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Micro-macro asymptotic approach applied to heterogeneous elastic micropolar media. Analysis of some examples

In this work, the derivation of the effective properties for heterogeneous micropolar media with periodic structure using the two-scale asymptotic homogenization method (AHM) is reported. Analytical expressions for the local problems and the effective coefficients are explicitly described. As a particular case, periodic laminated composites are also analyzed, focusing on centro-symmetric Cosserat composites with isotropic and cubic constituents. Also, closed-form formulae of the effective properties are obtained for both constituent symmetries, and numerical values are reported and discussed. The resulting composite belongs to the orthotropic symmetry under rotations of 90 • about the unitary vector 𝑒 3 , i.e., it has eighteen effective independent properties: nine stiffness and nine torques. As a limit case, a comparison between classical and Cosserat effective elastic properties is shown for a laminated composite with isotropic constituents. Finally, the engineering moduli of centro-symmetric laminated Cosserat materials with isotropic and cubic constituents are reported, and the numerical values are analyzed.

Introduction

Nowadays, the development of macro-micro-mechanical models capable of describing the structure-properties relationship of heterogeneous complex materials plays an important role. The a priori estimation of the global material response is of great help for different engineering applications. It illustrates the ways the micro-structure, the coupling effects, the constituent parameters, and the volume percentage of their phases, among others, can be manipulated to obtain appropriated properties.

In the framework of the generalized continuum, micropolar or Cosserat media with coupled stresses, a series of works have addressed the estimation of effective properties of heterogeneous Cosserat materials using linear or nonlinear micro-continuum models [START_REF] Lazar | Cosserat (micropolar) elasticity in stroh form[END_REF][START_REF] Trovalusci | Scaledependent homogenization of random composites as micropolar continua[END_REF][START_REF] Abreu | Effect of observed micropolar motions on wave propagation in deep Earth minerals[END_REF]Rueger et al., 2019;[START_REF] Rizzi | Analytical solutions of the simple shear problem for micromorphic models and other generalized continua[END_REF][START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF]. These works have emerged from the theory developed by the Cosserat brothers at the beginning of the last century [START_REF] Cosserat | Théorie des Corps Déformables[END_REF], who extended Voigt's work on generalized non-symmetric elasticity theory [START_REF] Voigt | Theoretische studien über die elastizitätsverhältnisse der krystalle[END_REF]. Cosserat continuums have been seen in granular and fibrous composite materials [START_REF] Lakes | Elastic and viscoelastic behaviour of chiral materials[END_REF][START_REF] Bleyer | Multiphase continuum models for fiber-reinforced materials[END_REF], cellular and bone structures [START_REF] Park | Cosserat micromechanics of human bone: Strain redistribution by a hydration sensitive constituent[END_REF][START_REF] Lakes | Fracture mechanics of bone with short cracks[END_REF][START_REF] Jones | On the torsional properties of single osteons[END_REF][START_REF] Rosenber | Modelling based on the orthotropic micropolar continuum[END_REF][START_REF] Tekoglu | Size effects in the mechanical behavior of cellular materials[END_REF][START_REF] Liu | Effective couple-stress continuum model of cellular solids and size effects analysis[END_REF][START_REF] Beltran-Fernández | Biomechanics and numerical evaluation of cervical porcine models considering compressive loads using 2-D classic computer tomography CT, 3-D scanner and 3-D computed tomography[END_REF], foams [START_REF] Diebels | The size effect in foams and its theoretical and numerical investigation[END_REF]Rueger andLakes, 2016, 2019;[START_REF] Skrzat | On the effective properties of foams in the framework of the couple stress theory[END_REF], masonry [START_REF] Masiani | Cosserat and Cauchy materials as continuum models of brick masonry[END_REF][START_REF] Stefanou | Three-dimensional Cosserat homogenization of masonry structures: elasticity[END_REF][START_REF] Trovalusci | Derivation of microstructured continua from lattice systems via principle of virtual works: the case of masonry-like materials as micropolar, second gradient and classical continua[END_REF][START_REF] Leonetti | Scale effects in orthotropic composite assemblies as micropolar continua: A comparison between weak-and strong-form finite element solutions[END_REF], metamaterials [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], among others. State of the art, reviews and the basis foundations related to micropolar and generalized coupled stress theories are found in [START_REF] Toupin | Elastic materials with couple-stresses[END_REF], [START_REF] Eringen | Linear theory of micropolar elasticity[END_REF][START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF], [START_REF] Nowacki | The Linear Theory of Micropolar Elasticity, Micropolar Elasticity[END_REF][START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF], [START_REF] Maugin | Mechanics of Generalized Continua: One Hundred Years After the Cosserats[END_REF], [START_REF] Markert | Advances in Extended and Multifield Theories for Continua[END_REF], [START_REF] Altenbach | Generalized Continua -From the Theory to Engineering Applications[END_REF], [START_REF] Eremeyev | Foundations of Micropolar Mechanics[END_REF] and [START_REF] Maugin | Continuum Mechanics Through the Twentieth Century. A Concise Historical Perspective[END_REF].

In the scientific literature, there exist some papers in which the homogenization theory is applied to generalized continuums or Cosserat media. For example: An homogenization scheme based on polynomial expansion is proposed by [START_REF] Forest | Cosserat overall modeling of heterogeneous media[END_REF] in order to compute the effective properties of 2D Cauchy medium by minimizing the elastic strain energy with respect to displacement fields. The construction of an effective generalized continuum model replacing the heterogeneous Cauchy medium by a homogeneous Cosserat continuum is reported by [START_REF] Forest | Mechanics of generalized continua : Construction by homogenization[END_REF] and [START_REF] Forest | Cosserat overall modeling of heterogeneous media[END_REF]. Later, in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], a heterogeneous linear elastic Cosserat media with periodic microstructure is analyzed using a multiscale homogenization method. In particular, two schemes are implemented depending on the hierarchy of three characteristic lengths: the size 𝑙 of the unit cell, the Cosserat intrinsic length 𝑙 𝑐 of the constituents, and the characteristic length 𝐿 of the composite. Extensions of [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] work are proposed in subsequent studies to construct an effective generalized continuum [START_REF] Forest | Homogenization methods and mechanics of generalized continuapart 2[END_REF], [START_REF] Forest | Generalized continua and non-homogeneous boundary conditions in homogenisation methods[END_REF] and a discrete Cosserat media [START_REF] Sab | Homogenisation of periodic Cosserat media[END_REF]. In this last contribution, the homogenization of beam lattice is addressed analogous to the homogenization of discrete particles media. Cosserat composite materials are also studied by homogenization schemes in [START_REF] Trovalusci | Non-linear micropolar and classical continua for anisotropic discontinuous materials[END_REF] and [START_REF] Liu | Inclusion problem of microstretch continuum[END_REF]. Other approaches based on the various homogenization procedures are also implemented to find the micropolar moduli, see for instance [START_REF] Ehlers | From particle ensembles to Cosserat continua: homogenization of contact forces towards stresses and couple stresses[END_REF][START_REF] Larsson | A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics[END_REF][START_REF] Larsson | Homogenization of microsystem interconnects based on micropolar theory and discontinuous kinematics[END_REF][START_REF] Branke | Obtaining Cosserat material parameters by homogenization of a Cauchy continuum[END_REF]. On the other hand, [START_REF] Bigoni | Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials[END_REF] derived closed-form formulas for heterogeneous Cosserat-elastic materials via homogenization, where a dilute suspension of inclusions (spherical in 3D and circular cylindrical in 2D) embedded in an isotropic matrix is assumed. Further, in [START_REF] Altenbach | On generalized Cosserat type theories of plates and shells. A short review and bibliography[END_REF], 1D Cosserat beam models and 2D Mindlin plate models are considered by different homogenization techniques. [START_REF] Li | Micro-macro homogenization of gradient-enhanced Cosserat media[END_REF] employed the generalized Hill's lemma for micromacro homogenization modeling of heterogeneous gradient-enhanced Cosserat continuum. In the works of Dos Reis andGanghoffer (2011, 2012) and [START_REF] Goda | A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization[END_REF][START_REF] Goda | Cosserat anisotropic models of trabecular bone from the homogenization of the trabecular structure: 2D and 3D framework[END_REF][START_REF] Goda | A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure[END_REF], micropolar anisotropic constitutive models are constructed for repetitive lattices and trabecular structures by the asymptotic homogenization techniques. [START_REF] Gorbachev | Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies[END_REF] and [START_REF] Gorbachev | Homogenization of problems of Cosserat theory of elasticity of composites. Additional materials[END_REF] used an integral formulation for the displacements and microrotations as a constructive method for the homogenization process in a heterogeneous Cosserat body. Recently, homogenization methods have been applied to disordered Cosserat-type materials without assuming any spatial periodicity of the microstructures [START_REF] Trovalusci | Scaledependent homogenization of random composites as micropolar continua[END_REF] and a broad class of architected materials and chiral Cosserat composites subject to such micropolar effects [START_REF] Reda | Homogenization towards chiral Cosserat continua and applications to enhanced Timoshenko beam theories[END_REF][START_REF] Alavi | Chiral Cosserat model for architected materials constructed by homogenization[END_REF].

In the present work, the formal description of the two-scale asymptotic homogenization method (AHM) implemented for periodic heterogeneous elastic media by [START_REF] Bakhvalov | Homogenisation: Averaging Processes in Periodic Media[END_REF], [START_REF] Pobedrya | Mechanics of Composite Materials[END_REF], [START_REF] Sanchez-Palencia | Homogenization Techniques for Composite Media[END_REF] and [START_REF] Castillero | Asymptotic homogenization of laminated piezocomposite materials[END_REF] is extended to linear elastic Cosserat media. The AHM procedure is developed to obtain the statements of the local problems and the homogenized problem, as well as the effective properties for the 3D linear elastic Cosserat media. In addition, the analytical expressions of the effective coefficients are reported for infinite multi-laminated Cosserat composites with laminate distribution perpendicular to the 𝑥 3 axis and for centro-symmetric laminated Cosserat composites. The local problem solutions are characterized by the volume fraction and the properties of the constituents. Numerical results are shown and discussed for two examples of centro-symmetric bi-laminated composites with different symmetries of constituents: isotropic and cubic. The relationships between the micropolar and the classical effective moduli are established when isotropic constituents are assumed. Finally, the formulas of the effective engineering moduli of laminated Cosserat materials with isotropic and cubic constituent materials are reported.

The main contributions of this work are focused on the development of a fully AHM scheme to find the effective properties of periodic 3D elastic Cosserat media that are not necessarily restricted to the centrosymmetric criteria through double scale asymptotic expansions (micro and macro scales) for the displacements and the microrotations in terms of the small parameter 𝜀, see Eq. ( 6). In particular, centro-symmetric multi-laminated Cosserat composites with isotropic and cubic constituents are studied. [START_REF] Gorbachev | Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies[END_REF] developed a similar procedure, but they applied an integral formulation for the solution of static and elastic boundary-value problems on heterogeneous bodies for displacements and microrotations. In the present work, numerical results, engineering constants, comparison between micropolar and classic elastic media, derivation of effective coefficients for laminated with isotropic and cubic constituents are presented, which are not provided in [START_REF] Gorbachev | Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies[END_REF]. Furthermore, the effective properties reported here differ from those reported by [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] since they assume centro-symmetric materials considering that the coupling moduli (𝐵 𝑖𝑗𝑝𝑞 ) are zeros. Both approaches are similar if we consider centro-symmetric constituents where the constitutive relation reported in Eq. ( 3) is relaxed or constrained, and the effective properties match with those reported in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. In this sense, the present work can be considered as a generalization or an extension of the two papers mentioned above.

Heterogeneous problem formulation and basic equations for micropolar media. Statement of the problem

A three-dimensional micropolar continuum (Cosserat continuum) is considered as a periodic domain Ω with an infinitely smooth boundary surface 𝜕Ω in the Cartesian coordinate system { 𝑥 1 , 𝑥 2 , 𝑥 3 } . For a linear heterogeneous micropolar continuum Ω, the governing equations are defined by a system of partial differential equations through the linear and angular equilibrium equations,

𝜎 𝑗𝑖,𝑗 + 𝑓 𝑖 = 0, 𝜇 𝑗𝑖,𝑗 + 𝜖 𝑖𝑗𝑘 𝜎 𝑗𝑘 + 𝑔 𝑖 = 0, in Ω, (1) 
together with the boundary conditions on 𝜕Ω

𝑢 𝑖 | 𝜕Ω 1 = 0, 𝜎 𝑗𝑖 𝑛 𝑗 | 𝜕Ω 2 = 𝐹 𝑖 , 𝜔 𝑖 | 𝜕Ω 3 = 0, 𝜇 𝑗𝑖 𝑛 𝑗 | 𝜕Ω 4 = 𝐺 𝑖 , (2) 
where 𝑖, 𝑗, 𝑘 = 1, 2, 3 and the subsets 𝜕Ω 1 , 𝜕Ω 2 , 𝜕Ω 3 , and 𝜕Ω 4 of the 𝜕Ω boundary partition are disjoint, such as,

𝜕Ω = 𝜕Ω 1 ∪ 𝜕Ω 2 ∪ 𝜕Ω 3 ∪ 𝜕Ω 4 .
Here, 𝜎 𝑗𝑖 , 𝜇 𝑗𝑖 and 𝜖 𝑖𝑗𝑘 are the components of the stress tensor, the couple stress tensor, and the Levi-Civita tensor, respectively. 𝑓 𝑖 and 𝑔 𝑖 define the components of the body force and moment, respectively. In addition, 𝒖 = 𝑢 𝑖 is the displacement field vector and 𝝎 = 𝜔 𝑖 is the microrotation field vector, independent of the displacement field. Also, 𝑛 𝑗 is the unit outer normal vector to 𝜕𝛺 and the functions 𝐹 𝑖 and 𝐺 𝑖 are the components of the surface forces and torques, respectively. The comma notation represents the partial derivate relative to the 𝑥 𝑗 component. Furthermore, the linear constitutive equations are defined by

𝜎 𝑗𝑖 = 𝐶 𝑖𝑗𝑚𝑛 𝑒 𝑛𝑚 + 𝐵 𝑖𝑗𝑚𝑛 𝜓 𝑛𝑚 , 𝜇 𝑗𝑖 = 𝐵 𝑖𝑗𝑚𝑛 𝑒 𝑛𝑚 + 𝐷 𝑖𝑗𝑚𝑛 𝜓 𝑛𝑚 , (3) 
where 𝐶 𝑖𝑗𝑚𝑛 , and 𝐷 𝑖𝑗𝑚𝑛 (𝑚, 𝑛 = 1, 2, 3) are the elastic and torque moduli, respectively, with 45 components each and 𝐵 𝑖𝑗𝑚𝑛 is the coupling moduli with 81 components. The second order tensors 𝑒 𝑛𝑚 and 𝜓 𝑛𝑚 represent the asymmetric strain and the couple strain, respectively. Also, in Eq.

(3), the material properties 𝐶 𝑖𝑗𝑚𝑛 , 𝐷 𝑖𝑗𝑚𝑛 and 𝐵 𝑖𝑗𝑚𝑛 are supposed to be infinitely differentiable, rapidly oscillating and satisfy the symmetry conditions

𝐶 𝑖𝑗𝑚𝑛 = 𝐶 𝑚𝑛𝑖𝑗 , 𝐷 𝑖𝑗𝑚𝑛 = 𝐷 𝑚𝑛𝑖𝑗 . ( 4 
)
In addition, the micropolar deformations are fully described by the asymmetric strain (𝑒 𝑛𝑚 ) and the couple strain (𝜓 𝑛𝑚 ) tensors, namely

𝑒 𝑛𝑚 = 𝑢 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 𝑠 , 𝜓 𝑛𝑚 = 𝜔 𝑚,𝑛 .
(5)

Eq. ( 1) together with the boundary conditions given in Eq. ( 2) and Eqs.

(3)-( 5), define the classical boundary value problem associated with the linear theory of micropolar elasticity, whose coefficients are rapidly oscillating. Fundamentals of micropolar elasticity theory can be seen in [START_REF] Toupin | Elastic materials with couple-stresses[END_REF], [START_REF] Nowacki | The Linear Theory of Micropolar Elasticity, Micropolar Elasticity[END_REF], [START_REF] Altenbach | Generalized Continua -From the Theory to Engineering Applications[END_REF] and [START_REF] Eremeyev | Foundations of Micropolar Mechanics[END_REF]. 

Asymptotic homogenization method: Local problems, homogeneous problem and effective coefficients

The homogenized local problems over the periodic unit cell Y, the homogeneous problem and the effective properties of a Cosserat media are derived from Eqs. ( 1)-( 5) by means of the well-known AHM [START_REF] Sanchez-Palencia | Non-Homogeneous Media and Vibration Theory[END_REF][START_REF] Sanchez-Palencia | Homogenization Techniques for Composite Media[END_REF][START_REF] Pobedrya | Mechanics of Composite Materials[END_REF][START_REF] Bakhvalov | Homogenisation: Averaging Processes in Periodic Media[END_REF] through two-scale asymptotic expansion for 𝑢 𝑚 and 𝜔 𝑚 , as follows

𝑢 𝑚 = 𝜀 0 𝑢 (0) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝜀 1 𝑢 (1) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝜀 2 𝑢 (2) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + … , 𝜔 𝑚 = 𝜀 0 𝜔 (0) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝜀 1 𝜔 (1) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝜀 2 𝜔 (2) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + … , ( 6 
)
where the terms 𝑢 (𝑖) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) and 𝜔 (𝑖) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) (𝑖 = 0, 1, 2, … ) are infinitely differentiable functions and Y-periodic functions with respect to 𝑦 𝑦 𝑦. The superscript (𝑖) denotes the 𝑖th term in the expansions. In addition, the two scales, 𝑥 𝑥 𝑥 = { 𝑥 1 , 𝑥 2 , 𝑥 3 } (macro or slow variable) and 𝑦 𝑦 𝑦 = { 𝑦 1 , 𝑦 2 , 𝑦 3 } (micro or fast variable) characterize the macroscopic or global behavior of the composite and the heterogeneities at microscopic or local level, respectively. Both scales are related by 𝑦 𝑦 𝑦 = 𝑥 𝑥 𝑥∕𝜀, where 𝜀 = 𝑙∕𝐿 ≪ 1 is a small geometric parameter (see, Fig. 1) which defines the ratio between the characteristic dimension of the representative volume element (𝑙) and the representative length of composite (𝐿) used to measure the composite's properties of interest. Also, as a natural process of homogenization, the material moduli 𝐶 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦), 𝐵 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦) and 𝐷 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦) are functions on the local variable, which means that there is an intrinsic dependency of the material moduli on the scale parameter 𝜀, and therefore on 𝑙, but for simplicity, in the present work we write 𝐶 𝑖𝑗𝑚𝑛 , 𝐵 𝑖𝑗𝑚𝑛 and 𝐷 𝑖𝑗𝑚𝑛 . Notice that, in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], the homogenization theory is applied to centro-symmetric micropolar composites using two schemes, denoted by HS1 and HS2. The scheme HS1 considers a Cosserat length 𝑙 𝑐 and it is used a homogenization scheme as 𝑙 𝑐 ∼ 𝑙 ≪ 𝐿, whereas the scheme HS2 is applied when 𝑙 𝑐 ∼ 𝐿.

That is, HS2 corresponds to the situation we are dealing with.

Because of the scales separation, we have that,

𝜕𝑓 𝜀 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) 𝜕𝑥 𝑗 = 𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ,𝑗 + 𝜀 -1 𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) |𝑗 , ( 7 
)
where 𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ,𝑗 = 𝜕𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦)∕𝜕𝑥 𝑗 and 𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) |𝑗 = 𝜕𝑓 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦)∕𝜕𝑦 𝑗 . Then, applying Eq. ( 7) into 𝑢 𝑚 and 𝜔 𝑚 (see, Eq. ( 6)) we have

𝑢 𝑚,𝑛 (𝑥 𝑥 𝑥) = 𝜀 -1 𝑢 (0) 𝑚|𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + +∞ ∑ 𝑖=0 𝜀 𝑖 [ 𝑢 (𝑖) 𝑚,𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝑢 (𝑖+1) 𝑚|𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ] , 𝜔 𝑚,𝑛 (𝑥 𝑥 𝑥) = 𝜀 -1 𝜔 (0) 𝑚|𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + +∞ ∑ 𝑖=0 𝜀 𝑖 [ 𝜔 (𝑖) 𝑚,𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) + 𝜔 (𝑖+1) 𝑚|𝑛 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ] , (8) 
and in 𝐶 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦), 𝐵 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦) and 𝐷 𝑖𝑗𝑚𝑛 (𝑦 𝑦 𝑦) we get

𝐶 𝑖𝑗𝑚𝑛,𝑗 = 𝜀 -1 𝐶 𝑖𝑗𝑚𝑛|𝑗 , 𝐵 𝑖𝑗𝑚𝑛,𝑗 = 𝜀 -1 𝐵 𝑖𝑗𝑚𝑛|𝑗 , 𝐷 𝑖𝑗𝑚𝑛,𝑗 = 𝜀 -1 𝐷 𝑖𝑗𝑚𝑛|𝑗 . ( 9 
)
because the material properties are assumed to be 𝜀Y-periodic in Ω.

From now on, the dependency related to 𝑥 𝑥 𝑥 and 𝑦 𝑦 𝑦 is omitted in order to simplify the expressions, unless otherwise stated.

Let us start by replacing Eqs. ( 3)-( 6) into Eqs. ( 1) and ( 2), and then, we apply the differentiation rule (Eq. ( 7)) neglecting the second order or higher terms, as a result, after grouping by the powers of 𝜀, the explicit form of the system given in Eqs. ( 1) and ( 2) can be rewritten as

𝜀 -2 [ 𝐶 𝑖𝑗𝑚𝑛|𝑗 𝑢 (0) 𝑚|𝑛 + 𝐶 𝑖𝑗𝑚𝑛 𝑢 (0) 𝑚|𝑛𝑗 + 𝐵 𝑖𝑗𝑚𝑛|𝑗 𝜔 (0) 𝑚|𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚|𝑛𝑗 ] + 𝜀 -1 [ 𝐶 𝑖𝑗𝑚𝑛|𝑗 ( 𝑢 (0) 𝑚,𝑛 + 𝑢 (1) 𝑚|𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) +𝐶 𝑖𝑗𝑚𝑛 ( 2𝑢 (0) 𝑚|𝑛,𝑗 + 𝑢 (1) 𝑚|𝑛𝑗 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠|𝑗 ) + 𝐵 𝑖𝑗𝑚𝑛|𝑗 ( 𝜔 (0) 𝑚,𝑛 + 𝜔 (1) 𝑚|𝑛 ) + 𝐵 𝑖𝑗𝑚𝑛 ( 2𝜔 (0) 𝑚|𝑛,𝑗 + 𝜔 (1) 𝑚|𝑛𝑗 )] + 𝜀 0 [ 𝐶 𝑖𝑗𝑚𝑛 [ 𝑢 (0) 𝑚,𝑛𝑗 + 2𝑢 (1) 𝑚|𝑛,𝑗 + 𝑢 (2) 𝑚|𝑛𝑗 + 𝜖 𝑚𝑛𝑠 ( 𝜔 (0) 𝑠,𝑗 + 𝜔 (1) 𝑠|𝑗 )] +𝐵 𝑖𝑗𝑚𝑛|𝑗 ( 𝜔 (1) 𝑚,𝑛 + 𝜔 (2) 𝑚|𝑛 ) + 𝐶 𝑖𝑗𝑚𝑛|𝑗 ( 𝑢 (1) 𝑚,𝑛 + 𝑢 (2) 𝑚|𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (1) 𝑠 ) +𝐵 𝑖𝑗𝑚𝑛 ( 𝜔 (0) 𝑚,𝑛𝑗 + 2𝜔 (1) 𝑚|𝑛,𝑗 + 𝜔 (2) 𝑚|𝑛𝑗 ) + 𝑓 𝑖 ] = 0, (10) 
and 10) and ( 11), a sequence of problems defined by a system of partial differential equations arises, according to the powers of 𝜀 small parameter. Each contribution is assumed equal to zero for all powers of 𝜀. Subsequently, the resulting problems are solved under suitable conditions in order to guarantee the Y-periodic solution. Only, the powers -2, -1 and 0 of 𝜀 are enough for finding the local problems, effective coefficients and the homogenized problem.

𝜀 -2 [ 𝐵 𝑖𝑗𝑚𝑛|𝑗 𝑢 (0) 𝑚|𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝑢 (0) 𝑚|𝑛𝑗 + 𝐷 𝑖𝑗𝑚𝑛|𝑗 𝜔 (0) 𝑚|𝑛 + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚|𝑛𝑗 ] + 𝜀 -1 [ 𝐵 𝑖𝑗𝑚𝑛|𝑗 ( 𝑢 (0) 𝑚,𝑛 + 𝑢 (1) 𝑚|𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) +𝐵 𝑖𝑗𝑚𝑛 ( 2𝑢 ( 
The terms corresponding to 𝜀 -2 can be written as a system of partial differential equations, as follows

( 𝐶 𝑖𝑗𝑚𝑛 𝑢 (0) 𝑚|𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚|𝑛 ) |𝑗 = 0, ( 𝐵 𝑖𝑗𝑚𝑛 𝑢 (0) 𝑚|𝑛 + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚|𝑛 ) |𝑗 = 0. ( 12 
)
where the unknowns 𝑢 (0) 𝑚|𝑛 and 𝜔 (0) 𝑚|𝑛 are defined as a function of 𝑥 𝑥 𝑥 and 𝑦 𝑦 𝑦. Then, it can be proved that the terms 𝑢 (0) 𝑚 and 𝜔 (0) 𝑚 are independent functions of the local variable 𝑦 𝑦 𝑦 from Eq. ( 12), i.e., 𝑢 (0) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ≡ 𝑢 𝑚 (𝑥 𝑥 𝑥), 𝜔 (0) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) ≡ 𝜔 𝑚 (𝑥 𝑥 𝑥).

(13)

Similarly, the terms corresponding to 𝜀 -1 can be written by a system of partial differential equations that result from Eqs. ( 10) and ( 11) and considering that the derivatives of 𝑢 (0) 𝑚 (𝑥 𝑥 𝑥) and 𝜔 (0) 𝑚 (𝑥 𝑥 𝑥) are null with respect to the fast variable 𝑦 𝑦 𝑦 (see, Eq. ( 13)), as follows ( 𝐶 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛

) |𝑗 + 𝐶 𝑖𝑗𝑚𝑛|𝑗 ( 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) + ( 𝐵 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛 ) |𝑗 + 𝐵 𝑖𝑗𝑚𝑛|𝑗 𝜔 (0) 𝑚,𝑛 = 0, ( 𝐵 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛 ) |𝑗 + 𝐵 𝑖𝑗𝑚𝑛|𝑗 ( 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) + ( 𝐷 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛 ) |𝑗 𝐷 𝑖𝑗𝑚𝑛|𝑗 𝜔 (0) 𝑚,𝑛 = 0. ( 14 
)
Analogous to the system in Eq. ( 12) related to 𝜀 -2 , a solution of Eq. ( 14) is found in the class of Y-periodic functions with respect to 𝑦 𝑦 𝑦. Therefore, it is expected to have solutions in a similar way. Firstly, the strains and couple strains expressions associate with the Cosserat theory of elasticity (see, Eq. ( 5)) are rewritten in two-scale series expansion form. So, by substituting Eq. ( 6) into Eq. ( 5), we have

𝑒 𝑛𝑚 = 𝜀 -1 𝑢 (0) 𝑚|𝑛 + 𝜀 0 ( 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 + 𝑢 (1)

𝑚|𝑛

) +𝜀 ( 𝑢 (1) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (1) 𝑠 + 𝑢 (2)

𝑚|𝑛 ) + ⋯ , 𝜓 𝑛𝑚 = 𝜔 𝑚,𝑛 = 𝜀 -1 𝜔 (0) 𝑚|𝑛 + 𝜀 0 ( 𝜔 (0) 𝑚,𝑛 + 𝜔 (1) 𝑚|𝑛 ) + 𝜀 ( 𝜔 (1) 𝑚,𝑛 + 𝜔 (2) 𝑚|𝑛 ) + ⋯ , ( 15 
)
where 𝑢 (0) 𝑚|𝑛 and 𝜔 (0) 𝑚|𝑛 are null (see, Eq. ( 13)) and the 𝑘th terms (𝑘 ≥ 0) are given by

𝑒 (𝑘) 𝑛𝑚 = 𝑢 (𝑘+1) 𝑚|𝑛 + 𝑢 (𝑘) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (𝑘) 𝑠 , 𝜓 (𝑘) 𝑛𝑚 = 𝜔 (𝑘+1) 𝑚|𝑛 + 𝜔 (𝑘) 𝑚,𝑛 . (16) 
The first terms 𝑒 (0) 𝑛𝑚 and 𝜓 (0) 𝑛𝑚 (𝑘 = 0) are given by the expressions 𝑒 (0) 𝑛𝑚 = 𝑢 (1) 𝑚|𝑛 + 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 and 𝜓 (0) 𝑛𝑚 = 𝜔 (1) 𝑚|𝑛 + 𝜔 (0) 𝑚,𝑛 .

(17)

Due to the linearity of the system (Eq. ( 14)), a solution for 𝑢 (1) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) and 𝜔 (1) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) is admitted in the class of Y-periodic functions with respect to 𝑦 𝑦 𝑦 through the variable separation method (see, for instance, [START_REF] Otero | Homogenization of heterogeneous piezoelectric medium[END_REF]), as follows:

𝑢 (1) 𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) = 𝑝𝑞 N𝑚 (𝑦 𝑦 𝑦)

( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑠 𝜔 (0) 𝑠 ) + 𝑝𝑞 Û𝑚 (𝑦 𝑦 𝑦) 𝜔 (0) 𝑝,𝑞 + ũ(1) 𝑚 ,
𝜔 (1) 

) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ) |𝑗 = 0. (22) 
Equations ( 21) and ( 22) are the problems on the periodic cell Y related to the micropolar theory of elasticity (so-called local problems), which we denote as 𝑝𝑞  1 and 𝑝𝑞  2 , respectively. The solutions of the local problems are important for the computation of the effective properties. From Eqs. ( 10) and ( 11), the terms corresponding to 𝜀 0 can be rewritten as a system of partial differential equations, as follows ( 𝐶 𝑖𝑗𝑚𝑛 𝑢 (2) 𝑚|𝑛 + 𝐶 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚,𝑛 + 𝐶 𝑖𝑗𝑚𝑛 𝜖 𝑚𝑛𝑠 𝜔 (1) 𝑠

) |𝑗 + ( 𝐵 𝑖𝑗𝑚𝑛 𝜔 (2)
𝑚|𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚,𝑛

) |𝑗 + 𝐶 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛,𝑗 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛𝑗 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠,𝑗
)

+𝐵 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛,𝑗 + 𝐵 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚,𝑛𝑗 + 𝑓 𝑖 = 0, ( 𝐵 𝑖𝑗𝑚𝑛 𝑢 (2) 𝑚|𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚,𝑛 + 𝐵 𝑖𝑗𝑚𝑛 𝜖 𝑚𝑛𝑠 𝜔 (1) 𝑠 ) |𝑗 + ( 𝐷 𝑖𝑗𝑚𝑛 𝜔 (2)
𝑚|𝑛 + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚,𝑛

) |𝑗 + 𝐵 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛,𝑗 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛𝑗 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠,𝑗 ) + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛,𝑗 + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚,𝑛𝑗 + 𝜖 𝑖𝑗𝑘 [ 𝐶 𝑘𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛 + 𝐶 𝑘𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) +𝐵 𝑘𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛 + 𝐵 𝑘𝑗𝑚𝑛 𝜔 (0) 𝑚,𝑛 ] + 𝑔 𝑖 = 0, (23) 
then, applying the average operator ⟨•⟩ Y = ∫ Y (•) d𝑦 into Eq. ( 23) and considering the 𝑦-periodicity of the involved functions, it yields ⟨ 𝐶 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛,𝑗 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛𝑗 + 𝜖 𝑚𝑛𝑠 𝜔 (0)

𝑠,𝑗

)

+𝐵 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛,𝑗 + 𝐵 𝑖𝑗𝑚𝑛 𝜔 (0)

𝑚,𝑛𝑗 ⟩ Y + 𝑓 𝑖 = 0, ⟨ 𝐵 𝑖𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛𝑗 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛𝑗 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠,𝑗
)

+𝐷 𝑖𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛𝑗 + 𝐷 𝑖𝑗𝑚𝑛 𝜔 (0) 𝑚,𝑛𝑗 ⟩ Y + 𝜖 𝑖𝑗𝑘 ⟨ 𝐶 𝑘𝑗𝑚𝑛 𝑢 (1) 𝑚|𝑛 + 𝐶 𝑘𝑗𝑚𝑛 ( 𝑢 (0) 𝑚,𝑛 + 𝜖 𝑚𝑛𝑠 𝜔 (0) 𝑠 ) +𝐵 𝑘𝑗𝑚𝑛 𝜔 (1) 𝑚|𝑛 + 𝐵 𝑘𝑗𝑚𝑛 𝜔 (0) 𝑚,𝑛 ⟩ Y + 𝑔 𝑖 = 0. (24) 
Finally, replacing 𝑢 (1) 𝑚 and 𝜔 (1) 𝑚 (see, Eq. ( 18)) into Eq. ( 24), and grouping terms conveniently, we obtain the homogenized system, as follows

𝐶 * 𝑖𝑗𝑝𝑞 ( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑘 𝜔 (0) 𝑘 ) ,𝑗 + 𝐵 * 𝑖𝑗𝑝𝑞 𝜔 (0) 𝑝,𝑞𝑗 + 𝑓 𝑖 = 0, 𝐵 * 𝑖𝑗𝑝𝑞 ( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑘 𝜔 (0) 𝑘 ) ,𝑗 + 𝐷 * 𝑖𝑗𝑝𝑞 𝜔 (0) 𝑝,𝑞 +𝜖 𝑖𝑗𝑙 [ 𝐶 * 𝑙𝑗𝑝𝑞 ( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑘 𝜔 (0) 𝑘 ) + 𝐵 * 𝑙𝑗𝑝𝑞 𝜔 (0) 𝑝,𝑞 ] + 𝑔 𝑖 = 0, (25) 
where 𝑢 (0) 𝑝 and 𝜔 (0) 𝑝 are the system solution, and the coefficients 𝐶 * 𝑖𝑗𝑝𝑞 , 𝐵 * 𝑖𝑗𝑝𝑞 and 𝐷 * 𝑖𝑗𝑝𝑞 represent the effective properties of a periodic Cosserat medium, which are defined as follows

𝐶 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ⟩ Y , ( 26 
)
𝐵 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐵 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ⟩ Y , ( 27 
)
𝐵 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐵 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ⟩ Y , ( 28 
)
𝐷 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐷 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ⟩ Y . ( 29 
)
The effective properties (Eqs. ( 26)-( 29)) coincide with those reported by [START_REF] Gorbachev | Homogenization of the equations of the Cosserat theory of elasticity of inhomogeneous bodies[END_REF] 46), page 4594, for centro-symmetric micropolar materials. The latter is obtained when the constitutive relations (Eq. ( 3)) are constrained to the case 𝐵 𝑖𝑗𝑝𝑞 = 0, then Eqs. ( 26)-( 29) become

𝐶 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑁 𝑚|𝑛 ⟩ Y , 𝐷 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐷 𝑖𝑗𝑝𝑞 + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ⟩ Y .
Herein, it is important to note that the homogenized system (Eq. ( 25)) subject to the boundary conditions

𝑢 (0) 𝑝 | 𝜕Ω 1 = 0, 𝜎 (0) 𝑗𝑖 𝑛 𝑗 | 𝜕Ω 2 = 𝐹 (0) 𝑖 , 𝜔 (0) 𝑝 | 𝜕Ω 3 = 0, 𝜇 (0) 𝑗𝑖 𝑛 𝑗 | 𝜕Ω 4 = 𝐺 (0) 𝑖 , ( 30 
)
where 𝑖, 𝑗, 𝑘, 𝑝 = 1, 2, 3, represents the homogenized problem formulation, defined on Ω, which is equivalent to the boundary value problem (Eqs. ( 1)-( 2)) of a periodic Cosserat media. Here, 𝐹 (0) 𝑖 and 𝐺 (0) 𝑖 are infinitely differential functions and

𝜕Ω = 𝜕Ω 1 ∪ 𝜕Ω 2 ∪ 𝜕Ω 3 ∪ 𝜕Ω 4 .
In addition, the effective properties formulation (Eqs. ( 26)-( 29)) depend on the local 𝑝𝑞-displacements ( 𝑝𝑞 𝑁 𝑚 and 𝑝𝑞 𝑈 𝑚 ) and the local 𝑝𝑞-microrotations ( 𝑝𝑞 𝑉 𝑚 and 𝑝𝑞 𝑀 𝑚 ) relative to the 𝑝𝑞  1 and 𝑝𝑞  2 local problems, therefore, they need to be determined.

This way, the 𝑝𝑞  1 and 𝑝𝑞  2 local problems are given by the systems Eqs. ( 21) and ( 22) subject to the corresponding homogenized perfect contact conditions and null average conditions for the local functions, respectively, as defined below:

The 𝑝𝑞  1 local problems allow to find the 𝑦-periodic local functions 𝑝𝑞 𝑁 𝑚 and 𝑝𝑞 𝑉 𝑚 in the periodic cell Y through the solution of the problem:

( 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ) |𝑗 = 0, in Y, ( 𝐵 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ) |𝑗 = 0, in Y, [[ 𝑝𝑞 𝑁 𝑚 ]] = 0, [[ 𝑝𝑞 𝑉 𝑚 ]] = 0, over Γ, [[ 𝑝𝑞 𝜎 1 𝑗𝑖 𝑛 𝑗 ]] = - [[ 𝐶 𝑖𝑗𝑝𝑞 ]] 𝑛 𝑗 , [[ 𝑝𝑞 𝜇 1 𝑗𝑖 𝑛 𝑗 ]] = - [[ 𝐵 𝑖𝑗𝑝𝑞 ]] 𝑛 𝑗 , over Γ, (31) 
where

𝑝𝑞 𝜎 1 𝑗𝑖 = 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 , 𝑝𝑞 𝜇 1 𝑗𝑖 = 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 .
Analogously, in the 𝑝𝑞  2 local problems, the 𝑦-periodic local functions 𝑝𝑞 𝑈 𝑚 and 𝑝𝑞 𝑀 𝑚 are sought in the periodic cell Y, which result from the problem:

( 𝐵 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ) |𝑗 = 0, in Y, ( 𝐷 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ) |𝑗 = 0, in Y, [[ 𝑝𝑞 𝑈 𝑚 ]] = 0, [[ 𝑝𝑞 𝑀 𝑚 ]] = 0, over Γ, [[ 𝑝𝑞 𝜎 2 𝑗𝑖 𝑛 𝑗 ]] = - [[ 𝐵 𝑖𝑗𝑝𝑞 ]] 𝑛 𝑗 , [[ 𝑝𝑞 𝜇 2 𝑗𝑖 𝑛 𝑗 ]] = - [[ 𝐷 𝑖𝑗𝑝𝑞 ]] 𝑛 𝑗 , over Γ, (32) 
where

𝑝𝑞 𝜎 2 𝑗𝑖 = 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 , 𝑝𝑞 𝜇 2 𝑗𝑖 = 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 .
Additionally, the following conditions over Y are required to guarantee the existence and uniqueness of the local problem solutions,

⟨ 𝑝𝑞 𝑁 𝑚 ⟩ Y = 0, ⟨ 𝑝𝑞 𝑉 𝑚 ⟩ Y = 0, ⟨ 𝑝𝑞 𝑈 𝑚 ⟩ Y = 0, ⟨ 𝑝𝑞 𝑀 𝑚 ⟩ Y = 0. ( 33 
)
where

⟨•⟩ Y = (1∕ |Y|) ∫ Y (•) d𝑦
is the average operator of (•) over the periodic cell Y. Also, the double brackets symbol [[𝑓 ]] denotes the jump of the function 𝑓 across the interface surface Γ and 𝑛 𝑗 is the unit outer normal vector to Γ.

Effective coefficients of multi-laminated Cosserat media

In this section, the local problems (Eqs. ( 31)-( 33)) and the effective coefficients (Eqs. ( 26)-( 29)) are reformulated for a heterogeneous finite periodic laminated Cosserat composite Ω with boundary 𝜕Ω. Thus, a laminate composite characterized by a parallelepiped generated by repetitions of the periodic cell Y is considered, in which the layered direction is along the 𝑥 3 -axis, see Fig. 1. Herein, the Cosserat material properties 𝐶 𝑖𝑗𝑘𝑙 , 𝐵 𝑖𝑗𝑘𝑙 and 𝐷 𝑖𝑗𝑘𝑙 only depend on the coordinate 𝑥 3 and they satisfy the symmetry conditions of Eqs. (4).

The periodic cell

Y = { (𝑦 1 , 𝑦 2 , 𝑦 3 ) ∈ R 3 ∶ 0 ≤ 𝑦 𝑖 ≤ 𝑙 𝑖 } with 𝑖 = 1, 2, 3
is assumed to be a bi-laminated composite, where 𝑙 𝑖 is the cell length in the 𝑦 𝑖 direction and 𝐿 is the plate thickness. The interface region Γ between the layers is considered perfect, i.e., the layers are in welded contact so that the displacement, stress, microrotation and couple stress are continuous across the interface. In this framework, the unknown local functions 𝑝𝑞 𝑁 𝑚 , 𝑝𝑞 𝑈 𝑚 , 𝑝𝑞 𝑉 𝑚 , and 𝑝𝑞 𝑀 𝑚 only depend on 𝑦 3 as well. Therefore, the local problems (Eqs. ( 31)-( 33)) in Y turn into a system of ordinary integro-differential equation under perfect contact conditions, as can be seen below:

The 𝑝𝑞  1 local problems

( 𝐶 𝑖3𝑝𝑞 + 𝐶 𝑖3𝑚3 𝑝𝑞 𝑁 ′ 𝑚 + 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑉 ′ 𝑚 ) ′ = 0, in Y, ( 𝐵 𝑖3𝑝𝑞 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑁 ′ 𝑚 + 𝐵 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 + 𝐷 𝑖3𝑚3 𝑝𝑞 𝑉 ′ 𝑚 ) ′ = 0, in Y, [[ 𝑝𝑞 𝑁 𝑚 ]] = 0, [[ 𝑝𝑞 𝑉 𝑚 ]] = 0 over Γ, [[ 𝑝𝑞 𝜎 1 3𝑖 𝑛 𝑖 ]] = - [[ 𝐶 𝑖3𝑝𝑞 ]] 𝑛 3 , [[ 𝑝𝑞 𝜇 1 3𝑖 𝑛 𝑖 ]] = - [[ 𝐵 𝑖3𝑝𝑞 ]] 𝑛 3 over Γ, (34) 
where 𝑝𝑞 𝜎 

) ′ = 0, in Y, ( 𝐷 𝑖3𝑝𝑞 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑈 ′ 𝑚 + 𝐵 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 + 𝐷 𝑖3𝑚3 𝑝𝑞 𝑀 ′ 𝑚 ) ′ = 0, in Y, [[ 𝑝𝑞 𝑈 𝑚 ]] = 0, [[ 𝑝𝑞 𝑀 𝑚 ]] = 0 over Γ, [[ 𝑝𝑞 𝜎 2 3𝑖 𝑛 𝑖 ]] = - [[ 𝐵 𝑖3𝑝𝑞 ]] 𝑛 3 , [[ 𝑝𝑞 𝜇 2 3𝑖 𝑛 𝑖 ]] = - [[ 𝐷 𝑖3𝑝𝑞 ]] 𝑛 3 over Γ, (35) 
where Consequently, from Eqs. ( 26)-( 29), the corresponding effective properties for a periodic laminate Cosserat composite are

𝑝𝑞 𝜎 2 3𝑖 = 𝐶 𝑖3𝑚𝑛 𝑝𝑞 𝑈 ′ 𝑚 + 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑀 ′ 𝑚 and 𝑝𝑞 𝜇 2 3𝑖 = 𝐵 𝑖3𝑚3 𝑝𝑞 𝑈 ′ 𝑚 + 𝐵 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 + 𝐷 𝑖3𝑚3 𝑝𝑞 𝑀 ′ 𝑚 . Additionally,
𝐶 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚3 ( 𝑝𝑞 𝑁 ′ 𝑚 + 𝜖 𝑚3𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐵 𝑖𝑗𝑚3 𝑝𝑞 𝑉 ′ 𝑚 ⟩ Y , ( 36 
)
𝐵 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐵 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚3 ( 𝑝𝑞 𝑈 ′ 𝑚 + 𝜖 𝑚3𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐵 𝑖𝑗𝑚3 𝑝𝑞 𝑀 ′ 𝑚 ⟩ Y , ( 37 
)
𝐵 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐵 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚3 ( 𝑝𝑞 𝑁 ′ 𝑚 + 𝜖 𝑚3𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐷 𝑖𝑗𝑚3 𝑝𝑞 𝑉 ′ 𝑚 ⟩ Y , ( 38 
)
𝐷 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐷 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚3 ( 𝑝𝑞 𝑈 ′ 𝑚 + 𝜖 𝑚3𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐷 𝑖𝑗𝑚3 𝑝𝑞 𝑀 ′ 𝑚 ⟩ Y . ( 39 
)
As can be seen, the analytical formulas of the effective coefficients (Eqs. ( 36)-( 39)) depend on the local functions 𝑝𝑞 𝑁 ′ 𝑚 , 𝑝𝑞 𝑉 ′ 𝑚 , 𝑝𝑞 𝑈 ′ 𝑚 , 𝑝𝑞 𝑀 ′ 𝑚 , the constituent material properties and the volumes through the average operator on the periodic unit cell Y. Therefore, once the solutions of the 𝑝𝑞  1 and 𝑝𝑞  2 local problems have been determined, the effective coefficients of a Cosserat laminated media can be computed by replacing the local functions and their derivatives in them. Details of the local problem solutions are shown in Appendix.

Effective properties of centro-symmetric laminated Cosserat composites

Now, the analytical formulas of centro-symmetric laminated Cosserat composite are determined. A periodic Cosserat material is defined as centro-symmetric if -𝐈 (𝐈 is the second order identity tensor) is a symmetry transformation of its constitutive law. In this case, 𝐵 𝑖𝑗𝑟𝑠 are not considered due to the symmetry condition 𝐵 𝑖𝑗𝑟𝑠 = 𝐵 𝑟𝑠𝑖𝑗 not being fulfilled. This condition implies that the stresses and the couple stresses no longer depend on the microcurvatures and strains, respectively, because 𝐵 𝑖𝑗𝑟𝑠 is related to the coupling between stresses and microcurvatures and between couple stresses and strains. Then, let us write the condition explicitly 𝐵 𝑖𝑗𝑝𝑞 = 0, therefore applying this condition into Eq. (A.12) we have

𝑝𝑞 𝑉 ′ 𝑚 = 0. ( 40 
)
In order to find the local function 𝑝𝑞 𝑉 𝑚 , it is necessary to integrate Eq. ( 40) assuming that

⟨ 𝑝𝑞 𝑉 𝑚 ⟩ = 0, such as 𝑝𝑞 𝑉 𝑚 = ∫ 𝐿 0 𝑝𝑞 𝑉 ′ 𝑚 𝑑𝑦 - ⟨ ∫ 𝐿 0 𝑝𝑞 𝑉 ′ 𝑚 𝑑𝑦 ⟩ ≡ 0. (41) 
Taking into account 𝐵 𝑖𝑗𝑝𝑞 = 0 and Eqs. ( 40) and ( 41), the expressions Eqs. (A.11) and (A.16) become

𝑝𝑞 𝑁 ′ 𝑚 = 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑝𝑞 ⟩ -𝐶 -1 𝑚3𝑙3 𝐶 𝑙3𝑝𝑞 , ( 42 
)
𝑝𝑞 𝑀 ′ 𝑚 = 𝐷 -1 𝑚3𝑙3 ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ ⟨ 𝐷 -1 𝑘3𝑑3 𝐷 𝑑3𝑝𝑞 ⟩ -𝐷 -1 𝑚3𝑙3 𝐷 𝑙3𝑝𝑞 . ( 43 
)
Finally, replacing Eqs. ( 40)-( 43) into the statements Eqs. ( 36)-( 39), the effective properties of centro-symmetric micropolar laminated composites can be found as follows,

𝐶 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚3 𝐶 -1 𝑚3𝑙3 ( ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑝𝑞 ⟩ -𝐶 𝑙3𝑝𝑞 )⟩ Y , ( 44 
)
𝐷 * 𝑖𝑗𝑝𝑞 = ⟨ 𝐷 𝑖𝑗𝑝𝑞 + 𝐷 𝑖𝑗𝑚3 𝐷 -1 𝑚3𝑙3 (⟨ 𝐷 -1 𝑙3𝑘3 ⟩ ⟨ 𝐷 -1 𝑘3𝑑3 𝐷 𝑑3𝑝𝑞 ⟩ -𝐷 𝑙3𝑝𝑞 )⟩ Y , (45) 𝐵 * 𝑖𝑗𝑝𝑞 = 0. ( 46 
)
It is important to remark that the expression of 𝐶 eff 𝑖𝑗𝑝𝑞 (Eq. ( 44)) coincide with the formula (Eq. 1.12, page 145) of [START_REF] Pobedrya | Mechanics of Composite Materials[END_REF], considering a classical Cauchy elastic problem.

Details of Cosserat centro-symmetric materials can be found in [START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF] and [START_REF] Zheng | On the canonical representation for kronecker powers of orthogonal tensors with application to material symmetry problems[END_REF]. The correspondence between the non-null Cosserat effective coefficients and the local problems is given in Table 1.

Numerical results

In this section, the effective properties (Eqs. ( 44)-( 46)) are reduced for a centro-symmetric laminated Cosserat composite with isotropic or cubic constituents. In addition, the numerical values of the effective properties for a centro-symmetric bi-laminated Cosserat composite are computed for both constituent symmetries, and the results are analyzed and discussed. As a limit case, a comparison is reported between classical and Cosserat effective elastic properties for a laminated composite with isotropic constituents. Finally, the analytical formulas of the effective engineering moduli are reported for centro-symmetric bilaminated Cosserat composites with isotropic and cubic constituent materials.

Since the constituent materials are considered centro-symmetric, then, the orthotropic symmetry and all orthotropic sub-classes, i.e., transversely isotropic, cubic, and isotropic, are also considered centrosymmetric, see [START_REF] Zheng | On the canonical representation for kronecker powers of orthogonal tensors with application to material symmetry problems[END_REF].

Centro-symmetric laminated Cosserat composites with isotropic constituents

Assuming that each layer possesses isotropic symmetry, the constituent properties are rewritten as a function of six independent constants, see for instance [START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF] and [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF], in the form

𝐶 𝑖𝑗𝑝𝑞 = 𝐶 1122 𝛿 𝑖𝑗 𝛿 𝑝𝑞 + 𝐶 1212 𝛿 𝑖𝑝 𝛿 𝑗𝑞 + 𝐶 1221 𝛿 𝑖𝑞 𝛿 𝑗𝑝 , ( 47 
)
𝐷 𝑖𝑗𝑝𝑞 = 𝐷 1122 𝛿 𝑖𝑗 𝛿 𝑝𝑞 + 𝐷 1212 𝛿 𝑖𝑝 𝛿 𝑗𝑞 + 𝐷 1221 𝛿 𝑖𝑞 𝛿 𝑗𝑝 , ( 48 
)
where 𝐵 𝑖𝑗𝑝𝑞 is vanished and 𝛿 𝑖𝑗 is the Kronecker delta tensor and 𝑖, 𝑗, 𝑝, 𝑞 = 1, 2, 3.

In addition, the following restrictions derived from the positivedefinite quadratic form of the internal energy are assumed (see, [START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF])

𝐶 1212 + 𝐶 1221 > 0, 𝐶 1212 -𝐶 1221 > 0, 3𝐶 1122 + 𝐶 1212 + 𝐶 1221 > 0, 𝐷 1212 + 𝐷 1221 > 0, 𝐷 1212 -𝐷 1221 > 0, 3𝐷 1122 + 𝐷 1212 + 𝐷 1221 > 0, (49) 
and the stiffness 𝐶 𝑖𝑗𝑝𝑞 and torque 𝐷 𝑖𝑗𝑝𝑞 moduli are defined in matrix form as

𝐶 𝑖𝑗𝑝𝑞 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐶 1111 𝐶 1122 𝐶 1122 0 0 0 0 0 0 𝐶 1111 𝐶 1122 0 0 0 0 0 0 𝐶 1111 0 0 0 0 0 0 𝐶 1212 0 0 𝐶 1221 0 0 𝐶 1212 0 0 𝐶 1221 0 𝐶 1212 0 0 𝐶 1221 SYM 𝐶 1212 0 0 𝐶 1212 0 𝐶 1212 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (50) 
and

𝐷 𝑖𝑗𝑝𝑞 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝐷 1111 𝐷 1122 𝐷 1122 0 0 0 0 0 0 𝐷 1111 𝐷 1122 0 0 0 0 0 0 𝐷 1111 0 0 0 0 0 0 𝐷 1212 0 0 𝐷 1221 0 0 𝐷 1212 0 0 𝐷 1221 0 𝐷 1212 0 0 𝐷 1221 SYM 𝐷 1212 0 0 𝐷 1212 0 𝐷 1212 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , ( 51 
)
where 

+ 𝐷 1221 ) -1 ⟩ 2 ⟨(𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ -1 , 𝐷 * 3333 = ⟨(𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ -1 , 𝐷 * 1122 = ⟨𝐷 1122 ⟩ -⟨𝐷 2 1122 (𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩+ ⟨𝐷 1122 (𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ 2 ⟨(𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ -1 , 𝐷 * 1212 = 𝐷 * 2121 = ⟨𝐷 1212 ⟩, 𝐷 * 1313 = 𝐷 * 2323 = ⟨𝐷 -1 1212 ⟩ -1 , 𝐷 * 1133 = 𝐷 * 2233 = ⟨𝐷 1122 (𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ ⟨(𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩ -1 , 𝐷 * 3131 = ⟨𝐷 1212 ⟩ + ⟨𝐷 1221 𝐷 -1 1212 ⟩ 2 ⟨𝐷 -1 1212 ⟩ -1 -⟨𝐷 2 1221 𝐷 -1 1212 ⟩, 𝐷 * 1221 = ⟨𝐷 1221 ⟩, 𝐷 * 1331 = 𝐷 * 2332 = ⟨𝐷 1221 𝐷 -1 1212 ⟩⟨𝐷 -1 1212 ⟩ -1 . ( 53 
)
In Eqs. ( 52) and ( 53), the symbol ⟨𝑓 ⟩ is the Voigt's average (average operator) of the property 𝑓 . Also, in case of a bi-laminated composite, ⟨𝑓 ⟩ = 𝑓 (1) V 1 + 𝑓 (2) V 2 where V 1 and V 2 represents the volume fractions per unit length occupied by the layer 1 and 2, respectively; such as, V 1 + V 2 = 1, see Fig. 1(d).

As it can be observed in Eqs. ( 52) and ( 53), the resulting homogenized material has orthotropic symmetry restricted with the invariance of stiffness and torques under rotations of 90 • about the unitary vector 𝐞 3 , i.e., it is described by eighteen independent effective properties, see [START_REF] Eremeyev | Material symmetry group of the non-linear polar-elastic continuum[END_REF]. Also, it can be noticed that the effective coefficients given in Eq. ( 52) match with those reported by Pobedrya (1984) (Eq. 1.19, page 147) when 𝐶 1212 = 𝐶 1221 . This limit case allows reproducing the effective coefficients of laminate composites with isotropic constituents in the framework of classical Cauchy elasticity, as in [START_REF] Pobedrya | Mechanics of Composite Materials[END_REF]. In addition, it is worth mentioning that the expressions of these coefficients (Eq. ( 52)) do not match with those reported by Emel'yanov (2016) because different constitutive relations for 𝐶 𝑖𝑗𝑝𝑞 and 𝐷 𝑖𝑗𝑝𝑞 are used. We follow the same reported by [START_REF] Nowacki | The Linear Theory of Micropolar Elasticity, Micropolar Elasticity[END_REF] and [START_REF] Lazar | Cosserat (micropolar) elasticity in stroh form[END_REF].

From now on, the non-null effective properties for a bi-laminated Cosserat composite with isotropic material constituents are shown as a function of the volume fraction. The values of the material properties for the numerical computations are established by the data given in Table 2 and the relations 𝐶 1122 ≡ 𝜆, (𝐶 1212 + 𝐶 1221 )∕2 ≡ 𝜇, (𝐶 1212 -𝐶 1221 )∕2 ≡ 𝛼, 𝐷 1122 ≡ 𝛽, (𝐷 1212 + 𝐷 1221 )∕2 ≡ 𝛾, and (𝐷 1212 -𝐷 1221 )∕2 ≡ 𝜖, which represent the Lamé coefficient, the Lamé shear modulus, the micropolar couple modulus and the remaining ones define the Cosserat or micropolar elastic constants. Following these relations an equivalent representation of Eqs. ( 47) and ( 48) can be obtained (see, [START_REF] Lazar | Cosserat (micropolar) elasticity in stroh form[END_REF]). Constituent materials with a full set of micropolar elastic constants measured are reported by [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]. It is important to note that, despite several studies carried 1221 as linear functions and the other ones in a convex form. Also, the latter ones have a higher growth rate as V 1 approaches 1. On the other hand, from Fig. 2(c) and (d), it is worthwhile to mention that there is a different effective behavior. When V 1 increases, the effective torque properties decrease except for 𝐷 * 1122 and 𝐷 * 1133 . These last two properties have the peculiarity of being negative. In particular, 𝐷 * 1133 grows in a concave form for all V 1 values and 𝐷 * 1122 has a minimum for V 1 = 0.092. This negative behavior is due to the 𝐷 1122 Cosserat twist coefficient influence, which is negative for both constituents. 𝐷 1122 is negative for micropolar isotropic solids (see, [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]).

Comparison between Cauchy and Cosserat effective properties

As mentioned before, micropolar media can be reduced to classical or Cauchy media. In the classical theory of linear elasticity, the effective moduli 𝐷 * 𝑖𝑗𝑝𝑞 do not exist, and the effective stiffness moduli 𝐶 * 𝑖𝑗𝑝𝑞 are defined by five independent constants, which corresponds to a homogenized material with transversely isotropic symmetry. Therefore, the effective properties of laminated Cosserat composites with isotropic constituents can be reduced to the classical effective stiffness properties making 𝐶 * 52) and ( 52), the stiffness moduli are given by:

𝐶 C 1111 = 𝐶 C 2222 = ⟨𝐶 1122 + 2𝐶 1212 ⟩ -⟨𝐶 2 1122 (𝐶 1122 + 2𝐶 1212 ) -1 ⟩+ ⟨𝐶 1122 (𝐶 1122 + 2𝐶 1212 ) -1 ⟩ 2 ⟨(𝐶 1122 + 2𝐶 1212 ) -1 ⟩ -1 , 𝐶 C 3333 = ⟨(𝐶 1122 + 2𝐶 1212 ) -1 ⟩ -1 , 𝐶 C 1122 = ⟨𝐶 1122 ⟩ -⟨𝐶 2 1122 (𝐶 1122 + 2𝐶 1212 ) -1 ⟩+ ⟨𝐶 1122 (𝐶 1122 + 2𝐶 1212 ) -1 ⟩ 2 ⟨(𝐶 1122 + 2𝐶 1212 ) -1 ⟩ -1 , 𝐶 C 1133 = 𝐶 C 2233 = ⟨𝐶 1122 (𝐶 1122 + 2𝐶 1212 ) -1 ⟩⟨(𝐶 1122 + 2𝐶 1212 ) -1 ⟩ -1 , 𝐶 C 1212 = ⟨𝐶 1212 ⟩, 𝐶 C 1313 = 𝐶 C 2323 = ⟨𝐶 -1 1212 ⟩ -1 , ( 54 
)
where

𝐶 C 1212 = (𝐶 C 1111 -𝐶 C 1122 )∕2.
Here, the notation 𝐶 C 𝑖𝑗𝑝𝑞 represents the classical or Cauchy effective property (effective stiffness moduli) and they satisfy the classical symmetry conditions

𝐶 C 𝑖𝑗𝑝𝑞 = 𝐶 C 𝑝𝑞𝑖𝑗 = 𝐶 C 𝑖𝑗𝑞𝑝 = 𝐶 C
𝑗𝑖𝑝𝑞 . The resulting composite has hexagonal symmetry. Notice that, a good agreement is obtained with the expressions reported by [START_REF] Pobedrya | Mechanics of Composite Materials[END_REF], page 147.

On the other hand, if we assume that all the material parameters given in Table 2 52) and (54). Hence, the differences between the Cosserat and Cauchy effective elastic moduli need to be Deviations (GPa) and relative errors: = 𝜈, where 𝜆 and 𝜇 are the Lamé parameters, 𝜂 is the classical cubic constant or anisotropy constant, 𝛼 is the micropolar couple modulus, and 𝛽, 𝛾, 𝜖, and 𝜈 represent the additional micropolar elastic constants introduced in micropolar theory.

Error 1 = | | | C * 1313 ∕𝐶 C 1313 | | | × 100%, Error 2 = | | | C * 3131 ∕𝐶 * 3131 | | | × 100% V 1 C * 1212 C *
Similarly to the isotropic case, restrictions derived from the positivedefinite quadratic form of the internal energy are assumed, see [START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF] In this case, the material symmetry group related to constituents cubic symmetry has rotations of 90 • about all orthogonal axes with unitary vectors 𝐞 𝑘 (𝑘 = 1, 2, 3). Some details of the mathematical foundations, material symmetry regulations, and stability of micropolar media are given in [START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF] and [START_REF] Eremeyev | Material symmetry group of the non-linear polar-elastic continuum[END_REF]. The explicit structure of 𝐶 𝑖𝑗𝑝𝑞 and 𝐷 𝑖𝑗𝑝𝑞 tensors are reported by [START_REF] Zheng | On the canonical representation for kronecker powers of orthogonal tensors with application to material symmetry problems[END_REF] for fourteen symmetry groups.

Then, replacing Eqs. ( 59) and ( 60) into Eqs. ( 44)-( 46), the nonnull effective properties 𝐶 * 𝑖𝑗𝑝𝑞 and 𝐷 * 𝑖𝑗𝑝𝑞 of centro-symmetric laminated Cosserat materials with cubic constituents can be determined, as follows:

𝐶 * 1111 = 𝐶 * 2222 = ⟨𝐶 1111 ⟩ + ⟨𝐶 1122 𝐶 -1 1111 ⟩ 2 ⟨𝐶 -1 1111 ⟩ -1 -⟨𝐶 2 1122 𝐶 -1 1111 ⟩, 𝐶 * 3333 = ⟨𝐶 -1 1111 ⟩ -1 , 𝐶 (62)
and

𝐷 * 1111 = 𝐷 * 2222 = ⟨𝐷 1111 ⟩ + ⟨𝐷 1122 𝐷 -1 1111 ⟩ 2 ⟨𝐷 -1 1111 ⟩ -1 -⟨𝐷 2 1122 𝐷 -1 1111 ⟩, 𝐷 * 3333 = ⟨𝐷 -1 1111 ⟩ -1 , 𝐷 * 1122 = ⟨𝐷 1122 ⟩ + ⟨𝐷 1122 𝐷 -1 1111 ⟩ 2 ⟨𝐷 -1 1111 ⟩ -1 -⟨𝐷 2 1122 𝐷 -1 1111 ⟩, 𝐷 * 1133 = 𝐷 * 2233 = ⟨𝐷 1122 𝐷 -1 1111 ⟩⟨𝐷 -1 1111 ⟩ -1 , 𝐷 * 1212 = 𝐷 * 2121 = ⟨𝐷 1212 ⟩, 𝐷 * 1313 = 𝐷 * 2323 = ⟨𝐷 -1 1212 ⟩ -1 , 𝐷 * 3131 = ⟨𝐷 1212 ⟩ + ⟨𝐷 1221 𝐷 -1 1212 ⟩ 2 ⟨𝐷 -1 1212 ⟩ -1 -⟨𝐷 2 1221 𝐷 -1 1212 ⟩, 𝐷 * 1221 = ⟨𝐷 1221 ⟩, 𝐷 * 1331 = 𝐷 * 2332 = ⟨𝐷 1221 𝐷 -1 1212 ⟩⟨𝐷 -1 1212 ⟩ -1 . ( 63 
)
From Eq. ( 62), the analytical formulas for a cubic elastic Cauchy composite are obtained when 𝛼 = 0 (i.e., 𝐶 1212 = 𝐶 1221 ), then, the effective properties reduce to six properties only, which matches with those reported in Eq. ( 35) by [START_REF] Castillero | Asymptotic homogenization of laminated piezocomposite materials[END_REF]. Also, it is important to mention that the resulting composite is described by eighteen independent effective properties (nine are stiffness and nine are torque); therefore, it belongs to an orthotropic symmetry group with invariance under rotations of 90 o about the unitary vector 𝐞 3 : 𝐎 = {𝐞 3 ⊗ 𝐞 3 ∓ 𝐞 3 × 𝐈}, see for instance [START_REF] Eremeyev | Material symmetry group of the non-linear polar-elastic continuum[END_REF].

From now on, the dimensionless effective stiffness 𝐶 * 𝑖𝑗𝑝𝑞 ∕ 𝐶 (1) 1111 (Fig. 3(a) and (b)) and torque 𝐷 * 𝑖𝑗𝑝𝑞 ∕𝐷 (1) 1111 (Fig. 3(c) and (d)) moduli are computed for a homogenized bi-laminated composite as a function of the V 1 volume fraction. The computations are carried out using Eqs. ( 62) and ( 63) for fictitious constituents materials; such that, for the material constituent 1, we have 𝐶 (1) 1122 𝐶 (1) 1111 = 0.65, 𝐶 (1) 1212 𝐶 (1) 1111 = 0.35, 𝐶 (1) 1221 𝐶 (1) 1111 = 0.30, 𝐷 (1) 1122 𝐷 (1) 1111 = -0.4, 𝐷 (1) 1212 𝐷 (1) 1111 = 0.70, 𝐷 (1) 1221 𝐷 (1) 1111 = 0.60, and for the material constituent 2 𝐶 (2) 1111 𝐶 (1) 1111 = 0.45, 𝐶 (2) 1122 𝐶 (1) 1111 = 0.20, 𝐶 (2) 1212 𝐶 (1) 1111 = 0.026, 𝐶 (2) 1212 𝐶 (1) 1111 = 0.024, 𝐷 (2) 1111 𝐷 (1) 1111 = 10.0, 𝐷 (2) 1122 𝐷 (1) 1111 = -3.7, 𝐷 (2) 1212 𝐷 (1) 1111 = 7.5, 𝐷 (2) 1212 𝐷 (1) 1111 = 6.3.

The fictitious constituents materials are assumed due to the lack of experimental data for the complete characterization of Cosserat cubicsymmetric materials. Therefore, the values of the defined ratios are not taken randomly. They are considered under the following conditions:

(i) The restrictions in Eq. ( 61) are satisfied. (ii) The material properties of a first layer has greater elastic properties, i.e., |𝐶 (1) 1122 | > |𝐶 (2) 1122 |, |𝐶 (1) 1212 + 𝐶 (1) 1221 | > |𝐶 (2) 1212 + 𝐶 (2) 1221 |, |𝐶 (1) 1212 -𝐶 (1) 1221 | > |𝐶 (2) 1212 -𝐶 (2) 1221 |, and |𝐶 (1) 1111 -𝐶 (1) 1122 -𝐶 (1) 1212 -𝐶 (1) 1221 (𝛼) 𝑖𝑗𝑝𝑞 ∕𝐶 (1) 1111 < 1 (𝛼 = 1, 2), then as expected, it is satisfied that 0 < 𝐶 * 𝑖𝑗𝑝𝑞 ∕𝐶 (1) 1111 < 1. (iv) The torque properties of the first layer are lower than the second one, i.e., |𝐷 (1) 1122 | < |𝐷 (2) 1122 |, |𝐷 (1) 1212 + 𝐷 (1) 1221 | < |𝐷 (2) 1212 + 𝐷 (2) 1221 |, |𝐷 (1) 1212 -𝐷 (1) 1221 | < |𝐷 (2) 1212 -𝐷 (2) 1221 |, and |𝐷 (1) 1111 -𝐷 (1) 1122 -𝐷 (1) 1212 -𝐷 (1) 1221

| > |𝐶 (2) 1111 -𝐶 (2) 1122 -𝐶 (2) 1212 -𝐶 (2) 1221 |. (iii) 0 < 𝐶
| < |𝐷 (2) 1111 -𝐷 (2) 1122 -𝐷 (2) 1212 -𝐷 (2) 1221 |. (v)
The negative values are due to 𝐷 (2) 1122 is defined negative. Figs. 3(a is due to the 𝐷 1122 Cosserat twist coefficient that is negative for both constituents.

Engineering moduli of laminated Cosserat materials with isotropic and cubic constituents

Let us start by recalling the classical linear elasticity theory for solid materials, in which the engineering moduli are found, i.e., Young's modulus, shear modulus, and Poisson's ratio. The relationship between the engineering constants and the elastic constants of the stiffness matrix is also a topic of interest, as it is reported by [START_REF] Hayes | On the extreme values of Young's modulus, the shear modulus, and Poisson's ratio for cubic materials[END_REF], [START_REF] Devorak | Micromechanics of Composite Materials[END_REF], and others.

In the theory of micropolar elasticity, local rotations and displacements are assumed at each point, whereas only displacements are considered in the classical linear elasticity theory. Therefore, other engineering constants are added, such as the torsional Young's modulus, the micropolar twist (Poisson) ratio, among others. These engineering constants can be defined as a function of the effective stiffness and torque moduli.

In this section, the engineering moduli are determined for a homogenized laminated Cosserat composite with isotropic and cubic constituents.

From Eq. (3), it can be concluded that the strain-stress relationships for a centro-symmetric Cosserat material are given by the uncoupled equations

𝑒 𝑛𝑚 = 𝑆 𝑖𝑗𝑚𝑛 𝜎 𝑗𝑖 , 𝜓 𝑛𝑚 = 𝑇 𝑖𝑗𝑚𝑛 𝜇 𝑗𝑖 , (64) 
where 𝑆 𝑖𝑗𝑚𝑛 = 𝐶 -1 𝑖𝑗𝑚𝑛 and 𝑇 𝑖𝑗𝑚𝑛 = 𝐷 -1 𝑖𝑗𝑚𝑛 (𝑖, 𝑗, 𝑚, 𝑛 = 1, 2, 3).

Then, as mentioned before in Sections 5.1 and 5.3, the homogenized laminated composite has orthotropic symmetry with invariance under rotations of 90 • when isotropic (Section 5.1) and cubic (Section 5.3) constituents are assumed. Therefore, the components of the effective compliance matrix satisfy 

𝑖𝑖

is the Poisson's ratio (the ratio between orthogonal strains directed in the principal direction), and 𝑆 𝜁 * 𝑖𝑗𝑝𝑞 = -𝑒 * 𝑝𝑞 ∕𝑒 * 𝑖𝑗 is the shear-strain ratio (the ratio between strains directed in the shear direction). The subscript 𝑆 means that the engineering constants results from the compliance matrix.

Then, the independent engineering moduli written as functions of the components of the effective stiffness matrix are given as follows:

Effective Young's moduli: 

𝑖𝑗

represents the twist shear-strain ratio. The subscript 𝑇 means that the engineering constants result from torque compliance matrix. A brief description of the duality between the terminologies used in classical and micropolar theories of elasticity can be found in [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF].

Then, the independent engineering moduli as a function of the components of the effective torque matrix are given as follows:

Effective torsional Young's moduli: Figs. 4-7 display the effective engineering moduli of centro-symmetric bi-laminated micropolar composites with isotropic (Figs. 4 and5) and cubic (Figs. 6 and7) constituents as a function of the V 1 volume fraction. In both cases, as previously mentioned, the effective composite belongs to an orthotropic symmetry group with invariance under rotations of 90 • , see [START_REF] Eremeyev | Material symmetry group of the non-linear polar-elastic continuum[END_REF]. Therefore, the effective composite is defined by eighteen independent engineering constants, which can be derived using Eqs. ( 67)-( 70) and ( 73)-( 76).

In addition, the values of 𝐶 * 𝑖𝑗𝑝𝑞 and 𝐷 * 𝑖𝑗𝑝𝑞 are obtained from Eqs. ( 52)-( 53) for isotropic constituents, and from Eqs. ( 62)-( 63) for cubic constituents. Their results are illustrated in Figs. 2 and 3 of Sections 5. 1 and 5.3, respectively. As it is observed in Fig. 4, all the effective engineering constants are continuous smooth functions in the whole analysis interval, and they exhibit interesting behaviors. The effective Young's and shear moduli (Fig. 4(a) and (b)) have an increasing behavior as V 1 increases. Moreover, 𝑆 𝐸 * 3 and 𝑆 𝐺 * 13 behave in a convex way. As expected, this is because the elastic material properties of the first layer (SyF) are bigger than those of the second one (PUF). In addition, the effective shear modulus 𝑆 𝐺 * 12 and 𝑆 𝐺 * 32 are close to each other with a deviation less than 1%, so that 𝑆 𝐺 * 32 ≤ 𝑆 𝐺 * 12 . The effective Poisson's ratio 𝑆 𝜈 * 21 is a decreasing function in the whole composite domain, whereas 𝑆 𝜈 * 31 has a minimum value when for V 1 = 0.64 (see Fig. 4(c)). Also, comparing them, the highest values are obtained for 𝑆 𝜈 * 21 . The shear-strain ratios are decreasing functions in the whole interval (see Fig. 4(d)).

On the other hand, the effective torsional Young's moduli (Fig. 5(a)) and the micropolar shear moduli (Fig. 5(b)) are linearly decreasing as V 1 increases, except 𝑇 𝐺 * 13 which describes an inflexion point at V 1 = 0.680545. Notice that the effective torsional Young's moduli are negative when V 1 ≥ 0.84 approximately, and their direction changes. Also, the effective torsional Young's moduli 𝑇 𝐸 * 1 = 𝑇 𝐸 * 2 and 𝑇 𝐸 * 3 have very approximate values. Therefore, to observe differences between them, a 10 -5 precision of its values is needed. More details can be seen in the figures' zoomed portions. In addition, the effective micropolar twist Poisson's ratios 𝑇 𝜈 * 21 and 𝑇 𝜈 * 31 = 𝑇 𝜈 * 32 (Fig. 5(c)) are negative and so close to -1, and 𝑇 𝜈 * 31 = 𝑇 𝜈 * 32 reaches a maximum value when V 1 = 0.4. On the other hand, the effective twist shear-strain ratios (Fig. 5(d)) are positive and increasing functions, so that 𝑇 𝜁 * 3113 ≥ 𝑇 𝜁 * 2112 for each V 1 value.

In Figs. 6 and 7, a similar behavior is observed in almost all the effective engineering constants to those illustrated in Figs. 4 and5. Here, it is assumed that the effective composite has constituents with cubic symmetry. In this case, the most interesting behaviors are observed in: (i) the effective Poisson's coefficients (Fig. 6(c)) that are increasing, unlike the case of isotropic constituents where they are decreasing as V 1 increases, and (ii) the effective twist Poisson's ratios (Fig. 7(c)) are far from -1 for cubic constituents and they are near to -1 when isotropic constituents are assumed. They cannot be considered constant. In addition, 𝑇 𝜈 * 31 reaches a maximum value equal to -0.284226 when V 1 = 0.477.

Limit cases

In this section, we determine the expressions corresponding to the engineering modules for isotropic and cubic solids, based on the results derived of the homogenization process. It is important to mention that we do not obtain the expressions for micropolar laminated composites with isotropic and cubic constituents, but for simple monolithic isotropic and cubic materials.

From Eqs. ( 67)-( 70) and ( 73)-( 76), it is possible to find the engineering moduli for isotropic and cubic materials. With this purpose, the stiffness and torque matrices must be defined with equal number of independent properties: three for the isotropic case and four for the cubic case.

In order to find the analytical expressions of the engineering moduli of isotropic materials as functions of stiffness and torques, it is needed to know that the stiffness 𝐶 𝑖𝑗𝑝𝑞 and torques 𝐷 𝑖𝑗𝑝𝑞 matrices satisfy the form of Eqs. ( 50) and ( 51), respectively, where 𝐶 1111 = 𝐶 1122 + 𝐶 1212 + 𝐶 1221 and 𝐷 1111 = 𝐷 1122 + 𝐷 1212 + 𝐷 1221 , see [START_REF] Eringen | Microcontinuum Field Theories I: Foundations and Solids[END_REF] and [START_REF] Eremeyev | Material symmetry group of the non-linear polar-elastic continuum[END_REF]. Then, taking into account the symmetry conditions for isotropic Cosserat materials (Eqs. ( 50) and ( 51)) and applying them in the Eqs. ( 67)-( 70) and ( 73)-( 76), the corresponding engineering moduli are obtained, such that: Young's modulus: As mentioned before, micropolar media can be reduced to Cauchy media. Therefore, the formulas of the engineering moduli for isotropic materials are easy to determine assuming that 𝐶 1212 = (𝐶 1111 -𝐶 1122 )∕2, 𝐶 1111 -𝐶 1122 -𝐶 1212 = 0 and all effective torque moduli are null. Then, the Young's, Poisson's ratio and shear modulus are given by, (85)

𝑆 𝐸 = 𝑆 𝐸 1 = 𝑆 𝐸 2 = 𝑆 𝐸 3 = (𝐶 1111 ) 2 +
The expressions in Eq. ( 85) coincide with those reported by [START_REF] Jones | On the torsional properties of single osteons[END_REF] in Eqs. (2.38), page 67, and by [START_REF] Royer | Elastic Waves in Solids I[END_REF] in Fig. 3.8, page 140. On the other hand, in the present work, the analytical expressions of the engineering moduli for a cubic centro-symmetric laminated composite are found replacing the symmetric conditions for cubic Cosserat materials into Eqs. ( 67)-( 70) and ( 73)-( 76), hence, we obtain the same expression as in Eqs. ( 77) and ( 84). Here, the difference is that the effective stiffness and torque matrices satisfy 𝐶 1111 ≠ 𝐶 1122 +𝐶 1212 +𝐶 1221 and 𝐷 1111 ≠ 𝐷 1122 + 𝐷 1212 + 𝐷 1221 , as in Eqs. ( 50) and (51), therefore, there are eight independent engineering moduli for cubic materials in contrast with the six independent moduli obtained for isotropic ones.

Conclusions

In this work, a brief introduction to the micropolar theory of elasticity and the basic equations for a micropolar (Cosserat) media are given. After that, based on the asymptotic homogenization method, the general analytical formulas of the homogenized local problems over the periodic unit cell Y, the homogeneous problem, and the effective properties of a Cosserat media are derived. In addition, the local problems and the effective properties of multi-laminated Cosserat media are determined. In particular, the effective coefficients for centro-symmetric laminated Cosserat composites with isotropic or cubic constituents as a function of the material properties and the constituents volume fractions are provided. The homogenized Cosserat material belongs to an orthotropic symmetry group restricted with invariance under rotations by 90 • , which is defined by nine effective stiffness and nine effective torque properties. Also, the effective engineering moduli related to the stiffness and torques are provided for centro-symmetric bi-laminated Cosserat composites with isotropic or cubic constituents (two effective Young's moduli, three effective shear moduli, two effective Poisson's ratios, two effective shear-strain ratios, two effective torsional Young's moduli, three effective torsional shear moduli, two effective twist Poisson's ratios, and two effective twist shear-strain ratios). Finally, numerical results are presented and discussed. YEA gratefully acknowledges the financial support of the Grant A1-S-37066 during the postdoctoral stay at UACJ, Mexico, 2021-2022. CFSV is grateful to the support of the CONACYT, Mexico Basic Science Grant A1-S-37066. FJS and RRR acknowledge the funding of PAPIIT-DGAPA-UNAM, Mexico IN101822, 2022-2023. RRR thanks to Aix-Marseille University, France , Centrale Marseille, France and the CNRS, France for the financial support. This work was partially written during the visit of RRR at Aix-Marseille University, Centrale Marseille and the LMA-CNRS. This work is devoted to Igor Sevostianov, who apported significant contributions in the micro-mechanic area. In particular, the authors had the pleasant opportunity to collaborate with him in the piezoelectric composites area among others.

Appendix. Solution of the local problems

In this appendix, the fundamental steps of the mathematical derivation for the 𝑝𝑞  1 local problem solution is developed. An analogous procedure can be applied to find the 𝑝𝑞  2 local problem solution, so the latter will be omitted, only the solutions are given.

The solution of the 𝑝𝑞  1 local problem (Eq. ( 34)) consists in finding the periodic local functions 𝑝𝑞 𝑁 𝑚 and 𝑝𝑞 𝑉 𝑚 .

First, we integrate the first expression in Eq. ( 34 where (A.9)

𝑝𝑞 𝑁 ′ 𝑚 = [ 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑝𝑞 ⟩ -𝐶 -1 𝑚3𝑙3 𝐶 𝑙3𝑝𝑞 ] + [ 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 ⟩ -𝐶 -1 𝑚3𝑙3 𝐶 𝑙3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 ] + [ 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐵 𝑑3𝑐3 𝑝𝑞 𝑉
𝑒 𝑚𝑝𝑞 = 𝐷 -1 𝑚3𝑙3 ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐷 -1 𝑘3𝑑3 ( 𝐵 𝑑3𝑝𝑞 + 𝐵 𝑑3𝑐3 𝑟 𝑐𝑝𝑞 )⟩ -𝐷 -1 𝑚3𝑙3 ( 𝐵 𝑙3𝑝𝑞 + 𝐵 𝑙3𝑐3 𝑟 𝑐𝑝𝑞 ) , ê ( 
The structure of Eqs. (A.3) and (A.7) is assumed to be 𝐍 ′ (𝑦) = 𝐚 (1) 

+ [ 𝐚 (2) ⟨ 𝐚 (3) 𝐕 ⟩ -𝐚 (3) 𝐕 ] + [ 𝐚 (2) ⟨ 𝐚 (3) 𝐕 ′ ⟩ -𝐚 (3) 𝐕 ′ ] ,
𝐕 ′ (𝑦) = 𝐛 (1) .10) where 𝐚 (𝑛) ≡ 𝐚 (𝑛) (𝑦) and 𝐛 (𝑛) ≡ 𝐛 (𝑛) (𝑦) (𝑛 = 1, 2, 3) depend on 𝑦 3 , and the symbols 𝐍 and 𝐕 represent the local functions 𝑝𝑞 𝑁 𝑚 and 𝑝𝑞 𝑉 𝑚 , respectively. Here the indexes are omitted for the sake of simplicity.

+ [ 𝐛 (2) ⟨ 𝐛 (3) 𝐕 ⟩ -𝐛 (3) 𝐕 ] + [ 𝐛 (2) ⟨ 𝐛 (3) 𝐕 ′ ⟩ -𝐛 (3) 𝐕 ′ ] , (A
As can be seen in Eqs. (A.3) and (A.7), and therefore Eq. (A.10), the corresponding terms to 𝐚 (2) (𝑦) and 𝐛 (2) (𝑦) are near to 1, therefore, the second and third terms of Eq. (A.10) can be assumed as deviations from the mean value of 𝐕 and 𝐕 ′ , respectively. Thus, the main contribution in Eq. (A.10) is given by the first terms. Under this consideration, in order to find the local functions 𝑝𝑞 𝑁 ′ 𝑚 and 𝑝𝑞 𝑉 ′ 𝑚 , we only consider, the first terms in Eqs. (A.3) and (A.7), i.e., where

𝑟 𝑐𝑝𝑞 = 𝐶 -1 𝑐3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑝𝑞 ⟩ -𝐶 -1
𝑐3𝑙3 𝐶 𝑙3𝑝𝑞 . On the other hand, the approximately solutions of the 𝑝𝑞  2 local problem (Eq. ( 35)), i.e., 𝑝𝑞 𝑈 𝑚 and 𝑝𝑞 𝑀 𝑚 , are figured out here as follows .16) then, integrating 𝑝𝑞 𝑈 ′ 𝑚 (𝑦 3 ) and 𝑝𝑞 𝑀 ′ 𝑚 (𝑦 3 ), we have

𝑝𝑞 𝑈 ′ 𝑚 (𝑦 3 ) = 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐵 𝑑3𝑝𝑞 ⟩ -𝐶 -1 𝑚3𝑙3 𝐵 𝑙3𝑝𝑞 , (A.15) 𝑝𝑞 𝑀 ′ 𝑚 (𝑦 3 ) = 𝐷 -1 𝑚3𝑙3 ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ ⟨ 𝐷 -1 𝑘3𝑑3 ( 𝐷 𝑞3𝑝𝑞 + 𝐵 𝑑3𝑐3 𝑠 𝑐𝑝𝑞 )⟩ -𝐷 -1 𝑚3𝑙3 ( 𝐷 𝑙3𝑝𝑞 + 𝐵 𝑙3𝑐3 𝑠 𝑐𝑝𝑞 ) , ( A 
𝑝𝑞 𝑈 𝑚 (𝑦 3 ) = ∫ 𝑦 3 0 𝑝𝑞 𝑈 ′ 𝑚 (𝑧) 𝑑𝑧 - ⟨ ∫ 𝑦 3 0 𝑝𝑞 𝑈 ′ 𝑚 (𝑧) 𝑑𝑧 ⟩ ≈ ∫ 𝑦 3 0 ( 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐵 𝑑3𝑝𝑞 ⟩ -𝐶 -1 𝑚3𝑙3 𝐵 𝑙3𝑝𝑞
) 𝑑𝑧, (A.17 where

𝑠 𝑐𝑝𝑞 = 𝐶 -1 𝑐3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐵 𝑑3𝑝𝑞 ⟩ -𝐶 -1 𝑐3𝑙3 𝐵 𝑙3𝑝𝑞 .

Fig. 1 .

 1 Fig. 1. (a) Heterogeneous laminated Cosserat composite; (b) blow-up of periodic structure; (c) the cross-section of the periodic structure Y at the plane 𝑂𝑦 2 𝑦 3 of a laminated composite.

  null average conditions over Y are required to guarantee the unique solution, i.e., ⟨ In Eqs. (34)-(35), the prime indicate the ordinary derivative of the function with respect to 𝑦 3 .

Fig. 2

 2 plots the effective elastic (Figs. 2(a) and (b)) and torque (Figs. 2(c) and (d)) properties for a homogenized bi-laminated Cosserat composite (layer 1/layer 2) = (Syntactic foam (SyF)/Dense polyurethane foam (PUF)) as a function of V 1 volume fraction. From Figs. 2(a) and (b), it can be noticed that all effective elastic properties have a monotone increasing behavior, e.g., 𝐶 * 1111 and 𝐶 * 1122 in a linear manner in almost whole volume fraction, 𝐶 * 1212 and 𝐶 *

Fig. 2 .

 2 Fig. 2. Effective elastic and torque properties for a homogenized bi-laminated Cosserat composite (SyF/PUF) with isotropic constituents as function of V 1 volume fraction.

Fig. 3 .

 3 Fig. 3. Dimensionless effective elastic and torque properties for a homogenized bi-laminate Cosserat composite with cubic constituents as a function of V 1 volume fraction.

  ) and (b) display that effective elastic properties behave as monotonically increasing convex functions in the whole interval for V 1 , except 𝐶 * 1212 and 𝐶 * 1221 , that linearly behave. In Figs. 3(c) and (d), a different behavior is presented for the effective torque properties. Here, the effective torque properties are monotone decreasing and concave functions in the whole interval except 𝐷 * 1122 and 𝐷 * 1133 . The property 𝐷 * 1122 has a minimum value when V 1 ≈ 0.092 and then increases as the V 1 volume fraction increases. The property 𝐷 * 1133 is a monotone increasing and concave function. Both 𝐷 * 1122 and 𝐷 * 1133 have negative values for every value of V 1 . The negative behavior of 𝐷 * 1122 and 𝐷 * 1133

  components of 𝑆 * 𝑖𝑗𝑚𝑛 are written in terms of the effective engineering moduli, as follows: 𝑗 = 1, 2, 3 and no summation by repeated Latin indices is assumed. In addition, 𝑆 𝐸 * 𝑖 ≡ 𝑆 𝐸 * 𝑖𝑖 = 𝜎 * 𝑖𝑖 ∕𝑒 * 𝑖𝑖 is the classical Young's modulus along the 𝑥 𝑖 -direction according the Voigt's notation, 𝑆 𝐺 * 𝑖𝑗 = 𝜎 * 𝑖𝑗 ∕𝑒 * 𝑖𝑗 is the classical shear modulus on the 𝑂𝑥 𝑖 𝑥 𝑗 plane, 𝑆 𝜈 * 𝑖𝑗 = -𝑒 * 𝑗𝑗 ∕𝑒 *

  Poisson's ratios ( 𝑆 𝜈 * 12 , 𝑆 𝜈 * 13 , 𝑆 𝜈 * 23 ) and shear-strain ratios ( 𝑆 𝜁 * 1221 , 𝑆 𝜁 * 1331 , 𝑆 𝜁 * 2332 ) are not null but neither independent since they can be expressed as functions of the previously given, i.e., 𝑗 = 1, 2, 3 and no summation by repeated Latin indices is assumed. Also 𝑇 𝐸 * 𝑖 ≡ 𝑇 𝐸 * 𝑖𝑖 = 𝜎 * 𝑖𝑖 ∕𝑒 * 𝑖𝑖 is the micropolar tortile or torsional Young's modulus along the 𝑥 𝑖 -direction according the Voigt's notation, 𝑇 𝐺 * 𝑖𝑗 = 𝜎 * 𝑖𝑗 ∕𝑒 * 𝑖𝑗 is the torsional shear modulus on the 𝑂𝑥 𝑖 𝑥 𝑗 plane, 𝑇 𝜈 * 𝑖𝑗 = -𝑒 * 𝑗𝑗 ∕𝑒 * 𝑖𝑖 is the twist Poisson's ratio and 𝑇 𝜁 * 𝑖𝑗𝑝𝑞 = -𝑒 * 𝑝𝑞 ∕𝑒 *

Fig. 4 .

 4 Fig. 4. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V 1 volume fraction: (a) Young's moduli, (b) Shear moduli, (c) Poisson's coefficients, and (d) Shear-strain ratios. Effective twist Poisson's ratios: 𝑇 𝜈 * 21 = ( 𝐷 * 1133 ) 2 -𝐷 * 1122 𝐷 * 3333

Fig. 5 .

 5 Fig. 5. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V 1 volume fraction: (a) Torsional Young's moduli, (b) Torsional shear moduli, (c) Twist Poisson's coefficients, and (d) Twist shear-strain ratios.

Fig. 6 .

 6 Fig. 6. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with cubic constituents as a function of V 1 volume fraction: (a) Young's moduli, (b) Shear moduli, (c) Poisson's coefficients, and (d) Shear-strain ratios.
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(Fig. 7 .

 7 Fig. 7. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composite with cubic constituents as a function of V 1 volume fraction: (a) Torsional Young's moduli, (b) Torsional shear moduli, (c) Twist Poisson's coefficients, and (d) Twist shear-strain ratios.

)(

  𝑝𝑞 𝑀 𝑚 (𝑦3 ) = ∫ 𝑦 3 0 𝑝𝑞 𝑀 ′ 𝑚 (𝑧) 𝑑𝑧 -𝐷 𝑑3𝑝𝑞 + 𝐵 𝑑3𝑐3 𝑠 𝑐𝑝𝑞 )⟩ -( 𝐷 𝑙3𝑝𝑞 + 𝐵 𝑙3𝑐3 𝑠 𝑐𝑝𝑞 )]) 𝑑𝑧,(A.18) 

  𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 , 𝑝𝑞 Û𝑚|𝑛 = 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ,

							Next, as 𝑢 (0) 𝑝,𝑞 +𝜖 𝑝𝑞𝑠 𝜔 (0) 𝑠 and 𝜔 (0) 𝑝,𝑞 are not null in Eq. (20), then, the strains
							satisfy ( 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝐵 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛	( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘	) )	+ 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ) |𝑗 = 0, ) |𝑗 = 0,	(21)
							and the couple strains ( 𝐵 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ( 𝐷 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 (	)	+ 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛	) |𝑗 = 0,
	𝑚 (𝑥 𝑥 𝑥, 𝑦 𝑦 𝑦) = 𝑝𝑞 𝑉 𝑚 (𝑦 𝑦 𝑦)	(	𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑠 𝜔 (0) 𝑠	)	𝑝,𝑞 + ψ(1) 𝑚 , + 𝑝𝑞 𝑀 𝑚 (𝑦 𝑦 𝑦) 𝜔 (0)	(18)
	where 𝑝𝑞 N𝑚 (𝑦 𝑦 𝑦), 𝑝𝑞 Û𝑚 (𝑦 𝑦 𝑦), 𝑝𝑞 𝑉 𝑚 (𝑦 𝑦 𝑦), and 𝑝𝑞 𝑀 𝑚 (𝑦 𝑦 𝑦) (𝑝, 𝑞 = 1, 2, 3) are Y-
	periodic functions on 𝑦 𝑦 𝑦, which are defined as local functions. The terms
	ũ(1) 𝑚 and ψ(1) 𝑚 are constant vectors.			
	In addition, as the strains are related to microrotations whereas the
	couple strains are not related to the displacements, the functions 𝑝𝑞 N𝑚|𝑛
	and 𝑝𝑞 Û𝑚|𝑛 can be redefined as			
						(19)
	where the 𝑝𝑞 𝑁 𝑚 and 𝑝𝑞 𝑈 𝑚 𝑝𝑞-displacements and the 𝑝𝑞 𝑉 𝑘 and 𝑝𝑞 𝑀 𝑘
	𝑝𝑞-microrotations are Y-periodic functions too.	
	Now, replacing Eq. (19) into Eq. (18), and then, the resulting
	expressions into Eq. (14) and collecting with respect to 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑠 𝜔 (0) 𝑠 and 𝜔 (0) 𝑝,𝑞 , we have
	[ [ 𝐵 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 𝐶 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 [ 𝐵 𝑖𝑗𝑝𝑞 + 𝐶 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ) + 𝐵 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ] |𝑗 ( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑘 𝜔 (0) 𝑘 ] |𝑗 𝜔 (0) 𝑝,𝑞 = 0, ( 𝑝𝑞 𝑁 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑉 𝑚|𝑛 ] |𝑗 ( 𝑢 (0) 𝑝,𝑞 + 𝜖 𝑝𝑞𝑘 𝜔 (0) ) ) 𝑘 [ 𝐷 𝑖𝑗𝑝𝑞 + 𝐵 𝑖𝑗𝑚𝑛 ( 𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 ) + 𝐷 𝑖𝑗𝑚𝑛 𝑝𝑞 𝑀 𝑚|𝑛 ] |𝑗 𝜔 (0) 𝑝,𝑞 = 0.	+ +
						(20)

𝑝𝑞 N𝑚|𝑛 =

𝑝𝑞 𝑈 𝑚|𝑛 + 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘

  1 3𝑖 = 𝐶 𝑖3𝑚3 𝑝𝑞 𝑁 ′ 𝑚 + 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑉 ′ 𝑚 and 𝑝𝑞 𝜇 1 3𝑖 = 𝐵 𝑖3𝑚3 𝑝𝑞 𝑁 ′ 𝑚 + 𝐵 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 + 𝐷 𝑖3𝑚3 𝑝𝑞 𝑉 ′ 𝑚 . Analogously, the 𝑝𝑞  2 local problems ( 𝐵 𝑖3𝑝𝑞 + 𝐶 𝑖3𝑚3 𝑝𝑞 𝑈 ′ 𝑚 + 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑀 𝑘 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑀 ′

	𝑚

Table 1

 1 Local problems and associated Cosserat effective properties.

	11  1	22  1	33  1	12  1	13  1	23  1	21  1	31  1	32  1
	𝐶	* 1111							

  𝐶 1111 = 𝐶 1122 + 𝐶 1212 + 𝐶 1221 and 𝐷 1111 = 𝐷 1122 + 𝐷 1212 + 𝐷 1221 , see Eringen (1999) and Eremeyev and Pietraszkiewicz (2012). 𝑖𝑗𝑝𝑞 for centro-symmetric laminated Cosserat composites with isotropic constituents are found as follows: ⟨𝐶 1122 + 𝐶 1212 + 𝐶 1221 ⟩ -⟨𝐶 2 1122 (𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩+ ⟨𝐶 1122 (𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩ 2 ⟨(𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩ -1 , 𝐶 * 3333 = ⟨(𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩ -1 , 𝐶 * 1122 = ⟨𝐶 1122 ⟩ -⟨𝐶 2 1122 (𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩+ ⟨𝐶 1122 (𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩ 2 ⟨(𝐶 1122 + 𝐶 1212 + 𝐶 1221 ) -1 ⟩ -1 , ⟨𝐷 1122 + 𝐷 1212 + 𝐷 1221 ⟩ -⟨𝐷 2 1122 (𝐷 1122 + 𝐷 1212 + 𝐷 1221 ) -1 ⟩+ ⟨𝐷 1122 (𝐷 1122 + 𝐷 1212

	𝐶 1212 = 𝐶 * 1111 = 𝐶 * * 2121 = ⟨𝐶 1212 ⟩, 𝐶 * 1313 = 𝐶 * 2222 = 𝐶	* 2323 = ⟨𝐶 -1 1212 ⟩ -1 ,	(52)
	𝐶		
	and		
	𝐷 1111 = 𝐷 * 2222 = *		

The 𝐶 𝑖𝑗𝑝𝑞 and 𝐷 𝑖𝑗𝑝𝑞 matrices are characterized by three independent components each: (𝐶 1122 , 𝐶 1212 , 𝐶 1221 ) for 𝐶 𝑖𝑗𝑝𝑞 and (𝐷 1122 , 𝐷 1212 , 𝐷 1221 ) for 𝐷 𝑖𝑗𝑝𝑞 . An analysis for the linear isotropic equations associated to the theory of micropolar elasticity and his representations are provided by

[START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]

.

Then, replacing Eqs. (

47

) and (48) into Eqs. (

44

) and (

46

), the analytical expressions of the non-null effective properties 𝐶 * 𝑖𝑗𝑝𝑞 and 𝐷 *

Table 2

 2 Constitutive material properties.

	Material properties	𝜆 (MPa) 𝜇 (MPa) 𝛼 (MPa) 𝛽 (N)	𝛾 (N) 𝜖 (N)
	Syntactic foam (hollow glass	2097	1033	114.8	-2.91 4.364 -0.133
	spheres in epoxy resin)				
	Dense polyurethane (high	762.7	104	4.333	-26.65 39.98 4.504
	dense polyurethane foam)				
	out in micropolar media, further research is needed focused on the
	determination of the material constants.		

  are null except 𝐶 1122 = 𝜆 and 𝐶 1212 = 𝜇, it can be obtained that the effective Cosserat and Cauchy properties satisfy that 𝐶

* 1111 = 𝐶 C 1111 , 𝐶 * 2222 = 𝐶 C 2222 , 𝐶 * 3333 = 𝐶 C 3333 , 𝐶 * 1122 = 𝐶 C 1122 and 𝐶 * 1133 = 𝐶 C 1133 , whereas 𝐶 * 1212 = 𝐶 * 2121 ≠ 𝐶 C 1212 and 𝐶 * 1313 ≠ 𝐶 C 1313 , from a direct comparison between Eqs. (

  Table3illustrates the values of the Cosserat and Cauchy elastic properties for a bi-laminated composite with isotropic constituents as a function of V 1 volume fraction. The Cauchy elastic moduli is calculated considering the material properties given in Table2. Notice that the effective properties 𝐶

	Table 3									
	Classical (𝐶 C 𝑖𝑗𝑝𝑞 ) and Cosserat (𝐶 𝑖𝑗𝑝𝑞 ) elastic effective properties for a bi-laminated * composite with isotropic constituents.
	Effective properties (GPa)							
	V 1	𝐶 1212 = 𝐶 *	* 2121	𝐶 C 1212	𝐶 1221 *	𝐶 3131 *	𝐶	* 1313	𝐶 C 1313	𝐶	* 1331
	0	0.10833		0.10400 0.09967 0.10833 0.10833 0.10400 0.09967
	0.1 0.21228		0.19690 0.18152 0.15451 0.11912 0.11428 0.10816
	0.2 0.31623		0.28980 0.26337 0.20217 0.13230 0.12681 0.11854
	0.3 0.42017		0.38270 0.34523 0.25187 0.14875 0.14243 0.13149
	0.4 0.52412		0.47560 0.42708 0.30445 0.16987 0.16243 0.14812
	0.5 0.62807		0.56850 0.50893 0.36138 0.19798 0.18897 0.17026
	0.6 0.73201		0.66140 0.59079 0.42522 0.23725 0.22589 0.20118
	0.7 0.83596		0.75430 0.67264 0.50110 0.29594 0.28072 0.24740
	0.8 0.93991		0.84720 0.75449 0.60091 0.39321 0.37071 0.32399
	0.9 1.04385		0.94010 0.83635 0.75980 0.58576 0.54562 0.47562
	1.0 1.14780		1.03300 0.91820 1.14780 1.14780 1.03300 0.91820
	shown for only unequal properties; see Table 3. Fig. 2(a) and (b) can be
	used to analyze the Cauchy effective property due to equality relations.

Table 4

 4 Deviation between the effective Cauchy (𝐶 C

𝑖𝑗𝑝𝑞 ) and Cosserat (𝐶 * 𝑖𝑗𝑝𝑞 ) elastic properties and relative errors.

  Now, we consider that each layer possesses cubic symmetry, then, the constituent properties can be rewritten as a function of eight independent constants, in the form𝐶 𝑖𝑗𝑝𝑞 =𝐶 1122 𝛿 𝑖𝑗 𝛿 𝑝𝑞 + 𝐶 1212 𝛿 𝑖𝑝 𝛿 𝑗𝑞 + 𝐶 1221 𝛿 𝑖𝑞 𝛿 𝑗𝑝 𝐷 𝑖𝑗𝑝𝑞 = 𝐷 1122 𝛿 𝑖𝑗 𝛿 𝑝𝑞 + 𝐷 1212 𝛿 𝑖𝑝 𝛿 𝑗𝑞 + 𝐷 1221 𝛿 𝑖𝑞 𝛿 𝑗𝑝 𝛼, 𝐷 1122 = 𝛽, (𝐷 1212 + 𝐷 1221 )∕2 = 𝛾, (𝐷 1212 -𝐷 1221 )∕2 = 𝜖, and ( 𝐷 1111 -𝐷 1122 -𝐷 1212 -𝐷 1221 )

	C * 1313 = 𝐶 C 1313 -	𝐶	* 1313 + 𝐶 2	* 1331	,	(56)
	C * 3131 = 𝐶 3131 - *	𝐶 C 1212 + 𝐶 C 1313 2	,	(57)
	and the results are illustrated in Table 4. An analysis of the relative
	error is also shown.
	From Table 4, it is concluded that to zero and they represent an error less than 5% of the 𝐶 C C * 1212 , C * 1313 and C * 3131 are close 1221 , 𝐶 C 1313 and 𝐶 * 3131 , respectively. Thus, in this case, a relation can be established between the classical and the Cosserat elastic moduli for the isotropic
	case as follows,		
	𝐶 C 1212 = (𝐶 1212 + 𝐶 * 1221 )∕2, 𝐶 C * 1313 ≈ (𝐶 1313 + 𝐶 *	* 1331 )∕2,
	𝐶	* 3131 ≈ (𝐶 C 1212 + 𝐶 C 1313 )∕2.	(58)
	5.3. Centro-symmetric laminated Cosserat composites with cubic
	constituents		
		+	(	𝐶 1111 -𝐶 1122 -𝐶 1212 -𝐶 1221	)	𝛿 𝑖𝑗𝑝𝑞 ,	(59)
							3131	Error 1	C * 1313	Error 2
							0.1	0	-0.001075	0.69594	0.000636	0.55643
							0.2	0	-0.006131	3.03255	0.001393	1.09861
							0.3	0	-0.010699	4.24773	0.002309	1.62122
							0.4	0	-0.014563	4.78325	0.003437	2.11592
							0.5	0	-0.017361	4.80407	0.004855	2.56887
							0.6	0	-0.018429	4.33400	0.006675	2.95521
							0.7	0	-0.016411	3.27496	0.009055	3.22551
							0.8	0	-0.008045	1.33873	0.012105	3.26535
							0.9	0	0.016937	2.22917	0.014929	2.73616
							𝐶 that 𝐶 * 1331 and 𝐶 C 1313 , but they increase in a convex form and we have * 1331 < 𝐶 C 1313 < 𝐶 * 1313 < 𝐶 * 3131 . The differences between Cauchy and Cosserat elastic properties are more noticeable for larger volume
							fractions.
							From Table 3, it is also worthy to mention that 𝐶 C 1212 are related to the average of 𝐶 1331 , and between 𝐶 C 1212 and 𝐶 C 1313 , respectively. From numerical experiments we can confirm that the deviation is linked to the mean values through the
							following relations
							C * 1212 = 𝐶 C 1212 -	𝐶	* 1212 + 𝐶 2	* 1221	,	(55)

* 1212 and 𝐶 * 1221 . Similar behavior can be remarkable for 𝐶 C 1313 and 𝐶 * 3131 throught the average between 𝐶 * 1313 and 𝐶 * + ( 𝐷 1111 -𝐷 1122 -𝐷 1212 -𝐷 1221 ) 𝛿 𝑖𝑗𝑝𝑞 , (60) where 𝐵 𝑖𝑗𝑝𝑞 is null and 𝛿 𝑖𝑗 is the Kronecker delta tensor and the four order tensor 𝛿 𝑖𝑗𝑟𝑠 is defined as follows: 𝛿 𝑖𝑗𝑟𝑠 = 1 if 𝑖 = 𝑗 = 𝑟 = 𝑠, else 𝛿 𝑖𝑗𝑟𝑠 = 0. As in Section 5.1, an equivalent representation of Eqs. (59) and (60) can be obtained through the relations 𝐶 1122 = 𝜆, (𝐶 1212 + 𝐶 1221 )∕2 = 𝜇, ( 𝐶 1111 -𝐶 1122 -𝐶 1212 -𝐶 1221 ) = 𝜂, (𝐶 1212 -𝐶 1221 )∕2 =

  , i.e., 𝐶 1212 + 𝐶 1221 > 0, 𝐶 1212 -𝐶 1221 > 0, 𝐶 1111 -𝐶 1122 > 0, 2𝐶 1122 + 𝐶 1111 > 0, 𝐷 1212 + 𝐷 1221 > 0, 𝐷 1212 -𝐷 1221 > 0, 𝐷 1111 -𝐷 1122 > 0, 2𝐷 1122 + 𝐷 1111 > 0, 𝐶 𝑖𝑗𝑝𝑞 and torque 𝐷 𝑖𝑗𝑝𝑞 moduli have the same matrix form of Eqs. (50) and (51) but 𝐶 1111 ≠ 𝐶 1122 + 𝐶 1212 + 𝐶 1221 and 𝐷 1111 ≠ 𝐷 1122 + 𝐷 1212 + 𝐷 1221 .

	(61)
	and the stiffness

  𝐶 1111 𝐶 1122 -2(𝐶 1122 ) 2 𝑆 𝐺 12 = 𝑆 𝐺 13 = 𝑆 𝐺 32 = 𝑆 𝜈 21 = 𝑆 𝜈 31 = 𝑆 𝜈 32 = 𝑆 𝜁 2112 = 𝑆 𝜁 3113 = 𝑆 𝜁 3223 = 𝑇 𝐺 12 = 𝑇 𝐺 13 = 𝑇 𝐺 32 = 𝑇 𝜈 21 = 𝑇 𝜈 31 = 𝑇 𝜈 32 = 𝑇 𝜁 2112 = 𝑇 𝜁 3113 = 𝑇 𝜁 3223 =

		𝐶 1111 + 𝐶 1122	.	(77)
	Shear modulus:			
		(𝐶 1212 ) 2 -(𝐶 1221 ) 2 𝐶 1212	= 𝑆 𝐸(1 -𝑆 𝜁 ) 1 + 𝑆 𝜈	.	(78)
	Poisson's ratio:			
		𝐶 1122 𝐶 1111 + 𝐶 1122	.	(79)
	Shear-strain ratio:			
		𝐶 1221 𝐶 1212	.		(80)
	Torsional Young's modulus:		
	𝑇 𝐸 = 𝑇 𝐸 1 = 𝑇 𝐸 2 = 𝑇 𝐸 3 =	(𝐷 1111 ) 2 + 𝐷 1111 𝐷 1122 -2(𝐷 1122 ) 2 𝐷 1111 + 𝐷 1122	.	(81)
	Torsional shear moduli:			
		(𝐷 1212 ) 2 -(𝐷 1221 ) 2 𝐷 1212	= 𝑇 𝐸(1 -𝑇 𝜁 ) 1 + 𝑇 𝜈	.	(82)
	Twist Poisson's ratio:			
		𝐷 1122 𝐷 1111 + 𝐷 1122	.	(83)
	Twist shear-strain ratio:			
		𝐷 1221 𝐷 1212	.		(84)

𝑆 𝐺 = 𝑆 𝜈 = 𝑆 𝜁 = 𝑇 𝐺 = 𝑇 𝜈 = 𝑇 𝜁 =

  ) respect to 𝑦 3 , which leads to𝐶 𝑖3𝑝𝑞 + 𝐶 𝑖3𝑚3 𝑝𝑞 𝑁 ′ 𝑚 + 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘 + 𝐵 𝑖3𝑚3 𝑝𝑞 𝑉 ′ 𝑚 = 𝑝𝑞 𝐴 𝑖 , (A.1)where 𝑝𝑞 𝐴 𝑖 is the integration constant that needs to be found. Next, solving for 𝑝𝑞 𝑁 ′ 𝑚 from Eq. (A.1) and applying the average operator, so that ⟨ Then, from Eqs. (A.1) and (A.2), the local function 𝑝𝑞 𝑁 ′ 𝑚 can be written as a function of 𝑝𝑞 𝑉 𝑚 and 𝑝𝑞 𝑉 ′ 𝑚 , as follows

		𝑝𝑞 𝑁 ′ 𝑚	⟩	= 0, we get that 𝑝𝑞 𝐴 𝑖
	𝑝𝑞 𝐴 𝑖 = +	⟨ ⟨ 𝐶 -1 𝐶 -1 𝑖3𝑚3 𝑖3𝑚3 𝐶 𝑖3𝑚𝑝3 𝑝𝑞 𝑉 ′ ⟩ -1 (⟨ 𝐶 -1 𝑖3𝑚3 𝐶 𝑖3𝑝𝑞 𝑘 ⟩) .	⟩	+	⟨	𝐶 -1 𝑖3𝑚3 𝐶 𝑖3𝑚𝑛 𝜖 𝑚𝑛𝑘 𝑝𝑞 𝑉 𝑘	⟩	(A.2)

  Similarly, following the above procedure in the second expression of Eq. (34), but for finding 𝑝𝑞 𝑉 ′ 𝑚 , we have the relation of the local function 𝑝𝑞 𝑉 ′ 𝑚 as a function of 𝑝𝑞 𝑁 ′ 𝑚 , as follows 𝐵 𝑑3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 + 𝐵 𝑑3𝑐3 𝑝𝑞 𝑁 ′In particular, the average value of each term in Eq. (A.7) is null too, then, we can rewrite Eq. (A.7) as in Eq. (A.4), so that,

		where					
		𝑟 𝑚𝑝𝑞 = 𝐶 -1 𝑚3𝑙3 𝑚𝑝𝑞 = 𝐶 -1 r(1) 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ ⟨ 𝐶 -1 𝑙3𝑘3 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑝𝑞 r(2) 𝑚𝑝𝑞 = 𝐶 -1 𝑚3𝑙3 ⟨ 𝐶 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐶 -1 𝑘3𝑑3 𝐶 𝑑3𝑐3 𝑝𝑞 𝑉 ′ ⟩ ⟩ 𝑐 ⟩	-𝐶 -1 𝑚3𝑙3 𝐶 𝑙3𝑝𝑞 , -𝐶 -1 𝑚3𝑙3 𝐶 𝑙3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 , -𝐶 -1 𝑚3𝑙3 𝐵 𝑙3𝑐3 𝑝𝑞 𝑉 ′ 𝑐 .
								(A.5)
		𝑝𝑞 𝑉 ′ 𝑚 = 𝐷 -1 𝑚3𝑙3	⟨ 𝐷 -1 𝑙3𝑘3	⟩ -1 ⟨	𝐷 -1 𝑘3𝑑3	( 𝐵 𝑑3𝑝𝑞 + 𝑐	)⟩	-
		𝐷 -1 𝑚3𝑙3 𝐵 𝑙3𝑝𝑞 -𝐷 -1 𝑚3𝑙3 𝐵 𝑙3𝑎𝑏 𝜖 𝑎𝑏𝑐 𝑝𝑞 𝑉 𝑐 -𝐷 -1 𝑚3𝑙3 𝐵 𝑙3𝑐3 𝑝𝑞 𝑁 ′ 𝑐 ,	(A.6)
		then, replacing Eq. (A.4) into Eq. (A.6) and grouping conveniently, we
		get that 𝑝𝑞 𝑉 ′ 𝑚 = -𝐷 -1 𝑚3𝑙3 [ 𝐷 -1 𝑚3𝑙3 (	[ ( 𝐵 𝑙3𝑝𝑞 + 𝐵 𝑙3𝑐3 𝑟 𝑐𝑝𝑞 𝐷 -1 𝑚3𝑙3 ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐷 -1 𝑘3𝑑3 ) ] + ( ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ -1 ⟨ ( 𝐷 -1 𝑘3𝑑3 𝐵 𝑑3𝑎𝑏 𝜖 𝑎𝑏𝑘 𝑝𝑞 𝑉 𝑘 + 𝐵 𝑑3𝑐3 ( 𝐵 𝑑3𝑝𝑞 + 𝐵 𝑑3𝑐3 𝑟 𝑐𝑝𝑞 ))]	)⟩ r(1) 𝑐𝑝𝑞	)⟩
		-[ 𝐷 -1 𝐵 𝑙3𝑎𝑏 𝜖 𝑎𝑏𝑘 𝑝𝑞 𝑉 𝑘 + 𝐵 𝑙3𝑐3 𝑚3𝑙3 ⟨ 𝐷 -1 𝑙3𝑘3 ⟩ -1 ⟨ 𝐷 -1 𝑘3𝑑3 𝐵 𝑑3𝑐3 r(1) 𝑐𝑝𝑞	+ r(2) 𝑐𝑝𝑞 ⟩	-𝐷 -1 𝑚3𝑙3 𝐵 𝑙3𝑐3	r(2) 𝑐𝑝𝑞	]	.	(A.7)
	𝑚𝑝𝑞 ,	(A.4)					

′ 𝑐 ⟩ -𝐶 -1 𝑚3𝑙3 𝐵 𝑙3𝑐3 𝑝𝑞 𝑉 ′ 𝑐 ] . (A.3)

In Eq. (A.3), the average value of each term is null. Therefore, rewritten Eq. (A.3), we have

𝑝𝑞 𝑁 ′ 𝑚 = 𝑟 𝑚𝑝𝑞 + r(1) 𝑚𝑝𝑞 + r(2) 𝑝𝑞 𝑉 ′ 𝑚 = 𝑒 𝑚𝑝𝑞 + ê(1) 𝑚𝑝𝑞 + ê(2) 𝑚𝑝𝑞 ,

(A.8) 
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