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In this work, the derivation of the effective properties for heterogeneous micropolar media with periodic structure using the two-scale asymptotic homogenization 

method (AHM) is reported. Analytical expressions for the local problems and the effective coefficients are explicitly described. As a particular case, periodic 

laminated composites are also analyzed, focusing on centro-symmetric Cosserat composites with isotropic and cubic constituents. Also, closed-form formulae of the 

effective properties are obtained for both constituent symmetries, and numerical values are reported and discussed. The resulting composite belongs to the 

orthotropic symmetry under rotations of 90◦ about the unitary vector 𝑒3, i.e., it has eighteen effective independent properties: nine stiffness and nine torques. As a 

limit case, a comparison between classical and Cosserat effective elastic properties is shown for a laminated composite with isotropic constituents. Finally, the 

engineering moduli of centro-symmetric laminated Cosserat materials with isotropic and cubic constituents are reported, and the numerical values are analyzed.

1. Introduction

Nowadays, the development of macro–micro-mechanical models
capable of describing the structure-properties relationship of hetero-
geneous complex materials plays an important role. The a priori esti-
mation of the global material response is of great help for different
engineering applications. It illustrates the ways the micro-structure,
the coupling effects, the constituent parameters, and the volume per-
centage of their phases, among others, can be manipulated to obtain
appropriated properties.

In the framework of the generalized continuum, micropolar or
Cosserat media with coupled stresses, a series of works have addressed
the estimation of effective properties of heterogeneous Cosserat ma-
terials using linear or nonlinear micro-continuum models (Lazar and
Kirchner, 2005; Trovalusci et al., 2015; Abreu et al., 2018; Rueger et al.,
2019; Rizzi et al., 2021; Nika, 2021). These works have emerged from
the theory developed by the Cosserat brothers at the beginning of the
last century (Cosserat and Cosserat, 1909), who extended Voigt’s work
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E-mail address: yoanhealmeyda1209@gmail.com (Y. Espinosa-Almeyda).

on generalized non-symmetric elasticity theory Voigt (1887). Cosserat

continuums have been seen in granular and fibrous composite materials

(Lakes, 2001; Bleyer, 2018), cellular and bone structures (Park and

Lakes, 1986; Lakes et al., 1990; Lakes, 1995; Rosenber et al., 2002;

Tekoglu and Onck, 2005; Liu and Su, 2009; Beltran-Fernández et al.,

2010), foams (Diebels and Steeb, 2002; Rueger and Lakes, 2016, 2019;

Skrzat and Eremeyev, 2020), masonry (Masiani and Trovalusci, 1996;

Stefanou et al., 2008; Trovalusci and Pau, 2014; Leonetti et al., 2019),

metamaterials (Forest et al., 2001), among others. State of the art,

reviews and the basis foundations related to micropolar and generalized

coupled stress theories are found in Toupin (1962), Eringen (1966,

1999), Nowacki (1974, 1986), Maugin and Metrikine (2010), Markert

(2011), Altenbach and Eremeyev (2013), Eremeyev et al. (2013) and

Maugin (2013).

In the scientific literature, there exist some papers in which the ho-

mogenization theory is applied to generalized continuums or Cosserat

media. For example: An homogenization scheme based on polynomial
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expansion is proposed by Forest and Sab (1998) in order to compute
the effective properties of 2D Cauchy medium by minimizing the elastic
strain energy with respect to displacement fields. The construction of
an effective generalized continuum model replacing the heterogeneous
Cauchy medium by a homogeneous Cosserat continuum is reported
by Forest (1998) and Forest and Sab (1998). Later, in Forest et al.
(2001), a heterogeneous linear elastic Cosserat media with periodic
microstructure is analyzed using a multiscale homogenization method.
In particular, two schemes are implemented depending on the hier-
archy of three characteristic lengths: the size 𝑙 of the unit cell, the
Cosserat intrinsic length 𝑙𝑐 of the constituents, and the characteristic
length 𝐿 of the composite. Extensions of Forest et al. (2001) work are
proposed in subsequent studies to construct an effective generalized
continuum Forest (2002), Forest and Trinh (2011) and a discrete
Cosserat media Sab and Pradel (2009). In this last contribution, the
homogenization of beam lattice is addressed analogous to the homoge-
nization of discrete particles media. Cosserat composite materials are
also studied by homogenization schemes in Trovalusci and Masiani
(2003) and Liu and Hu (2004). Other approaches based on the various
homogenization procedures are also implemented to find the microp-
olar moduli, see for instance (Ehlers et al., 2003; Larsson and Diebels,
2007; Larsson and Zhang, 2007; Branke et al., 2009). On the other
hand, Bigoni and Drugan (2007) derived closed-form formulas for
heterogeneous Cosserat-elastic materials via homogenization, where a
dilute suspension of inclusions (spherical in 3D and circular cylindri-
cal in 2D) embedded in an isotropic matrix is assumed. Further, in
Altenbach et al. (2010), 1D Cosserat beam models and 2D Mindlin
plate models are considered by different homogenization techniques.
Li et al. (2011) employed the generalized Hill’s lemma for micro–
macro homogenization modeling of heterogeneous gradient-enhanced
Cosserat continuum. In the works of Dos Reis and Ganghoffer (2011,
2012) and Goda et al. (2012, 2013, 2014), micropolar anisotropic con-
stitutive models are constructed for repetitive lattices and trabecular
structures by the asymptotic homogenization techniques. Gorbachev
and Emel’yanov (2014) and Gorbachev and Emel’yanov (2021) used
an integral formulation for the displacements and microrotations as a
constructive method for the homogenization process in a heterogeneous
Cosserat body. Recently, homogenization methods have been applied
to disordered Cosserat-type materials without assuming any spatial
periodicity of the microstructures (Trovalusci et al., 2015) and a broad
class of architected materials and chiral Cosserat composites subject to
such micropolar effects (Reda et al., 2021; Alavi et al., 2021).

In the present work, the formal description of the two-scale asymp-
totic homogenization method (AHM) implemented for periodic hetero-
geneous elastic media by Bakhvalov and Panasenko (1989), Pobedrya
(1984), Sanchez-Palencia (1985) and Castillero et al. (1998) is extended
to linear elastic Cosserat media. The AHM procedure is developed
to obtain the statements of the local problems and the homogenized
problem, as well as the effective properties for the 3D linear elastic
Cosserat media. In addition, the analytical expressions of the effective
coefficients are reported for infinite multi-laminated Cosserat compos-
ites with laminate distribution perpendicular to the 𝑥3 axis and for
centro-symmetric laminated Cosserat composites. The local problem
solutions are characterized by the volume fraction and the properties
of the constituents. Numerical results are shown and discussed for
two examples of centro-symmetric bi-laminated composites with differ-
ent symmetries of constituents: isotropic and cubic. The relationships
between the micropolar and the classical effective moduli are estab-
lished when isotropic constituents are assumed. Finally, the formulas of
the effective engineering moduli of laminated Cosserat materials with
isotropic and cubic constituent materials are reported.

The main contributions of this work are focused on the development
of a fully AHM scheme to find the effective properties of periodic 3D
elastic Cosserat media that are not necessarily restricted to the centro-
symmetric criteria through double scale asymptotic expansions (micro
and macro scales) for the displacements and the microrotations in terms

of the small parameter 𝜀, see Eq. (6). In particular, centro-symmetric
multi-laminated Cosserat composites with isotropic and cubic con-
stituents are studied. Gorbachev and Emel’yanov (2014) developed a
similar procedure, but they applied an integral formulation for the so-
lution of static and elastic boundary-value problems on heterogeneous
bodies for displacements and microrotations. In the present work, nu-
merical results, engineering constants, comparison between micropolar
and classic elastic media, derivation of effective coefficients for lam-
inated with isotropic and cubic constituents are presented, which are
not provided in Gorbachev and Emel’yanov (2014). Furthermore, the
effective properties reported here differ from those reported by Forest
et al. (2001) since they assume centro-symmetric materials considering
that the coupling moduli (𝐵𝑖𝑗𝑝𝑞) are zeros. Both approaches are similar
if we consider centro-symmetric constituents where the constitutive
relation reported in Eq. (3) is relaxed or constrained, and the effective
properties match with those reported in Forest et al. (2001). In this
sense, the present work can be considered as a generalization or an
extension of the two papers mentioned above.

2. Heterogeneous problem formulation and basic equations for
micropolar media. Statement of the problem

A three-dimensional micropolar continuum (Cosserat continuum) is
considered as a periodic domain Ω with an infinitely smooth boundary
surface 𝜕Ω in the Cartesian coordinate system

{
𝑥1, 𝑥2, 𝑥3

}
. For a linear

heterogeneous micropolar continuum Ω, the governing equations are
defined by a system of partial differential equations through the linear
and angular equilibrium equations,

𝜎𝑗𝑖,𝑗 + 𝑓𝑖 = 0, 𝜇𝑗𝑖,𝑗 + 𝜖𝑖𝑗𝑘 𝜎𝑗𝑘 + 𝑔𝑖 = 0, in Ω, (1)

together with the boundary conditions on 𝜕Ω

𝑢𝑖 ∣𝜕Ω1
= 0, 𝜎𝑗𝑖 𝑛𝑗 ∣𝜕Ω2

= 𝐹𝑖, 𝜔𝑖 ∣𝜕Ω3
= 0, 𝜇𝑗𝑖 𝑛𝑗 ∣𝜕Ω4

= 𝐺𝑖,

(2)

where 𝑖, 𝑗, 𝑘 = 1, 2, 3 and the subsets 𝜕Ω1, 𝜕Ω2, 𝜕Ω3, and 𝜕Ω4 of the 𝜕Ω
boundary partition are disjoint, such as, 𝜕Ω = 𝜕Ω1 ∪ 𝜕Ω2 ∪ 𝜕Ω3 ∪ 𝜕Ω4.
Here, 𝜎𝑗𝑖, 𝜇𝑗𝑖 and 𝜖𝑖𝑗𝑘 are the components of the stress tensor, the
couple stress tensor, and the Levi-Civita tensor, respectively. 𝑓𝑖 and 𝑔𝑖
define the components of the body force and moment, respectively.
In addition, 𝒖 = 𝑢𝑖 is the displacement field vector and 𝝎 = 𝜔𝑖 is
the microrotation field vector, independent of the displacement field.
Also, 𝑛𝑗 is the unit outer normal vector to 𝜕𝛺 and the functions 𝐹𝑖 and
𝐺𝑖 are the components of the surface forces and torques, respectively.
The comma notation represents the partial derivate relative to the 𝑥𝑗
component.

Furthermore, the linear constitutive equations are defined by

𝜎𝑗𝑖 = 𝐶𝑖𝑗𝑚𝑛 𝑒𝑛𝑚 + 𝐵𝑖𝑗𝑚𝑛 𝜓𝑛𝑚, 𝜇𝑗𝑖 = 𝐵𝑖𝑗𝑚𝑛 𝑒𝑛𝑚 +𝐷𝑖𝑗𝑚𝑛 𝜓𝑛𝑚, (3)

where 𝐶𝑖𝑗𝑚𝑛, and 𝐷𝑖𝑗𝑚𝑛 (𝑚, 𝑛 = 1, 2, 3) are the elastic and torque moduli,
respectively, with 45 components each and 𝐵𝑖𝑗𝑚𝑛 is the coupling moduli
with 81 components. The second order tensors 𝑒𝑛𝑚 and 𝜓𝑛𝑚 represent
the asymmetric strain and the couple strain, respectively. Also, in Eq.
(3), the material properties 𝐶𝑖𝑗𝑚𝑛, 𝐷𝑖𝑗𝑚𝑛 and 𝐵𝑖𝑗𝑚𝑛 are supposed to be
infinitely differentiable, rapidly oscillating and satisfy the symmetry
conditions

𝐶𝑖𝑗𝑚𝑛 = 𝐶𝑚𝑛𝑖𝑗 , 𝐷𝑖𝑗𝑚𝑛 = 𝐷𝑚𝑛𝑖𝑗 . (4)

In addition, the micropolar deformations are fully described by the
asymmetric strain (𝑒𝑛𝑚) and the couple strain (𝜓𝑛𝑚) tensors, namely

𝑒𝑛𝑚 = 𝑢𝑚,𝑛 + 𝜖𝑚𝑛𝑠 𝜔𝑠, 𝜓𝑛𝑚 = 𝜔𝑚,𝑛. (5)

Eq. (1) together with the boundary conditions given in Eq. (2) and Eqs.
(3)–(5), define the classical boundary value problem associated with
the linear theory of micropolar elasticity, whose coefficients are rapidly
oscillating. Fundamentals of micropolar elasticity theory can be seen in
Toupin (1962), Nowacki (1974), Altenbach and Eremeyev (2013) and
Eremeyev et al. (2013).
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Fig. 1. (a) Heterogeneous laminated Cosserat composite; (b) blow-up of periodic structure; (c) the cross-section of the periodic structure Y at the plane 𝑂𝑦2𝑦3 of a laminated
composite.

3. Asymptotic homogenization method: Local problems, homoge-
neous problem and effective coefficients

The homogenized local problems over the periodic unit cell Y,
the homogeneous problem and the effective properties of a Cosserat
media are derived from Eqs. (1)–(5) by means of the well-known
AHM (Sanchez-Palencia, 1980, 1985; Pobedrya, 1984; Bakhvalov and
Panasenko, 1989) through two-scale asymptotic expansion for 𝑢𝑚 and
𝜔𝑚, as follows

𝑢𝑚 = 𝜀0 𝑢(0)
𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝜀1 𝑢(1)

𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝜀2 𝑢(2)

𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) +… ,

𝜔𝑚 = 𝜀0 𝜔(0)
𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝜀1 𝜔(1)

𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝜀2 𝜔(2)

𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) +… ,

(6)

where the terms 𝑢(𝑖)𝑚 (𝑥𝑥𝑥,𝑦𝑦𝑦) and 𝜔
(𝑖)
𝑚 (𝑥𝑥𝑥,𝑦𝑦𝑦) (𝑖 = 0, 1, 2,…) are infinitely

differentiable functions and Y-periodic functions with respect to 𝑦𝑦𝑦. The
superscript (𝑖) denotes the 𝑖th term in the expansions. In addition,
the two scales, 𝑥𝑥𝑥 =

{
𝑥1, 𝑥2, 𝑥3

}
(macro or slow variable) and 𝑦𝑦𝑦 ={

𝑦1, 𝑦2, 𝑦3
}
(micro or fast variable) characterize the macroscopic or

global behavior of the composite and the heterogeneities at microscopic
or local level, respectively. Both scales are related by 𝑦𝑦𝑦 = 𝑥𝑥𝑥∕𝜀, where
𝜀 = 𝑙∕𝐿 ≪ 1 is a small geometric parameter (see, Fig. 1) which defines
the ratio between the characteristic dimension of the representative
volume element (𝑙) and the representative length of composite (𝐿) used
to measure the composite’s properties of interest. Also, as a natural
process of homogenization, the material moduli 𝐶𝑖𝑗𝑚𝑛(𝑦𝑦𝑦), 𝐵𝑖𝑗𝑚𝑛(𝑦𝑦𝑦) and
𝐷𝑖𝑗𝑚𝑛(𝑦𝑦𝑦) are functions on the local variable, which means that there
is an intrinsic dependency of the material moduli on the scale pa-
rameter 𝜀, and therefore on 𝑙, but for simplicity, in the present work
we write 𝐶𝑖𝑗𝑚𝑛, 𝐵𝑖𝑗𝑚𝑛 and 𝐷𝑖𝑗𝑚𝑛. Notice that, in Forest et al. (2001),
the homogenization theory is applied to centro-symmetric micropolar
composites using two schemes, denoted by HS1 and HS2. The scheme
HS1 considers a Cosserat length 𝑙𝑐 and it is used a homogenization
scheme as 𝑙𝑐 ∼ 𝑙 ≪ 𝐿, whereas the scheme HS2 is applied when 𝑙𝑐 ∼ 𝐿.
That is, HS2 corresponds to the situation we are dealing with.

Because of the scales separation, we have that,

𝜕𝑓 𝜀(𝑥𝑥𝑥,𝑦𝑦𝑦)

𝜕𝑥𝑗
= 𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦),𝑗 + 𝜀

−1 𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦)|𝑗 , (7)

where 𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦),𝑗 = 𝜕𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦)∕𝜕𝑥𝑗 and 𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦)|𝑗 = 𝜕𝑓 (𝑥𝑥𝑥,𝑦𝑦𝑦)∕𝜕𝑦𝑗 .
Then, applying Eq. (7) into 𝑢𝑚 and 𝜔𝑚 (see, Eq. (6)) we have

𝑢𝑚,𝑛(𝑥𝑥𝑥) = 𝜀−1𝑢
(0)

𝑚|𝑛(𝑥𝑥𝑥,𝑦𝑦𝑦) +
+∞∑
𝑖=0

𝜀𝑖
[
𝑢(𝑖)
𝑚,𝑛

(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝑢
(𝑖+1)

𝑚|𝑛 (𝑥𝑥𝑥,𝑦𝑦𝑦)
]
,

𝜔𝑚,𝑛(𝑥𝑥𝑥) = 𝜀−1𝜔
(0)

𝑚|𝑛(𝑥𝑥𝑥,𝑦𝑦𝑦) +
+∞∑
𝑖=0

𝜀𝑖
[
𝜔(𝑖)
𝑚,𝑛

(𝑥𝑥𝑥,𝑦𝑦𝑦) + 𝜔
(𝑖+1)

𝑚|𝑛 (𝑥𝑥𝑥,𝑦𝑦𝑦)
]
,

(8)

and in 𝐶𝑖𝑗𝑚𝑛(𝑦𝑦𝑦), 𝐵𝑖𝑗𝑚𝑛(𝑦𝑦𝑦) and 𝐷𝑖𝑗𝑚𝑛(𝑦𝑦𝑦) we get

𝐶𝑖𝑗𝑚𝑛,𝑗 = 𝜀−1 𝐶𝑖𝑗𝑚𝑛|𝑗 , 𝐵𝑖𝑗𝑚𝑛,𝑗 = 𝜀−1 𝐵𝑖𝑗𝑚𝑛|𝑗 , 𝐷𝑖𝑗𝑚𝑛,𝑗 = 𝜀−1 𝐷𝑖𝑗𝑚𝑛|𝑗 . (9)

because the material properties are assumed to be 𝜀Y-periodic in Ω.
From now on, the dependency related to 𝑥𝑥𝑥 and 𝑦𝑦𝑦 is omitted in order

to simplify the expressions, unless otherwise stated.
Let us start by replacing Eqs. (3)–(6) into Eqs. (1) and (2), and then,

we apply the differentiation rule (Eq. (7)) neglecting the second order

or higher terms, as a result, after grouping by the powers of 𝜀, the
explicit form of the system given in Eqs. (1) and (2) can be rewritten
as

𝜀−2
[
𝐶𝑖𝑗𝑚𝑛|𝑗 𝑢

(0)

𝑚|𝑛 + 𝐶𝑖𝑗𝑚𝑛 𝑢
(0)

𝑚|𝑛𝑗 + 𝐵𝑖𝑗𝑚𝑛|𝑗 𝜔
(0)

𝑚|𝑛 + 𝐵𝑖𝑗𝑚𝑛 𝜔
(0)

𝑚|𝑛𝑗
]
+

𝜀−1
[
𝐶𝑖𝑗𝑚𝑛|𝑗

(
𝑢(0)
𝑚,𝑛

+ 𝑢
(1)

𝑚|𝑛 + 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)

+𝐶𝑖𝑗𝑚𝑛

(
2𝑢

(0)

𝑚|𝑛,𝑗 + 𝑢
(1)

𝑚|𝑛𝑗 + 𝜖𝑚𝑛𝑠 𝜔
(0)

𝑠|𝑗
)
+

𝐵𝑖𝑗𝑚𝑛|𝑗
(
𝜔(0)
𝑚,𝑛

+ 𝜔
(1)

𝑚|𝑛
)
+ 𝐵𝑖𝑗𝑚𝑛

(
2𝜔

(0)

𝑚|𝑛,𝑗 + 𝜔
(1)

𝑚|𝑛𝑗
)]

+

𝜀0
[
𝐶𝑖𝑗𝑚𝑛

[
𝑢
(0)
𝑚,𝑛𝑗

+ 2𝑢
(1)

𝑚|𝑛,𝑗 + 𝑢
(2)

𝑚|𝑛𝑗 + 𝜖𝑚𝑛𝑠
(
𝜔
(0)
𝑠,𝑗

+ 𝜔
(1)

𝑠|𝑗
)]

+𝐵𝑖𝑗𝑚𝑛|𝑗
(
𝜔(1)
𝑚,𝑛

+ 𝜔
(2)

𝑚|𝑛
)
+

𝐶𝑖𝑗𝑚𝑛|𝑗
(
𝑢(1)
𝑚,𝑛

+ 𝑢
(2)

𝑚|𝑛 + 𝜖𝑚𝑛𝑠 𝜔
(1)
𝑠

)

+𝐵𝑖𝑗𝑚𝑛

(
𝜔
(0)
𝑚,𝑛𝑗

+ 2𝜔
(1)

𝑚|𝑛,𝑗 + 𝜔
(2)

𝑚|𝑛𝑗
)
+ 𝑓𝑖

]
= 0,

(10)

and

𝜀−2
[
𝐵𝑖𝑗𝑚𝑛|𝑗 𝑢

(0)

𝑚|𝑛 + 𝐵𝑖𝑗𝑚𝑛 𝑢
(0)

𝑚|𝑛𝑗 +𝐷𝑖𝑗𝑚𝑛|𝑗 𝜔
(0)

𝑚|𝑛 +𝐷𝑖𝑗𝑚𝑛 𝜔
(0)

𝑚|𝑛𝑗
]
+

𝜀−1
[
𝐵𝑖𝑗𝑚𝑛|𝑗

(
𝑢(0)
𝑚,𝑛

+ 𝑢
(1)

𝑚|𝑛 + 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)

+𝐵𝑖𝑗𝑚𝑛

(
2𝑢

(0)

𝑚|𝑛,𝑗 + 𝑢
(1)

𝑚|𝑛𝑗 + 𝜖𝑚𝑛𝑠 𝜔
(0)

𝑠|𝑗
)
+

𝐷𝑖𝑗𝑚𝑛|𝑗
(
𝜔(0)
𝑚,𝑛

+ 𝜔
(1)

𝑚|𝑛
)
+𝐷𝑖𝑗𝑚𝑛

(
2𝜔

(0)

𝑚|𝑛,𝑗 + 𝜔
(1)

𝑚|𝑛𝑗
)

+𝜖𝑖𝑗𝑘

(
𝐶𝑘𝑗𝑚𝑛 𝑢

(0)

𝑚|𝑛 + 𝐵𝑘𝑗𝑚𝑛 𝜔
(0)

𝑚|𝑛
)]

+

𝜀0
[
𝐵𝑖𝑗𝑚𝑛

[
𝑢
(0)
𝑚,𝑛𝑗

+ 2𝑢
(1)

𝑚|𝑛,𝑗 + 𝑢
(2)

𝑚|𝑛𝑗 + 𝜖𝑚𝑛𝑠
(
𝜔
(0)
𝑠,𝑗

+ 𝜔
(1)

𝑠|𝑗
)]

+𝐷𝑖𝑗𝑚𝑛|𝑗
(
𝜔(1)
𝑚,𝑛

+ 𝜔
(2)

𝑚|𝑛
)
+

𝐵𝑖𝑗𝑚𝑛|𝑗
(
𝑢(1)
𝑚,𝑛

+ 𝑢
(2)

𝑚|𝑛 + 𝜖𝑚𝑛𝑠 𝜔
(1)
𝑠

)
+𝐷𝑖𝑗𝑚𝑛

(
𝜔
(0)
𝑚,𝑛𝑗

+ 2𝜔
(1)

𝑚|𝑛,𝑗 + 𝜔
(2)

𝑚|𝑛𝑗
)
+

+𝜖𝑖𝑗𝑘 𝐶𝑘𝑗𝑚𝑛

(
𝑢(0)
𝑚,𝑛

+ 𝑢
(1)

𝑚|𝑛 + 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)
+ 𝜖𝑖𝑗𝑘 𝐵𝑘𝑗𝑚𝑛

(
𝜔(0)
𝑚,𝑛

+ 𝜔
(1)

𝑚|𝑛
)
+ 𝑔𝑖

]
= 0.

(11)

where 𝑓𝑚,𝑛𝑗 =
𝜕2𝑓𝑚

𝜕𝑥𝑗𝜕𝑥𝑛
, 𝑓𝑚|𝑛,𝑗 =

𝜕2𝑓𝑚

𝜕𝑥𝑗𝜕𝑦𝑛
, 𝑓𝑚,𝑛|𝑗 =

𝜕2𝑓𝑚

𝜕𝑦𝑗𝜕𝑥𝑛
, and 𝑓𝑚|𝑛𝑗 =

𝜕2𝑓𝑚

𝜕𝑦𝑗𝜕𝑦𝑛
.

From Eqs. (10) and (11), a sequence of problems defined by a system
of partial differential equations arises, according to the powers of 𝜀
small parameter. Each contribution is assumed equal to zero for all
powers of 𝜀. Subsequently, the resulting problems are solved under
suitable conditions in order to guarantee the Y-periodic solution. Only,
the powers −2,−1 and 0 of 𝜀 are enough for finding the local problems,
effective coefficients and the homogenized problem.

The terms corresponding to 𝜀−2 can be written as a system of partial
differential equations, as follows
(
𝐶𝑖𝑗𝑚𝑛 𝑢

(0)

𝑚|𝑛 + 𝐵𝑖𝑗𝑚𝑛 𝜔
(0)

𝑚|𝑛
)
|𝑗 = 0,

(
𝐵𝑖𝑗𝑚𝑛 𝑢

(0)

𝑚|𝑛 +𝐷𝑖𝑗𝑚𝑛 𝜔
(0)

𝑚|𝑛
)
|𝑗 = 0.

(12)

where the unknowns 𝑢(0)
𝑚|𝑛 and 𝜔

(0)

𝑚|𝑛 are defined as a function of 𝑥𝑥𝑥 and
𝑦𝑦𝑦. Then, it can be proved that the terms 𝑢(0)𝑚 and 𝜔(0)

𝑚 are independent

3



functions of the local variable 𝑦𝑦𝑦 from Eq. (12), i.e.,

𝑢(0)
𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) ≡ 𝑢𝑚(𝑥𝑥𝑥), 𝜔(0)

𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) ≡ 𝜔𝑚(𝑥𝑥𝑥). (13)

Similarly, the terms corresponding to 𝜀−1 can be written by a system
of partial differential equations that result from Eqs. (10) and (11)
and considering that the derivatives of 𝑢(0)𝑚 (𝑥𝑥𝑥) and 𝜔(0)

𝑚 (𝑥𝑥𝑥) are null with
respect to the fast variable 𝑦𝑦𝑦 (see, Eq. (13)), as follows
(
𝐶𝑖𝑗𝑚𝑛 𝑢

(1)

𝑚|𝑛
)
|𝑗 + 𝐶𝑖𝑗𝑚𝑛|𝑗

(
𝑢(0)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)

+
(
𝐵𝑖𝑗𝑚𝑛 𝜔

(1)

𝑚|𝑛
)
|𝑗 + 𝐵𝑖𝑗𝑚𝑛|𝑗 𝜔

(0)
𝑚,𝑛

= 0,

(
𝐵𝑖𝑗𝑚𝑛 𝑢

(1)

𝑚|𝑛
)
|𝑗 + 𝐵𝑖𝑗𝑚𝑛|𝑗

(
𝑢(0)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)

+
(
𝐷𝑖𝑗𝑚𝑛 𝜔

(1)

𝑚|𝑛
)
|𝑗 𝐷𝑖𝑗𝑚𝑛|𝑗 𝜔(0)

𝑚,𝑛
= 0.

(14)

Analogous to the system in Eq. (12) related to 𝜀−2, a solution of Eq. (14)
is found in the class of Y-periodic functions with respect to 𝑦𝑦𝑦. Therefore,
it is expected to have solutions in a similar way.

Firstly, the strains and couple strains expressions associate with the
Cosserat theory of elasticity (see, Eq. (5)) are rewritten in two-scale
series expansion form. So, by substituting Eq. (6) into Eq. (5), we have

𝑒𝑛𝑚 = 𝜀−1𝑢
(0)

𝑚|𝑛 + 𝜀
0
(
𝑢(0)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

+ 𝑢
(1)

𝑚|𝑛
)

+𝜀
(
𝑢(1)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(1)
𝑠

+ 𝑢
(2)

𝑚|𝑛
)
+⋯ ,

𝜓𝑛𝑚 = 𝜔𝑚,𝑛 = 𝜀−1𝜔
(0)

𝑚|𝑛 + 𝜀
0
(
𝜔(0)
𝑚,𝑛

+ 𝜔
(1)

𝑚|𝑛
)
+ 𝜀

(
𝜔(1)
𝑚,𝑛

+ 𝜔
(2)

𝑚|𝑛
)
+⋯ ,

(15)

where 𝑢(0)
𝑚|𝑛 and 𝜔

(0)

𝑚|𝑛 are null (see, Eq. (13)) and the 𝑘th terms (𝑘 ≥ 0)

are given by

𝑒(𝑘)
𝑛𝑚

= 𝑢
(𝑘+1)

𝑚|𝑛 + 𝑢(𝑘)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(𝑘)
𝑠
, 𝜓 (𝑘)

𝑛𝑚
= 𝜔

(𝑘+1)

𝑚|𝑛 + 𝜔(𝑘)
𝑚,𝑛
. (16)

The first terms 𝑒(0)𝑛𝑚 and 𝜓
(0)
𝑛𝑚 (𝑘 = 0) are given by the expressions

𝑒(0)
𝑛𝑚

= 𝑢
(1)

𝑚|𝑛 + 𝑢
(0)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

and 𝜓 (0)
𝑛𝑚

= 𝜔
(1)

𝑚|𝑛 + 𝜔
(0)
𝑚,𝑛
. (17)

Due to the linearity of the system (Eq. (14)), a solution for 𝑢(1)𝑚 (𝑥𝑥𝑥,𝑦𝑦𝑦) and
𝜔
(1)
𝑚 (𝑥𝑥𝑥,𝑦𝑦𝑦) is admitted in the class of Y-periodic functions with respect to

𝑦𝑦𝑦 through the variable separation method (see, for instance, Otero et al.
(1997)), as follows:

𝑢(1)
𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) = 𝑝𝑞�̂�𝑚(𝑦𝑦𝑦)

(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑠 𝜔
(0)
𝑠

)
+ 𝑝𝑞�̂�𝑚(𝑦𝑦𝑦) 𝜔

(0)
𝑝,𝑞

+ �̃�(1)
𝑚
,

𝜔(1)
𝑚
(𝑥𝑥𝑥,𝑦𝑦𝑦) = 𝑝𝑞𝑉𝑚(𝑦𝑦𝑦)

(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑠 𝜔
(0)
𝑠

)
+ 𝑝𝑞𝑀𝑚(𝑦𝑦𝑦) 𝜔

(0)
𝑝,𝑞

+ �̃� (1)
𝑚
,

(18)

where 𝑝𝑞�̂�𝑚(𝑦𝑦𝑦), 𝑝𝑞�̂�𝑚(𝑦𝑦𝑦), 𝑝𝑞𝑉𝑚(𝑦𝑦𝑦), and 𝑝𝑞𝑀𝑚(𝑦𝑦𝑦) (𝑝, 𝑞 = 1, 2, 3) are Y-
periodic functions on 𝑦𝑦𝑦, which are defined as local functions. The terms
�̃�
(1)
𝑚 and �̃� (1)

𝑚 are constant vectors.
In addition, as the strains are related to microrotations whereas the

couple strains are not related to the displacements, the functions 𝑝𝑞�̂�𝑚|𝑛
and 𝑝𝑞�̂�𝑚|𝑛 can be redefined as

𝑝𝑞�̂�𝑚|𝑛 = 𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘, 𝑝𝑞�̂�𝑚|𝑛 = 𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘, (19)

where the 𝑝𝑞𝑁𝑚 and 𝑝𝑞𝑈𝑚 𝑝𝑞-displacements and the 𝑝𝑞𝑉𝑘 and 𝑝𝑞𝑀𝑘

𝑝𝑞-microrotations are Y− periodic functions too.
Now, replacing Eq. (19) into Eq. (18), and then, the resulting

expressions into Eq. (14) and collecting with respect to 𝑢(0)𝑝,𝑞 + 𝜖𝑝𝑞𝑠 𝜔
(0)
𝑠

and 𝜔(0)
𝑝,𝑞 , we have

[
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

]
|𝑗
(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑘 𝜔
(0)

𝑘

)
+

[
𝐵𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

]
|𝑗 𝜔

(0)
𝑝,𝑞

= 0,

[
𝐵𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

]
|𝑗
(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑘 𝜔
(0)

𝑘

)
+

[
𝐷𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

]
|𝑗 𝜔

(0)
𝑝,𝑞

= 0.

(20)

Next, as 𝑢(0)𝑝,𝑞+𝜖𝑝𝑞𝑠 𝜔
(0)
𝑠 and 𝜔(0)

𝑝,𝑞 are not null in Eq. (20), then, the strains
satisfy
(
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

)
|𝑗 = 0,

(
𝐵𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

)
|𝑗 = 0,

(21)

and the couple strains
(
𝐵𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

)
|𝑗 = 0,

(
𝐷𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

)
|𝑗 = 0.

(22)

Equations (21) and (22) are the problems on the periodic cell Y related
to the micropolar theory of elasticity (so-called local problems), which
we denote as 𝑝𝑞1 and 𝑝𝑞2, respectively. The solutions of the local
problems are important for the computation of the effective properties.

From Eqs. (10) and (11), the terms corresponding to 𝜀0 can be
rewritten as a system of partial differential equations, as follows

(
𝐶𝑖𝑗𝑚𝑛 𝑢

(2)

𝑚|𝑛 + 𝐶𝑖𝑗𝑚𝑛 𝑢
(1)
𝑚,𝑛

+ 𝐶𝑖𝑗𝑚𝑛 𝜖𝑚𝑛𝑠 𝜔
(1)
𝑠

)
|𝑗

+
(
𝐵𝑖𝑗𝑚𝑛 𝜔

(2)

𝑚|𝑛 + 𝐵𝑖𝑗𝑚𝑛 𝜔
(1)
𝑚,𝑛

)
|𝑗 +

𝐶𝑖𝑗𝑚𝑛 𝑢
(1)

𝑚|𝑛,𝑗 + 𝐶𝑖𝑗𝑚𝑛
(
𝑢
(0)
𝑚,𝑛𝑗

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠,𝑗

)

+𝐵𝑖𝑗𝑚𝑛 𝜔
(1)

𝑚|𝑛,𝑗 + 𝐵𝑖𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛𝑗

+ 𝑓𝑖 = 0,
(
𝐵𝑖𝑗𝑚𝑛 𝑢

(2)

𝑚|𝑛 + 𝐵𝑖𝑗𝑚𝑛 𝑢
(1)
𝑚,𝑛

+ 𝐵𝑖𝑗𝑚𝑛 𝜖𝑚𝑛𝑠 𝜔
(1)
𝑠

)
|𝑗

+
(
𝐷𝑖𝑗𝑚𝑛 𝜔

(2)

𝑚|𝑛 +𝐷𝑖𝑗𝑚𝑛 𝜔
(1)
𝑚,𝑛

)
|𝑗 +

𝐵𝑖𝑗𝑚𝑛 𝑢
(1)

𝑚|𝑛,𝑗 + 𝐵𝑖𝑗𝑚𝑛
(
𝑢
(0)
𝑚,𝑛𝑗

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠,𝑗

)
+𝐷𝑖𝑗𝑚𝑛 𝜔

(1)

𝑚|𝑛,𝑗 +𝐷𝑖𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛𝑗

+

𝜖𝑖𝑗𝑘

[
𝐶𝑘𝑗𝑚𝑛 𝑢

(1)

𝑚|𝑛 + 𝐶𝑘𝑗𝑚𝑛
(
𝑢(0)
𝑚,𝑛

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠

)

+𝐵𝑘𝑗𝑚𝑛 𝜔
(1)

𝑚|𝑛 + 𝐵𝑘𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛

]
+ 𝑔𝑖 = 0,

(23)

then, applying the average operator ⟨∙⟩Y = ∫
Y
(∙) d𝑦 into Eq. (23) and

considering the 𝑦-periodicity of the involved functions, it yields
⟨
𝐶𝑖𝑗𝑚𝑛 𝑢

(1)

𝑚|𝑛,𝑗 + 𝐶𝑖𝑗𝑚𝑛
(
𝑢
(0)
𝑚,𝑛𝑗

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠,𝑗

)

+𝐵𝑖𝑗𝑚𝑛 𝜔
(1)

𝑚|𝑛,𝑗 + 𝐵𝑖𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛𝑗

⟩
Y
+ 𝑓𝑖 = 0,⟨

𝐵𝑖𝑗𝑚𝑛 𝑢
(1)

𝑚|𝑛𝑗 + 𝐵𝑖𝑗𝑚𝑛
(
𝑢
(0)
𝑚,𝑛𝑗

+ 𝜖𝑚𝑛𝑠 𝜔
(0)
𝑠,𝑗

)

+𝐷𝑖𝑗𝑚𝑛 𝜔
(1)

𝑚|𝑛𝑗 +𝐷𝑖𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛𝑗

⟩
Y
+

𝜖𝑖𝑗𝑘

⟨
𝐶𝑘𝑗𝑚𝑛 𝑢

(1)

𝑚|𝑛 + 𝐶𝑘𝑗𝑚𝑛
(
𝑢
(0)
𝑚,𝑛 + 𝜖𝑚𝑛𝑠 𝜔

(0)
𝑠

)

+𝐵𝑘𝑗𝑚𝑛 𝜔
(1)

𝑚|𝑛 + 𝐵𝑘𝑗𝑚𝑛 𝜔
(0)
𝑚,𝑛

⟩
Y
+ 𝑔𝑖 = 0.

(24)

Finally, replacing 𝑢
(1)
𝑚 and 𝜔

(1)
𝑚 (see, Eq. (18)) into Eq. (24), and

grouping terms conveniently, we obtain the homogenized system, as
follows

𝐶
∗

𝑖𝑗𝑝𝑞

(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑘 𝜔
(0)

𝑘

)
,𝑗
+ 𝐵

∗

𝑖𝑗𝑝𝑞
𝜔
(0)
𝑝,𝑞𝑗

+ 𝑓𝑖 = 0,

𝐵
∗

𝑖𝑗𝑝𝑞

(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑘 𝜔
(0)

𝑘

)
,𝑗
+𝐷

∗

𝑖𝑗𝑝𝑞
𝜔(0)
𝑝,𝑞

+𝜖𝑖𝑗𝑙

[
𝐶

∗

𝑙𝑗𝑝𝑞

(
𝑢(0)
𝑝,𝑞

+ 𝜖𝑝𝑞𝑘 𝜔
(0)

𝑘

)
+ 𝐵

∗

𝑙𝑗𝑝𝑞
𝜔(0)
𝑝,𝑞

]
+ 𝑔𝑖 = 0,

(25)

where 𝑢(0)𝑝 and 𝜔(0)
𝑝 are the system solution, and the coefficients 𝐶

∗

𝑖𝑗𝑝𝑞
,

𝐵
∗

𝑖𝑗𝑝𝑞
and 𝐷

∗

𝑖𝑗𝑝𝑞
represent the effective properties of a periodic Cosserat

medium, which are defined as follows

𝐶
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

⟩
Y
, (26)

𝐵
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐵𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

⟩
Y
, (27)

𝐵
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐵𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

⟩
Y
, (28)

𝐷
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐷𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

⟩
Y
. (29)

The effective properties (Eqs. (26)–(29)) coincide with those reported
by Gorbachev and Emel’yanov (2014), see, Eqs. (3.27)-(3.29), page
77, and also with Forest et al. (2001), see Eq. (46), page 4594, for
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centro-symmetric micropolar materials. The latter is obtained when the
constitutive relations (Eq. (3)) are constrained to the case 𝐵𝑖𝑗𝑝𝑞 = 0,
then Eqs. (26)–(29) become

𝐶
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛 𝑝𝑞𝑁𝑚|𝑛

⟩
Y
, 𝐷

∗

𝑖𝑗𝑝𝑞
=
⟨
𝐷𝑖𝑗𝑝𝑞 +𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

⟩
Y
.

Herein, it is important to note that the homogenized system (Eq. (25))
subject to the boundary conditions

𝑢(0)
𝑝

∣
𝜕Ω1

= 0, 𝜎
(0)
𝑗𝑖
𝑛𝑗 ∣𝜕Ω2

= 𝐹
(0)
𝑖
, 𝜔(0)

𝑝
∣
𝜕Ω3

= 0,

𝜇
(0)
𝑗𝑖
𝑛𝑗 ∣𝜕Ω4

= 𝐺
(0)
𝑖
, (30)

where 𝑖, 𝑗, 𝑘, 𝑝 = 1, 2, 3, represents the homogenized problem formula-
tion, defined on Ω, which is equivalent to the boundary value problem
(Eqs. (1)–(2)) of a periodic Cosserat media. Here, 𝐹 (0)

𝑖
and 𝐺

(0)
𝑖

are

infinitely differential functions and 𝜕Ω = 𝜕Ω1 ∪ 𝜕Ω2 ∪ 𝜕Ω3 ∪ 𝜕Ω4.
In addition, the effective properties formulation (Eqs. (26)–(29))

depend on the local 𝑝𝑞-displacements (𝑝𝑞𝑁𝑚 and 𝑝𝑞𝑈𝑚) and the local
𝑝𝑞-microrotations (𝑝𝑞𝑉𝑚 and 𝑝𝑞𝑀𝑚) relative to the 𝑝𝑞1 and 𝑝𝑞2 local
problems, therefore, they need to be determined.

This way, the 𝑝𝑞1 and 𝑝𝑞2 local problems are given by the systems
Eqs. (21) and (22) subject to the corresponding homogenized perfect
contact conditions and null average conditions for the local functions,
respectively, as defined below:

The 𝑝𝑞1 local problems allow to find the 𝑦-periodic local functions

𝑝𝑞𝑁𝑚 and 𝑝𝑞𝑉𝑚 in the periodic cell Y through the solution of the
problem:
(
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

)
|𝑗 = 0, in Y,

(
𝐵𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛

)
|𝑗 = 0, in Y,

[[
𝑝𝑞𝑁𝑚

]]
= 0,

[[
𝑝𝑞𝑉𝑚

]]
= 0, over Γ,[[

𝑝𝑞𝜎
1
𝑗𝑖
𝑛𝑗

]]
= −

[[
𝐶𝑖𝑗𝑝𝑞

]]
𝑛𝑗 ,

[[
𝑝𝑞𝜇

1
𝑗𝑖
𝑛𝑗

]]
= −

[[
𝐵𝑖𝑗𝑝𝑞

]]
𝑛𝑗 , over Γ,

(31)

where

𝑝𝑞𝜎
1
𝑗𝑖
= 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛,

𝑝𝑞𝜇
1
𝑗𝑖
= 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑁𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑉𝑚|𝑛.

Analogously, in the 𝑝𝑞2 local problems, the 𝑦-periodic local functions

𝑝𝑞𝑈𝑚 and 𝑝𝑞𝑀𝑚 are sought in the periodic cell Y, which result from the
problem:
(
𝐵𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

)
|𝑗 = 0, in Y,

(
𝐷𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛

)
|𝑗 = 0, in Y,

[[
𝑝𝑞𝑈𝑚

]]
= 0,

[[
𝑝𝑞𝑀𝑚

]]
= 0, over Γ,[[

𝑝𝑞𝜎
2
𝑗𝑖
𝑛𝑗

]]
= −

[[
𝐵𝑖𝑗𝑝𝑞

]]
𝑛𝑗 ,

[[
𝑝𝑞𝜇

2
𝑗𝑖
𝑛𝑗

]]
= −

[[
𝐷𝑖𝑗𝑝𝑞

]]
𝑛𝑗 , over Γ,

(32)

where

𝑝𝑞𝜎
2
𝑗𝑖
= 𝐶𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛,

𝑝𝑞𝜇
2
𝑗𝑖
= 𝐵𝑖𝑗𝑚𝑛

(
𝑝𝑞𝑈𝑚|𝑛 + 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚𝑛 𝑝𝑞𝑀𝑚|𝑛.

Additionally, the following conditions over Y are required to guarantee
the existence and uniqueness of the local problem solutions,
⟨
𝑝𝑞𝑁𝑚

⟩
Y
= 0,

⟨
𝑝𝑞𝑉𝑚

⟩
Y
= 0,

⟨
𝑝𝑞𝑈𝑚

⟩
Y
= 0,

⟨
𝑝𝑞𝑀𝑚

⟩
Y
= 0. (33)

where ⟨∙⟩Y = (1∕ |Y|) ∫
Y
(∙) d𝑦 is the average operator of (∙) over the

periodic cell Y. Also, the double brackets symbol [[𝑓 ]] denotes the jump
of the function 𝑓 across the interface surface Γ and 𝑛𝑗 is the unit outer
normal vector to Γ.

4. Effective coefficients of multi-laminated Cosserat media

In this section, the local problems (Eqs. (31)–(33)) and the effective
coefficients (Eqs. (26)–(29)) are reformulated for a heterogeneous finite
periodic laminated Cosserat composite Ω with boundary 𝜕Ω. Thus,
a laminate composite characterized by a parallelepiped generated by
repetitions of the periodic cell Y is considered, in which the layered

direction is along the 𝑥3-axis, see Fig. 1. Herein, the Cosserat material
properties 𝐶𝑖𝑗𝑘𝑙, 𝐵𝑖𝑗𝑘𝑙 and 𝐷𝑖𝑗𝑘𝑙 only depend on the coordinate 𝑥3 and
they satisfy the symmetry conditions of Eqs. (4).

The periodic cell Y =
{
(𝑦1, 𝑦2, 𝑦3) ∈ R

3 ∶ 0 ≤ 𝑦𝑖 ≤ 𝑙𝑖
}
with 𝑖 = 1, 2, 3

is assumed to be a bi-laminated composite, where 𝑙𝑖 is the cell length
in the 𝑦𝑖 direction and 𝐿 is the plate thickness. The interface region Γ

between the layers is considered perfect, i.e., the layers are in welded
contact so that the displacement, stress, microrotation and couple stress
are continuous across the interface.

In this framework, the unknown local functions 𝑝𝑞𝑁𝑚, 𝑝𝑞𝑈𝑚, 𝑝𝑞𝑉𝑚,
and 𝑝𝑞𝑀𝑚 only depend on 𝑦3 as well. Therefore, the local problems
(Eqs. (31)–(33)) in Y turn into a system of ordinary integro-differential
equation under perfect contact conditions, as can be seen below:

The 𝑝𝑞1 local problems
(
𝐶𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3 𝑝𝑞𝑁

′
𝑚
+ 𝐶𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑖3𝑚3 𝑝𝑞𝑉

′
𝑚

)′
= 0, in Y,

(
𝐵𝑖3𝑝𝑞 + 𝐵𝑖3𝑚3 𝑝𝑞𝑁

′
𝑚
+ 𝐵𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘 +𝐷𝑖3𝑚3 𝑝𝑞𝑉

′
𝑚

)′
= 0, in Y,[[

𝑝𝑞𝑁𝑚

]]
= 0,

[[
𝑝𝑞𝑉𝑚

]]
= 0 over Γ,[[

𝑝𝑞𝜎
1
3𝑖
𝑛𝑖
]]

= −
[[
𝐶𝑖3𝑝𝑞

]]
𝑛3,

[[
𝑝𝑞𝜇

1
3𝑖
𝑛𝑖
]]

= −
[[
𝐵𝑖3𝑝𝑞

]]
𝑛3 over Γ,

(34)

where 𝑝𝑞𝜎
1
3𝑖

= 𝐶𝑖3𝑚3 𝑝𝑞𝑁
′
𝑚
+ 𝐶𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑖3𝑚3 𝑝𝑞𝑉

′
𝑚
and 𝑝𝑞𝜇

1
3𝑖

=

𝐵𝑖3𝑚3 𝑝𝑞𝑁
′
𝑚
+ 𝐵𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘 +𝐷𝑖3𝑚3 𝑝𝑞𝑉

′
𝑚
.

Analogously, the 𝑝𝑞2 local problems
(
𝐵𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3 𝑝𝑞𝑈

′
𝑚
+ 𝐶𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘 + 𝐵𝑖3𝑚3 𝑝𝑞𝑀

′
𝑚

)′
= 0, in Y,

(
𝐷𝑖3𝑝𝑞 + 𝐵𝑖3𝑚3 𝑝𝑞𝑈

′
𝑚
+ 𝐵𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘 +𝐷𝑖3𝑚3 𝑝𝑞𝑀

′
𝑚

)′
= 0, in Y,[[

𝑝𝑞𝑈𝑚
]]

= 0,
[[
𝑝𝑞𝑀𝑚

]]
= 0 over Γ,[[

𝑝𝑞𝜎
2
3𝑖
𝑛𝑖
]]

= −
[[
𝐵𝑖3𝑝𝑞

]]
𝑛3,

[[
𝑝𝑞𝜇

2
3𝑖
𝑛𝑖
]]

= −
[[
𝐷𝑖3𝑝𝑞

]]
𝑛3 over Γ,

(35)

where 𝑝𝑞𝜎
2
3𝑖

= 𝐶𝑖3𝑚𝑛 𝑝𝑞𝑈
′
𝑚
+ 𝐶𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘 + 𝐵𝑖3𝑚3 𝑝𝑞𝑀

′
𝑚
and 𝑝𝑞𝜇

2
3𝑖

=

𝐵𝑖3𝑚3 𝑝𝑞𝑈
′
𝑚
+ 𝐵𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑀𝑘 +𝐷𝑖3𝑚3 𝑝𝑞𝑀

′
𝑚
.

Additionally, null average conditions over Y are required to guaran-
tee the unique solution, i.e.,

⟨
𝑝𝑞𝑁𝑚

⟩
Y
= 0,

⟨
𝑝𝑞𝑉𝑚

⟩
Y
= 0,

⟨
𝑝𝑞𝑈𝑚

⟩
Y
= 0

and
⟨
𝑝𝑞𝑀𝑚

⟩
Y
= 0. In Eqs. (34)–(35), the prime indicate the ordinary

derivative of the function with respect to 𝑦3.
Consequently, from Eqs. (26)–(29), the corresponding effective

properties for a periodic laminate Cosserat composite are

𝐶
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚3

(
𝑝𝑞𝑁

′
𝑚
+ 𝜖𝑚3𝑘 𝑝𝑞𝑉𝑘

)
+ 𝐵𝑖𝑗𝑚3 𝑝𝑞𝑉

′
𝑚

⟩
Y
, (36)

𝐵
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐵𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚3

(
𝑝𝑞𝑈

′
𝑚
+ 𝜖𝑚3𝑘 𝑝𝑞𝑀𝑘

)
+ 𝐵𝑖𝑗𝑚3 𝑝𝑞𝑀

′
𝑚

⟩
Y
, (37)

𝐵
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐵𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚3

(
𝑝𝑞𝑁

′
𝑚
+ 𝜖𝑚3𝑘 𝑝𝑞𝑉𝑘

)
+𝐷𝑖𝑗𝑚3 𝑝𝑞𝑉

′
𝑚

⟩
Y
, (38)

𝐷
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐷𝑖𝑗𝑝𝑞 + 𝐵𝑖𝑗𝑚3

(
𝑝𝑞𝑈

′
𝑚
+ 𝜖𝑚3𝑘 𝑝𝑞𝑀𝑘

)
+𝐷𝑖𝑗𝑚3 𝑝𝑞𝑀

′
𝑚

⟩
Y
. (39)

As can be seen, the analytical formulas of the effective coefficients (Eqs.
(36)–(39)) depend on the local functions 𝑝𝑞𝑁

′
𝑚
, 𝑝𝑞𝑉

′
𝑚
, 𝑝𝑞𝑈

′
𝑚
, 𝑝𝑞𝑀

′
𝑚
, the

constituent material properties and the volumes through the average
operator on the periodic unit cell Y. Therefore, once the solutions of
the 𝑝𝑞1 and 𝑝𝑞2 local problems have been determined, the effective
coefficients of a Cosserat laminated media can be computed by replac-
ing the local functions and their derivatives in them. Details of the local
problem solutions are shown in Appendix.

4.1. Effective properties of centro-symmetric laminated Cosserat composites

Now, the analytical formulas of centro-symmetric laminated
Cosserat composite are determined. A periodic Cosserat material is
defined as centro-symmetric if −𝐈 (𝐈 is the second order identity tensor)
is a symmetry transformation of its constitutive law. In this case,
𝐵𝑖𝑗𝑟𝑠 are not considered due to the symmetry condition 𝐵𝑖𝑗𝑟𝑠 = 𝐵𝑟𝑠𝑖𝑗

not being fulfilled. This condition implies that the stresses and the
couple stresses no longer depend on the microcurvatures and strains,
respectively, because 𝐵𝑖𝑗𝑟𝑠 is related to the coupling between stresses
and microcurvatures and between couple stresses and strains.
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Table 1
Local problems and associated Cosserat effective properties.

111
221

331
121

131
231

211
311

321

𝐶
∗

1111
𝐶

∗

1122
𝐶

∗

1133
0 0 0 0 0 0

𝐶
∗

2211
𝐶

∗

2222
𝐶

∗

2233
0 0 0 0 0 0

𝐶
∗

3311
𝐶

∗

3322
𝐶

∗

3333
0 0 0 0 0 0

0 0 0 𝐶
∗

1212
0 0 𝐶

∗

1221
0 0

0 0 0 0 𝐶
∗

1313
0 0 𝐶

∗

1331
0

0 0 0 0 0 𝐶
∗

2323
0 0 𝐶

∗

2332

0 0 0 𝐶
∗

2112
0 0 𝐶

∗

2121
0 0

0 0 0 0 𝐶
∗

3113
0 0 𝐶

∗

3131
0

0 0 0 0 0 𝐶
∗

3223
0 0 𝐶

∗

3232

112
222

332
122

132
232

212
312

322

𝐷
∗

1111
𝐷

∗

1122
𝐷

∗

1133
0 0 0 0 0 0

𝐷
∗

2211
𝐷

∗

2222
𝐷

∗

2233
0 0 0 0 0 0

𝐷
∗

3311
𝐷

∗

3322
𝐷

∗

3333
0 0 0 0 0 0

0 0 0 𝐷
∗

1212
0 0 𝐷

∗

1221
0 0

0 0 0 0 𝐷
∗

1313
0 0 𝐷

∗

1331
0

0 0 0 0 0 𝐷
∗

2323
0 0 𝐷

∗

2332

0 0 0 𝐷
∗

2112
0 0 𝐷

∗

2121
0 0

0 0 0 0 𝐷
∗

3113
0 0 𝐷

∗

3131
0

0 0 0 0 0 𝐷
∗

3223
0 0 𝐷

∗

3232

Then, let us write the condition explicitly 𝐵𝑖𝑗𝑝𝑞 = 0, therefore
applying this condition into Eq. (A.12) we have

𝑝𝑞𝑉
′
𝑚
= 0. (40)

In order to find the local function 𝑝𝑞𝑉𝑚, it is necessary to integrate Eq.
(40) assuming that

⟨
𝑝𝑞𝑉𝑚

⟩
= 0, such as

𝑝𝑞𝑉𝑚 = ∫
𝐿

0
𝑝𝑞𝑉

′
𝑚
𝑑𝑦 −

⟨
∫

𝐿

0
𝑝𝑞𝑉

′
𝑚
𝑑𝑦

⟩
≡ 0. (41)

Taking into account 𝐵𝑖𝑗𝑝𝑞 = 0 and Eqs. (40) and (41), the expressions
Eqs. (A.11) and (A.16) become

𝑝𝑞𝑁
′
𝑚
= 𝐶−1

𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑝𝑞 , (42)

𝑝𝑞𝑀
′
𝑚
= 𝐷−1

𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩⟨
𝐷−1
𝑘3𝑑3

𝐷𝑑3𝑝𝑞

⟩
−𝐷−1

𝑚3𝑙3
𝐷𝑙3𝑝𝑞 . (43)

Finally, replacing Eqs. (40)–(43) into the statements Eqs. (36)–(39), the
effective properties of centro-symmetric micropolar laminated compos-
ites can be found as follows,

𝐶
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐶𝑖𝑗𝑝𝑞 + 𝐶𝑖𝑗𝑚3 𝐶

−1
𝑚3𝑙3

(⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶𝑙3𝑝𝑞

)⟩
Y
, (44)

𝐷
∗

𝑖𝑗𝑝𝑞
=
⟨
𝐷𝑖𝑗𝑝𝑞 +𝐷𝑖𝑗𝑚3 𝐷

−1
𝑚3𝑙3

(⟨
𝐷−1
𝑙3𝑘3

⟩⟨
𝐷−1
𝑘3𝑑3

𝐷𝑑3𝑝𝑞

⟩
−𝐷𝑙3𝑝𝑞

)⟩
Y
, (45)

𝐵
∗

𝑖𝑗𝑝𝑞
= 0. (46)

It is important to remark that the expression of 𝐶eff
𝑖𝑗𝑝𝑞

(Eq. (44)) coincide
with the formula (Eq. 1.12, page 145) of Pobedrya (1984), considering
a classical Cauchy elastic problem.

Details of Cosserat centro-symmetric materials can be found in
Eringen (1999) and Zheng and Spencer (1993). The correspondence
between the non-null Cosserat effective coefficients and the local prob-
lems is given in Table 1.

5. Numerical results

In this section, the effective properties (Eqs. (44)–(46)) are reduced
for a centro-symmetric laminated Cosserat composite with isotropic or
cubic constituents. In addition, the numerical values of the effective
properties for a centro-symmetric bi-laminated Cosserat composite are
computed for both constituent symmetries, and the results are analyzed
and discussed. As a limit case, a comparison is reported between
classical and Cosserat effective elastic properties for a laminated com-
posite with isotropic constituents. Finally, the analytical formulas of
the effective engineering moduli are reported for centro-symmetric bi-
laminated Cosserat composites with isotropic and cubic constituent
materials.

Since the constituent materials are considered centro-symmetric,

then, the orthotropic symmetry and all orthotropic sub-classes, i.e., trans-

versely isotropic, cubic, and isotropic, are also considered centro-

symmetric, see Zheng and Spencer (1993).

5.1. Centro-symmetric laminated Cosserat composites with isotropic con-
stituents

Assuming that each layer possesses isotropic symmetry, the con-

stituent properties are rewritten as a function of six independent con-

stants, see for instance Nowacki (1986) and Hassanpour and Heppler

(2015), in the form

𝐶𝑖𝑗𝑝𝑞 = 𝐶1122𝛿𝑖𝑗𝛿𝑝𝑞 + 𝐶1212𝛿𝑖𝑝𝛿𝑗𝑞 + 𝐶1221𝛿𝑖𝑞𝛿𝑗𝑝, (47)

𝐷𝑖𝑗𝑝𝑞 = 𝐷1122𝛿𝑖𝑗𝛿𝑝𝑞 +𝐷1212𝛿𝑖𝑝𝛿𝑗𝑞 +𝐷1221𝛿𝑖𝑞𝛿𝑗𝑝, (48)

where 𝐵𝑖𝑗𝑝𝑞 is vanished and 𝛿𝑖𝑗 is the Kronecker delta tensor and

𝑖, 𝑗, 𝑝, 𝑞 = 1, 2, 3.

In addition, the following restrictions derived from the positive-

definite quadratic form of the internal energy are assumed (see, Eringen

(1999))

𝐶1212 + 𝐶1221 > 0, 𝐶1212 − 𝐶1221 > 0, 3𝐶1122 + 𝐶1212 + 𝐶1221 > 0,

𝐷1212 +𝐷1221 > 0, 𝐷1212 −𝐷1221 > 0, 3𝐷1122 +𝐷1212 +𝐷1221 > 0,

(49)

and the stiffness 𝐶𝑖𝑗𝑝𝑞 and torque 𝐷𝑖𝑗𝑝𝑞 moduli are defined in matrix
form as

𝐶𝑖𝑗𝑝𝑞 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶1111 𝐶1122 𝐶1122 0 0 0 0 0 0

𝐶1111 𝐶1122 0 0 0 0 0 0

𝐶1111 0 0 0 0 0 0

𝐶1212 0 0 𝐶1221 0 0

𝐶1212 0 0 𝐶1221 0

𝐶1212 0 0 𝐶1221

SYM 𝐶1212 0 0

𝐶1212 0

𝐶1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(50)

and

𝐷𝑖𝑗𝑝𝑞 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐷1111 𝐷1122 𝐷1122 0 0 0 0 0 0

𝐷1111 𝐷1122 0 0 0 0 0 0

𝐷1111 0 0 0 0 0 0

𝐷1212 0 0 𝐷1221 0 0

𝐷1212 0 0 𝐷1221 0

𝐷1212 0 0 𝐷1221

SYM 𝐷1212 0 0

𝐷1212 0

𝐷1212

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(51)

where 𝐶1111 = 𝐶1122 + 𝐶1212 + 𝐶1221 and 𝐷1111 = 𝐷1122 + 𝐷1212 +

𝐷1221, see Eringen (1999) and Eremeyev and Pietraszkiewicz (2012).
The 𝐶𝑖𝑗𝑝𝑞 and 𝐷𝑖𝑗𝑝𝑞 matrices are characterized by three independent
components each: (𝐶1122, 𝐶1212, 𝐶1221) for 𝐶𝑖𝑗𝑝𝑞 and (𝐷1122, 𝐷1212, 𝐷1221)

for 𝐷𝑖𝑗𝑝𝑞 . An analysis for the linear isotropic equations associated to the
theory of micropolar elasticity and his representations are provided by
Hassanpour and Heppler (2015).

Then, replacing Eqs. (47) and (48) into Eqs. (44) and (46), the an-
alytical expressions of the non-null effective properties 𝐶

∗

𝑖𝑗𝑝𝑞
and 𝐷

∗

𝑖𝑗𝑝𝑞
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for centro-symmetric laminated Cosserat composites with isotropic con-
stituents are found as follows:

𝐶
∗

1111
= 𝐶

∗

2222
= ⟨𝐶1122 + 𝐶1212 + 𝐶1221⟩

−⟨𝐶2
1122

(𝐶1122 + 𝐶1212 + 𝐶1221)
−1⟩+

⟨𝐶1122 (𝐶1122 + 𝐶1212 + 𝐶1221)
−1⟩2⟨(𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩−1,
𝐶

∗

3333
= ⟨(𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩−1,
𝐶

∗

1122
= ⟨𝐶1122⟩ − ⟨𝐶2

1122
(𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩+
⟨𝐶1122 (𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩2⟨(𝐶1122 + 𝐶1212 + 𝐶1221)
−1⟩−1,

𝐶
∗

1212
= 𝐶

∗

2121
= ⟨𝐶1212⟩, 𝐶

∗

1313
= 𝐶

∗

2323
= ⟨𝐶−1

1212
⟩−1,

𝐶
∗

1133
= 𝐶

∗

2233
= ⟨𝐶1122 (𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩
⟨(𝐶1122 + 𝐶1212 + 𝐶1221)

−1⟩−1,
𝐶

∗

3131
= ⟨𝐶1212⟩ + ⟨𝐶1221 𝐶

−1
1212

⟩2⟨𝐶−1
1212

⟩−1 − ⟨𝐶2
1221

𝐶−1
1212

⟩,
𝐶

∗

1221
= ⟨𝐶1221⟩, 𝐶

∗

1331
= 𝐶

∗

2332
= ⟨𝐶1221 𝐶

−1
1212

⟩⟨𝐶−1
1212

⟩−1,

(52)

and

𝐷
∗

1111
= 𝐷

∗

2222
= ⟨𝐷1122 +𝐷1212 +𝐷1221⟩

−⟨𝐷2
1122

(𝐷1122 +𝐷1212 +𝐷1221)
−1⟩+

⟨𝐷1122 (𝐷1122 +𝐷1212 +𝐷1221)
−1⟩2⟨(𝐷1122 +𝐷1212 +𝐷1221)

−1⟩−1,
𝐷

∗

3333
= ⟨(𝐷1122 +𝐷1212 +𝐷1221)

−1⟩−1,
𝐷

∗

1122
= ⟨𝐷1122⟩ − ⟨𝐷2

1122
(𝐷1122 +𝐷1212 +𝐷1221)

−1⟩+
⟨𝐷1122 (𝐷1122 +𝐷1212 +𝐷1221)

−1⟩2⟨(𝐷1122 +𝐷1212 +𝐷1221)
−1⟩−1,

𝐷
∗

1212
= 𝐷

∗

2121
= ⟨𝐷1212⟩, 𝐷

∗

1313
= 𝐷

∗

2323
= ⟨𝐷−1

1212
⟩−1,

𝐷
∗

1133
= 𝐷

∗

2233
= ⟨𝐷1122 (𝐷1122 +𝐷1212 +𝐷1221)

−1⟩
⟨(𝐷1122 +𝐷1212 +𝐷1221)

−1⟩−1,
𝐷

∗

3131
= ⟨𝐷1212⟩ + ⟨𝐷1221 𝐷

−1
1212

⟩2⟨𝐷−1
1212

⟩−1 − ⟨𝐷2
1221

𝐷−1
1212

⟩,
𝐷

∗

1221
= ⟨𝐷1221⟩, 𝐷

∗

1331
= 𝐷

∗

2332
= ⟨𝐷1221 𝐷

−1
1212

⟩⟨𝐷−1
1212

⟩−1.

(53)

In Eqs. (52) and (53), the symbol ⟨𝑓⟩ is the Voigt’s average (average
operator) of the property 𝑓 . Also, in case of a bi-laminated composite,
⟨𝑓 ⟩ = 𝑓 (1)V1 + 𝑓

(2)V2 where V1 and V2 represents the volume fractions
per unit length occupied by the layer 1 and 2, respectively; such as,
V1 + V2 = 1, see Fig. 1(d).

As it can be observed in Eqs. (52) and (53), the resulting homoge-
nized material has orthotropic symmetry restricted with the invariance
of stiffness and torques under rotations of 90◦ about the unitary vector
𝐞3, i.e., it is described by eighteen independent effective properties, see
Eremeyev and Pietraszkiewicz (2012). Also, it can be noticed that the
effective coefficients given in Eq. (52) match with those reported by
Pobedrya (1984) (Eq. 1.19, page 147) when 𝐶1212 = 𝐶1221. This limit
case allows reproducing the effective coefficients of laminate compos-
ites with isotropic constituents in the framework of classical Cauchy
elasticity, as in Pobedrya (1984). In addition, it is worth mentioning
that the expressions of these coefficients (Eq. (52)) do not match with
those reported by Emel’yanov (2016) because different constitutive
relations for 𝐶𝑖𝑗𝑝𝑞 and 𝐷𝑖𝑗𝑝𝑞 are used. We follow the same reported by
Nowacki (1974) and Lazar and Kirchner (2005).

From now on, the non-null effective properties for a bi-laminated
Cosserat composite with isotropic material constituents are shown as a
function of the volume fraction. The values of the material properties
for the numerical computations are established by the data given in
Table 2 and the relations 𝐶1122 ≡ 𝜆, (𝐶1212 + 𝐶1221)∕2 ≡ 𝜇, (𝐶1212 −

𝐶1221)∕2 ≡ 𝛼, 𝐷1122 ≡ 𝛽, (𝐷1212+𝐷1221)∕2 ≡ 𝛾, and (𝐷1212−𝐷1221)∕2 ≡ 𝜖,
which represent the Lamé coefficient, the Lamé shear modulus, the
micropolar couple modulus and the remaining ones define the Cosserat
or micropolar elastic constants. Following these relations an equivalent
representation of Eqs. (47) and (48) can be obtained (see, Lazar and
Kirchner (2005)). Constituent materials with a full set of micropolar
elastic constants measured are reported by Hassanpour and Heppler
(2015). It is important to note that, despite several studies carried

Table 2
Constitutive material properties.

Material properties 𝜆 (MPa) 𝜇 (MPa) 𝛼 (MPa) 𝛽 (N) 𝛾 (N) 𝜖 (N)

Syntactic foam (hollow glass
spheres in epoxy resin)

2097 1033 114.8 −2.91 4.364 −0.133

Dense polyurethane (high
dense polyurethane foam)

762.7 104 4.333 −26.65 39.98 4.504

out in micropolar media, further research is needed focused on the
determination of the material constants.

Fig. 2 plots the effective elastic (Figs. 2(a) and (b)) and torque
(Figs. 2(c) and (d)) properties for a homogenized bi-laminated Cosserat
composite (layer 1/layer 2) = (Syntactic foam (SyF)/Dense
polyurethane foam (PUF)) as a function of V1 volume fraction. From
Figs. 2(a) and (b), it can be noticed that all effective elastic properties
have a monotone increasing behavior, e.g., 𝐶

∗

1111
and 𝐶

∗

1122
in a linear

manner in almost whole volume fraction, 𝐶
∗

1212
and 𝐶

∗

1221
as linear

functions and the other ones in a convex form. Also, the latter ones
have a higher growth rate as V1 approaches 1. On the other hand, from
Fig. 2(c) and (d), it is worthwhile to mention that there is a different
effective behavior. When V1 increases, the effective torque properties
decrease except for 𝐷

∗

1122
and 𝐷

∗

1133
. These last two properties have the

peculiarity of being negative. In particular, 𝐷
∗

1133
grows in a concave

form for all V1 values and 𝐷
∗

1122
has a minimum for V1 = 0.092.

This negative behavior is due to the 𝐷1122 Cosserat twist coefficient
influence, which is negative for both constituents. 𝐷1122 is negative for
micropolar isotropic solids (see, Hassanpour and Heppler (2015)).

5.2. Comparison between Cauchy and Cosserat effective properties

As mentioned before, micropolar media can be reduced to classical
or Cauchy media. In the classical theory of linear elasticity, the effective
moduli 𝐷

∗

𝑖𝑗𝑝𝑞
do not exist, and the effective stiffness moduli 𝐶

∗

𝑖𝑗𝑝𝑞

are defined by five independent constants, which corresponds to a
homogenized material with transversely isotropic symmetry. Therefore,
the effective properties of laminated Cosserat composites with isotropic
constituents can be reduced to the classical effective stiffness properties
making 𝐶

∗

1212
= 𝐶

∗

1221
, 𝐷

∗

1122
= 0 and 𝐷

∗

1212
= 𝐷

∗

1221
= 0.

Then, from Eqs. (52) and (52), the stiffness moduli are given by:

𝐶C
1111

= 𝐶C
2222

= ⟨𝐶1122 + 2𝐶1212⟩ − ⟨𝐶2
1122

(𝐶1122 + 2𝐶1212)
−1⟩+

⟨𝐶1122(𝐶1122 + 2𝐶1212)
−1⟩2⟨(𝐶1122 + 2𝐶1212)

−1⟩−1,
𝐶C
3333

= ⟨(𝐶1122 + 2𝐶1212)
−1⟩−1,

𝐶C
1122

= ⟨𝐶1122⟩ − ⟨𝐶2
1122

(𝐶1122 + 2𝐶1212)
−1⟩+

⟨𝐶1122(𝐶1122 + 2𝐶1212)
−1⟩2⟨(𝐶1122 + 2𝐶1212)

−1⟩−1,
𝐶C
1133

= 𝐶C
2233

= ⟨𝐶1122(𝐶1122 + 2𝐶1212)
−1⟩⟨(𝐶1122 + 2𝐶1212)

−1⟩−1,
𝐶C
1212

= ⟨𝐶1212⟩, 𝐶C
1313

= 𝐶C
2323

= ⟨𝐶−1
1212

⟩−1,
(54)

where 𝐶C
1212

= (𝐶C
1111

− 𝐶C
1122

)∕2. Here, the notation 𝐶C
𝑖𝑗𝑝𝑞

represents the
classical or Cauchy effective property (effective stiffness moduli) and
they satisfy the classical symmetry conditions 𝐶C

𝑖𝑗𝑝𝑞
= 𝐶C

𝑝𝑞𝑖𝑗
= 𝐶C

𝑖𝑗𝑞𝑝
=

𝐶C
𝑗𝑖𝑝𝑞

. The resulting composite has hexagonal symmetry. Notice that, a
good agreement is obtained with the expressions reported by Pobedrya
(1984), page 147.

On the other hand, if we assume that all the material parameters
given in Table 2 are null except 𝐶1122 = 𝜆 and 𝐶1212 = 𝜇, it can
be obtained that the effective Cosserat and Cauchy properties satisfy
that 𝐶

∗

1111
= 𝐶C

1111
, 𝐶

∗

2222
= 𝐶C

2222
, 𝐶

∗

3333
= 𝐶C

3333
, 𝐶

∗

1122
= 𝐶C

1122
and

𝐶
∗

1133
= 𝐶C

1133
, whereas 𝐶

∗

1212
= 𝐶

∗

2121
≠ 𝐶C

1212
and 𝐶

∗

1313
≠ 𝐶C

1313
, from a

direct comparison between Eqs. (52) and (54). Hence, the differences
between the Cosserat and Cauchy effective elastic moduli need to be

7



Fig. 2. Effective elastic and torque properties for a homogenized bi-laminated Cosserat composite (SyF/PUF) with isotropic constituents as function of V1 volume fraction.

Table 3
Classical (𝐶C

𝑖𝑗𝑝𝑞
) and Cosserat (𝐶

∗

𝑖𝑗𝑝𝑞
) elastic effective properties for a bi-laminated

composite with isotropic constituents.

Effective properties (GPa)

V1 𝐶
∗

1212
= 𝐶

∗

2121
𝐶C
1212

𝐶
∗

1221
𝐶

∗

3131
𝐶

∗

1313
𝐶C
1313

𝐶
∗

1331

0 0.10833 0.10400 0.09967 0.10833 0.10833 0.10400 0.09967
0.1 0.21228 0.19690 0.18152 0.15451 0.11912 0.11428 0.10816
0.2 0.31623 0.28980 0.26337 0.20217 0.13230 0.12681 0.11854
0.3 0.42017 0.38270 0.34523 0.25187 0.14875 0.14243 0.13149
0.4 0.52412 0.47560 0.42708 0.30445 0.16987 0.16243 0.14812
0.5 0.62807 0.56850 0.50893 0.36138 0.19798 0.18897 0.17026
0.6 0.73201 0.66140 0.59079 0.42522 0.23725 0.22589 0.20118
0.7 0.83596 0.75430 0.67264 0.50110 0.29594 0.28072 0.24740
0.8 0.93991 0.84720 0.75449 0.60091 0.39321 0.37071 0.32399
0.9 1.04385 0.94010 0.83635 0.75980 0.58576 0.54562 0.47562
1.0 1.14780 1.03300 0.91820 1.14780 1.14780 1.03300 0.91820

shown for only unequal properties; see Table 3. Fig. 2(a) and (b) can be
used to analyze the Cauchy effective property due to equality relations.

Table 3 illustrates the values of the Cosserat and Cauchy elastic
properties for a bi-laminated composite with isotropic constituents as a
function of V1 volume fraction. The Cauchy elastic moduli is calculated
considering the material properties given in Table 2. Notice that the
effective properties 𝐶

∗

1212
, 𝐶

∗

1221
and 𝐶C

1212
are positive and increase

linearly as V1 increases. Also 𝐶
∗

1221
< 𝐶C

1212
< 𝐶

∗

1212
is satisfied in the

whole volume fraction interval. A similar behavior occurs for 𝐶
∗

1313
,

Table 4
Deviation between the effective Cauchy (𝐶C

𝑖𝑗𝑝𝑞
) and Cosserat (𝐶

∗

𝑖𝑗𝑝𝑞
) elastic properties

and relative errors.

Deviations (GPa) and relative errors:

Error 1 =
|||�̄�

∗

1313
∕𝐶C

1313

||| × 100%, Error 2 =
|||�̄�

∗

3131
∕𝐶

∗

3131

||| × 100%

V1 �̄�
∗

1212
�̄�

∗

3131
Error 1 �̄�

∗

1313
Error 2

0.1 0 −0.001075 0.69594 0.000636 0.55643
0.2 0 −0.006131 3.03255 0.001393 1.09861
0.3 0 −0.010699 4.24773 0.002309 1.62122
0.4 0 −0.014563 4.78325 0.003437 2.11592
0.5 0 −0.017361 4.80407 0.004855 2.56887
0.6 0 −0.018429 4.33400 0.006675 2.95521
0.7 0 −0.016411 3.27496 0.009055 3.22551
0.8 0 −0.008045 1.33873 0.012105 3.26535
0.9 0 0.016937 2.22917 0.014929 2.73616

𝐶
∗

1331
and 𝐶C

1313
, but they increase in a convex form and we have

that 𝐶
∗

1331
< 𝐶C

1313
< 𝐶

∗

1313
< 𝐶

∗

3131
. The differences between Cauchy

and Cosserat elastic properties are more noticeable for larger volume
fractions.

From Table 3, it is also worthy to mention that 𝐶C
1212

are related
to the average of 𝐶

∗

1212
and 𝐶

∗

1221
. Similar behavior can be remarkable

for 𝐶C
1313

and 𝐶
∗

3131
throught the average between 𝐶

∗

1313
and 𝐶

∗

1331
, and

between 𝐶C
1212

and 𝐶C
1313

, respectively. From numerical experiments we
can confirm that the deviation is linked to the mean values through the
following relations

�̄�
∗

1212
= 𝐶C

1212
−
𝐶

∗

1212
+ 𝐶

∗

1221

2
, (55)
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�̄�
∗

1313
= 𝐶C

1313
−
𝐶

∗

1313
+ 𝐶

∗

1331

2
, (56)

�̄�
∗

3131
= 𝐶

∗

3131
−
𝐶C
1212

+ 𝐶C
1313

2
, (57)

and the results are illustrated in Table 4. An analysis of the relative
error is also shown.

From Table 4, it is concluded that �̄�
∗

1212
, �̄�

∗

1313
and �̄�

∗

3131
are close

to zero and they represent an error less than 5% of the 𝐶C
1221

, 𝐶C
1313

and 𝐶
∗

3131
, respectively. Thus, in this case, a relation can be established

between the classical and the Cosserat elastic moduli for the isotropic
case as follows,

𝐶C
1212

= (𝐶
∗

1212
+ 𝐶

∗

1221
)∕2, 𝐶C

1313
≈ (𝐶

∗

1313
+ 𝐶

∗

1331
)∕2,

𝐶
∗

3131
≈ (𝐶C

1212
+ 𝐶C

1313
)∕2. (58)

5.3. Centro-symmetric laminated Cosserat composites with cubic
constituents

Now, we consider that each layer possesses cubic symmetry, then,
the constituent properties can be rewritten as a function of eight
independent constants, in the form

𝐶𝑖𝑗𝑝𝑞 = 𝐶1122𝛿𝑖𝑗𝛿𝑝𝑞 + 𝐶1212𝛿𝑖𝑝𝛿𝑗𝑞 + 𝐶1221𝛿𝑖𝑞𝛿𝑗𝑝

+
(
𝐶1111 − 𝐶1122 − 𝐶1212 − 𝐶1221

)
𝛿𝑖𝑗𝑝𝑞 , (59)

𝐷𝑖𝑗𝑝𝑞 = 𝐷1122𝛿𝑖𝑗𝛿𝑝𝑞 +𝐷1212𝛿𝑖𝑝𝛿𝑗𝑞 +𝐷1221𝛿𝑖𝑞𝛿𝑗𝑝

+
(
𝐷1111 −𝐷1122 −𝐷1212 −𝐷1221

)
𝛿𝑖𝑗𝑝𝑞 , (60)

where 𝐵𝑖𝑗𝑝𝑞 is null and 𝛿𝑖𝑗 is the Kronecker delta tensor and the four
order tensor 𝛿𝑖𝑗𝑟𝑠 is defined as follows: 𝛿𝑖𝑗𝑟𝑠 = 1 if 𝑖 = 𝑗 = 𝑟 = 𝑠, else
𝛿𝑖𝑗𝑟𝑠 = 0. As in Section 5.1, an equivalent representation of Eqs. (59)
and (60) can be obtained through the relations 𝐶1122 = 𝜆, (𝐶1212 +

𝐶1221)∕2 = 𝜇,
(
𝐶1111 − 𝐶1122 − 𝐶1212 − 𝐶1221

)
= 𝜂, (𝐶1212 − 𝐶1221)∕2 =

𝛼, 𝐷1122 = 𝛽, (𝐷1212 + 𝐷1221)∕2 = 𝛾, (𝐷1212 − 𝐷1221)∕2 = 𝜖, and(
𝐷1111 −𝐷1122 −𝐷1212 −𝐷1221

)
= 𝜈, where 𝜆 and 𝜇 are the Lamé param-

eters, 𝜂 is the classical cubic constant or anisotropy constant, 𝛼 is the
micropolar couple modulus, and 𝛽, 𝛾, 𝜖, and 𝜈 represent the additional
micropolar elastic constants introduced in micropolar theory.

Similarly to the isotropic case, restrictions derived from the positive-
definite quadratic form of the internal energy are assumed, see Eringen
(1999), i.e.,

𝐶1212 + 𝐶1221 > 0, 𝐶1212 − 𝐶1221 > 0,

𝐶1111 − 𝐶1122 > 0, 2𝐶1122 + 𝐶1111 > 0,

𝐷1212 +𝐷1221 > 0, 𝐷1212 −𝐷1221 > 0,

𝐷1111 −𝐷1122 > 0, 2𝐷1122 +𝐷1111 > 0,

(61)

and the stiffness 𝐶𝑖𝑗𝑝𝑞 and torque 𝐷𝑖𝑗𝑝𝑞 moduli have the same matrix
form of Eqs. (50) and (51) but 𝐶1111 ≠ 𝐶1122 + 𝐶1212 + 𝐶1221 and
𝐷1111 ≠ 𝐷1122 +𝐷1212 +𝐷1221.

In this case, the material symmetry group related to constituents
cubic symmetry has rotations of 90◦ about all orthogonal axes with
unitary vectors 𝐞𝑘 (𝑘 = 1, 2, 3). Some details of the mathematical
foundations, material symmetry regulations, and stability of micropolar
media are given in Eringen (1999) and Eremeyev and Pietraszkiewicz
(2012). The explicit structure of 𝐶𝑖𝑗𝑝𝑞 and 𝐷𝑖𝑗𝑝𝑞 tensors are reported by
Zheng and Spencer (1993) for fourteen symmetry groups.

Then, replacing Eqs. (59) and (60) into Eqs. (44)–(46), the non-
null effective properties 𝐶

∗

𝑖𝑗𝑝𝑞
and 𝐷

∗

𝑖𝑗𝑝𝑞
of centro-symmetric laminated

Cosserat materials with cubic constituents can be determined, as fol-
lows:

𝐶
∗

1111
= 𝐶

∗

2222
= ⟨𝐶1111⟩ + ⟨𝐶1122 𝐶

−1
1111

⟩2⟨𝐶−1
1111

⟩−1 − ⟨𝐶2
1122

𝐶−1
1111

⟩,
𝐶

∗

3333
= ⟨𝐶−1

1111
⟩−1,

𝐶
∗

1122
= ⟨𝐶1122⟩ + ⟨𝐶1122 𝐶

−1
1111

⟩2⟨𝐶−1
1111

⟩−1 − ⟨𝐶2
1122

𝐶−1
1111

⟩,
𝐶

∗

1133
= 𝐶

∗

2233
= ⟨𝐶1122 𝐶

−1
1111

⟩⟨𝐶−1
1111

⟩−1,
𝐶

∗

1212
= 𝐶

∗

2121
= ⟨𝐶1212⟩, 𝐶

∗

1313
= 𝐶

∗

2323
= ⟨𝐶−1

1212
⟩−1,

𝐶
∗

3131
= ⟨𝐶1212⟩ + ⟨𝐶1221 𝐶

−1
1212

⟩2⟨𝐶−1
1212

⟩−1 − ⟨𝐶2
1221

𝐶−1
1212

⟩,
𝐶

∗

1221
= ⟨𝐶1221⟩, 𝐶

∗

1331
= 𝐶

∗

2332
= ⟨𝐶1221 𝐶

−1
1212

⟩⟨𝐶−1
1212

⟩−1,

(62)

and

𝐷
∗

1111
= 𝐷

∗

2222
= ⟨𝐷1111⟩ + ⟨𝐷1122 𝐷

−1
1111

⟩2⟨𝐷−1
1111

⟩−1 − ⟨𝐷2
1122

𝐷−1
1111

⟩,
𝐷

∗

3333
= ⟨𝐷−1

1111
⟩−1,

𝐷
∗

1122
= ⟨𝐷1122⟩ + ⟨𝐷1122 𝐷

−1
1111

⟩2⟨𝐷−1
1111

⟩−1 − ⟨𝐷2
1122

𝐷−1
1111

⟩,
𝐷

∗

1133
= 𝐷

∗

2233
= ⟨𝐷1122 𝐷

−1
1111

⟩⟨𝐷−1
1111

⟩−1,
𝐷

∗

1212
= 𝐷

∗

2121
= ⟨𝐷1212⟩, 𝐷

∗

1313
= 𝐷

∗

2323
= ⟨𝐷−1

1212
⟩−1,

𝐷
∗

3131
= ⟨𝐷1212⟩ + ⟨𝐷1221 𝐷

−1
1212

⟩2⟨𝐷−1
1212

⟩−1 − ⟨𝐷2
1221

𝐷−1
1212

⟩,
𝐷

∗

1221
= ⟨𝐷1221⟩, 𝐷

∗

1331
= 𝐷

∗

2332
= ⟨𝐷1221 𝐷

−1
1212

⟩⟨𝐷−1
1212

⟩−1.

(63)

From Eq. (62), the analytical formulas for a cubic elastic Cauchy com-
posite are obtained when 𝛼 = 0 (i.e., 𝐶1212 = 𝐶1221), then, the effective
properties reduce to six properties only, which matches with those
reported in Eq. (35) by Castillero et al. (1998). Also, it is important
to mention that the resulting composite is described by eighteen inde-
pendent effective properties (nine are stiffness and nine are torque);
therefore, it belongs to an orthotropic symmetry group with invariance
under rotations of 90o about the unitary vector 𝐞3: 𝐎 = {𝐞3⊗𝐞3∓𝐞3×𝐈},
see for instance Eremeyev and Pietraszkiewicz (2012).

From now on, the dimensionless effective stiffness 𝐶
∗

𝑖𝑗𝑝𝑞
∕

𝐶
(1)

1111
(Fig. 3(a) and (b)) and torque 𝐷

∗

𝑖𝑗𝑝𝑞
∕𝐷

(1)

1111
(Fig. 3(c) and (d))

moduli are computed for a homogenized bi-laminated composite as a
function of the V1 volume fraction. The computations are carried out
using Eqs. (62) and (63) for fictitious constituents materials; such that,
for the material constituent 1, we have

𝐶
(1)

1122

𝐶
(1)

1111

= 0.65,
𝐶

(1)

1212

𝐶
(1)

1111

= 0.35,
𝐶

(1)

1221

𝐶
(1)

1111

= 0.30,
𝐷

(1)

1122

𝐷
(1)

1111

= −0.4,

𝐷
(1)

1212

𝐷
(1)

1111

= 0.70,
𝐷

(1)

1221

𝐷
(1)

1111

= 0.60,

and for the material constituent 2

𝐶
(2)

1111

𝐶
(1)

1111

= 0.45,
𝐶

(2)

1122

𝐶
(1)

1111

= 0.20,
𝐶

(2)

1212

𝐶
(1)

1111

= 0.026,
𝐶

(2)

1212

𝐶
(1)

1111

= 0.024,

𝐷
(2)

1111

𝐷
(1)

1111

= 10.0,
𝐷

(2)

1122

𝐷
(1)

1111

= −3.7,
𝐷

(2)

1212

𝐷
(1)

1111

= 7.5,
𝐷

(2)

1212

𝐷
(1)

1111

= 6.3.

The fictitious constituents materials are assumed due to the lack of
experimental data for the complete characterization of Cosserat cubic-
symmetric materials. Therefore, the values of the defined ratios are not
taken randomly. They are considered under the following conditions:

(i) The restrictions in Eq. (61) are satisfied.
(ii) The material properties of a first layer has greater elastic prop-

erties, i.e., |𝐶 (1)

1122
| > |𝐶 (2)

1122
|, |𝐶 (1)

1212
+ 𝐶

(1)

1221
| > |𝐶 (2)

1212
+ 𝐶

(2)

1221
|,

|𝐶 (1)

1212
− 𝐶

(1)

1221
| > |𝐶 (2)

1212
− 𝐶

(2)

1221
|, and |𝐶 (1)

1111
− 𝐶

(1)

1122
− 𝐶

(1)

1212
−

𝐶
(1)

1221
| > |𝐶 (2)

1111
− 𝐶

(2)

1122
− 𝐶

(2)

1212
− 𝐶

(2)

1221
|.

(iii) 0 < 𝐶
(𝛼)
𝑖𝑗𝑝𝑞

∕𝐶
(1)

1111
< 1 (𝛼 = 1, 2), then as expected, it is satisfied that

0 < 𝐶
∗

𝑖𝑗𝑝𝑞
∕𝐶

(1)

1111
< 1.
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Fig. 3. Dimensionless effective elastic and torque properties for a homogenized bi-laminate Cosserat composite with cubic constituents as a function of V1 volume fraction.

(iv) The torque properties of the first layer are lower than the second
one, i.e., |𝐷(1)

1122
| < |𝐷(2)

1122
|, |𝐷(1)

1212
+𝐷

(1)

1221
| < |𝐷(2)

1212
+𝐷

(2)

1221
|,

|𝐷(1)

1212
−𝐷

(1)

1221
| < |𝐷(2)

1212
−𝐷

(2)

1221
|, and |𝐷(1)

1111
− 𝐷

(1)

1122
− 𝐷

(1)

1212
−

𝐷
(1)

1221
| < |𝐷(2)

1111
−𝐷

(2)

1122
−𝐷

(2)

1212
−𝐷

(2)

1221
|.

(v) The negative values are due to 𝐷(2)

1122
is defined negative.

Figs. 3(a) and (b) display that effective elastic properties behave
as monotonically increasing convex functions in the whole interval for
V1, except 𝐶

∗

1212
and 𝐶

∗

1221
, that linearly behave. In Figs. 3(c) and (d), a

different behavior is presented for the effective torque properties. Here,
the effective torque properties are monotone decreasing and concave
functions in the whole interval except 𝐷

∗

1122
and 𝐷

∗

1133
. The property

𝐷
∗

1122
has a minimum value when V1 ≈ 0.092 and then increases as

the V1 volume fraction increases. The property 𝐷
∗

1133
is a monotone

increasing and concave function. Both 𝐷
∗

1122
and 𝐷

∗

1133
have negative

values for every value of V1. The negative behavior of 𝐷
∗

1122
and 𝐷

∗

1133

is due to the 𝐷1122 Cosserat twist coefficient that is negative for both
constituents.

5.4. Engineering moduli of laminated Cosserat materials with isotropic and
cubic constituents

Let us start by recalling the classical linear elasticity theory for solid
materials, in which the engineering moduli are found, i.e., Young’s
modulus, shear modulus, and Poisson’s ratio. The relationship between
the engineering constants and the elastic constants of the stiffness

matrix is also a topic of interest, as it is reported by Hayes and Shuvalov
(1998), Devorak (2013), and others.

In the theory of micropolar elasticity, local rotations and displace-
ments are assumed at each point, whereas only displacements are
considered in the classical linear elasticity theory. Therefore, other en-
gineering constants are added, such as the torsional Young’s modulus,
the micropolar twist (Poisson) ratio, among others. These engineering
constants can be defined as a function of the effective stiffness and
torque moduli.

In this section, the engineering moduli are determined for a ho-
mogenized laminated Cosserat composite with isotropic and cubic con-
stituents.

From Eq. (3), it can be concluded that the strain–stress relationships
for a centro-symmetric Cosserat material are given by the uncoupled
equations

𝑒𝑛𝑚 = 𝑆𝑖𝑗𝑚𝑛 𝜎𝑗𝑖, 𝜓𝑛𝑚 = 𝑇𝑖𝑗𝑚𝑛 𝜇𝑗𝑖, (64)

where 𝑆𝑖𝑗𝑚𝑛 = 𝐶−1
𝑖𝑗𝑚𝑛

and 𝑇𝑖𝑗𝑚𝑛 = 𝐷−1
𝑖𝑗𝑚𝑛

(𝑖, 𝑗, 𝑚, 𝑛 = 1, 2, 3).

Then, as mentioned before in Sections 5.1 and 5.3, the homogenized
laminated composite has orthotropic symmetry with invariance under
rotations of 90◦ when isotropic (Section 5.1) and cubic (Section 5.3)
constituents are assumed. Therefore, the components of the effective
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compliance matrix satisfy

𝑆∗
1111

= 𝑆∗
2222

=
𝐶∗
1111

𝐶∗
3333

− (𝐶∗
1122

)2(
𝐶∗
1111

− 𝐶∗
1122

) (∗
1
− 2(𝐶∗

1122
)2
) ,

𝑆∗
3333

=
𝐶∗
1111

+ 𝐶∗
1122

∗
1
− 2(𝐶∗

1133
)2
,

𝑆∗
1122

=
(𝐶∗

1133
)2 − 𝐶∗

1122
𝐶∗
3333(

𝐶∗
1111

− 𝐶∗
1122

) (∗
1
− 2(𝐶∗

1133
)2
) ,

𝑆∗
1133

= 𝑆∗
2233

= −
𝐶∗
1133

∗
1
− 2(𝐶∗

1133
)2
,

𝑆∗
1212

= 𝑆∗
2121

=
𝐶∗
1212

∗
2

, 𝑆∗
1221

= −
∗
1221

∗
2

, 𝑆∗
1313

= 𝑆∗
2323

=
𝐶∗
3232

∗
3

,

𝑆∗
1331

= 𝑆∗
2332

= −
𝐶∗
1331

∗
3

, 𝑆∗
3131

= 𝑆∗
3232

=
𝐶∗
1313

∗
3

,

(65)

where ∗
1
= 𝐶∗

1111
𝐶∗
3333

+ 𝐶∗
1122

𝐶∗
3333

, ∗
2
= (𝐶∗

1212
)2 − (𝐶∗

1221
)2 and ∗

3
=

𝐶∗
1313

𝐶∗
3232

− (𝐶∗
1331

)2.

Consequently, the components of 𝑆
∗

𝑖𝑗𝑚𝑛
are written in terms of the

effective engineering moduli, as follows:

𝑆
∗

𝑖𝑖𝑖𝑖
=
𝑒∗
𝑖𝑖

𝜎∗
𝑖𝑖

=
1

𝑆𝐸
∗

𝑖

, 𝑆
∗

𝑖𝑖𝑗𝑗
=
𝑒∗
𝑖𝑖

𝜎∗
𝑗𝑗

= −
𝑆𝜈

∗
𝑗𝑖

𝑆𝐸
∗

𝑗

(𝑖 ≠ 𝑗),

𝑆
∗

𝑖𝑗𝑖𝑗
=
𝑒∗
𝑖𝑗

𝜎∗
𝑖𝑗

=
1

𝑆𝐺
∗

𝑖𝑗

(𝑖 ≠ 𝑗), 𝑆
∗

𝑖𝑗𝑗𝑖
=
𝑒∗
𝑖𝑗

𝜎∗
𝑗𝑖

= −
𝑆𝜁

∗

𝑗𝑖𝑖𝑗

𝑆𝐺
∗

𝑗𝑖

= −
𝑆𝜁

∗

𝑖𝑗𝑗𝑖

𝑆𝐺
∗

𝑖𝑗

(𝑖 ≠ 𝑗),

(66)

where 𝑖, 𝑗 = 1, 2, 3 and no summation by repeated Latin indices is
assumed. In addition, 𝑆𝐸

∗

𝑖
≡ 𝑆𝐸

∗

𝑖𝑖
= 𝜎∗

𝑖𝑖
∕𝑒∗
𝑖𝑖
is the classical Young’s

modulus along the 𝑥𝑖−direction according the Voigt’s notation, 𝑆𝐺
∗

𝑖𝑗
=

𝜎∗
𝑖𝑗
∕𝑒∗
𝑖𝑗
is the classical shear modulus on the 𝑂𝑥𝑖𝑥𝑗 plane, 𝑆𝜈

∗
𝑖𝑗
= −𝑒∗

𝑗𝑗
∕𝑒∗
𝑖𝑖

is the Poisson’s ratio (the ratio between orthogonal strains directed in
the principal direction), and 𝑆𝜁

∗

𝑖𝑗𝑝𝑞
= −𝑒∗

𝑝𝑞
∕𝑒∗
𝑖𝑗
is the shear-strain ratio

(the ratio between strains directed in the shear direction). The subscript
𝑆 means that the engineering constants results from the compliance
matrix.

Then, the independent engineering moduli written as functions of
the components of the effective stiffness matrix are given as follows:

Effective Young’s moduli:

𝑆𝐸
∗

1
= 𝑆𝐸

∗

2
=

(
𝐶

∗

1111
− 𝐶

∗

1122

) (
𝐶

∗

1111
𝐶

∗

3333
+ 𝐶

∗

1122
𝐶

∗

3333
− 2

(
𝐶

∗

1122

)
2
)

𝐶
∗

1111
𝐶

∗

3333
−
(
𝐶

∗

1122

)
2

,

𝑆𝐸
∗

3
=
𝐶

∗

1111
𝐶

∗

3333
+ 𝐶

∗

1122
𝐶

∗

3333
− 2

(
𝐶

∗

1133

)
2

𝐶
∗

1111
+ 𝐶

∗

1122

.

(67)

Effective shear moduli

𝑆𝐺
∗

12
= 𝑆𝐺

∗

21
= 𝐶

∗

1212
−

(𝐶
∗

1221
)2

𝐶
∗

1212

, 𝑆𝐺
∗

13
= 𝑆𝐺

∗

23
= 𝐶

∗

1313
−

(
𝐶

∗

1331

)
2

𝐶
∗

3232

,

𝑆𝐺
∗

32
= 𝑆𝐺

∗

31
= 𝐶

∗

3232
−

(
𝐶

∗

1331

)
2

𝐶
∗

1313

.

(68)

Effective Poisson’s ratios:

𝑆𝜈
*
21

=

(
𝐶

∗

1133

)
2 − 𝐶

∗

1122
𝐶

∗

3333(
𝐶

∗

1133

)
2 − 𝐶

∗

1111
𝐶

∗

3333

, 𝑆𝜈
*
31

= 𝑆𝜈
*
32

=
𝐶

∗

1133

𝐶
∗

1111
+ 𝐶

∗

1122

. (69)

Effective shear-strain ratios:

𝑆𝜁
∗

2112
=
𝐶

∗

1221

𝐶
∗

1212

, 𝑆𝜁
∗

3113
= 𝑆𝜁

∗

3223
=
𝐶

∗

1331

𝐶
∗

1313

. (70)

The Poisson’s ratios (𝑆𝜈
*
12
, 𝑆𝜈

*
13
, 𝑆𝜈

*
23
) and shear-strain ratios (𝑆𝜁

∗

1221
,

𝑆𝜁
∗

1331
, 𝑆𝜁

∗

2332
) are not null but neither independent since they can be

expressed as functions of the previously given, i.e.,

𝑆𝜈
*
12

= 𝑆𝜈
*
21
, 𝑆𝜈

*
13

= 𝑆𝜈
*
23

=
𝑆𝐸

∗

1

𝑆𝐸
∗

3

𝑆𝜈
*
31
, 𝑆𝜁

∗

1221
= 𝑆𝜁

∗

2112
,

𝑆𝜁
∗

1331
= 𝑆𝜁

∗

2332
=

𝑆𝐺
∗

13

𝑆𝐺
∗

32

𝑆𝜁
∗

3113
.

In a similar manner, it is possible to find the effective components
𝑇

∗

𝑖𝑗𝑝𝑞
, inverse of the torque matrix, as

𝑇
∗

1111
= 𝑇

∗

2222
=

𝐷
∗

1111
𝐷

∗

3333
− (𝐷

∗

1122
)2(

𝐷
∗

1111
−𝐷

∗

1122

) (∗

1
− 2(𝐷

∗

1122
)2
) ,

𝑇
∗

3333
=

𝐷
∗

1111
+𝐷

∗

1122

∗

1
− 2(𝐷

∗

1133
)2
,

𝑇
∗

1122
=

(𝐷
∗

1133
)2 −𝐷

∗

1122
𝐷

∗

3333(
𝐷

∗

1111
−𝐷

∗

1122

) (∗

1
− 2(𝐷

∗

1133
)2
) ,

𝑇
∗

1133
= 𝑇

∗

2233
= −

𝐷
∗

1133

∗

1
− 2(𝐷

∗

1133
)2
,

𝑇
∗

1212
= 𝑇

∗

2121
=
𝐷

∗

1212

∗

2

, 𝑇
∗

1221
= −

𝐷
∗

1221

∗

2

, 𝑇
∗

1313
= 𝑇

∗

2323
=
𝐷

∗

3232

∗

3

,

𝑇
∗

1331
= 𝑇

∗

2332
= −

𝐷
∗

1331

∗

3

, 𝑇
∗

3131
= 𝑇

∗

3232
=
𝐷

∗

1313

∗

3

,

(71)

where ∗

1
= 𝐷

∗

1111
𝐷

∗

3333
+𝐷

∗

1122
𝐷

∗

3333
, ∗

2
= (𝐷

∗

1212
)2 − (𝐷

∗

1221
)2 and ∗

3
=

𝐷
∗

1313
𝐷

∗

3232
−(𝐷

∗

1331
)2, and thus, the relationships with the corresponding

engineering constants are defined by

𝑇
∗

𝑖𝑖𝑖𝑖
=
𝑒∗
𝑖𝑖

𝜎∗
𝑖𝑖

=
1

𝑇𝐸
∗

𝑖

, 𝑇
∗

𝑖𝑖𝑗𝑗
=
𝑒∗
𝑖𝑖

𝜎∗
𝑗𝑗

= −
𝑇 𝜈

∗
𝑗𝑖

𝑇𝐸
∗

𝑗

(𝑖 ≠ 𝑗),

𝑇
∗

𝑖𝑗𝑖𝑗
=
𝑒∗
𝑖𝑗

𝜎∗
𝑖𝑗

=
1

𝑇𝐺
∗

𝑖𝑗

(𝑖 ≠ 𝑗), 𝑇
∗

𝑖𝑗𝑗𝑖
=
𝑒∗
𝑖𝑗

𝜎∗
𝑗𝑖

= −
𝑇 𝜁

∗

𝑗𝑖𝑖𝑗

𝑇𝐺
∗

𝑗𝑖

= −
𝑇 𝜁

∗

𝑖𝑗𝑗𝑖

𝑇𝐺
∗

𝑖𝑗

(𝑖 ≠ 𝑗),

(72)

where 𝑖, 𝑗 = 1, 2, 3 and no summation by repeated Latin indices is
assumed. Also 𝑇𝐸

∗

𝑖
≡ 𝑇𝐸

∗

𝑖𝑖
= 𝜎∗

𝑖𝑖
∕𝑒∗
𝑖𝑖
is the micropolar tortile or

torsional Young’s modulus along the 𝑥𝑖−direction according the Voigt’s
notation, 𝑇𝐺

∗

𝑖𝑗
= 𝜎∗

𝑖𝑗
∕𝑒∗
𝑖𝑗
is the torsional shear modulus on the 𝑂𝑥𝑖𝑥𝑗

plane, 𝑇 𝜈
∗
𝑖𝑗

= −𝑒∗
𝑗𝑗
∕𝑒∗
𝑖𝑖
is the twist Poisson’s ratio and 𝑇 𝜁

∗

𝑖𝑗𝑝𝑞
= −𝑒∗

𝑝𝑞
∕𝑒∗
𝑖𝑗

represents the twist shear-strain ratio. The subscript 𝑇 means that the
engineering constants result from torque compliance matrix. A brief
description of the duality between the terminologies used in classical
and micropolar theories of elasticity can be found in Hassanpour and
Heppler (2015).

Then, the independent engineering moduli as a function of the
components of the effective torque matrix are given as follows:

Effective torsional Young’s moduli:

𝑇𝐸
∗

1
= 𝑇𝐸

∗

2
=

(
𝐷

∗

1111
−𝐷

∗

1122

) (
𝐷

∗

1111
𝐷

∗

3333
+𝐷

∗

1122
𝐷

∗

3333
− 2

(
𝐷

∗

1122

)
2
)

𝐷
∗

1111
𝐷

∗

3333
−
(
𝐷

∗

1122

)
2

,

𝑇𝐸
∗

3
=
𝐷

∗

1111
𝐷

∗

3333
+𝐷

∗

1122
𝐷

∗

3333
− 2

(
𝐷

∗

1133

)
2

𝐷
∗

1111
+𝐷

∗

1122

.

(73)

Effective torsional shear moduli:

𝑇𝐺
∗

12
= 𝑇𝐺

∗

21
= 𝐷

∗

1212
−

(𝐷
∗

1221
)2

𝐷
∗

1212

, 𝑇𝐺
∗

13
= 𝑇𝐺

∗

23
= 𝐷

∗

1313
−

(
𝐷

∗

1331

)
2

𝐷
∗

3232

,

𝑇𝐺
∗

32
= 𝑇𝐺

∗

31
= 𝐷

∗

3232
−

(
𝐷

∗

1331

)2
𝐷

∗

1313

.

(74)

11



Fig. 4. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V1 volume fraction:
(a) Young’s moduli, (b) Shear moduli, (c) Poisson’s coefficients, and (d) Shear-strain ratios.

Effective twist Poisson’s ratios:

𝑇 𝜈
*
21

=

(
𝐷

∗

1133

)2
−𝐷

∗

1122
𝐷

∗

3333(
𝐷

∗

1133

)2
−𝐷

∗

1111
𝐷

∗

3333

, 𝑇 𝜈
*
31

= 𝑇 𝜈
*
32

=
𝐷

∗

1133

𝐷
∗

1111
+𝐷

∗

1122

. (75)

Effective twist shear-strain ratios:

𝑇 𝜁
∗

2113
=
𝐷

∗

1221

𝐷
∗

1212

, 𝑇 𝜁
∗

3113
= 𝑇 𝜁

∗

3223
=
𝐷

∗

1331

𝐷
∗

1313

. (76)

where

𝑇 𝜈
*
12

= 𝑇 𝜈
*
21
, 𝑇 𝜈

*
13

= 𝑇 𝜈
*
23

=
𝑇𝐸

∗

1

𝑇𝐸
∗

3

𝑇 𝜈
*
31
, 𝑇 𝜁

∗

1221
= 𝑇 𝜁

∗

2112
,

𝑇 𝜁
∗

1331
= 𝑇 𝜁

∗

2332
=

𝑇𝐺
∗

13

𝑇𝐺
∗

32

𝑇 𝜁
∗

3113
.

Figs. 4–7 display the effective engineering moduli of centro-symmetric
bi-laminated micropolar composites with isotropic (Figs. 4 and 5) and
cubic (Figs. 6 and 7) constituents as a function of the V1 volume
fraction. In both cases, as previously mentioned, the effective compos-
ite belongs to an orthotropic symmetry group with invariance under
rotations of 90◦, see Eremeyev and Pietraszkiewicz (2012). Therefore,
the effective composite is defined by eighteen independent engineering
constants, which can be derived using Eqs. (67)–(70) and (73)–(76).
In addition, the values of 𝐶

∗

𝑖𝑗𝑝𝑞
and 𝐷

∗

𝑖𝑗𝑝𝑞
are obtained from Eqs.

(52)–(53) for isotropic constituents, and from Eqs. (62)–(63) for cubic
constituents. Their results are illustrated in Figs. 2 and 3 of Sections 5.1
and 5.3, respectively.

As it is observed in Fig. 4, all the effective engineering constants
are continuous smooth functions in the whole analysis interval, and

they exhibit interesting behaviors. The effective Young’s and shear
moduli (Fig. 4(a) and (b)) have an increasing behavior as V1 increases.
Moreover, 𝑆𝐸

∗

3
and 𝑆𝐺

∗

13
behave in a convex way. As expected, this

is because the elastic material properties of the first layer (SyF) are
bigger than those of the second one (PUF). In addition, the effective
shear modulus 𝑆𝐺

∗

12
and 𝑆𝐺

∗

32
are close to each other with a deviation

less than 1%, so that 𝑆𝐺
∗

32
≤𝑆 𝐺∗

12
. The effective Poisson’s ratio 𝑆𝜈

*
21
is a

decreasing function in the whole composite domain, whereas 𝑆𝜈
*
31
has

a minimum value when for V1 = 0.64 (see Fig. 4(c)). Also, comparing
them, the highest values are obtained for 𝑆𝜈

*
21
. The shear-strain ratios

are decreasing functions in the whole interval (see Fig. 4(d)).

On the other hand, the effective torsional Young’s moduli (Fig. 5(a))
and the micropolar shear moduli (Fig. 5(b)) are linearly decreasing
as V1 increases, except 𝑇𝐺

∗

13
which describes an inflexion point at

V1 = 0.680545. Notice that the effective torsional Young’s moduli are
negative when V1 ≥ 0.84 approximately, and their direction changes.
Also, the effective torsional Young’s moduli 𝑇𝐸

∗

1
= 𝑇𝐸

∗

2
and 𝑇𝐸

∗

3
have

very approximate values. Therefore, to observe differences between
them, a 10−5 precision of its values is needed. More details can be seen
in the figures’ zoomed portions. In addition, the effective micropolar
twist Poisson’s ratios 𝑇 𝜈

*
21
and 𝑇 𝜈

*
31

= 𝑇 𝜈
*
32
(Fig. 5(c)) are negative

and so close to −1, and 𝑇 𝜈
*
31

= 𝑇 𝜈
*
32
reaches a maximum value when

V1 = 0.4. On the other hand, the effective twist shear-strain ratios
(Fig. 5(d)) are positive and increasing functions, so that 𝑇 𝜁

∗

3113
≥ 𝑇 𝜁

∗

2112

for each V1 value.

In Figs. 6 and 7, a similar behavior is observed in almost all
the effective engineering constants to those illustrated in Figs. 4 and
5. Here, it is assumed that the effective composite has constituents
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Fig. 5. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composites with isotropic constituents as a function of V1 volume fraction:
(a) Torsional Young’s moduli, (b) Torsional shear moduli, (c) Twist Poisson’s coefficients, and (d) Twist shear-strain ratios.

with cubic symmetry. In this case, the most interesting behaviors are
observed in: (i) the effective Poisson’s coefficients (Fig. 6(c)) that are
increasing, unlike the case of isotropic constituents where they are
decreasing as V1 increases, and (ii) the effective twist Poisson’s ratios
(Fig. 7(c)) are far from −1 for cubic constituents and they are near to
−1 when isotropic constituents are assumed. They cannot be considered
constant. In addition, 𝑇 𝜈

*
31
reaches a maximum value equal to −0.284226

when V1 = 0.477.

5.5. Limit cases

In this section, we determine the expressions corresponding to the
engineering modules for isotropic and cubic solids, based on the results
derived of the homogenization process. It is important to mention that
we do not obtain the expressions for micropolar laminated compos-
ites with isotropic and cubic constituents, but for simple monolithic
isotropic and cubic materials.

From Eqs. (67)–(70) and (73)–(76), it is possible to find the engi-
neering moduli for isotropic and cubic materials. With this purpose,
the stiffness and torque matrices must be defined with equal number
of independent properties: three for the isotropic case and four for the
cubic case.

In order to find the analytical expressions of the engineering moduli
of isotropic materials as functions of stiffness and torques, it is needed
to know that the stiffness 𝐶𝑖𝑗𝑝𝑞 and torques 𝐷𝑖𝑗𝑝𝑞 matrices satisfy the
form of Eqs. (50) and (51), respectively, where 𝐶1111 = 𝐶1122 + 𝐶1212 +

𝐶1221 and 𝐷1111 = 𝐷1122 + 𝐷1212 + 𝐷1221, see Eringen (1999) and
Eremeyev and Pietraszkiewicz (2012). Then, taking into account the
symmetry conditions for isotropic Cosserat materials (Eqs. (50) and

(51)) and applying them in the Eqs. (67)–(70) and (73)–(76), the
corresponding engineering moduli are obtained, such that:
Young’s modulus:

𝑆𝐸 = 𝑆𝐸1 = 𝑆𝐸2 = 𝑆𝐸3 =
(𝐶1111)

2 + 𝐶1111𝐶1122 − 2(𝐶1122)
2

𝐶1111 + 𝐶1122

. (77)

Shear modulus:

𝑆𝐺 = 𝑆𝐺12 = 𝑆𝐺13 = 𝑆𝐺32 =
(𝐶1212)

2 − (𝐶1221)
2

𝐶1212

=
𝑆𝐸(1 − 𝑆𝜁 )

1 + 𝑆𝜈
. (78)

Poisson’s ratio:

𝑆𝜈 = 𝑆𝜈21 = 𝑆𝜈31 = 𝑆𝜈32 =
𝐶1122

𝐶1111 + 𝐶1122

. (79)

Shear-strain ratio:

𝑆𝜁 = 𝑆𝜁2112 = 𝑆𝜁3113 = 𝑆𝜁3223 =
𝐶1221

𝐶1212

. (80)

Torsional Young’s modulus:

𝑇𝐸 = 𝑇𝐸1 = 𝑇𝐸2 = 𝑇𝐸3 =
(𝐷1111)

2 +𝐷1111𝐷1122 − 2(𝐷1122)
2

𝐷1111 +𝐷1122

. (81)

Torsional shear moduli:

𝑇𝐺 = 𝑇𝐺12 = 𝑇𝐺13 = 𝑇𝐺32 =
(𝐷1212)

2 − (𝐷1221)
2

𝐷1212

=
𝑇𝐸(1 − 𝑇 𝜁 )

1 + 𝑇 𝜈
. (82)

Twist Poisson’s ratio:

𝑇 𝜈 = 𝑇 𝜈21 = 𝑇 𝜈31 = 𝑇 𝜈32 =
𝐷1122

𝐷1111 +𝐷1122

. (83)

Twist shear-strain ratio:

𝑇 𝜁 = 𝑇 𝜁2112 = 𝑇 𝜁3113 = 𝑇 𝜁3223 =
𝐷1221

𝐷1212

. (84)
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Fig. 6. Effective engineering moduli relative to the stiffness for a homogenized bi-laminated Cosserat composites with cubic constituents as a function of V1 volume fraction: (a)
Young’s moduli, (b) Shear moduli, (c) Poisson’s coefficients, and (d) Shear-strain ratios.

As mentioned before, micropolar media can be reduced to Cauchy
media. Therefore, the formulas of the engineering moduli for isotropic
materials are easy to determine assuming that 𝐶1212 = (𝐶1111−𝐶1122)∕2,
𝐶1111 −𝐶1122 −𝐶1212 = 0 and all effective torque moduli are null. Then,
the Young’s, Poisson’s ratio and shear modulus are given by,

𝐸 =
(𝐶1111)

2 + 𝐶1111𝐶1122 − 2(𝐶1122)
2

𝐶1111 + 𝐶1122

, 𝜈 =
𝐶1122

𝐶1111 + 𝐶1122

,

𝐺 =
𝐶1111 − 𝐶1122

2
=

𝐸

2(1 + 𝜈)
.

(85)

The expressions in Eq. (85) coincide with those reported by Jones
(1999) in Eqs. (2.38), page 67, and by Royer and Dieulesaint (2000)
in Fig. 3.8, page 140.

On the other hand, in the present work, the analytical expressions
of the engineering moduli for a cubic centro-symmetric laminated com-
posite are found replacing the symmetric conditions for cubic Cosserat
materials into Eqs. (67)–(70) and (73)–(76), hence, we obtain the same
expression as in Eqs. (77) and (84). Here, the difference is that the
effective stiffness and torque matrices satisfy 𝐶1111 ≠ 𝐶1122+𝐶1212+𝐶1221

and 𝐷1111 ≠ 𝐷1122 + 𝐷1212 + 𝐷1221, as in Eqs. (50) and (51), therefore,
there are eight independent engineering moduli for cubic materials in
contrast with the six independent moduli obtained for isotropic ones.

6. Conclusions

In this work, a brief introduction to the micropolar theory of elas-
ticity and the basic equations for a micropolar (Cosserat) media are
given. After that, based on the asymptotic homogenization method, the

general analytical formulas of the homogenized local problems over the
periodic unit cell Y, the homogeneous problem, and the effective prop-
erties of a Cosserat media are derived. In addition, the local problems
and the effective properties of multi-laminated Cosserat media are de-
termined. In particular, the effective coefficients for centro-symmetric
laminated Cosserat composites with isotropic or cubic constituents
as a function of the material properties and the constituents volume
fractions are provided. The homogenized Cosserat material belongs
to an orthotropic symmetry group restricted with invariance under
rotations by 90◦, which is defined by nine effective stiffness and
nine effective torque properties. Also, the effective engineering moduli
related to the stiffness and torques are provided for centro-symmetric
bi-laminated Cosserat composites with isotropic or cubic constituents
(two effective Young’s moduli, three effective shear moduli, two ef-
fective Poisson’s ratios, two effective shear-strain ratios, two effective
torsional Young’s moduli, three effective torsional shear moduli, two
effective twist Poisson’s ratios, and two effective twist shear-strain
ratios). Finally, numerical results are presented and discussed.
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Appendix. Solution of the local problems

In this appendix, the fundamental steps of the mathematical deriva-
tion for the 𝑝𝑞1 local problem solution is developed. An analogous
procedure can be applied to find the 𝑝𝑞2 local problem solution, so
the latter will be omitted, only the solutions are given.

The solution of the 𝑝𝑞1 local problem (Eq. (34)) consists in finding
the periodic local functions 𝑝𝑞𝑁𝑚 and 𝑝𝑞𝑉𝑚.

First, we integrate the first expression in Eq. (34) respect to 𝑦3,
which leads to

𝐶𝑖3𝑝𝑞 + 𝐶𝑖3𝑚3 𝑝𝑞𝑁
′
𝑚
+ 𝐶𝑖3𝑚𝑛𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑖3𝑚3 𝑝𝑞𝑉

′
𝑚
= 𝑝𝑞𝐴𝑖, (A.1)

where 𝑝𝑞𝐴𝑖 is the integration constant that needs to be found.

Next, solving for 𝑝𝑞𝑁
′
𝑚
from Eq. (A.1) and applying the average

operator, so that
⟨
𝑝𝑞𝑁

′
𝑚

⟩
= 0, we get that 𝑝𝑞𝐴𝑖

𝑝𝑞𝐴𝑖 =
⟨
𝐶−1
𝑖3𝑚3

⟩−1 (⟨
𝐶−1
𝑖3𝑚3

𝐶𝑖3𝑝𝑞
⟩
+
⟨
𝐶−1
𝑖3𝑚3

𝐶𝑖3𝑚𝑛 𝜖𝑚𝑛𝑘 𝑝𝑞𝑉𝑘
⟩

+
⟨
𝐶−1
𝑖3𝑚3

𝐶𝑖3𝑚𝑝3 𝑝𝑞𝑉
′
𝑘

⟩)
. (A.2)

Then, from Eqs. (A.1) and (A.2), the local function 𝑝𝑞𝑁
′
𝑚
can be written

as a function of 𝑝𝑞𝑉𝑚 and 𝑝𝑞𝑉
′
𝑚
, as follows

𝑝𝑞𝑁
′
𝑚
=

[
𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑝𝑞

]
+

[
𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐
⟩

−𝐶−1
𝑚3𝑙3

𝐶𝑙3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐

]
+

[
𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐵𝑑3𝑐3 𝑝𝑞𝑉
′
𝑐

⟩
− 𝐶−1

𝑚3𝑙3
𝐵𝑙3𝑐3 𝑝𝑞𝑉

′
𝑐

]
. (A.3)

In Eq. (A.3), the average value of each term is null. Therefore, re-
written Eq. (A.3), we have

𝑝𝑞𝑁
′
𝑚
= 𝑟𝑚𝑝𝑞 + �̂�

(1)
𝑚𝑝𝑞

+ �̂�(2)
𝑚𝑝𝑞

, (A.4)

where

𝑟𝑚𝑝𝑞 = 𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑝𝑞 ,

�̂�(1)
𝑚𝑝𝑞

= 𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐 ,

�̂�(2)
𝑚𝑝𝑞

= 𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑐3 𝑝𝑞𝑉
′
𝑐

⟩
− 𝐶−1

𝑚3𝑙3
𝐵𝑙3𝑐3 𝑝𝑞𝑉

′
𝑐
.

(A.5)

Similarly, following the above procedure in the second expression of
Eq. (34), but for finding 𝑝𝑞𝑉

′
𝑚
, we have the relation of the local function

𝑝𝑞𝑉
′
𝑚
as a function of 𝑝𝑞𝑁

′
𝑚
, as follows

𝑝𝑞𝑉
′
𝑚
= 𝐷−1

𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑝𝑞 + 𝐵𝑑3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐 + 𝐵𝑑3𝑐3 𝑝𝑞𝑁

′
𝑐

)⟩
−

𝐷−1
𝑚3𝑙3

𝐵𝑙3𝑝𝑞 −𝐷
−1
𝑚3𝑙3

𝐵𝑙3𝑎𝑏 𝜖𝑎𝑏𝑐 𝑝𝑞𝑉𝑐 −𝐷
−1
𝑚3𝑙3

𝐵𝑙3𝑐3 𝑝𝑞𝑁
′
𝑐
, (A.6)

then, replacing Eq. (A.4) into Eq. (A.6) and grouping conveniently, we
get that

𝑝𝑞𝑉
′
𝑚
=

[
𝐷−1
𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑟𝑐𝑝𝑞

)⟩

−𝐷−1
𝑚3𝑙3

(
𝐵𝑙3𝑝𝑞 + 𝐵𝑙3𝑐3 𝑟𝑐𝑝𝑞

) ]
+

[
𝐷−1
𝑚3𝑙3

(⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑎𝑏 𝜖𝑎𝑏𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑑3𝑐3 �̂�

(1)
𝑐𝑝𝑞

)⟩

−
(
𝐵𝑙3𝑎𝑏 𝜖𝑎𝑏𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑙3𝑐3 �̂�

(1)
𝑐𝑝𝑞

))]
+

[
𝐷−1
𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

𝐵𝑑3𝑐3 �̂�
(2)
𝑐𝑝𝑞

⟩
−𝐷−1

𝑚3𝑙3
𝐵𝑙3𝑐3 �̂�

(2)
𝑐𝑝𝑞

]
. (A.7)

In particular, the average value of each term in Eq. (A.7) is null too,
then, we can rewrite Eq. (A.7) as in Eq. (A.4), so that,

𝑝𝑞𝑉
′
𝑚
= 𝑒𝑚𝑝𝑞 + 𝑒

(1)
𝑚𝑝𝑞

+ 𝑒(2)
𝑚𝑝𝑞

, (A.8)

where

𝑒𝑚𝑝𝑞 = 𝐷−1
𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑟𝑐𝑝𝑞

)⟩

−𝐷−1
𝑚3𝑙3

(
𝐵𝑙3𝑝𝑞 + 𝐵𝑙3𝑐3 𝑟𝑐𝑝𝑞

)
,

𝑒(1)
𝑚𝑝𝑞

= 𝐷−1
𝑚3𝑙3

[⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑎𝑏 𝜖𝑎𝑏𝑘 𝑝𝑞𝑉𝑘 + 𝐵𝑑3𝑐3 �̂�

(1)
𝑐𝑝𝑞

)⟩

−𝐵𝑙3𝑎𝑏 𝜖𝑎𝑏𝑘 𝑝𝑞𝑉𝑘 − 𝐵𝑙3𝑐3 �̂�
(1)
𝑐𝑝𝑞

]
,

𝑒(2)
𝑚𝑝𝑞

= 𝐷−1
𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

𝐵𝑑3𝑐3 �̂�
(2)
𝑐𝑝𝑞

⟩
−𝐷−1

𝑚3𝑙3
𝐵𝑙3𝑐3 �̂�

(2)
𝑐𝑝𝑞
.

(A.9)

The structure of Eqs. (A.3) and (A.7) is assumed to be

𝐍
′(𝑦) = 𝐚

(1) +
[
𝐚
(2)

⟨
𝐚
(3)

𝐕
⟩
− 𝐚

(3)
𝐕
]
+
[
𝐚
(2)

⟨
𝐚
(3)

𝐕
′
⟩
− 𝐚

(3)
𝐕
′
]
,

𝐕
′(𝑦) = 𝐛

(1) +
[
𝐛
(2)

⟨
𝐛
(3)

𝐕
⟩
− 𝐛

(3)
𝐕
]
+
[
𝐛
(2)

⟨
𝐛
(3)

𝐕
′
⟩
− 𝐛

(3)
𝐕
′
]
, (A.10)

where 𝐚(𝑛) ≡ 𝐚(𝑛)(𝑦) and 𝐛(𝑛) ≡ 𝐛(𝑛)(𝑦) (𝑛 = 1, 2, 3) depend on 𝑦3, and
the symbols 𝐍 and 𝐕 represent the local functions 𝑝𝑞𝑁𝑚 and 𝑝𝑞𝑉𝑚,
respectively. Here the indexes are omitted for the sake of simplicity.

As can be seen in Eqs. (A.3) and (A.7), and therefore Eq. (A.10), the
corresponding terms to 𝐚(2)(𝑦) and 𝐛(2)(𝑦) are near to 1, therefore, the
second and third terms of Eq. (A.10) can be assumed as deviations from
the mean value of 𝐕 and 𝐕′, respectively. Thus, the main contribution
in Eq. (A.10) is given by the first terms. Under this consideration, in
order to find the local functions 𝑝𝑞𝑁

′
𝑚
and 𝑝𝑞𝑉

′
𝑚
, we only consider, the

first terms in Eqs. (A.3) and (A.7), i.e.,

𝑝𝑞𝑁
′
𝑚
(𝑦3) ≈ 𝑟𝑚𝑝𝑞 = 𝐶−1

𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑝𝑞 , (A.11)

𝑝𝑞𝑉
′
𝑚
(𝑦3) ≈ 𝑒𝑚𝑝𝑞 = 𝐷−1

𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑟𝑐𝑝𝑞

)⟩
−

𝐷−1
𝑚3𝑙3

(
𝐵𝑙3𝑝𝑞 + 𝐵𝑙3𝑝3 𝑟𝑐𝑝𝑞

)
, (A.12)

then, integrating 𝑝𝑞𝑁
′
𝑚
(𝑦3) and 𝑝𝑞𝑉

′
𝑚
(𝑦3) we have the approximate solu-

tions, as follows

𝑝𝑞𝑁𝑚(𝑦3) = ∫
𝑦3

0
𝑝𝑞𝑁

′
𝑚
(𝑧) 𝑑𝑧 −

⟨
∫

𝑦3

0
𝑝𝑞𝑁

′
𝑚
(𝑧) 𝑑𝑧

⟩
≈

∫
𝑦3

0

(
𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐶𝑙3𝑝𝑞

)
𝑑𝑧, (A.13)
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Fig. 7. Effective engineering moduli relative to the torques for a homogenized bi-laminated Cosserat composite with cubic constituents as a function of V1 volume fraction: (a)
Torsional Young’s moduli, (b) Torsional shear moduli, (c) Twist Poisson’s coefficients, and (d) Twist shear-strain ratios.

𝑝𝑞𝑉𝑚(𝑦3) = ∫
𝑦3

0
𝑝𝑞𝑉

′
𝑚
(𝑧)𝑑𝑧 −

⟨
∫

𝑦3

0
𝑝𝑞𝑉

′
𝑚
(𝑧)𝑑𝑧

⟩
≈

∫
𝑦3

0

(
𝐷−1
𝑚3𝑙3

[⟨
𝐷−1
𝑙3𝑘3

⟩−1 ⟨
𝐷−1
𝑘3𝑑3

(
𝐵𝑑3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑟𝑐𝑝𝑞

)⟩

−
(
𝐵𝑙3𝑝𝑞 + 𝐵𝑙3𝑐3 𝑟𝑐𝑝𝑞

) ] )
𝑑𝑧. (A.14)

where 𝑟𝑐𝑝𝑞 = 𝐶−1
𝑐3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐶𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑐3𝑙3
𝐶𝑙3𝑝𝑞 .

On the other hand, the approximately solutions of the 𝑝𝑞2 local
problem (Eq. (35)), i.e., 𝑝𝑞𝑈𝑚 and 𝑝𝑞𝑀𝑚, are figured out here as follows

𝑝𝑞𝑈
′
𝑚
(𝑦3) = 𝐶−1

𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐵𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐵𝑙3𝑝𝑞 , (A.15)

𝑝𝑞𝑀
′
𝑚
(𝑦3) = 𝐷−1

𝑚3𝑙3

⟨
𝐷−1
𝑙3𝑘3

⟩⟨
𝐷−1
𝑘3𝑑3

(
𝐷𝑞3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑠𝑐𝑝𝑞

)⟩

−𝐷−1
𝑚3𝑙3

(
𝐷𝑙3𝑝𝑞 + 𝐵𝑙3𝑐3 𝑠𝑐𝑝𝑞

)
, (A.16)

then, integrating 𝑝𝑞𝑈
′
𝑚
(𝑦3) and 𝑝𝑞𝑀

′
𝑚
(𝑦3), we have

𝑝𝑞𝑈𝑚(𝑦3) = ∫
𝑦3

0
𝑝𝑞𝑈

′
𝑚
(𝑧) 𝑑𝑧 −

⟨
∫

𝑦3

0
𝑝𝑞𝑈

′
𝑚
(𝑧) 𝑑𝑧

⟩
≈

∫
𝑦3

0

(
𝐶−1
𝑚3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐵𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑚3𝑙3
𝐵𝑙3𝑝𝑞

)
𝑑𝑧, (A.17)

𝑝𝑞𝑀𝑚(𝑦3) = ∫
𝑦3

0
𝑝𝑞𝑀

′
𝑚
(𝑧) 𝑑𝑧 −

⟨
∫

𝑦3

0
𝑝𝑞𝑀

′
𝑚
(𝑧) 𝑑𝑧

⟩
≈

∫
𝑦3

0

(
𝐷−1
𝑚3𝑙3

[⟨
𝐷−1
𝑙3𝑘3

⟩⟨
𝐷−1
𝑘3𝑑3

(
𝐷𝑑3𝑝𝑞 + 𝐵𝑑3𝑐3 𝑠𝑐𝑝𝑞

)⟩

−
(
𝐷𝑙3𝑝𝑞 + 𝐵𝑙3𝑐3 𝑠𝑐𝑝𝑞

)])
𝑑𝑧, (A.18)

where 𝑠𝑐𝑝𝑞 = 𝐶−1
𝑐3𝑙3

⟨
𝐶−1
𝑙3𝑘3

⟩−1 ⟨
𝐶−1
𝑘3𝑑3

𝐵𝑑3𝑝𝑞
⟩
− 𝐶−1

𝑐3𝑙3
𝐵𝑙3𝑝𝑞 .
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