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Artificial intelligence in musculoskeletal oncology imaging: a critical review of current 

applications 

 

Abstract: 

Artificial intelligence (AI) methods are increasingly being studied in musculoskeletal 

oncology imaging. These tools have been applied to both primary and secondary bone tumors 

and assessed for various predictive tasks that include detection, segmentation, classification, 

and prognosis. Still, in the field of clinical research, further efforts are needed to improve AI 

studies reproducibility and reach an acceptable level of evidence in musculoskeletal 

oncology. This review describes the basic principles of the most common AI techniques 

including machine learning, deep learning and radiomics. Then, recent developments and 

current results of AI in the field of musculoskeletal oncology are presented. Finally, 

limitations and future perspectives of AI in this field are discussed. 
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ADC: Apparent diffusion coefficient  

AI: Artificial intelligence  

AUC: Area under the operating characteristic curve  

CNN: Convolutional neural network;  
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DL: Deep learning;  

DSC: Dice similarity coefficient;  

FDG: Fluorodesoxyglucose;  

PET/CT: Positron emission tomography computed tomography;  

ML: Machine learning;  

MRI: Magnetic resonance imaging;  

PET-CT: Positron emission tomography with computed tomography;  

RF: Random forest;  

ROC: Receiver operating characteristic;  

SPECT: Single photon emission computed tomography;  

SVM: Support-vector machine;  



  

 

1. Introduction 

  

Artificial intelligence (AI) is increasingly used in clinical research for the study of both 

primary and secondary bone tumors (metastases) [1,2]. Accurate interpretation of bone 

tumors may be difficult for a general radiologist [3,4] and misdiagnosis can be detrimental to 

patient outcome [5]. Many patients with benign tumors are referred to bone biopsy leading to 

increased morbidity and cost [6,7]. Since imaging plays a key role in the assessment of bone 

tumors, it is expected that AI will facilitate and optimize its role in the future [8,9].  

  In this context, AI has been developed for a variety of applications, including 

predictive tasks such as detection, segmentation, classification and prognosis of malignant 

bone tumors [10,11]. However, while bone metastases are quite common, easier to identify or 

classify and thus better suited to AI training, primary tumors are rare and polymorphic and 

can thus be particularly challenging for AI models [11].  

 The purpose of this article was to sum-up and critically review recent literature about 

AI applied to musculoskeletal oncologic imaging, explain the main limitations, and discuss 

future developments. 

  

2. Basic principles and process 

  

AI refers to computer systems able to perform tasks that normally require human intelligence. 

This includes machine learning (ML) and deep learning (DL) models, while radiomics is 

another computer-assisted method commonly used to characterize tumors. These methods all 

rely on statistical tools and algorithmic structures that may be not familiar to clinicians. We 

thus start with a brief introduction to these topics. 

  

2.1. Why do we do “learning”? 

  

The main goal of AI in medical imaging is to automate tasks or subtasks that are currently 

performed by human operators [12]. In some favorable situations, clinical decision rules 

derived from expert medical knowledge can be directly translated into code, which enables 

"rule-based" models [13,14]. However, most tasks in image analysis are too complex to be 

solved using an explicit mathematical formula [15]. If "x" denotes a medical image 



understood as a large array of numbers and "y" denotes a diagnosis understood as an integer 

label, designing from scratch a mathematical function "y = f(x)" that can reliably assign a 

diagnosis to an image is extremely difficult. 

To create high-performance computer programs, engineers thus follow a two-steps workflow 

that distributes the complexity of the decision rule "f" between a relatively general 

mathematical structure and a task-specific dataset of example images. The first step is a 

"Design" step that specifies a general form for the model with a fixed mathematical structure 

"y = f(θ, x)" and a large number of free parameters θ. This program "architecture" is designed 

for a particular task (segmentation, classification, registration). The second step is a 

“Learning" or "training" step, which fits the parameters θ of the architecture according to the 

statistical analysis of a dataset of medical images. Engineers retrieve an optimized model "y = 

f(θoptimal, x)" whose numerical parameters θoptimal have been fine-tuned to make the distinction 

between neighboring pathologies. 

  

2.2 Overfitting and generalization  

  

Most AI models are trained using "supervised learning", a generalization of least squares 

linear regression to complex models and data types [16,17]. Assuming that we have access to 

a set of input images “xi” and corresponding diagnostics “yi”, we find the set of optimal 

parameters θoptimal that induces the fewest errors “yi ≠ f(θ, xi)” on the dataset. This criterion is 

simple but may also lead to "overfitting": if the model architecture "y = f(θ, x)" is not 

constrained by expert knowledge, there is no guarantee that a trained model "y = f(θoptimal, x)" 

that performs well on the finite set of example images “xi” will also extrapolate or 

"generalize" reliably to unseen images. Research is mainly concerned with the design of 

program structures that can "learn" important parameters from a training dataset while 

avoiding "overfitting" (Fig. 1). This needs to validate the performance and robustness of an 

AI model using an external dataset that has no overlap with the original training samples “xi” 

is required. 

 

2.3. Conventional statistics  

 

Linear models provide a first baseline for learning tasks. Linear regression (for the prediction 

of numbers), logistic regression (for the prediction of class labels) and the Cox proportional 

hazards  model (for survival analysis) all assume a simple relationship between a set of input 



markers "x" and the output value "y": this makes them easy to implement and study 

mathematically [15]. However, linear models are also prone to overfitting when the number 

of markers available in every input "x" exceeds the number of patients. While having access 

to more patients is generally a good thing, using more markers per patient can be dangerous 

(“curse of dimensionality”) [18]. 

  

2.4. Overcoming the “curse of dimensionality” with machine learning (ML) 

  

ML methods are especially relevant in medical imaging, where we describe each patient 

using an image that contains millions of pixel values. To decrease the complexity of the 

learning task, ML methods first process the vast number of available markers (pixel values, 

physiological measurements) into a compact set of high-quality descriptors known as 

“features”, before performing a robust statistical analysis. 

  

2.5. Processing markers into hand-crafted features with radiomics 

  

The design of a feature set often requires time-consuming interactions between domain 

experts and ML engineers. In order to streamline this process, researchers have developed a 

"standard toolbox" of quantitative features that provide a good baseline for image analysis. 

These mathematical formulas describe the shape, intensity distribution or texture 

characteristics of a region of interest and may be used in a wide range of settings [19,20]. 

Most of these “radiomic features” quantify the relationship between the value of a pixel and 

that of its close neighbors. In oncology, radiomic features may reflect tumor heterogeneity 

observed at the histological and genetic levels [21]. Radiomics is therefore largely 

investigated to assist cancer diagnosis, prognosis, and prediction of response to therapy. The 

main advantage of standard radiomic features is that they work "out of the box" and are easy 

to deploy. On the flip side, they are not optimized for any specific task and can only represent 

a limited set of decision rules. 

 

2.6. Learning task-specific features with deep learning  

  

To improve the performance of their models, engineers are thus increasingly working with 

expressive features that result from the iterative application of simple mathematical 

operations. For historical reasons, these models are known as "artificial neural networks" and 



their parameters θ are called "neural weights" [22]. In radiology, we are especially interested 

in "convolutional" neural networks (CNN) that rely on weighted sums of neighboring pixel 

values, known as convolutions [23].  

 The weights of these convolutions are the free parameters that must be optimized to 

"train" a CNN on a specific task. General CNN feature extractors can be trained on large 

datasets of annotated images using supervised learning. This has led to the development of a 

large "zoo" of CNN architectures that are now commonly used in medical imaging, such as 

U-Nets for image segmentation [24] or ResNets [25] and EfficientNets [26] for image 

classification. Of note, that the link between the image and its resulting features is difficult to 

interpret for a human and this why DL can be seen as a "black box". 

  

2.7. Statistical analysis and regularization 

  

Once high-quality features have been computed on a set of images, engineers use robust 

statistical methods to obtain a decision rule. A first approach is to rely on decision trees and 

forests that naturally favor interpretability [27]. A second approach is to rely on linear 

transformations of the features. These are trained with error penalties such as the cross 

entropy or the max-margin loss, that respectively correspond to logistic regression or support-

vector machines (SVM) [28] and are commonly found as a last step in CNN-based models. 

For classification models, a common performance metric is the "area under the receiver 

operating characteristic" (AUC) [29]. This formula measures how well the model separates 

two populations: a value of 0.0 corresponds to a model that mis-classifies all images; 0.5 to a 

coin toss that makes no distinction between the two classes; and 1.0 to a perfect classifier.  

  

2.8. Applying machine learning for segmentation 

 

Segmentation consists in extracting a specific volume of interest from the entire image 

(typically to delineate a tumor). In other words, the purpose is to give a label to each pixel / 

voxel. Segmentation can be manual, semiautomatic or fully automatic. In semiautomatic 

segmentation, additional information concerning the output segmentation mask “y” is given 

beforehand. For example, some pixels can be labeled manually (by an experienced 

radiologist), or a bounding box can be placed on the region of interest, forcing all pixels 

outside of this region to be background. The effectiveness and accuracy of segmentation 



methods are evaluated using the Dice similarity coefficient (DSC), which is calculated using 

manual or semi-automated segmentation as ground truth [30]. 

 

3. Current applications 

  

3.1. Primary bone lesions 

  

3.1.1. Image segmentation 

 

Even if most segmentation methods evaluated in musculoskeletal oncology are manual or 

semiautomatic, fully automatic methods were recently published [31–33]. Dionisío et al. 

compared manual and semiautomatic segmentation methods using  MR images of 20 

malignant bone lesions (osteosarcomas and Ewing sarcomas) [31]. There was high similarity 

when comparing manual and semiautomatic segmentations with a DSC reaching 96%, with a 

significant reduction of segmentation time using the semiautomatic method [31]. As 

limitations, the small sample size does not allow a generalizability of these methods on other 

tumors that may potentially be more difficult to segment. Zhang et al. assessed a 

semiautomatic segmentation method with a supervised residual network on 2,305 CT images 

from 23 patients with osteosarcoma [32]. The hierarchical features extracted could be learned 

directly from the images by the network [32]. Despite the use of many slices for each patient, 

the overall sample size was too small to validate the results convincingly: there is a risk that 

the variety of tumors is not sufficient to be representative. Besides, we can question the 

robustness of osteosarcomas segmentations made on CT since these lesions often have 

similar density to normal adjacent tissues. Qu et al. developed a DL-based automatic 

segmentation method for 105 pelvic bone tumors on MRI to extract three dimensional 

information before surgery [33]. The segmentation accuracy of this method (trained on 90 

patients and tested on 15 patients) was superior to several competing methods and 

comparable to the expert annotation (DSC of up to 85%), while the average run time was 

significantly sped up (from 1820 to 19 seconds) [33].  

 

3.1.2. Lesion detection and classification 

 

Several studies have evaluated DL models for the detection and classification of bone tumors 

either on radiographs, CT or MRI examinations [3,34,35]. 



He et al. developed a CNN to automatically classify primary bone tumors using a multi-

institutional dataset of 2,899 plain radiographs from 1,356 patients into benign, intermediate 

or malignant tumors [3]. The model had a high performance with an AUC reaching up to 

0.916 for malignant versus not malignant (benign or intermediate), and an accuracy of 72.1% 

for the three-way classification (benign versus intermediate versus malignant), with 

performances close to expert radiologists and better than junior radiologists [3]. Do et al. built 

a CNN to determine whether knee bone regions are normal, benign-tumor or malignant-

tumor regions [34]. The model was applied on 1,576 plain radiographs (1,195 with tumors 

and 381 normal) and yielded 99% accuracy for the classification task [34]. As a limitation, 

the model was not tested on external sets for validation.  Similarly, Liu et al. developed 

several DL models based on plain radiographs features to classify 982 bone tumors into 

benign, intermediate and malignant [35]. The model improved the performances of junior 

radiologists (AUC of 0.898 and 0.762, respectively; P = 0.007) and obtained performance 

similar to those of senior radiologists (AUC of 0.819; P = 0.38) [35]. 

 Eweje et al. built a DL algorithm combining MR images and clinical characteristics to 

differentiate 1,060 bone tumors (582 benign and 478 malignant) [36]. The model showed 

similar accuracy (76% vs. 73%; P = 0.7), sensitivity (79% vs. 81%; P = 1.0) and improved 

specificity (75% vs. 66%; P = 0.48)  by comparison with expert radiologists’ performances 

[36]. One limitation was the need to perform manual lesion segmentation prior to analysis 

using the DL method [36]. 

 Yin et al. developed a multiparametric MRI-based radiomic model from fat-saturated 

T2-weighted and contrast-enhanced T1-weighted images to differentiate 120 benign and 

malignant sacral tumors (54 chordomas, 30 metastases and 36 giant cell tumors) [37]. The 

best performance was found with the combination of the two sequences with an AUC of 0.77 

and an accuracy of 71% [37]. An interesting point is that the combination of sequences 

generally improves the performances of radiomic models. Although the sample size is small, 

it remains suitable for radiomic studies dealing with rare tumors. Besides, there is a relatively 

balanced distribution of the studied histological subtypes in this study. Liu et al. evaluated a 

multi-model weighted fusion framework based on MRI data in 585 patients with spinal 

tumors that was designed to classify the tumors into benign or malignant [38]. The accuracy 

of the model was better than that of physicians for the classification task (82% and up to 

74%, respectively) [38]. The main limitation is related to the recall rate of tumor regions 

improvement because the tumor detection model produced a certain number of false-positive 

regions, thus reducing the accuracy. 



3.1.3. Pathologic tumor response 

 

The heterogeneity of bone sarcomas may lead to inconsistent treatment outcomes among 

patients, in particular for those receiving neoadjuvant chemotherapy [7]. Thus, there are two 

potential applications in AI. One is the evaluation of the response to neoadjuvant 

chemotherapy directly on positron emission tomography (PET) or MRI (with the results of 

pathological analysis as the gold standard). This evaluation is performed on multiple 

pathological slices using a complex and time-consuming process [9]. This explains the 

interest for noninvasive methods to identify tumor necrosis caused by neoadjuvant 

chemotherapy and classify patients into responders and non-responders [39–41]. The second 

is the prediction of the response to chemotherapy based on the specific characteristics of each 

tumor, currently impossible to predict and which would be "seen" with AI, before any 

chemotherapy.  MRI and metabolic imaging play a key role in this issue, motivating the 

development of dedicated AI models [41,42]. 

 Zhong et al. implemented a pipeline on 144 patients with osteosarcoma (studying fat-

saturated T2-weighted images from preoperative MRI examination) to predict good and bad 

responders to neoadjuvant chemotherapy [41]. The combination of clinical and radiomics 

nomogram demonstrated the best discriminative capabilities, with an AUC of 0.79, 

suggesting that this model could be applied to assist radiologists in predicting good 

responders to neoadjuvant chemotherapy before surgery. A limitation which must be 

discussed is that radiomics features were only extracted from fat-saturated T2-weighted 

images and at one time point. Multiple MRI sequences and images at different time points 

may improve model performance. Besides, this study involved a pediatric population, the 

results being not necessarily applicable to adults [41]. 

 Kim et al. compared an ML approach using fluorine−18fluorodeoxyglucose (18F-FDG) 

uptake heterogeneity features and a CNN analysis to assess the accuracy of prediction of the 

response to neoadjuvant chemotherapy on a cohort of 105 patients with osteosarcoma [42]. 

The CNN network using 18F-FDG baseline PET images could predict the treatment response 

before prior chemotherapy with an AUC reaching 0.99 [42]. In view of this nearly perfect 

result based on a limited number of patients, overfitting cannot be excluded. 

 

3.1.4. Prediction of tumor recurrence 

 



 A major issue for surgeons removing primary bone tumors is the possibility of local 

recurrence or secondary metastases. Therefore, predicting post-surgery recurrence of tumors 

based on pre-surgery medical images would be of significant interest. He et al. built a CNN 

model to predict the local recurrence of 56 giant cell bone tumors, considering clinical 

characteristics and pre-surgery MRI features [43]. The fusion model built by integrating all 

features available improved the accuracy and sensitivity for prediction (respectively 78.6% 

and 87.5%) [43]. Sheen et al. built and validated a radiomic imaging model for the prediction 

of future metastases development at the point of osteosarcoma diagnosis in 83 patients treated 

with surgery and chemotherapy, using 18F-FDG-PET data [44]. The final multivariable 

logistic model combining two radiomics features (SUVmax and Gray-Level Zone Length 

Matrix: Short-Zone Low Grey-Level Emphasis: GLZLM-SZLGE), achieved an AUC of 0.80 

[44]. The most contributory features to the classification derive from GLZLM features, which 

is a radiomic feature likely correlated to the local heterogeneity in a tumor [19,45].  

 

3.2. Secondary bone lesions 

 

Both MRI and CT are commonly used for the detection of secondary lesions, but metabolic 

imaging also plays a central role. Thus, DL applied to the evaluation of bone metastases has 

predominantly involved bone scintigraphy / SPECT since it explores the whole-body with 

high sensitivity. Hong et al. built a CT radiomic–based ML model for differentiating benign 

bone islands from osteoblastic bone metastases [46]. A random forest (RF) model was built 

on 177 patients with 89 benign bone tumors and 88 metastasis. The AUC of the trained RF 

model was higher than that obtained by one of the inexperienced radiologists (0.96 and 0.8, 

respectively) [46]. Noguchi et al. developed a DL-based algorithm for automatic detection of 

bone metastases on CT scans (269 positive scans with 1,375 bone metastases and 463 without 

bone lesion) [47]. The model improved the overall performance of nine radiologists with 

AUC respectively of 0.75 and 0.9 (P < 0.001) without and with the use of the model. 

Furthermore, the mean interpretation time per case decreased from 168 to 85 seconds (P = 

0.004) [47]. Xiong et al. built a ML method based on MRI sequences of 178 lesions from 107 

patients to differentiate 60 multiple myeloma and 118 different tumor metastases of the 

lumbar vertebra [48]. Among 10 classifiers, the artificial neural networks classifier from the 

T2-weighted images achieved the best performance: accuracy, sensitivity, and specificity of 

82%, 88%, and 79%, respectively, in the validation cohort [48]. 



 Lin et al. constructed several deep classifiers to automatically diagnose metastases in 

251 thoracic SPECT bone images, 85 with bone metastasis and 166 without tumor with good 

performances (AUC of 0.98) [49]. In view of such good performances, the risk of overfitting 

also seems likely here. Hsieh et al. evaluated DL techniques to improve the efficacy of bone 

metastasis detection on bone scintigraphy, with 37,427 image sets from 19,041 patients [50]. 

The overall performance was good with a negative predictive value reaching 96.5% [50]. 

This algorithm could help physicians safely exclude bone metastases, decreasing physician 

workload, and improving patient care. 

  

4. Main limitations of AI  

 

This critical review suggests that the quality of the articles related to musculoskeletal 

oncologic imaging is low on average with a lack of homogeneity and few studies for each 

objective and tumor types [51]. The main limitation of most studies is the sample size which 

is most often too small to apply DL algorithms and validate their results, even though we are 

aware that primary bone tumors are rare diseases. Unfortunately, CNN cannot be trained 

reliably on small datasets (less than a few hundred patients) because there is no way to 

control if the CNN has not simply memorized the characteristics of the few patients. Some 

authors divert this problem by considering each patient as a set of slices (for instance 100 two 

dimensional slices for 20 patients but representing only 20 three dimensional volumes) but 

the variety of tumors is not large enough to be representative. Also, acquisition parameters 

greatly influence CNN output. In our opinion, it seems essential to have multi-institution and 

multi-vendor datasets to be able to control all these parameters [37]. Besides, a specific issue 

of musculoskeletal oncology AI studies is that cohorts usually come from tertiary centers 

whose characteristics differ from non-expert centers [3].  

Another limitation (not specific to musculoskeletal oncology) comes from the questionable 

quality of the ground truth labels used to train models. The type of label may vary 

(pathologic, clinical or imaging criteria), but usually requires musculoskeletal expertise 

[52,53]. Besides, all studies used data collected retrospectively with possible selection bias. 

The question of the comparability of the different studies performed with specific software 

and small cohorts must also be raised. 

 The full automation of bone tumor segmentation is more difficult to achieve than with 

other anatomical regions (lung / brain) [54,55] given the variability in bone lesion location 

and the non-uniform shape of bones based on anatomical location. Although fully automated 



segmentation of bone tumors is not yet implemented in routine, it is an essential step to build 

entirely automated pipelines [10,56].  

 The “black-box” nature of CNN makes it challenging to identify the causes of false-

positive or false-negative results. For instance, He et al. [3] observed that DL models were 

mistaken on radiographic criteria that were quite simple for radiologists (recognizing a 

permeative appearance or aggressive periostitis and associating it with malignancy [3]).  

 Concerning radiomics, a pretreatment procedure on raw images is recommended to 

improve the robustness of radiomics features [19]. Its goal is to reduce variability in voxel 

values, hence in radiomic features [52,53]. Although there is no universally accepted standard 

procedure, classical methods of data homogenization (such as N4 bias correction or gray-

scale normalization) were performed on dataset before extracting radiomic features in some 

studies [38,48]. However, several studies did not apply these methods, raising the issue of the 

robustness of their results.  Overall, the number of papers reporting the assessment of 

radiomic feature reproducibility and the use of independent or external clinical validation was 

relatively small [57]. Even if there are no clear arguments about the choice of MR sequences 

that should be used, most studies showed the interest of combining features extracted from 

several sequences to improve the performance of a model (for instance T2-weighted and 

contrast-enhanced T1-weighted  images together), rather than treating them separately [37]. 

Moreover, few studies included clinico-biological features in their decision nomogram [43]. 

 

5. Future developments 

 

 The current AI tools developed in musculoskeletal oncology imaging are not yet used 

in clinical practice. In order to bring these AI tools from a preclinical research area to the 

clinical stage and daily use, some issues should be addressed in future studies [57]. They 

include: (i), Achieving reliable fully automated bone tumor segmentation; (ii), Ensuring the 

reproducibility of radiomic features (in particular applying standardization techniques) [58]; 

(iii), Controlling overfitting by selecting more reproducible features, screening and 

determining false discovery rates and determining a feature-selection algorithm suitable for 

small n-to-p data; (iiii), Performing bone lesions classifications by specific diagnosis, rather 

than binary (benign / malignant) [36,43] or ternary (benign/intermediate/malignant) 

classifications [35]; (v), Building models using different imaging modalities, clinico-

biological features [59,60], radiomics and other features from the broad family of “-omics” 

(including genomics, proteomics or metabolomics) to get closer to precision medicine 



[61,62]; (vi),  Using independent datasets to validate the results; and (vii), Creating large 

public image databases to train and validate AI software, freely available to researchers [10]. 

 

6. Conclusion 

 

In the field of clinical research, further efforts are still needed for AI imaging studies in 

musculoskeletal oncology to show a sufficient level of evidence to be used in daily practice 

and this mirrors the limitation found in other organs [51, 63]. Nevertheless, by applying 

rigorous methodological rules, some AI tools will certainly be integrated into practice in the 

future. They will free up medical time by automating tedious tasks of low added value and 

will probably improve radiologist performances. Such AI decision support tools may help to 

also scale expertise to communities outside of major academic centers, thereby increasing 

accessibility to specialist oncology care. 
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Figure legend 

 

Fig. 1:  Graphs illustrate overfitting on a toy regression problem between a scalar input "x" 

and output "y". Nine training samples (xi, yi) are displayed using light blue dots. A), Linear 

regression estimates the linear trend (dark blue) that best minimizes the sum of least squared 

errors (vertical bars). B), Quadratic regression estimates the best fitting parabola and can 

model a slump followed by a growth. C), A simple neural network with two hidden neurons 

can represent a piecewise linear curve with two hinges. D), Complex neural networks have 

more degrees of freedom. Here, a fully connected network with 100 hidden neurons gets a 

"perfect fit" to the training data. Unfortunately, this is done at the cost of "overfitting" so that 

the interpolating curve has no robustness to noise and does not extract any meaningful trend. 

 

 

 






