curves represent those after conditioning (i.e., Y 2 and Y 3). Let us mention that the
dashed curves follow the given correlation structure. In the right panel, the black
solid curve represents the prior sample path obtained in the left panel. However, the
black dashed curve represents the corresponding update sample path as in (2). As in
Fig. 1, the update sample path follows the trend of the observations. The posterior
sample paths (gray solid curves) have been obtained by applying the MUR to the
prior as in (2). As expected, they verify the interpolation condition.

In the next section, the parallelization of the proposed approach is developed and
the advantages are highlighted. Additionally, the mean-square global block error is
computed.

4.3 Parallel computing large scale KLE

In this section, the parallelization of the technique presented in Sect. 4.2 developed
in [13] is investigated. This section presents the main results of the paper, including
the error incurred by the approach and the efficiency in special cases. Without loss
of generality, suppose that the domain D is split intoM odd subdomains. The case
when M is even is discussed at the end of this section, cf. Remark 1. Model (4)
developed in the previous section is used again
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Y
p

m(x) =

p∑
i=1

√
γiφi(x− (m− 1)S)ζ

(m)

i , ∀x ∈ Dm.

However, this section demonstrates how the sets of conditional KLE coefficients ζ(m)

can be generated using a parallelization technique. First, we sample independently
M sets of KLE coefficients ζ(1), . . . , ζ(M) following a standard MVN distribution.
The KLE coefficients corresponding to an even partm is conditioned by the parts at
the left and at the right

ζ
(m)

=K>ζ(m−1) +Kζ(m+1) +Hζ(m), (7)

wherem ∈ {2, 4, . . . , (M − 1)} andH is the lower triangular matrix such that

Ip −K>K −KK> =HH>. (8)

From Eq. (7), one can deduce that the conditional coefficients sets ζ(m) can be gen-
erated in parallel. To summarize: first, the prior KLE coefficients sets ζ(1), . . . , ζ(M)

are generated in parallel. Second, the M/2 conditional coefficients ζ(m) are com-
puted in parallel too using Eq. (7). By this strategy, the conditional prior sample
paths are generated by parallelization.

Proposition 3 According to Eqs. (7) and (8),

• the two processes Y and
(
Y m−1 ∪ Y m

)
have the same distribution on Dm−1 ∪

Dm, for anym ∈ {2, 4, . . . , (M − 1)}.
• Additionally, we have the following results:

Cov
(
ζ
(m)
)
= Ip, ∀m ∈ {2, 4, . . . , (M − 1)};

Cov
(
ζ
(m)

, ζ
(m+2)

)
=K2 and Cov

(
ζ
(m)

, ζ
(m′)

)
= 0;

for anym ∈ {2, 4, . . . , (M − 3)} and anym′ > m+ 2 an even number.

Proof The proof of the first item is similar to the one given in Proposition 2, while
the proof of the second item can be accomplished by a simple calculation.

Let us give some comments on these results:

• At any two connected subdomains, the proposed approach and the original random
process have the same distribution.

• By the parallelization technique, the KLE coefficients corresponding to the odd
parts are unconditioned. They are uncorrelated. This is because they are generated
independently. Consequently, only (M − 1)/2 coefficients sets are conditioned.
By this technique, the computational complexity of the sampling procedure is
drastically reduced. However, as in Sect. 4.2, the eigendecomposition of the first
subdomain is required to compute the coupling matrixK.
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• As we can see in Fig. 4, the domain D = [0, 1] is split in M = 3 subdomains.
However, only one dashed conditioned part was used to follow the given correla-
tion structure.

• The parallelization technique works well in the low correlation structure cases
(i.e., when the correlation length parameter θ is small enough). This is because
the KLE sets corresponding to the odd part are uncorrelated by construction.

Remark 1 When the number of subdomains M is even, only the KLE coefficients
set corresponding to the last subdomain m = M is conditioned from the left-hand
side (as in Sect. 4.2). In that case, the number of conditional KLE coefficients sets
is equal toM/2.

In the following corollary, the correlation between blocks is computed. This leads
to compare the approximated correlation obtained by the proposed model and the
true correlation function.

Corollary 2 (Correlation between blocks) For any (x, x′) ∈ Dm ×Dm+1

Cov
(
Y

p

m(x), Y
p

m+1(x
′)
)
=

p∑
i,j=1

√
γiγjφi(x− (m−1)S)φj(x

′−mS)Kij , (9)

for any m ∈ {1, 2, . . . ,M}. However, for any m ∈ {2, 4, . . . ,M − 3} and any
(x, x′) ∈ Dm ×Dm+2, we have

Cov
(
Y

p

m(x), Y
p

m+2(x
′)
)
=

p∑
i,j=1

√
γiγjφi(x−(m−1)S)φj(x′−(m+1)S)(K2)ij .

The correlation is equal to zero in other situations, i.e., when the distance between
blocks is greater than or equal to 3.

Proof The proof is a simple consequence of Proposition 3.

The following proposition computes the mean-square global block error, which
will be used to compare the proposed approach with and without parallelization for
different types of covariance functions.

Proposition 4 (Mean-square global block error)
In the setting of Proposition 3, we have the following global block error:

ε2B,M =

E

[∫
D

(
Y (x)− Y 1:M (x)

)2
dG(x)

]
E

[∫
D
Y (x)2dG(x)

]

=
Trace

((
SY − SY 1:M

) (
SY − SY 1:M

)>)
Trace

(
SY S>Y

) , (10)
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where Y 1:M = ∪Mm=1Y m and (SY ;SY 1:M
) are the Cholesky matrices of the covari-

ance functions of Y and Y 1:M on the grid G = {x1, . . . , xN} respectively and G is
the cumulative distribution function (CDF) of the Uniform discrete random variable
on G.

Proof We know from [11] that any zero-mean Gaussian vector can be written asY (x1)
...

Y (xN )

 = SY × ε and

Y 1:M (x1)
...

Y 1:M (xN )

 = SY 1:M
× ε,

where ε is a N -dimensional standard Gaussian vector chosen the same for Y and
Y 1:M to get a specific dependence structure. The two matrices SY and SY 1:M

are
the Cholesky factorization of the covariance of Y and Y 1:M on the grid G =
{x1, . . . , xN} respectively. If we denote by C the covariance matrix of the Gaussian
vector [Y (x1), . . . , Y (xN )]>, then SY S

>
Y = C. Thus,

E

[
N∑
i=1

Y (xi)
2

]
= E[ε>S>Y SY ε] = E[ε>Cε] = Trace(C) = Trace(SY S

>
Y ).

The result holds by following the same way.
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Fig. 4 GP sample path prior using the parallelization technique. The domain D is split in three
subdomains. The solid curves (resp. dashed curves) represent the paths before (resp. after) condi-
tioning

Figure 4 shows one GP sample path prior using the Matérn covariance function
with the regularity parameter ν = 5/2 by applying the parallelization technique
described in this section. The correlation length parameter θ is fixed at 0.05. The
domainD is split in three subdomains. However, only one conditional KLE sets (gray
dashed curve) is needed to follow the correlation structure in the entire domain. The
solid curves (resp. dashed curves) represent the GP sample paths before (resp. after)
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conditioning. The black dashed curve follows the given correlation on the left and
on the right hand sides as expected.
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Fig. 5 The correlation functions between t = 0 and any t ∈ D when the domain is split into three
subdomains. The approximated correlation using the proposed approach is computed from Eq. (9).
The true correlation is the Exponential function with θ = 0.15 (left) and 0.05 (right)

Figure 5 shows the correlation functions between t = 0 and any t ∈ D when
the domain D is split into three subdomains. The black solid curve represents the
true Exponential covariance function (Table 1) with correlation length parameter
θ = 0.15 (left panel) and θ = 0.05 (right panel). However, the red dashed curve
represents the proposed correlation function obtained from Eq. (9). In the case
where θ = 0.15, the root-mean-square error (RMSE) between the true correlation
function and the proposed one in the entire domain is of order 1.68 × 10−2. When
θ = 0.05, the RMSE is even smaller, equal to 1.24×10−7. This is an expected result
as the correlation length parameter θ was chosen to be ‘too small’ (right panel),
leading to a rapidly decreasing correlation function. This is a suitable situation for
the parallelization technique deveoped in this section, where the correlation between
unconnected odd subdomains is zero by construction.

Remark 2 The parallelization technique developed in this section can be applied to
the family of covariance functionswith compact support (cf. Sect. 4.2 in [16]).As said
in [16], ‘compact support means that the covariance between points become exactly
zero when their distance exceeds a certain threshold’. This is an interesting class of
covariance function which is suitable for the parallelization technique investigated
in this section, since the correlation between unconnected odd parts is exactly zero,
cf. Fig. 6 below. However, the approximation error still exists.

Example: compact support

In this example, the triangle correlation function (corresponding to the class of
covariance functions with compact support) is used

k(|h|) = max

(
1− |h|

θ
; 0

)
, (11)
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where θ is the correlation length parameter. In Fig. 6, θ is fixed at 0.3. This means
that k(|h|) is equal to zero for any h ≥ 0.3. As before, the domainD is split into three
subdomains. The black solid curve represents the true triangle correlation function
(11) on D. However, the red dashed curve represents the approximation correlation
function using the proposed approach with the parallelization technique developed
in this section. Let us mention that the RMSE on D between these two functions is
of order 3.6× 10−16.
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Fig. 6 The true correlation function and the approximated one on D are shown together. The true
one corresponding to the triangle correlation function in (11). The RMSE is equal to 3.6× 10−16

Table 2 The mean-square global block error for different type of covariance functions using the
proposed approach with and without parallelization. The domainD is split intoM = 3 subdomains

covariance function Mean-square global block error
without parallelization with parallelization

Triangle, θ = 0.3 3.82× 10−2 1.79 × 10−27

Triangle, θ = 0.05 1.49× 10−5 2.69 × 10−28

Matérn 5/2, θ = 0.05 2.99 × 10−24 3.95× 10−7

Matérn 3/2, θ = 0.05 6.42 × 10−27 1.18× 10−7

Table 2 shows the mean-square global block error defined in (10) for different
type of covariance functions using the proposed approach with and without paral-
lelization. The parallelization technique outperforms the case without parallelization
when using a covariance function with compact support, according to the numerical
experiments. This is because the correlation between odd subdomains is equal to
zero by construction, unlike the classical approach without parallelization. However,
for the Matérn family of covariance functions, the parallelization has no advantage
over the proposed approach without parallelization in terms of mean-square global
block error. For instance, with the Matérn covariance function and a regularity pa-
rameter of ν = 5/2, the parallelization technique results in a mean-square global



Large scale Gaussian processes 17

block error of 9.27×10−17 when the correlation length parameter is set to 0.03, and
1.81 × 10−28 when it is set to 0.01. So, it provides an accurate result. This is be-
cause, when the correlation length parameter θ tends to zero, the Matérn covariance
function decreases rapidly to zero. In that case, it can be considered to be almost
similar to a correlation function with compact support.

5 Computational illustrations

In this section, the performance of the proposed approach is investigated. The prob-
lem of sampling an N -dimensional MVN vector η ∼ N (µ,Γ ), truncated on the
intersection of n < N hyperplanes, is considered

η ∼ NT (µ,Γ ), T = {x ∈ RN |Ax = y},

where A ∈ Rn×N , y ∈ Rn and rank(A) = n. This problem is called hyperplane-
truncated MVN distribution [3, 11]. The unconditional covariance matrix Γ is
generated using theMatérn ν = 5/2 covariance function. In that case, the covariance
matrix Γ admits no special structure. The elements of y and A are generated from
a standard normal distribution N (0, 1).

200 400 600 800 1000

2
4

6
8

Dimension

A
v
e
ra

g
e
 T

im
e
 (

s
) Cholesky

MUR2split

1500 2000 2500 3000

1
.5

2
.0

2
.5

3
.0

Dimension

A
v
e
ra

g
e
 T

im
e
 (

s
)

MUR3split
MUR4split

Fig. 7 Average time of sampling 10,000 hyperplane-truncated MVN samples over twenty random
trials, when the number of data dimensionN increases and of observations is fixed at n = 10

In Fig. 7, the computation time of sampling 10,000 hyperplane-truncated MVN
distributions averaged over twenty random trials is shown. The number of observa-
tions is fixed at n = 10 and the data dimension (i.e., dimension of η) N increases.
Left panel: the Cholesky factorization was compared to the proposed approach when
the domain is split in only two subdomains. It is evident that the proposed approach
outperforms the Cholesky factorization method. Contrarily to the Cholesky fac-
torization, the computation time of the proposed approach grows linearly with the
dimension of the vector η.Right panel: the black solid curve (resp. dashed curve) rep-
resents the average time in second of sampling 10,000 hyperplane-truncated MVN
distribution using the proposed approach when the domain is split in three subdo-
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mains (resp. four subdomains). The average time is slightly different between these
two approaches.

6 Conclusion

In this paper, a new methodology for sampling large scale Gaussian process regres-
sion is developed. This problem is related to the simulation of high-dimensional
Gaussian vectors truncated on the intersection of hyperplanes. The main idea is
to combine both Matheron’s update rule (MUR) and Karhunen Loève expansion
(KLE). First, by the MUR we sample the target distribution without computing the
posterior covariance matrix. Second, by splitting the input domain into smallest
nonoverlapping subdomains, the KLE coefficients are conditioned in order to follow
the correlation structure in the entire domain. The parallelization of this approach
has been developed. The mean-square global block error has been computed as well.
The advantages of the proposed approach are demonstrated through numerical exam-
ples. Based on numerical experiments, the parallelization technique is particularly
efficient when using a class of covariance functions with compact support.
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