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In this work, the derivation of the effective properties for heterogeneous micropolar media with periodic structure using the two-scale asymptotic homogenization
method (AHM) is reported. Analytical expressions for the local problems and the effective coefficients are explicitly described. As a particular case, periodic
laminated composites are also analyzed, focusing on centro-symmetric Cosserat composites with isotropic and cubic constituents. Also, closed-form formulae of the
effective properties are obtained for both constituent symmetries, and numerical values are reported and discussed. The resulting composite belongs to the
orthotropic symmetry under rotations of 90° about the unitary vector e;, i.e., it has eighteen effective independent properties: nine stiffness and nine torques. As a
limit case, a comparison between classical and Cosserat effective elastic properties is shown for a laminated composite with isotropic constituents. Finally, the
engineering moduli of centro-symmetric laminated Cosserat materials with isotropic and cubic constituents are reported, and the numerical values are analyzed.

1. Introduction

Nowadays, the development of macro-micro-mechanical models
capable of describing the structure-properties relationship of hetero-
geneous complex materials plays an important role. The a priori esti-
mation of the global material response is of great help for different
engineering applications. It illustrates the ways the micro-structure,
the coupling effects, the constituent parameters, and the volume per-
centage of their phases, among others, can be manipulated to obtain
appropriated properties.

In the framework of the generalized continuum, micropolar or
Cosserat media with coupled stresses, a series of works have addressed
the estimation of effective properties of heterogeneous Cosserat ma-
terials using linear or nonlinear micro-continuum models (Lazar and
Kirchner, 2005; Trovalusci et al., 2015; Abreu et al., 2018; Rueger et al.,
2019; Rizzi et al., 2021; Nika, 2021). These works have emerged from
the theory developed by the Cosserat brothers at the beginning of the
last century (Cosserat and Cosserat, 1909), who extended Voigt’s work
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on generalized non-symmetric elasticity theory Voigt (1887). Cosserat
continuums have been seen in granular and fibrous composite materials
(Lakes, 2001; Bleyer, 2018), cellular and bone structures (Park and
Lakes, 1986; Lakes et al., 1990; Lakes, 1995; Rosenber et al., 2002;
Tekoglu and Onck, 2005; Liu and Su, 2009; Beltran-Fernandez et al.,
2010), foams (Diebels and Steeb, 2002; Rueger and Lakes, 2016, 2019;
Skrzat and Eremeyev, 2020), masonry (Masiani and Trovalusci, 1996;
Stefanou et al., 2008; Trovalusci and Pau, 2014; Leonetti et al., 2019),
metamaterials (Forest et al.,, 2001), among others. State of the art,
reviews and the basis foundations related to micropolar and generalized
coupled stress theories are found in Toupin (1962), Eringen (1966,
1999), Nowacki (1974, 1986), Maugin and Metrikine (2010), Markert
(2011), Altenbach and Eremeyev (2013), Eremeyev et al. (2013) and
Maugin (2013).

In the scientific literature, there exist some papers in which the ho-
mogenization theory is applied to generalized continuums or Cosserat
media. For example: An homogenization scheme based on polynomial
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expansion is proposed by Forest and Sab (1998) in order to compute
the effective properties of 2D Cauchy medium by minimizing the elastic
strain energy with respect to displacement fields. The construction of
an effective generalized continuum model replacing the heterogeneous
Cauchy medium by a homogeneous Cosserat continuum is reported
by Forest (1998) and Forest and Sab (1998). Later, in Forest et al.
(2001), a heterogeneous linear elastic Cosserat media with periodic
microstructure is analyzed using a multiscale homogenization method.
In particular, two schemes are implemented depending on the hier-
archy of three characteristic lengths: the size / of the unit cell, the
Cosserat intrinsic length /, of the constituents, and the characteristic
length L of the composite. Extensions of Forest et al. (2001) work are
proposed in subsequent studies to construct an effective generalized
continuum Forest (2002), Forest and Trinh (2011) and a discrete
Cosserat media Sab and Pradel (2009). In this last contribution, the
homogenization of beam lattice is addressed analogous to the homoge-
nization of discrete particles media. Cosserat composite materials are
also studied by homogenization schemes in Trovalusci and Masiani
(2003) and Liu and Hu (2004). Other approaches based on the various
homogenization procedures are also implemented to find the microp-
olar moduli, see for instance (Ehlers et al., 2003; Larsson and Diebels,
2007; Larsson and Zhang, 2007; Branke et al., 2009). On the other
hand, Bigoni and Drugan (2007) derived closed-form formulas for
heterogeneous Cosserat-elastic materials via homogenization, where a
dilute suspension of inclusions (spherical in 3D and circular cylindri-
cal in 2D) embedded in an isotropic matrix is assumed. Further, in
Altenbach et al. (2010), 1D Cosserat beam models and 2D Mindlin
plate models are considered by different homogenization techniques.
Li et al. (2011) employed the generalized Hill’s lemma for micro—
macro homogenization modeling of heterogeneous gradient-enhanced
Cosserat continuum. In the works of Dos Reis and Ganghoffer (2011,
2012) and Goda et al. (2012, 2013, 2014), micropolar anisotropic con-
stitutive models are constructed for repetitive lattices and trabecular
structures by the asymptotic homogenization techniques. Gorbachev
and Emel’yanov (2014) and Gorbachev and Emel’yanov (2021) used
an integral formulation for the displacements and microrotations as a
constructive method for the homogenization process in a heterogeneous
Cosserat body. Recently, homogenization methods have been applied
to disordered Cosserat-type materials without assuming any spatial
periodicity of the microstructures (Trovalusci et al., 2015) and a broad
class of architected materials and chiral Cosserat composites subject to
such micropolar effects (Reda et al., 2021; Alavi et al., 2021).

In the present work, the formal description of the two-scale asymp-
totic homogenization method (AHM) implemented for periodic hetero-
geneous elastic media by Bakhvalov and Panasenko (1989), Pobedrya
(1984), Sanchez-Palencia (1985) and Castillero et al. (1998) is extended
to linear elastic Cosserat media. The AHM procedure is developed
to obtain the statements of the local problems and the homogenized
problem, as well as the effective properties for the 3D linear elastic
Cosserat media. In addition, the analytical expressions of the effective
coefficients are reported for infinite multi-laminated Cosserat compos-
ites with laminate distribution perpendicular to the x; axis and for
centro-symmetric laminated Cosserat composites. The local problem
solutions are characterized by the volume fraction and the properties
of the constituents. Numerical results are shown and discussed for
two examples of centro-symmetric bi-laminated composites with differ-
ent symmetries of constituents: isotropic and cubic. The relationships
between the micropolar and the classical effective moduli are estab-
lished when isotropic constituents are assumed. Finally, the formulas of
the effective engineering moduli of laminated Cosserat materials with
isotropic and cubic constituent materials are reported.

The main contributions of this work are focused on the development
of a fully AHM scheme to find the effective properties of periodic 3D
elastic Cosserat media that are not necessarily restricted to the centro-
symmetric criteria through double scale asymptotic expansions (micro
and macro scales) for the displacements and the microrotations in terms

of the small parameter ¢, see Eq. (6). In particular, centro-symmetric
multi-laminated Cosserat composites with isotropic and cubic con-
stituents are studied. Gorbachev and Emel’yanov (2014) developed a
similar procedure, but they applied an integral formulation for the so-
lution of static and elastic boundary-value problems on heterogeneous
bodies for displacements and microrotations. In the present work, nu-
merical results, engineering constants, comparison between micropolar
and classic elastic media, derivation of effective coefficients for lam-
inated with isotropic and cubic constituents are presented, which are
not provided in Gorbachev and Emel’'yanov (2014). Furthermore, the
effective properties reported here differ from those reported by Forest
et al. (2001) since they assume centro-symmetric materials considering
that the coupling moduli (B;;,,) are zeros. Both approaches are similar
if we consider centro-symmetric constituents where the constitutive
relation reported in Eq. (3) is relaxed or constrained, and the effective
properties match with those reported in Forest et al. (2001). In this
sense, the present work can be considered as a generalization or an
extension of the two papers mentioned above.

2. Heterogeneous problem formulation and basic equations for
micropolar media. Statement of the problem

A three-dimensional micropolar continuum (Cosserat continuum) is
considered as a periodic domain Q with an infinitely smooth boundary
surface 0Q in the Cartesian coordinate system {x;,x,,x; }. For a linear
heterogeneous micropolar continuum Q, the governing equations are
defined by a system of partial differential equations through the linear
and angular equilibrium equations,

0t fi=0, pi;+epoy+g=0 1in Q 0

together with the boundary conditions on 0Q

ui log, =0, w; |y, =0, Hji 1 laa, = Gis

(2)

where i, j,k = 1,2,3 and the subsets 0Q;, 0Q,, 0Q;, and 0Q, of the 0Q
boundary partition are disjoint, such as, 0Q = 0Q; U 0Q, U 0Q; U 09Q.
Here, o;, p;; and ¢, are the components of the stress tensor, the
couple stress tensor, and the Levi-Civita tensor, respectively. f; and g;
define the components of the body force and moment, respectively.
In addition, u = u; is the displacement field vector and ® = o, is
the microrotation field vector, independent of the displacement field.
Also, n; is the unit outer normal vector to d£2 and the functions F; and
G, are the components of the surface forces and torques, respectively.
The comma notation represents the partial derivate relative to the x;
component.
Furthermore, the linear constitutive equations are defined by

0jin; |o:22 =F,

o-ji = Cijmn €m + Bijmn Ynms /"ji = Bijmn €nm + Dijmn Ynms (3)

where C;,,,, and D;;,,,, (m,n = 1,2,3) are the elastic and torque moduli,
respectively, with 45 components each and B;,,, is the coupling moduli
with 81 components. The second order tensors e, and y,,, represent
the asymmetric strain and the couple strain, respectively. Also, in Eq.
(3), the material properties C;;,,,, D;jn, and B;;,, are supposed to be
infinitely differentiable, rapidly oscillating and satisfy the symmetry
conditions

C. =

ijmn

D;jmn = Dy - 4

In addition, the micropolar deformations are fully described by the
asymmetric strain (e,,,) and the couple strain (y,,,) tensors, namely

mnij» ijmn

€nm = Umn + Epns D5 Yam = Oy (5)

Eq. (1) together with the boundary conditions given in Eq. (2) and Egs.
(3)-(5), define the classical boundary value problem associated with
the linear theory of micropolar elasticity, whose coefficients are rapidly
oscillating. Fundamentals of micropolar elasticity theory can be seen in
Toupin (1962), Nowacki (1974), Altenbach and Eremeyev (2013) and
Eremeyev et al. (2013).
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Fig. 1. (a) Heterogeneous laminated Cosserat composite; (b) blow-up of periodic structure; (c) the cross-section of the periodic structure Y at the plane Oy,y; of a laminated

composite.

3. Asymptotic homogenization method: Local problems, homoge-
neous problem and effective coefficients

The homogenized local problems over the periodic unit cell Y,
the homogeneous problem and the effective properties of a Cosserat
media are derived from Egs. (1)-(5) by means of the well-known
AHM (Sanchez-Palencia, 1980, 1985; Pobedrya, 1984; Bakhvalov and
Panasenko, 1989) through two-scale asymptotic expansion for u,, and
®,,, as follows

u, = el ”S.))(x’y) +¢! ufrf)(x,y) +¢? uﬁ)(x,y) + ...,

(6)
W, = el wEr?)(x,y) + &l wﬁ)(x,y) + &2 wf)(x,y) +...,

where the terms uf,’?(x, y) and a)i:,)(x, y) (i = 0,1,2,...) are infinitely
differentiable functions and Y-periodic functions with respect to y. The
superscript (i) denotes the ith term in the expansions. In addition,
the two scales, x = {x;,x,,x;} (macro or slow variable) and y =
{ Vi V2, y3} (micro or fast variable) characterize the macroscopic or
global behavior of the composite and the heterogeneities at microscopic
or local level, respectively. Both scales are related by y = x/e, where
e =1/L < 1 is a small geometric parameter (see, Fig. 1) which defines
the ratio between the characteristic dimension of the representative
volume element (/) and the representative length of composite (L) used
to measure the composite’s properties of interest. Also, as a natural
process of homogenization, the material moduli C;,,,(¥), B;;u,(») and
D;;,,,(y) are functions on the local variable, which means that there
is an intrinsic dependency of the material moduli on the scale pa-
rameter ¢, and therefore on /, but for simplicity, in the present work
we write Cjj,,, Bjj,, and D;,,. Notice that, in Forest et al. (2001),
the homogenization theory is applied to centro-symmetric micropolar
composites using two schemes, denoted by HS1 and HS2. The scheme
HS1 considers a Cosserat length /, and it is used a homogenization
scheme as I, ~ | < L, whereas the scheme HS2 is applied when I, ~ L.
That is, HS2 corresponds to the situation we are dealing with.
Because of the scales separation, we have that,

9f*(x.y)

ox;

where f(x,y); = df(x,y)/0x; and f(x,y)); = of(x,¥)/0y;.
Then, applying Eq. (7) into u,, and w,, (see, Eq. (6)) we have

=fxy),; +e " [ @

+oco
() = 74 x,3)+ Y € [u(,;'f,,(x,y) +uft? (x,y)] ,
i=0

m|n
+oo (8)
-1 ARG 1
D) = 7)) (6, 3) + )€ [wf,if,,(x,y) +aont D, y)]
i=0
and in C;;,,,(»), B;j,,(») and D;;,,,,(y) we get
—1 —1 —
Cijmn,j =€ Cijmn|j’ Bijmn,j =€ Bijmn|j’ Dijmn,j =" Dijmnlj' €)]

because the material properties are assumed to be £Y-periodic in Q.
From now on, the dependency related to x and y is omitted in order
to simplify the expressions, unless otherwise stated.
Let us start by replacing Egs. (3)—(6) into Egs. (1) and (2), and then,
we apply the differentiation rule (Eq. (7)) neglecting the second order

or higher terms, as a result, after grouping by the powers of ¢, the
explicit form of the system given in Egs. (1) and (2) can be rewritten
as

e [Cijmnlj “Er(.?n + Cijmn m|nj + Bijmnlj a’n?m + Bijmn @ ir(l)|)nj:| +

e! [C,-jan ( O 10! ‘) + €ns a)@)

*+Cijmn (Zu;?l)nj Sl)n/ + €ns wi‘j).) +

Bijmnij (@ ( o @i ) *+ Bijmn (waﬂ)l)nj +“’2|)n/)] + (10)
€0 [C,-jm,, [ fr?)n/ + 2u(l|)nj + ”E:|)n/ + €ns (w(o) + wi}})]
+Bijmn (wﬁ)n + “’Enzfn) +
Cijmnlj (uErPn + "£:|)n + €mns wﬁ”)
+B;jn | @, ( Eg)nj + ZwEil)nj +a)£3|)nj> + f,.] =
and
e [Bumnlj “Er(.)|)n + Bijmn 4 m|n] + Dl w0| + Dijn @ :v?l)nj] +

- (1 0
€ [B,-jm,,‘j (uﬁn)n + Ui + €pmns co(? ))
O ey )+
slj

m|nj
(wﬁr?)n + oV ) + Djjpy <2w(0) + oV )

mln m|n,j m|nj

+B ;jmn (214(0) +u

mn,j + €pns

D

ijmn|j

)
+€ijk (ijmn m|n + Bkjmn m|n)] +
0 (0) 1) (2) (0 (1)
& [Bij'”" [ mnj 2u'"|"J F Uyapj ¥ Emns (w +wsll)]

1 2
+D, <wfn)n +o? ) +

mln

1 (0) 1 2)
cog)>+D,-jm,,( +20" +o .)+

m,nj m|n,j m|nj

0 0 (1) —
a)g )) + €k Bijmn (a)fn)ﬂ + a)mln) + gi] =0.

1 2
Bijmn|j (ugn)n + um|n + Emns

0 (1
+€ik Crjmn (ufn)ﬂ + Uln + €pns

an
2%, 2%, 2, 3,
where = 2 dm L= 2 dm = 2JIm  and = m_
f'”’”l 0x;0x, f"‘"’vl ox;0y,’ fm,,,“ ay;0x,° f""”f 9y;0y,

From Egs. (10) and (11), a sequence of problems defined by a system
of partial differential equations arises, according to the powers of &
small parameter. Each contribution is assumed equal to zero for all
powers of e. Subsequently, the resulting problems are solved under
suitable conditions in order to guarantee the Y-periodic solution. Only,
the powers —2, —1 and 0 of ¢ are enough for finding the local problems,
effective coefficients and the homogenized problem.

The terms corresponding to =2 can be written as a system of partial
differential equations, as follows
(Cijmn ”O + B; (O) >|j =0,

mln ijmn m|n
(0) (0) —
<Bf]'m” umln + ijm" m|n>|j -

© and o©
mln mln

y. Then, it can be proved that the terms 1"’ and ' are independent

12)

where the unknowns u are defined as a function of x and



functions of the local variable y from Eq. (12), i.e.,

WO,y =u,x), 0y =w,. (13)

Similarly, the terms corresponding to e~! can be written by a system
of partial differential equations that result from Eqgs. (10) and (11)
and considering that the derivatives of u'”(x) and »”(x) are null with
respect to the fast variable y (see, Eq. (13)), as follows

1 0 0
(Comn ), + Comnty (42 + s )

(1) 0
+ (B @ )| + By @0, =0,

mln

(1) 0 0
(Bijm" m|rl>\/ + B'!’""U ( g )n + Emps w,(r ))

+ (D,. o “’fil)n),j Dy @), = 0.
Analogous to the system in Eq. (12) related to €72, a solution of Eq. (14)
is found in the class of Y-periodic functions with respect to y. Therefore,
it is expected to have solutions in a similar way.

Firstly, the strains and couple strains expressions associate with the
Cosserat theory of elasticity (see, Eq. (5)) are rewritten in two-scale
series expansion form. So, by substituting Eq. (6) into Eq. (5), we have

(14)

-1,0 0(,0© 0 )
e = E um|n+£ (ufn’)n+€m ()+u‘>
te (u;:v)nJrem <|>+u<2|) )+ 15)

Yam = Oy = £ w(O) +e€ (C()i,?)" +C0(l) )+6 (C()(l) +w(2) )+ [N

mln min min

where u(o|

are given by

and o

I are null (see, Eq. (13)) and the kth terms (k > 0)

ot + o) (16)

e(k) (k+1)
nm m| m|

+ u(k) + €, a)gk), y/,(lm)
The first terms ¢} and y % (k = 0) are given by the expressions

O =) +u0 e,

Cum m|n

1
@ and y© = o' ‘) + a)ﬁ%. a7

Due to the linearity of the system (Eq. (14)), a solution for ufj)(x, y) and
wf,i)(x, y) is admitted in the class of Y-periodic functions with respect to
y through the variable separation method (see, for instance, Otero et al.
(1997)), as follows:

s

(1) 0) (0)
@, (%, y) = 4 m(y)( a T €pas @ )+

W,y = oK) (u;f; +Cpgs w<°>) + pgUn) 0@ + i),
. 18)

(0) (1)

paMun(¥) @)+,

where , N, ), ,0Un®); pgVu®), and ,, M, (p.g = 1,2,3) are Y-
periodic functions on y, which are defined as local functions. The terms
i) and " are constant vectors.

In addition, as the strains are related to microrotations whereas the

couple strains are not related to the displacements, the functions ,, Nm|n

and qum|n can be redefined as
qum|n = qum|n + €mnk quk’ qum|n = U |n €mnk quk’ (19)
where the ,, N, and , U, pg-displacements and the ,V, and , M,

pg-microrotations are Y— periodic functions too.
Now, replacing Eq. (19) into Eq. (18), and then, the resulting
expressions into Eq. (14) and collecting with respect to u( ) 4+ €pq w§°>

and o

».q> WE have

0 ©0)
Vm‘,,]“ (u( ) 4 €pgk @y ) +

] (0) —
ijmn pq m|n IJ ’

(0)
Vk) + Dijimn qumlﬂ]U (u;,z)l + €pg O )+

M)+ D, M, U wg{; =0.

[Cijpg

[B

+ Clijl (qumIn + €k quk) + Bz/mn Pq

+Czjmn(

Nm\n + €pnk Pq

ijpq U min + €mnk quk) +B;

[Bijpg + Bijmn (,

+ B;;

ijpq
[D;

ijpq ijmn ( m|n + €mnk Pq ijmn pq

(20)

(0) (

Next, as u, and a)(O) are not null in Eq. (20), then, the strains

satisfy

+e

(c

ijpg + Ci
(B

ijmn ( Nm|n + €mnk quk) + Bijmn qum|n)|j =0,

N, |n €mnk qu/k) + Dijmn qum\n)‘ =0,

and the couple strains

(21

700+ Bijmn (ng

+C;;

ijmn ( 2

( ijpq Umln + €k quk) + Bljmn qum|n)|j =

(D (22)

+B;; U M)+ D,

ijpq ijmn (M min + €mnk pq ijmn pq Mm|”)|j =
Equations (21) and (22) are the problems on the periodic cell Y related
to the micropolar theory of elasticity (so-called local problems), which
we denote as pqE‘ and pqﬁz, respectively. The solutions of the local
problems are important for the computation of the effective properties.

From Egs. (10) and (11), the terms corresponding to £’ can be
rewritten as a system of partial differential equations, as follows

(2)

(Cijmn + Cl]mn myl + Cljmn mns a’gl))”

mln

(2) 1
+(Bijmn +Bl]mn ( ))|j+

mln m,n

(1) (0) (0)
Cijmn m|,,j+ctjmn( mnj+€mns 51>

1
+B,,, o) +B, j+f,-:0,

ijmn m|n,j ijmn m
2) 1
(Bijmn m\n + Bumn m,n + B[jmn emns COE- ))\j (23)
(2) 1
+ (D,-jm,, “’m|n + Dijpn E")")U +

B,

ijmn m|n]

) (1) ()
+B,-jm,, (u i ) S]>+D,Jm,, .+D,-jmnco +

m,nj m\n,]
(1 0 0
€ijk [ijmn um‘,, + ijmn (“En,)n + s w(y ))

(1) 0
+Bkjmn wm‘,, + Bkjmn win)n] +8 = 0,

then, applying the average operator (s)y = [, (+)dy into Eq. (23) and
considering the y-periodicity of the involved functions, it yields

(1) 0) (0)
<Cijmn m\nj + Cljmn ( m,nj + €mns COS,/.)
+B,,, 0" +B, o v +f;,=0,

1ymn ml"] ljm'l m,nj
1) (0)
<Bijmn um|nj + Bijmn um'nj + €mns ws,j

+D,, o +D, > + @9
Y

ijmn m|nj ijmn m,nj

(1) (0) (0)
eijk <ijmn um|,, + ijmn (um,n + €nns O )

1 0
+Bkjmn a)in‘)n + Bkjm,, cofn’),,>Y +g =0.
Finally, replacing uﬁ) and mﬁ,? (see, Eq. (18)) into Eq. (24), and

grouping terms conveniently, we obtain the homogenized system, as
follows

) © W ®
Ciing (“p,q * Epgk @ ) + Bupq paj T 11 =0
* (0) (0) * 0)
Bi/liq ( )X te pak P >’j + Diqu wp,q (25)
* (0) (0)
+e, [C,m ( +ep ) + B, o ] +g,=0,

where u ) and w(()) are the system solution, and the coefficients Cwq
B;pq d Diqu represent the effective properties of a periodic Cosserat
medium, which are defined as follows

szq (Cupq + Ctjmn ( NMIn + €k quk) + Bijmn quM\'l)Y ’ (26)
Blqu (Bupq + Cumn (qumIn + €k pq Mk) + Bumn rq Mmln >Y ’ (27)
Blqu (Bupq + Bumn (pq min + €mnk quk) + Dtjmn »q m|n>Y B (28)
Dszq (Dupq + B!Jmn (qumIn + €k pq Mk) + Dumn pq Mmln >Y : (29)

The effective properties (Egs. (26)-(29)) coincide with those reported
by Gorbachev and Emel’yanov (2014), see, Egs. (3.27)-(3.29), page
77, and also with Forest et al. (2001), see Eq. (46), page 4594, for



centro-symmetric micropolar materials. The latter is obtained when the
constitutive relations (Eq. (3)) are constrained to the case B,;,, = 0,
then Egs. (26)-(29) become

ijpq

lqu <Clqu + Cijmn pq Wl\”)Y ’ Dlqu (Dupq * Dijimn pq m|">Y

Herein, it is important to note that the homogenized system (Eq. (25))
subject to the boundary conditions

0, 0
M(O) |6§1=0 () = =F() w(o) =0,

Cji M |z)£22 i P |dﬁ3

) (V)]
Hji |aQ4 =G, (30)

where i, j,k,p = 1,2,3, represents the homogenized problem formula-
tion, defined on ﬁ, which is equivalent to the boundary value problem
(Egs. (1)-(2)) of a periodic Cosserat media. Here, Fi(o) and Gfo) are
infinitely differential functions and 0Q = 0Q, U dQ, U 0Q; U 0Q,.

In addition, the effective properties formulation (Egs. (26)-(29))
depend on the local pg-displacements (o N and 2gUnm) and the local
pg-microrotations (qum and oM ) relatlve to the El and pq£2 local
problems, therefore, they need to be determined.

This way, the pqﬁl and ME2 local problems are given by the systems
Egs. (21) and (22) subject to the corresponding homogenized perfect
contact conditions and null average conditions for the local functions,
respectively, as defined below:

The pqﬁl local problems allow to find the y-periodic local functions
pgNm and .V, in the periodic cell Y through the solution of the
problem:

(Ciqu + Cijin (qumln + Emnk quk) + Bijmn qum|,,)|j =0, inY,
(Bijpg + Bijmn (pgNomin + €mnkc pgVie) + Dijnn pgVmin); =0. in Y,
[ Na]] =0, [[peVul] = 0. over I, G
[[pq"}i "j“ =~ [[Cijpgl] 1} [[pqldﬁ n,” = —|[[Bi|] n;. overT,
where
pa /‘ = Cijmn ( Nl + Emni quk) + Bijmn pqVimins
paf = B (g Nt + €mnkc paVe) + Dijmn paVonln:

Analogously, in the ME2 local problems, the y-periodic local functions
»qgUn and ,, M, are sought in the periodic cell Y, which result from the
problem:

(Bipa + Cijon (paUnin + €mnkc pgMi) + Bijn pgMoa) ; =0, in Y,
(Dijpg + Bijmn (pgUnin + €mnkc pgMi) + Dijmn pgMpjn) ; =0, in Y,
[[pgUnl] =0 [[peM.]] =0, over T, (32)
Hpq"i‘ "j“ =~ [[Bijpgl | ;- Hpq/l,z-; "J” = —[[Dyjpy]] ;> overT,
where
anjzi = Cijmn (pgUnin + €mnk pa™Mi) + Bijmn pgMomns
Pqﬂjz'i = Bjjmn (qumln + €k pg M) + Djjmn pgMpmin-

Additionally, the following conditions over Y are required to guarantee
the existence and uniqueness of the local problem solutions,

<qufn>Y =0, <qu'n>Y =0, <MUM>Y =0, <qum>Y =0. (33

where (e)y = (1/ |Y|)fY(-) dy is the average operator of (+) over the
periodic cell Y. Also, the double brackets symbol [[ /]] denotes the jump
of the function f across the interface surface I and #; is the unit outer
normal vector to I'.

4, Effective coefficients of multi-laminated Cosserat media

In this section, the local problems (Egs. (31)-(33)) and the effective
coefficients (Egs. (26)—(29)) are reformulated for a heterogeneous finite
periodic laminated Cosserat composite Q with boundary 9Q. Thus,
a laminate composite characterized by a parallelepiped generated by
repetitions of the periodic cell Y is considered, in which the layered

direction is along the x;-axis, see Fig. 1. Herein, the Cosserat material
properties C;y, By and D, only depend on the coordinate x; and
they satisfy the symmetry conditions of Egs. (4).

The periodic cell Y = {(y;,5.33) €R? : 0 <y, <1;} with i =1,2,3
is assumed to be a bi-laminated composite, where /; is the cell length
in the y; direction and L is the plate thickness. The interface region I
between the layers is considered perfect, i.e., the layers are in welded
contact so that the displacement, stress, microrotation and couple stress
are continuous across the interface.

In this framework, the unknown local functions 2aNms pgUnms pgVims
and ,,M,, only depend on y; as well. Therefore, the local problems
(Egs. (31)=(33)) in Y turn into a system of ordinary integro-differential
equation under perfect contact conditions, as can be seen below:

The ,,£! local problems

(
(B

+C;
+ B;

N! +C =0, inY,

Vk + B13m3 Pq m)
i3m3 qum + Bi3mn €mnk quk + D13m3 pq m) =0, in Y, (34)

[[pgNul] =0, [[pqVu]] =0 overT,
“pq“;; ] =~ [[Ci3pq]] n3, [[pq/"}[ nl]=-[[B ,-3pq]] ny overTl,

l —
where pq 3, - Ct'&m% qu + Cﬂmn €mnk qu/k + B

Bi3m3 qu + Bszn mnk quk + Dr?mS qu

m*

3pq 3m3 pq 3mn €mnk Pq

i3pq

V and

1 _
i3m3 pq paH3; =

Analogously, the pqﬁz local problems

(Bispg + Cisms pgUn + Cimn €mnkc pgMic + Bizmz pg M), ) =0, inY,
(Dizpg + Bisms pgUn + Bismn €mnk pgMy + Dizyy pg M), )'=0, inY, (35)
[[pq ” =0, [[qum” =0 overl,
“pq”%i || =~ [[BBM” 3, Hpq”gi || =~ [[DBM” ny overl,
where 63 = Cisun pUp + Ciamn €mnc pgMi + Bizms pqM,, and u3, =
Bisms pgUp, + Bisun €mnk pgMi + Dizys pg M-

Additionally, null average conditions over Y are required to guaran-
tee the unique solution, i.e., <qum>Y =0, <Pqu>Y =0, <Pqu>Y =0
and ( qu,n)Y = 0. In Egs. (34)—(35), the prime indicate the ordinary
derivative of the function with respect to ys.

Consequently, from Egs. (26)-(29), the corresponding effective
properties for a periodic laminate Cosserat composite are

Clqu (Cupq +Cijms (qu + €3k quk) + Bijm3 pq />Y s (36)
Blqu (Bupq + Cijm3 (MUm + €mak quk) + Bijus pq M,l,,>y , 37)
Blqu (Bupq + Bum3 (qum + €mak quk) + D!jm3 Pq ,>Y’ (38)
Dlqu (Dupq + Bijm3 (qum + €mak quk) + Dijm3 qu,l,,>Y . (39

As can be seen, the analytical formulas of the effective coefficients (Egs.
(36)—(39)) depend on the local functions qum, MV,;, qum, M, , the
constituent material properties and the volumes through the average
operator on the periodic unit cell Y. Therefore, once the solutions of
the MC‘ and Mﬁz local problems have been determined, the effective
coefficients of a Cosserat laminated media can be computed by replac-
ing the local functions and their derivatives in them. Details of the local

problem solutions are shown in Appendix.
4.1. Effective properties of centro-symmetric laminated Cosserat composites

Now, the analytical formulas of centro-symmetric laminated
Cosserat composite are determined. A periodic Cosserat material is
defined as centro-symmetric if —I (I is the second order identity tensor)
is a symmetry transformation of its constitutive law. In this case,
B, are not considered due to the symmetry condition B;;,; = B,;
not being fulfilled. This condition implies that the stresses and the
couple stresses no longer depend on the microcurvatures and strains,
respectively, because B;;,, is related to the coupling between stresses
and microcurvatures and between couple stresses and strains.



Table 1
Local problems and associated Cosserat effective properties.

Il£l 22[:I 33£1 12[:I l3£1 23£| ZIC1 '5I£I 32['1
Ci”' Cim Ciim 0 0 0 0 0 0
Cony Cpmy Crss 0 0 0 0 0 0
C33]1 C3322 C3333 0‘ 0 0 0$ 0 0
0 0 0 Chi 0 0 Cro o 0
0 0 0 0 Clais 0 0 Clyy 0
0 0 0 0 0 Crans 0 0 Crn
0 0 0 G 0 0 Con o 0
0 0 0 0 Chis 0 0 i 0
0 0 0 0 0 Chry 0 0 Com
lll:2 ZZE- 33£2 125- 13£2 23‘22 2]£2 31£2 32[:2
Dll]l D;lZZ Dl133 0 0 0 0 0 0
Dgzn DgZZZ Dgzsz 0 0 0 0 0 0
D33|| D3322 D3333 0 . 0 0 0 . 0 0
0 0 0 D,, O 0 D, 0 0
0 0 0 0 D,, O 0 D, O
0 0 0 0 0 Dy O 0 Dy
0 0 0 Dy O 0 Dy O 0
0 0 0 0 D,,, O 0 D, O
0 0 0 0 0 D, 0 0 D,y

™
B
ISt
b

Then, let us write the condition explicitly B = 0, therefore

applying this condition into Eq. (A.12) we have

ijpq
pgVm =0 (40)

In order to find the local function ,,V,,, it is necessary to integrate Eq.

(40) assuming that {,,V,,) =0, such as

L L
paVm =/0 gV dY = </0 20V dy> =0. (41)

Taking into account B, jpg =0 and Egs. (40) and (41), the expressions
Egs. (A.11) and (A.16) become

’_ el -1 \~! -1 —1

pa¥m = Coaz <C13k3> <Ck3d3 Cd3pq> = Cai3 Cizpg> (42)
' _ -1 —1 —1 —1

paMy = Dm313 <Dl3k3> <Dk3d3Dd3M> - Dm313Dl3pq' (43)

Finally, replacing Egs. (40)-(43) into the statements Egs. (36)-(39), the
effective properties of centro-symmetric micropolar laminated compos-
ites can be found as follows,

c

- 1\l /e
iipa = <Ciqu +Cijms Cm3113 (<C13}c3> <Ck31d3 Cd3pq> - C13pq)>Y . (44
D:qu = <Diqu+ Dijm3 Dr_n;B (<D1_31k3 <DI:3ld3 Dd3ﬂq> - Dl3pq)>Y’ (45)

B, = 0. (46)

%

It is important to remark that the expression of Cf.ff (Eq. (44)) coincide
with the formula (Eq. 1.12, page 145) of Pobedrya (1984), considering
a classical Cauchy elastic problem.

Details of Cosserat centro-symmetric materials can be found in
Eringen (1999) and Zheng and Spencer (1993). The correspondence
between the non-null Cosserat effective coefficients and the local prob-
lems is given in Table 1.

5. Numerical results

In this section, the effective properties (Egs. (44)—(46)) are reduced
for a centro-symmetric laminated Cosserat composite with isotropic or
cubic constituents. In addition, the numerical values of the effective
properties for a centro-symmetric bi-laminated Cosserat composite are
computed for both constituent symmetries, and the results are analyzed
and discussed. As a limit case, a comparison is reported between
classical and Cosserat effective elastic properties for a laminated com-
posite with isotropic constituents. Finally, the analytical formulas of
the effective engineering moduli are reported for centro-symmetric bi-
laminated Cosserat composites with isotropic and cubic constituent
materials.

Since the constituent materials are considered centro-symmetric,
then, the orthotropic symmetry and all orthotropic sub-classes, i.e., trans-
versely isotropic, cubic, and isotropic, are also considered centro-
symmetric, see Zheng and Spencer (1993).

5.1. Centro-symmetric laminated Cosserat composites with isotropic con-
stituents

Assuming that each layer possesses isotropic symmetry, the con-
stituent properties are rewritten as a function of six independent con-
stants, see for instance Nowacki (1986) and Hassanpour and Heppler
(2015), in the form

Ciipg = C11220;6pg + C12120ip0 ;4 + C12210i46 > 47
D;jpg = D112260,4 + D121261p6 4 + D12216i46 > (48)
where B;;,, is vanished and §;; is the Kronecker delta tensor and
i,j,p.q=12,3.

In addition, the following restrictions derived from the positive-
definite quadratic form of the internal energy are assumed (see, Eringen
(1999))

Cio12+Cip1 >0, Cipip = Cio >0, 3Cy1p3 + Crapp + Cipoy >0,

Dyp1y + Dipo1 >0, Dipip = Diggy >0, 3Dy + Digpp + Diyg > 0,

(49)
and the stiffness C;;,, and torque D;;,, moduli are defined in matrix
form as

Cin Cun  Cun 0 0 0 0 0 0

Cin Cin 0 0 0 0 0 0

Cin 0 0 0 0 0 0

Cian 0 0 Cin 0 0

Cijpg = Cip 0 0 Cia 0
Cin 0 0 Cini

SYM Cian 0 0

Cin 0
Cian

(50)

and
Dy Dy Dy 0 0 0 0 0 0
Dy Dy 0 0 0 0 0 0
Dy, 0 0 0 0 0 0
D]le 0 0 DIZZI 0 0
Dijpy = Dyy1p 0 0 Dy 0
DIZIZ 0 0 D]ZZI
SYM Dyyyy 0 0
DIZIZ 0
D1212

(51)

where Cyyy; = Cyjpp + Cpp1p + Cippp @and Dyyyy = Dyjpp + Dyppyp +

D5, see Eringen (1999) and Eremeyev and Pietraszkiewicz (2012).
The C;;,, and D;;,, matrices are characterized by three independent
components each: (Cyj3;, Cp12, Cia21) for Cjjp,y and (Dy1p2, Di212: Dyggy)
for D;;,,. An analysis for the linear isotropic equations associated to the
theory of micropolar elasticity and his representations are provided by
Hassanpour and Heppler (2015).

Then, replacing Egs. (47) and (48) into Egs. (44) and (46), the an-

alytical expressions of the non-null effective properties C;M and D;.pq



for centro-symmetric laminated Cosserat composites with isotropic con-
stituents are found as follows:

Clint = Cayyy = (Criza + Ciapp + Ciony)

—~(Cl 13 (Crizo + Cpopy + Cip) ™)+
(Ciza €1z + Cpapa + Cron) ) {(Cring + Ciapp + Cron) ™) 7
Cis3 = {(Ciiz + Cropy + Cipp) ™7,
Cl 12y = (Criza) = (C%, (Crigy + Cpapy + Crop)) ™+

(Criz (Cryzp + Cpapy + Ciop) ™Y (Crigp + Crapp + Crp) ™) 7, (52)

N " " « RN
Ciop = Copp; =(Cia12)s Cyp3 = Cogpy = (Cp0) s
. p )
Clix3 = Crp3 =(Ci1nn (Crimy + Cropp + Cip) ™)

((Ci1zp + Cropa + Cip)™H 7,
Cypa1 = (Ciain) +(Cimay Cl)HCRLL) ™ = (€ CL)-
Cr221 ={Ci21), Cr331 = C;332 ={Cix C1_2112)(C1_2112>_1’
and
D)\, = Dy = (Dyyn + Dingy + Diny)
—~(D}15, (Di12 + Dpapy + Diny) ™ )+
(Dy125 (D122 + Diap + Dyoa)) ™ VH(Dy120 + Digga + Do) ™) 7,
D;333 =((Dy1p2 + Dypip + Dypo) ™) 7,
D)1y, = (D122} = (D}, (D112 + Dippa + Dympy) ™ )+

_142 11
(Di122 (D112 + Digin + Digo))™ YD1z + Diopp + D)™ )™, (B3)
. . . . o
Diy1p = Dypyy =(Di212)s Dygp3 = Doy = (D1ppp) 7

D33 = Dayyy = (D11g (Dyimg + Digi + Digp)™)
((Dy12 + Dpagy + Dygp) )7,
Dyy5, = (Do) + (Do D) (D)™ = (D DIy)s
DTZZI = (Di21), 07331 = D;332 = (Do D1_2112><D1_21|2>_1~

In Egs. (52) and (53), the symbol (f) is the Voigt’s average (average
operator) of the property f. Also, in case of a bi-laminated composite,
(fy = fOV, + f@V, where V, and V, represents the volume fractions
per unit length occupied by the layer 1 and 2, respectively; such as,
V| +V, =1, see Fig. 1(d).

As it can be observed in Egs. (52) and (53), the resulting homoge-
nized material has orthotropic symmetry restricted with the invariance
of stiffness and torques under rotations of 90° about the unitary vector
e;, i.e., it is described by eighteen independent effective properties, see
Eremeyev and Pietraszkiewicz (2012). Also, it can be noticed that the
effective coefficients given in Eq. (52) match with those reported by
Pobedrya (1984) (Eq. 1.19, page 147) when C,,, = Cjy,. This limit
case allows reproducing the effective coefficients of laminate compos-
ites with isotropic constituents in the framework of classical Cauchy
elasticity, as in Pobedrya (1984). In addition, it is worth mentioning
that the expressions of these coefficients (Eq. (52)) do not match with
those reported by Emel’yanov (2016) because different constitutive
relations for C;;,, and D;;,, are used. We follow the same reported by
Nowacki (1974) and Lazar and Kirchner (2005).

From now on, the non-null effective properties for a bi-laminated
Cosserat composite with isotropic material constituents are shown as a
function of the volume fraction. The values of the material properties
for the numerical computations are established by the data given in
Table 2 and the relations Cjjp, = A, (Cia12 + Ci1221)/2 = 4, (Ciagp —
Cin1)/2= @, Dy =B, (Dppip+Dippy)/2 =y, and (Dyy15 = Dyyyp)/2 = e,
which represent the Lamé coefficient, the Lamé shear modulus, the
micropolar couple modulus and the remaining ones define the Cosserat
or micropolar elastic constants. Following these relations an equivalent
representation of Egs. (47) and (48) can be obtained (see, Lazar and
Kirchner (2005)). Constituent materials with a full set of micropolar
elastic constants measured are reported by Hassanpour and Heppler
(2015). It is important to note that, despite several studies carried

Table 2
Constitutive material properties.

Material properties A (MPa) u (MPa) a (MPa) p (N)
Syntactic foam (hollow glass 2097 1033 114.8 -2.91
spheres in epoxy resin)

Dense polyurethane (high 762.7 104 4.333
dense polyurethane foam)

y (N) e (N)
4.364 -0.133

—26.65 39.98 4.504

out in micropolar media, further research is needed focused on the
determination of the material constants.

Fig. 2 plots the effective elastic (Figs. 2(a) and (b)) and torque
(Figs. 2(c) and (d)) properties for a homogenized bi-laminated Cosserat
composite (layer 1/layer 2) = (Syntactic foam (SyF)/Dense
polyurethane foam (PUF)) as a function of V; volume fraction. From
Figs. 2(a) and (b), it can be noticed that all effective elastic properties

have a monotone increasing behavior, e.g., C;,,, and C| ,, in a linear

manner in almost whole volume fraction, C1*212 and Crzm as linear
functions and the other ones in a convex form. Also, the latter ones
have a higher growth rate as V, approaches 1. On the other hand, from
Fig. 2(c) and (d), it is worthwhile to mention that there is a different
effective behavior. When V, increases, the effective torque properties
decrease except for DI122 and Dim. These last two properties have the
peculiarity of being negative. In particular, DTI 43 8rows in a concave
form for all V, values and D:m has a minimum for V, = 0.092.
This negative behavior is due to the D,;,, Cosserat twist coefficient
influence, which is negative for both constituents. D,,,, is negative for

micropolar isotropic solids (see, Hassanpour and Heppler (2015)).

5.2. Comparison between Cauchy and Cosserat effective properties

As mentioned before, micropolar media can be reduced to classical
or Cauchy media. In the classical theory of linear elasticity, the effective
moduli D;pq do not exist, and the effective stiffness moduli C;.pq
are defined by five independent constants, which corresponds to a
homogenized material with transversely isotropic symmetry. Therefore,
the effective properties of laminated Cosserat composites with isotropic
constituents can be reduced to the classical effective stiffness properties
making Cfm = Crzzl’ DIIZZ =0 and D:212 = Dylszzl =0.

Then, from Egs. (52) and (52), the stiffness moduli are given by:

Clcm = Czczn =(C1zm +2C)12) — <C12122(C|122 +2C )"+
(C1122(Cr12p + 2C1012) ™ HY(Cy1gp +2C )77

Ciis = ((Crimp +2C )™ H7,
Cliy = (Ciiz) = (€1 (Crizy +2C101) ™)+
(C1122(Ch1an +2C1012) ™Y (Cy gy +2C151) ™7,
Clias = Cr33 = (Ciina(Criny +2C1510)  W(Criop +2C1 )7 7,

Cc  _ C _C  _ -1 -1
C1212 ={Cin) C1313 - C2323 - <01212> >

(54

C _(C _C ; C
where Chi, =(Chyy Clm)/Z. Here, the notation Ciqu represents the

classical or Cauchy effective property (effective stiffness moduli) and
they satisfy the classical symmetry conditions CSM = C[?q,.j = C,.qu =
C/.C[pq. The resulting composite has hexagonal symmetry. Notice that, a
good agreement is obtained with the expressions reported by Pobedrya
(1984), page 147.

On the other hand, if we assume that all the material parameters

given in Table 2 are null except Cy;5, = 4 and Cj,, = pu, it can
be obtained that the effective Cosserat and Cauchy properties satisfy
. . P = c
that €, = C C 202 “3333 3333 Ciip = Cripp and
. C T c « c
: C .whereas Con=Co #Chpn and Caps # C131.3’ from a
direct comparison between Egs. (52) and (54). Hence, the differences
between the Cosserat and Cauchy effective elastic moduli need to be

_ C _ C
111 i G = € C =C 1122
Ciiss = Clisp
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Fig. 2. Effective elastic and torque properties for a homogenized bi-laminated Cosserat composite (SyF/PUF) with isotropic constituents as function of V, volume fraction.

Table 3
Classical (CSM) and Cosserat (C:JM) elastic effective properties for a bi-laminated

composite with isotropic constituents.

Table 4
Deviation between the effective Cauchy (C€ ) and Cosserat (C’

! iira wu;) elastic properties
and relative errors.

Effective properties (GPa)

Deviations (GPa) and relative errors:

Vi Chn=Cuy Clczlz C;zu G C;BIS C1C313 Cian

0 0.10833 0.10400 0.09967 0.10833 0.10833 0.10400 0.09967
0.1 0.21228 0.19690 0.18152 0.15451 0.11912 0.11428 0.10816
0.2 0.31623 0.28980 0.26337 0.20217 0.13230 0.12681 0.11854
0.3 0.42017 0.38270 0.34523 0.25187 0.14875 0.14243 0.13149
0.4 0.52412 0.47560 0.42708 0.30445 0.16987 0.16243 0.14812
0.5 0.62807 0.56850 0.50893 0.36138 0.19798 0.18897 0.17026
0.6 0.73201 0.66140 0.59079 0.42522 0.23725 0.22589 0.20118
0.7 0.83596 0.75430 0.67264 0.50110 0.29594 0.28072 0.24740
0.8 0.93991 0.84720 0.75449 0.60091 0.39321 0.37071 0.32399
0.9 1.04385 0.94010 0.83635 0.75980 0.58576 0.54562 0.47562
1.0 1.14780 1.03300 0.91820 1.14780 1.14780 1.03300 0.91820

shown for only unequal properties; see Table 3. Fig. 2(a) and (b) can be
used to analyze the Cauchy effective property due to equality relations.

Table 3 illustrates the values of the Cosserat and Cauchy elastic
properties for a bi-laminated composite with isotropic constituents as a
function of V; volume fraction. The Cauchy elastic moduli is calculated
considering the material properties given in Table 2. Notice that the

effective properties C

linearly as V, increases. Also C
whole volume fraction interval. A similar behavior occurs for C

*

1212°

C122I

*

1221

C
and Chn

< cC

1212

<C

1212

are positive and increase

is satisfied in the

1313°

Error 1 = |Cy,,/C,,| x 100%, Error 2= |G, /C; | x 100%
v, Chois Coin Error 1 Chas Error 2
0.1 0 —0.001075 0.69594 0.000636 0.55643
0.2 0 —0.006131 3.03255 0.001393 1.09861
0.3 0 -0.010699 4.24773 0.002309 1.62122
0.4 0 —0.014563 4.78325 0.003437 2.11592
0.5 0 —0.017361 4.80407 0.004855 2.56887
0.6 0 -0.018429 4.33400 0.006675 2.95521
0.7 0 -0.016411 3.27496 0.009055 3.22551
0.8 0 —0.008045 1.33873 0.012105 3.26535
0.9 0 0.016937 2.22917 0.014929 2.73616

Cfm and C?zn’ but they increase in a convex form and we have

. 3 p p .
that C,,,, < Cj5;3 < Cj5;3 < G5, The differences between Cauchy

and Cosserat elastic properties are more noticeable for larger volume
fractions.

From Table 3, it is also worthy to mention that CC
to the average of C

C
for Ch

and C,

13 ° 7 318l
between C

1212

¢

1212 and

throught the average between C
and C€

1313°

*
C1221 :

1212

*

1313

are related
Similar behavior can be remarkable
and C1*331’ and
respectively. From numerical experiments we

can confirm that the deviation is linked to the mean values through the
following relations

—

C1212

=cC

*

1212

C1212

+C
2

*
1221

B

(55)



c..+C

=% C 1313 1331

C1313 C13l3 2 ’ (56)
. cC +c€

=% 1212 1313

C313I - C%131 2 ’ (57)

and the results are illustrated in Table 4. An analysis of the relative
error is also shown.

are close
CC

From Table 4, it is concluded that sz, C;B and le
to zero and they represent an error less than 5% of the le, 513
and le, respectively. Thus, in this case, a relation can be established
between the classical and the Cosserat elastic moduli for the isotropic

case as follows,

c . c
Chpp = (Cippp + Cp)/2, Cpyp (C1313 + le)/z

* C
Gz ® (C1212 +Cp13)/2. (58)

5.3. Centro-symmetric laminated Cosserat composites with cubic

constituents

Now, we consider that each layer possesses cubic symmetry, then,
the constituent properties can be rewritten as a function of eight
independent constants, in the form

Ciing = C11220ii6,, + C12126;,0,, + C12216;,0;

ijpq ij%pq ir%iq iq%p
+(C1111 — Ci122 = Cia1a — Cioa1) 61y (59
Diqu D11225l]5pq + D121261p51q + D122151q61p
+ (Dy111 — Dy1aa — Dyaga — Dioay) 61y (60)
where B,;,, is null and §;; is the Kronecker delta tensor and the four
order tensor §;;,, is defined as follows: 6,;,, = 1 if i = j =r = s, else
8;jrs = 0. As in Section 5.1, an equivalent representation of Egs. (59)

and (60) can be obtained through the relations Cj, = 4, (Cjpp +
Ci21)/2 = #, (Crin = Criza = Ciaiz = Ciomp) = 1, (Cpapp = Ciopy)/2 =
@ Dy = p, (Dpapy + Dip1)/2 = v, (Dpap — Dippy)/2 = €, and
(Dy111 — Dyy2y — Dyayy — Dypay) = v, where 4 and p are the Lamé param-
eters, 7 is the classical cubic constant or anisotropy constant, « is the
micropolar couple modulus, and #,7, ¢, and v represent the additional
micropolar elastic constants introduced in micropolar theory.

Similarly to the isotropic case, restrictions derived from the positive-
definite quadratic form of the internal energy are assumed, see Eringen
(1999), i.e.,

Cii2+Cip >0, Cippp—
Ciiin —Crux >0,

D315 + Digyy > 0,
D11y — Dyjpp > 0,

Cin >0,

2C»n +Ciy >0, 61)
Dyy15 = Dypp >0,

2Dy + Dyyyy >0,

and the stiffness C;;,, and torque D;;,, moduli have the same matrix
form of Egs. (50) and (51) but Cjj;; # Cjjo + Ciopp + Cixy and

Dyyy1 # Diioy + Digia + Dy

In this case, the material symmetry group related to constituents
cubic symmetry has rotations of 90° about all orthogonal axes with
unitary vectors e, (k = 1,2,3). Some details of the mathematical
foundations, material symmetry regulations, and stability of micropolar
media are given in Eringen (1999) and Eremeyev and Pietraszkiewicz
(2012). The explicit structure of C;;,, and D;;,, tensors are reported by
Zheng and Spencer (1993) for fourteen symmetry groups.

Then, replacing Egs. (59) and (60) into Egs. (44)—(46), the non-

null effective properties Cwq and Dl/pq of centro-symmetric laminated

Cosserat materials with cubic constituents can be determined, as fol-
lows:

*

1 = C;222 =€) +{Cixn C1_1111>2<C1_1111>_ <C1122 1_1111>’
C;333 = <C171111>71’
C1*122 =(Cr122) +(Criz C1_1111>2<C|_1111>_ <C1122 Chin-
Clm C2233 (Cin C1_1|11><C|_111>_ (62)
C:212 C2121 (Cian), C;m = C;323 - <C1212>_
C;m =(Ci212) +{Ciaz Cf2112>2<cf2112> !

" *
Cipy =(Cioa1)s Cpgyy = C2332

C

<C1221 1212>
(Ciazr CRpCp) ™

and

*

D)y = Dy = (Diyny) +(Duim D7 (D7 )7 = (D], DY)
Dam = (Dnn)_]
D1122 (Diig2) +(Dyin D1111> <D1111>_ <D1122 1_1111>’
D1133=D2233=<D1122 1)1111><D1111> ! (63)
D:212 = D;m = (Dp212)s 07313 D2323 <D|212>_l
Dyy5; = (Dian) +(Diayy D) (D)™ = (D DYy
D1221 (Dia1)s D1331 = D2332 = (Dip D1_212><D1_212>_ :

From Eq. (62), the analytical formulas for a cubic elastic Cauchy com-
posite are obtained when a = 0 (i.e., Cj5;, = Cj29), then, the effective
properties reduce to six properties only, which matches with those
reported in Eq. (35) by Castillero et al. (1998). Also, it is important
to mention that the resulting composite is described by eighteen inde-
pendent effective properties (nine are stiffness and nine are torque);
therefore, it belongs to an orthotropic symmetry group with invariance
under rotations of 90° about the unitary vector e;: O = {e; @ e; Fe; X1},
see for instance Eremeyev and Pietraszkiewicz (2012).

From now on, the dimensionless -effective stiffness C,, /

ijpg
Cl(ll)ll (Fig. 3(a) and (b)) and torque Dqu/D(lll)11 (Fig. 3(c) and (d))

moduli are computed for a homogenized bi-laminated composite as a
function of the V; volume fraction. The computations are carried out
using Egs. (62) and (63) for fictitious constituents materials; such that,
for the material constituent 1, we have

(1 (1) () (1)
C C D
12 _ 65, 1212 _ 35 120 _ 30 12 _ gy

M M M )
Cllll Cllll 1111 Dllll

M DD

1212 _ 1221 _
o= 0.70, o= 0.60,
1111 1111
and for the material constituent 2
(2) C(Z) (2) C(Z)

i _ 0.45, 122 _ 0.20, 1212 _ =0.026, 1212 =0.024,
c® (1) o
1111 1111 1111 1111

2) (2) D(Z) )
i _ 12 _ 212 _ 4 1212 _ ¢
pb pW pb pb

1111 1111 1111 1111

The fictitious constituents materials are assumed due to the lack of
experimental data for the complete characterization of Cosserat cubic-
symmetric materials. Therefore, the values of the defined ratios are not
taken randomly. They are considered under the following conditions:

(i) The restrictions in Eq. (61) are satisfied.
(ii) The material properties of a first layer has greater elastic prop-

: : (1) (2) (D (1) (2) (2)
erties, i.e., [Cpl > [Ci,l 1€, + Cipl > 1€, +Cioy s
(D ( (2) (2) (1) (1) (D)
|C 2~ 6 %%1| (lzcmz _2? 221" a;nd |C1111 ~Clim ~ Chpn —
1221I > |C1111 _C1|22 sz lel'
(iii) 0 < ij”p)q / Cﬂ)“ <1 (a = 1,2), then as expected, it is satisfied that
(1)
0< Cupq/cllll
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Fig. 3. Dimensionless effective elastic and torque properties for a homogenized bi-laminate Cosserat composite

(iv) The torque properties of the first layer are lower than the second

(2) (1) (1) (2) (2)
one, i.e., |D1122| IDiinls 1Dy, + Digyy | < 1D, + Dy,
(1) (1) (2) (2) (1) (1) (1)
|D( o~ Dy %)l < |(2D)1212 _g)mil’ aI)ld Dy = D = Diypy —
D1221| < |D1111 =Dy =Dy = D1221|
(v) The negative values are due to D is defined negative.

1122

Figs. 3(a) and (b) display that effective elastic properties behave
as monotonically increasing convex functions in the whole interval for
V,, except C121 N and le, that linearly behave. In Figs. 3(c) and (d), a
different behavior is presented for the effective torque properties. Here,
the effective torque properties are monotone decreasing and concave
functions in the whole interval except DI122 and Dlm The property
D1122 has a minimum value when V| ~ 0.092 and then increases as

the V, volume fraction increases. The property Dm3 is a monotone

increasing and concave function. Both D1122 and Dm3 have negative
values for every value of V. The negative behavior of D1122 and D1 133
is due to the D;;,, Cosserat twist coefficient that is negative for both

constituents.

5.4. Engineering moduli of laminated Cosserat materials with isotropic and
cubic constituents

Let us start by recalling the classical linear elasticity theory for solid
materials, in which the engineering moduli are found, i.e., Young’s
modulus, shear modulus, and Poisson’s ratio. The relationship between
the engineering constants and the elastic constants of the stiffness

10
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with cubic constituents as a function of V, volume fraction.

matrix is also a topic of interest, as it is reported by Hayes and Shuvalov
(1998), Devorak (2013), and others.

In the theory of micropolar elasticity, local rotations and displace-
ments are assumed at each point, whereas only displacements are
considered in the classical linear elasticity theory. Therefore, other en-
gineering constants are added, such as the torsional Young’s modulus,
the micropolar twist (Poisson) ratio, among others. These engineering
constants can be defined as a function of the effective stiffness and
torque moduli.

In this section, the engineering moduli are determined for a ho-
mogenized laminated Cosserat composite with isotropic and cubic con-
stituents.

From Eq. (3), it can be concluded that the strain-stress relationships
for a centro-symmetric Cosserat material are given by the uncoupled
equations

Cam = Sijmn aji’ Yam = T}jmn ﬂji’ (64)
where S, = C;;,, and Ty, = D} (i jomon=1,2,3).

Then, as mentioned before in Sections 5.1 and 5.3, the homogenized
laminated composite has orthotropic symmetry with invariance under
rotations of 90° when isotropic (Section 5.1) and cubic (Section 5.3)
constituents are assumed. Therefore, the components of the effective



compliance matrix satisfy

* *
S* =S _ C1111C3333 (C1122)
1111 = 22222 — * s
(Cllll C1122) ( 2(C 122) )
*
S* _ C1111+C1122
3333 T _ 2’
2(Cll33)
* *
S* (C1133 C1122C3333
1122 = * % _ . 2\’
(Cllll C1122) ( 2(Cll33) ) (65)
C*
Ky =5 1133
1133 2233 = 2
2(C1133)
* * c*
* * 1212 * _ 1221 % * _ 3232
S1212 S2121 C* ’ 1221 — cx ’ S1313 S2323 cx
2 2 3
* *
* _ Qx 1331 * _ Q¥ 1313
S1331 S2332 cx S3131 S3232 cx
3 3
* * * * *
where C - Cllllcé‘5333 + C1122C3333’ - (C1212) (C1221) and C3 -
C1'§1'§C3232 CI?SI)

Consequently, the components of Sl/mn are written in terms of the

effective engineering moduli, as follows:

* * *
* i _ 1 o G Vi ., .
iiii P * 7 iijj = ?éj)’
o o, "
ii S Jji S
N N " (66)
s _ G L T
Sijij=_*= #]), Sijji=_*= =- - (l:/é.]),
ol " o G G..
1 SHij Ji S ji SHij
where i,j = 1,2,3 and no summation by repeated Latin indices is

assumed. In addition, gE, = gE; o} /el is the classical Young’s
modulus along the x;—direction according the Voigt’s notation, SG;. =
oy /e is the classical shear modulus on the Ox;x; plane, sv; =—ej/e
is the Poisson’s ratio (the ratio between orthogonal strains directed in
the principal direction), and Scj;pq = —e;,/¢j; is the shear-strain ratio
(the ratio between strains directed in the shear direction). The subscript
S means that the engineering constants results from the compliance
matrix.

Then, the independent engineering moduli written as functions of
the components of the effective stiffness matrix are given as follows:
Effective Young’s moduli:

* N2

« « (Cnn _anz) (Clmcms +C1|22C3m (anz) )
sk = sk = c c ’

11113333 ( 1122)
* 2
o= C1111C3333 +C1122C3333 2( 1133)
ST c+C '
1111 1122
67)
Effective shear moduli
2

G =G =C (C1221) G G (C133|)

SY12 T80 T e T c > Sz T SY3 1313 c ’
1212 3232
(Claz)
ok 1331
5G3, = 5G3 = Cypp — o
1313
(68)

Effective Poisson’s ratios:

Vo= (Cms) C1122C3333 Voo = Ciiss 69)
sVo1 = ¥ L ) B Ry

(Cnaz) lecmz C1111+C1122
Effective shear-strain ratios:
c *

* 1221 1331

sS1n = c sG113 = 58303 = c 70
1212 1313

The Poisson’s ratios (SVIZ’ SV13’ SV ) and shear-strain ratios (SC1221’
SC]B]’ S§2332) are not null but nelther independent since they can be

11

expressed as functions of the previously given, i.e.,

*

* * * % SEl * * *
sV = sVarr sVi3 T sV3 = I sVar s€1201 = 551120
553
«
. s
s€1331 = 5633 = G 581130
§H32

In a similar manner, it is possible to find the effective components

Tupq inverse of the torque matrix, as
T oot = D1111D3%3% (D1122
1 = 12222 * E
<D1111_D1122)( 2(D1122) )
o D1111+D1122
BT DT _op 2
1133
A (D1133) D1122D3333
12 = 7 o P P
(Dllll - Dnzz) (Dl —2D,;33) ) 1)
T Dlm
1133 ~ 12233 ©
Z(Duss)
T o 1212 - __D1221 M 3232
1212 = o121 T T o1 T w0 11313 T 12323 P
D, D, D,
o _ a0 _ T3 o _ o _ 1313
T =Ty =" T3 =Tpnp=—7
D, D,
whereD D1111D3333+D1122D3333’ (sz) (D1221) and D, =
D 1213D3232 1%31) and thus, the relatlonshlps with the correspondmg

engineering constants are defined by

1 .
1 ii X .
i * * iijj *
% 1K %jj rE;
Uy o G Thw T
i = g = O Ty = e =T T G, (i #),
ij Tij G}, p
where i,j = 1,2,3 and no summation by repeated Latin indices is

assumed. Also TE, TE;. o}:/el; is the micropolar tortile or
torsional Young’s modulus along the x;—direction according the Voigt’s
notation, TG; = o} /e is the torsional shear modulus on the Ox;x;
plane, rvi; = —e7, /e is the twist Poisson’s ratio and Tg,.*qu =—e /e,
represents the twist shear-strain ratio. The subscript 7 means that the
engineering constants result from torque compliance matrix. A brief
description of the duality between the terminologies used in classical
and micropolar theories of elasticity can be found in Hassanpour and

Heppler (2015).

Then, the independent engineering moduli as a function of the
components of the effective torque matrix are given as follows:

Effective torsional Young’s moduli:

N " " " 2
E = E (Dllll_D|122) (D1111D3333+D1|22D3333 2(D1122) )
T=1 —T5) — ) 5
D1111D3m (Dnzz)
« )
* D1111D3333+D1122D3333 2(D 1133)
ks = D' +D
1 T Pn2
(73)
Effective torsional shear moduli:
2 * 2
G G =D (D1221) G =D (D1331)
TV STV T Pon T T > TY13=TY3 1313 D g
1212 3232
o \2
(Dy33,)
* * * 1331
1G53, =163 = Dy D"
1313
74)
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Fig. 4. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V, volume fraction:

(a) Young’s moduli, (b) Shear moduli, (c) Poisson’s coefficients, and (d) Shear-strain ratios.

Effective twist Poisson’s ratios:

%

£ _ (D1133) — D15 D533 *_x D5 75
TV21 - * 2 * * ’ TV31 - TV32 - D* +D* . ( )
(D1133) = D111 D333 111 1122
Effective twist shear-strain ratios:
. "
* 1221 * * 1331
16113 = D 78113 = 76303 = D (76)
1212 1313
where

*

* TEl s

© s . _ .
T™Vi2 = 1V210 TVi3 T TV23 T I V3 11201 = 761100
T3
.
* % TGl3 *
181331 = 1633 = G 783113
T3

Figs. 4-7 display the effective engineering moduli of centro-symmetric
bi-laminated micropolar composites with isotropic (Figs. 4 and 5) and
cubic (Figs. 6 and 7) constituents as a function of the V; volume
fraction. In both cases, as previously mentioned, the effective compos-
ite belongs to an orthotropic symmetry group with invariance under
rotations of 90°, see Eremeyev and Pietraszkiewicz (2012). Therefore,
the effective composite is defined by eighteen independent engineering
constants, which can be derived using Eqs. (67)-(70) and (73)-(76).
In addition, the values of C:qu and D:j are obtained from Egs.
(52)—(53) for isotropic constituents, and from Egs. (62)-(63) for cubic
constituents. Their results are illustrated in Figs. 2 and 3 of Sections 5.1
and 5.3, respectively.

As it is observed in Fig. 4, all the effective engineering constants
are continuous smooth functions in the whole analysis interval, and

12

they exhibit interesting behaviors. The effective Young’s and shear
moduli (Fig. 4(a) and (b)) have an increasing behavior as V, increases.
Moreover, SE; and SG’;3 behave in a convex way. As expected, this
is because the elastic material properties of the first layer (SyF) are
bigger than those of the second one (PUF). In addition, the effective
shear modulus SGTz and SG:2 are close to each other with a deviation

less than 1%, so that SG;Z <s GL. The effective Poisson’s ratio Sv; isa

decreasing function in the whole composite domain, whereas Sv; has
a minimum value when for V, = 0.64 (see Fig. 4(c)). Also, comparing
them, the highest values are obtained for SV;]' The shear-strain ratios
are decreasing functions in the whole interval (see Fig. 4(d)).

On the other hand, the effective torsional Young’s moduli (Fig. 5(a))
and the micropolar shear moduli (Fig. 5(b)) are linearly decreasing
as V, increases, except TG:3 which describes an inflexion point at
V, = 0.680545. Notice that the effective torsional Young’s moduli are
negative when V,; > 0.84 approximately, and their direction changes.
Also, the effective torsional Young’s moduli +E| = +E, and rE, have
very approximate values. Therefore, to observe differences between
them, a 10~ precision of its values is needed. More details can be seen
in the figures’ zoomed portions. In addition, the effective micropolar
twist Poisson’s ratios v, *and TV;;] = rv,, (Fig. 5(c)) are negative
and so close to —1, and ;v reaches a maximum value when
V, = 04. On the other hand, the effective twist shear-strain ratios
(Fig. 5(d)) are positive and increasing functions, so that TC; ;32 T{;] "
for each V, value.

= TV

In Figs. 6 and 7, a similar behavior is observed in almost all
the effective engineering constants to those illustrated in Figs. 4 and
5. Here, it is assumed that the effective composite has constituents
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Fig. 5. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V, volume fraction:
(a) Torsional Young’s moduli, (b) Torsional shear moduli, (c) Twist Poisson’s coefficients, and (d) Twist shear-strain ratios.

with cubic symmetry. In this case, the most interesting behaviors are
observed in: (i) the effective Poisson’s coefficients (Fig. 6(c)) that are
increasing, unlike the case of isotropic constituents where they are
decreasing as V, increases, and (ii) the effective twist Poisson’s ratios
(Fig. 7(c)) are far from —1 for cubic constituents and they are near to
—1 when isotropic constituents are assumed. They cannot be considered
constant. In addition, ;v;, reaches a maximum value equal to —0.284226
when V, = 0.477.
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5.5. Limit cases

In this section, we determine the expressions corresponding to the
engineering modules for isotropic and cubic solids, based on the results
derived of the homogenization process. It is important to mention that
we do not obtain the expressions for micropolar laminated compos-
ites with isotropic and cubic constituents, but for simple monolithic
isotropic and cubic materials.

From Egs. (67)-(70) and (73)—(76), it is possible to find the engi-
neering moduli for isotropic and cubic materials. With this purpose,
the stiffness and torque matrices must be defined with equal number
of independent properties: three for the isotropic case and four for the
cubic case.

In order to find the analytical expressions of the engineering moduli
of isotropic materials as functions of stiffness and torques, it is needed
to know that the stiffness C;;,, and torques D;;,, matrices satisfy the
form of Egs. (50) and (51), respectively, where C,;;; = Cj5 + Cjp12 +
Cip; and Dy = Dyjp + D + Dypy, see Eringen (1999) and
Eremeyev and Pietraszkiewicz (2012). Then, taking into account the
symmetry conditions for isotropic Cosserat materials (Eqgs. (50) and

13

(51)) and applying them in the Egs. (67)-(70) and (73)-(76), the
corresponding engineering moduli are obtained, such that:
Young’s modulus:

Ci111)* + C1111Chi22 — 2(Chy20)?
SE=SE1=SE2=SE3=( 111 1111C122 = 2(Ch1p0) . 7
Cin +Cun
Shear modulus:
(Cip1p)? = (Cip)* _ sE(=50)
sG =56 =563 =563 = Coons =1F o (78)
Poisson’s ratio:
sY = sV21 = sV31 T sV = & 79
Cinn +Cun
Shear-strain ratio:
Cin
s€= 58112 = s8G113 = s83003 = c. (80)
1212
Torsional Young’s modulus:
Dyy11)* + Dy Dy — 2(Dy1m0)?
JE =1 E = 1By = pEs = (Dy111) 1111 D122 = 2(D1190) ) 81)
Dy + Dy
Torsional shear moduli:
(D112 —(D11)* _ rE(—710)
1G =76 =163 =763 = Do = 1+ ,v (82)
Twist Poisson’s ratio:
Dyyp
TV=rVa=1tVs1=rv¥e = 5 . n - (83)
Dy + Dy
Twist shear-strain ratio:
_ _ _ _ Dy 84
¢ =781 =181z = 18323 = Do (84)
1212
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Fig. 6. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with cubic constituents as a function of V, volume fraction: (a)

Young’s moduli, (b) Shear moduli, (c) Poisson’s coefficients, and (d) Shear-strain ratios.

As mentioned before, micropolar media can be reduced to Cauchy
media. Therefore, the formulas of the engineering moduli for isotropic
materials are easy to determine assuming that C5,, = (Cy 111 —C122)/2,
Ci111 — Cl122 — C212 = 0 and all effective torque moduli are null. Then,
the Young’s, Poisson’s ratio and shear modulus are given by,

E= (Ci111)* + Ci111Crizp — 2(Cy20)? __ Cum
Cin +Cun ’ Cii +Cin’ (85)
G = Cun-Cun _ _E .
2 2(1+v)

The expressions in Eq. (85) coincide with those reported by Jones
(1999) in Egs. (2.38), page 67, and by Royer and Dieulesaint (2000)
in Fig. 3.8, page 140.

On the other hand, in the present work, the analytical expressions
of the engineering moduli for a cubic centro-symmetric laminated com-
posite are found replacing the symmetric conditions for cubic Cosserat
materials into Egs. (67)—(70) and (73)-(76), hence, we obtain the same
expression as in Egs. (77) and (84). Here, the difference is that the
effective stiffness and torque matrices satisfy Cy;; # Cj120+Ci210+Cian1
and Dyjj; # Dj13 + Diy15 + Dipy, as in Egs. (50) and (51), therefore,
there are eight independent engineering moduli for cubic materials in
contrast with the six independent moduli obtained for isotropic ones.

6. Conclusions
In this work, a brief introduction to the micropolar theory of elas-

ticity and the basic equations for a micropolar (Cosserat) media are
given. After that, based on the asymptotic homogenization method, the
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general analytical formulas of the homogenized local problems over the
periodic unit cell Y, the homogeneous problem, and the effective prop-
erties of a Cosserat media are derived. In addition, the local problems
and the effective properties of multi-laminated Cosserat media are de-
termined. In particular, the effective coefficients for centro-symmetric
laminated Cosserat composites with isotropic or cubic constituents
as a function of the material properties and the constituents volume
fractions are provided. The homogenized Cosserat material belongs
to an orthotropic symmetry group restricted with invariance under
rotations by 90°, which is defined by nine effective stiffness and
nine effective torque properties. Also, the effective engineering moduli
related to the stiffness and torques are provided for centro-symmetric
bi-laminated Cosserat composites with isotropic or cubic constituents
(two effective Young’s moduli, three effective shear moduli, two ef-
fective Poisson’s ratios, two effective shear-strain ratios, two effective
torsional Young’s moduli, three effective torsional shear moduli, two
effective twist Poisson’s ratios, and two effective twist shear-strain
ratios). Finally, numerical results are presented and discussed.
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Appendix. Solution of the local problems

In this appendix, the fundamental steps of the mathematical deriva-
tion for the pq[il local problem solution is developed. An analogous
procedure can be applied to find the pq£2 local problem solution, so
the latter will be omitted, only the solutions are given.

The solution of the pqﬁl local problem (Eq. (34)) consists in finding

the periodic local functions ,,N,, and ,,V,,.

First, we integrate the flrst expression in Eq. (34) respect to yj3,
which leads to

N +C13mn mnk pq V = A

13pq + CﬂmS Pq Vk + Bl3m3 Pq pg“lic (Al)

A; is the integration constant that needs to be found.
Next, solving for , N/ from Eq. (A.1) and applying the average
operator, so that {,, N/} = 0, we get that ,, 4,

where P

A =

1 -l _
P4 C'?ln%) ((ca 13m3 i3pq> + <C13:r13 Cizmn Emnt quk>

+ <C,3m3 i3mp3 pq Vk >) .

Then, from Egs. (A.1) and (A.2), the local function P

!
as a function of , V,, and ,,V,, as follows

(A.2)

N, can be written

-1

m313 C13pq] +
-1 -1\l /-1

[Cm313 <C13k3> <Ck3d3 Cazab €abe pg Ve)

v+

- IR
paNm = [Cm3113 (Chis) {Cozas Caspa) = €

—c-!

m3i3 C/3ab €

abc pq

—1 -1 \~! -1 ’ -1 /
Coais <Cl3k3> <Ck3d3 Bases pgVe ) = Coars Biaes quc] - (A3
In Eq. (A.3), the average value of each term is null. Therefore, re-
written Eq. (A.3), we have

/ e
20N = Topg + Flady & P

mpq T "mpg> a4
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where

~1 -1
Fmpg = 313 < 3k3> <Ck3d3 Cd3pq> - Cm%ls C13pq’
A(l) _ — —_
Foupa = Cai <Cl3k3> <Ck3d3 Casab €ave pgVe Cmm Ci3ab €abe pqVes
A2) _ -l —1 \"! /-1 _
Finpg = Cm313 <Cl3k3> <Ck3d3 Cazes quc > m313 Bises qu
(A.5)

Similarly, following the above procedure in the second expression of
Eq. (34), but for finding qu’ we have the relation of the local function
»qV s a function of , N/ , as follows

waVm = D7313 <D12k3> <D/Z3ld3 (Bu3pg *+ Basab €ave pgVe + Bases qu£)> -

D! (A.6)

-1 -1 /
w313 Bizpa = Dars Bisab €ave pgVe = Dpaps Bizes pgNeo

then, replacing Eq. (A.4) into Eq. (A.6) and grouping conveniently, we
get that

-
Pqu -

[D;télfé <D1_31k3>_1 <DI:3ld3 (Bd3pq + Bises ’CPq)>
=055 (Brspg + Biscs Tepg) ] +

[ 313 <<D13k3 B <Dms (Bdaab €avk pgVk + Buaes rip)q»
- (Bl3ab €abk pgVk T Bizes ”B,,q))] +

[ wiis (D) <Dl:3d3 Byses ’cpq> Bpes 7 2334] :

In particular, the average value of each term in Eq. (A.7) is null too,
then, we can rewrite Eq. (A.7) as in Eq. (A.4), so that,

D!

m313 (A7)

paVm = €mpg + eﬁr}[iq + eg,),q (A.8)
where
€mpq = D;;B <D[731kS>71 (Daﬂ (Bd3pq + Byses rcpq))

_D;éls (Bizpg + Bizes Tepq) »

Chupg = Drars [<D1_zlkz ) <D;3d"$ (Bd3ab €abk pqgVk T Bases rgp)q>> (A.9)
—B3ap €apkc pgVik — Bizes ’c,,)q]

éﬁf,lq mm <D13k3 - <Dk3d3 By3es r(cpq> Dm'lila' B33 rci)q

The structure of Egs. (A.3) and (A.7) is assumed to be

N'() =a® + [a@ (a® V) —a® V] + [a® (a® V') —a® V']

V() =bD + [b® (b V) =b® V] + [b? (b V') —=b® V'], (A.10)

where a® = a®(y) and b™ = b™(y) (n = 1,2,3) depend on y;, and

the symbols N and V represent the local functions ,,N,, and ,,V,,

respectively. Here the indexes are omitted for the sake of simplicity.

As can be seen in Egs. (A.3) and (A.7), and therefore Eq. (A.10), the
corresponding terms to a@(y) and b®(y) are near to 1, therefore, the
second and third terms of Eq. (A.10) can be assumed as deviations from
the mean value of V and V', respectively. Thus, the main contribution
in Eq. (A.10) is given by the first terms. Under this consideration, in
order to find the local functions ,,N’ and , V', we only consider, the

pa'¥m pa’m>
first terms in Egs. (A.3) and (A.7), i.e.,

1 -1 —1
2N 3) & g = Cos <C13k3> (Ciaas Caspg) = Coayz Cizpgr (A11)
-1 -1 —1
pq m(Y3) ~ Cmpg = Ppais (Dnm> <Dk3d3 (Bd3pq + Byzes rcpq)> -
D;313 (Biapg + Bizps Tepg) » (A.12)

then, integrating ,, N’ (y3) and
tions, as follows

y3 V3
paNm(y3) = '/0 pgNp(2) dz = <,/o pa N (2) dz>

”3
-1 -1 -1
/0 ( wars I3k3> (Ciaas Cazna) = Cois CISpq) dz,

¢V (y3) we have the approximate solu-

(A.13)



Dimensionless effective torsional Young’s moduli

1 1 1 1
04 05 06
V1 volume fraction

-02 —————— 71—

—0.5

—0.6

Effective twist Poisson’s coefficients

o7l 11
0

L I I I
01 02 03 04 05 06 0.7

V31 volume fraction

()

0.8

0.9 1

N
13

)

—_
o

—

e
o

Dimensionless effective torsional shear moduli

0 L Il L Il L Il L Il L Il L Il L Il L Il L Il L
0 0.1 0.2 03 04 0.5 0.6 0.7 08 09 1
V; volume fraction
(b)
0.86 —— T T T T T T T T
L |5 e ]

“— 1G3113 = 1G3023

0.855

0.85

Effective twist shear-strain ratios

1 1 1 1 1 1 1
0.4 0.5 0.6
V; volume fraction

(d)

0.7 08 09 1

Fig. 7. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composite with cubic constituents as a function of V, volume fraction: (a)
Torsional Young’s moduli, (b) Torsional shear moduli, (c) Twist Poisson’s coefficients, and (d) Twist shear-strain ratios.

V3 , 3 ,
paVm(V3) = /0 paVm(2)dz — </0 qum(z)dz> ~

», 1,
/0 <Dm:1513 [<D131k3> (Disas (Bazpg + Bases epa) )
- (Bl3pq + 31353 rcpq) ] ) dz.

_ IR R _
Cc3ll3 <Cl3}c3> <Ck31d3 Cd311q> - Cc3ll3 Cizpg-

where r.,, =

(A.14)

On the other hand, the approximately solutions of the pq£2 local
problem (Eq. (35)), i.e., paUnm and pg M, are figured out here as follows

’ _ el N —1
paUn3) = C3 <Cl3k3> <Ck3d3 Bd3pq> = Coa13 Biapg>

qu,'n(y3) = D;v;lf‘! <DI_3}C3> <D1:31d3 (Dq3pq + Bd3c3 Scpq)>
- D;;B (D/3Pq + Bises Scyq) ,

then, integrating qu,’”(y3) and Pqu/n(y3)’ we have

B »oo
paUn(¥3) = /0 pUn(2) dz = </0 paUn(2) dz> ~

V3
-1 —1 \"! /-1 ~1
/0 (Cm3l3 <Cl3k3> <Ck3d3 Bd3pq> = Coais Bl3pq> dz,

V3 y3
paMn(v3) = '/0 M (2) dz — </0 M (2) dz> ~

Y3
/0 (D;én [<D1_323> <D;31d3 (Dy3pg + Bases Scpq))
= (Di3pg + Baes Scpq)]) daz,

—_ -1 -1 \7l /-1 _ -1
where 5., =C. (Criis) (Cus Baspa) — Coas Bispg-

(A.15)

(A.16)

(A.17)

(A.18)
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