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Abstract

A new hybridizable discontinuous Galerkin method, named the CHDG method, is pro-
posed for solving time-harmonic scalar wave propagation problems. This method relies on
a standard discontinuous Galerkin scheme with upwind numerical fluxes and high-order
polynomial bases. Auxiliary unknowns corresponding to characteristic variables are de-
fined at the interface between the elements, and the physical fields are eliminated to obtain
a reduced system. The reduced system can be written as a fixed-point problem that can
be solved with stationary iterative schemes. Numerical results with 2D benchmarks are
presented to study the performance of the approach. Compared to the standard HDG
approach, the properties of the reduced system are improved with CHDG, which is more
suited for iterative solution procedures. The condition number of the reduced system is
smaller with CHDG than with the standard HDG method. Iterative solution procedures
with CGN or GMRES required smaller numbers of iterations with CHDG.

1 Introduction

Discontinuous Galerkin (DG) finite element methods have proven their strength to address
realistic time-harmonic wave propagation problems, see e.g. [4, 23, 40]. Due to their ability
to handle unstructured and possibly non-conforming meshes, they are very versatile and
can provide high-fidelity solutions to problems with complicated physical and geometrical
configurations. The DG framework also allows for high-order polynomial basis functions,
which limits dispersion errors occurring when considering high-frequency problems [1, 2, 41].
Besides, since the degrees of freedom (DOFs) of DG methods are only attached to cells,
they can be linearly indexed in memory, which enables efficient implementation on vectorized
computer architectures, including GPUs, see e.g. [36, 38, 42].

Despite their manifest advantages, the main bottleneck of DG methods (and more generally,
of finite element and finite difference methods) is the numerical solution of the resulting linear
system. Indeed, although the matrix is sparse, it is typically large, ill-conditioned, and indef-
inite, see e.g. [21]. Standard algebraic solvers perform poorly for these systems: direct solvers
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are prohibitively costly in large 3D applications; iterative solvers require less memory stor-
age and allow direct parallel implementations, but the convergence of the iterative processes
can be slow because of intrinsic properties of the time-harmonic wave propagation problems.
Although preconditioning strategies have been proposed to speed up the convergence of iter-
ative procedures and to reduce the computational cost, see e.g. [6, 18, 20, 22, 27, 28, 49, 52],
the development of fast iterative finite element solvers for high-frequency wave propagation
problems remains an active research area.

In this work, we focus on a DG scheme for the Helmholtz equation in first-order form with
upwind fluxes, see e.g. [33, 37]. Although this approach is very popular in the time-domain,
its direct use for time-harmonic problems is limited, since it involves a large number of
coupled DOFs. In order to reduce the computational cost, hybridization strategies have been
introduced in the seminal work [14], and largely studied over the past decade, see e.g. [10, 30–
32, 34, 39, 45]. In the resulting hybridizable discontinuous Galerkin (HDG) methods, an
additional “hybrid variable” corresponding to the Dirichlet trace of the solution is introduced.
This additional variable acts as a Lagrange multiplier that decouples the physical unknowns.
After inverting element-wise local matrices, a reduced system involving only the Lagrange
multiplier is formulated over the skeleton of the mesh. When using a direct linear solver, the
advantage of this approach is straightforward, as the reduced HDG system features far less
DOFs than the original DG system while preserving its sparsity pattern. On the other hand,
the situation is not as clear when considering iterative solvers, since the size and filling of the
matrix are no longer the main performance criteria.

Here, we propose a novel hybridization strategy in order to accelerate the solution of the large-
scale linear system arising from the upwind DG discretization of time-harmonic problems with
iterative procedures. This strategy, which we call the CHDG method, uses the characteristic
variables defined at the interface between the elements as the hybrid variables, as opposed to
the Dirichlet traces in the standard HDG method. This alternative choice of hybrid variable
leads to favorable properties for the resulting reduced system and to more efficient iterative
solution procedures in comparison with the standard hybridization strategy. Specifically, the
reduced system can be written in the form

(I−ΠS)g = b, (1.1)

where g corresponds to the characteristic variables, Π is an exchange operator swapping
the variables at the interfaces, and S is scattering operator related to the solution of local
element-wise problems. The iteration operator ΠS is a strict contraction, so that the system
is well-posed and can be solved with a simple fixed-point iteration.

Interestingly, the form of the reduced system (1.1) closely resembles the ultra-weak variational
formulation (UWVF) employed in Trefftz discretizations of time-harmonic problem [8]. In
fact, our reduced system inherits many of the favorable properties of UWVF matrices. The
advantage of our approach though, is that it simply relies on polynomial basis functions
instead of local solutions. As a result, volume right-hand sides and heterogeneous media can
be readily considered [33]. Besides, the mesh can be refined and the discretization order
increased without the conditioning issues typically appearing for plane wave basis functions,
see e.g. [3, 25, 35, 46, 48].

The fixed-point system (1.1) also naturally appears in non-overlapping substructuring domain
decomposition (DD) methods. The iteration operator ΠS was already used in the seminal
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work of Després [19]. This formalism and the analogy with a fixed-point system have been
widely used, e.g. in [7, 15, 16, 26, 43, 44, 49]. Our CHDG method can in fact be seen as
an element-wise DD method. The key novelty of our approach, however, is that our discrete
transmission conditions are built from the numerical fluxes naturally arising in the DG setting.
In particular, cross-points where several mesh faces meet are naturally handled without any
specific treatment. In contrast, standard DD algorithms based on conforming finite elements
require specific (and sometimes non-local) swap operators to properly account for such cross-
points [11, 12, 47].

In this work, we properly introduce the CHDG method with auxiliary characteristic variables.
We rigorously show that the resulting reduced system set on the skeleton of the mesh is well-
posed and algebraically equivalent to the original upwind DG method. We also prove that
the reduced CHDG system corresponds to a fixed-point problem with a strict contraction,
which can therefore always be solved with the Richardson iteration. We also numerically
investigate the performance of CHDG as compared to the original DG scheme and its standard
HDG reformulation with a sequence of benchmarks. These examples show that the standard
Richardson iteration always converges without relaxation (although sometimes slowly) for the
CHDG approach, whereas this approach fails to converge for DG and HDG. We also compare
standard Krylov methods for the three approaches, and find that CHDG always requires less
iterations than DG and HDG to reach a given accuracy with the GMRES and CGN iterations.

The remainder of this work is structured as follows. In Section 2, we introduce the notations,
and describe the upwind DG, the standard HDG, and the CHDG methods as well as their
basic properties. In Section 3, the reduced system obtained with CHDG is analyzed in
detail. We describe our numerical benchmarks in Section 4, where we also comment on the
required memory space and conditioning properties of the different approaches. We study the
convergence of standard iterative schemes in Section 5 and present our concluding remarks
in Section 6.

2 Hybridizable discontinuous Galerkin methods

Let Ω ⊂ Rd, with d = 2 or 3, be a Lipschitz polytopal domain. The boundary ∂Ω of the
domain is partitioned into three non-overlapping polytopal Lipschitz subsets ΓD, ΓN and ΓR.
We consider the following time-harmonic scalar wave propagation problem:

−ıκu+∇ · q = 0, in Ω,

−ıκq+∇u = 0, in Ω,

u = sD, on ΓD,

n · q = sN, on ΓN,

u− n · q = sR, on ΓR,

(2.1)

where the unknowns u : Ω → C and q : Ω → Cd represent a time-harmonic wave, κ > 0 is a
given real constant called the wavenumber, and n stands for the unit outward normal to Ω.
The functions sD : ΓD → C, sN : ΓN → C and sR : ΓR → C are boundary data representing
an incident field. Specifically, (2.1) is a particular case of the acoustic wave equation, where
we have assumed the a time depedence e−ıωt for the data and the solution and κ := ω/c,
where ω is the angular frequency, t is the time and c is the (uniform) wave speed. For the
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sake of shortness, we do not consider volume right-hand sides in the two first equations of
(2.1), but these could be included without difficulty.

2.1 Mesh, approximation spaces and inner products

We consider a conforming mesh Th of the domain Ω consisting of simplicial elements K. The
collection of element boundaries is denoted by ∂Th := {∂K |K ∈ Th}, and the collection of
faces is denoted by Fh. The collection of faces of an element K is denoted by FK .

The approximate fields produced by DG schemes are piecewise polynomials. Here, for the
sake of simplicity, we fix a polynomial degree p ≥ 0 and introduce

Vh :=
∏

K∈Th
Pp(K) and Vh :=

∏
K∈Th

Pp(K),

where Pp(·) and Pp(·) denote spaces of scalar and vector complex-valued polynomials of
degree smaller or equal to p. By convention, the restrictions of uh ∈ Vh and uh ∈ Vh on K
are denoted uK and uK , respectively.

We introduce the sesquilinear forms

(u, v)K :=

∫
K
uv dx, (u,v)K :=

∫
K
u · v dx, ⟨u, v⟩∂K :=

∑
F∈FK

∫
F
uv dσ(x),

(u, v)Th :=
∑
K∈Th

(u, v)K , (u,v)Th :=
∑
K∈Th

(u,v)K , ⟨u, v⟩∂Th :=
∑
K∈Th

⟨u, v⟩∂K .

By convention, the quantities used in the surface integral ⟨·, ·⟩∂K correspond to the restriction
of fields defined on K (e.g. vK and vK) or quantities associated to the faces of K (e.g. nK,F

with F ∈ FK).

2.2 Standard DG formulation and numerical fluxes

The general DG formulation of system (2.1) reads:

Problem 2.1. Find (uh,qh) ∈ Vh ×Vh such that, for all (vh,ph) ∈ Vh ×Vh,{
−ıκ(uh, vh)Th − (qh,∇vh)Th + ⟨n · q̂(uh,qh), vh⟩∂Th = 0,

−ıκ(qh,ph)Th − (uh,∇ · ph)Th + ⟨û(uh,qh),n · ph⟩∂Th = 0,

where the numerical fluxes û(uh,qh) and n · q̂(uh,qh) are defined face by face below.

The properties of DG formulations intrinsically depend on the choice of the numerical fluxes.
In this work, we consider upwind fluxes. For an interior face F ̸⊂ ∂Ω of an element K, these
fluxes can be written as

ûF :=
uK + uK′

2
+ nK,F ·

(
qK − qK′

2

)
,

nK,F · q̂F := nK,F ·
(
qK + qK′

2

)
+

uK − uK′

2
,

if F ̸⊂ ∂Ω, (2.2a)
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where K ′ is the neighboring element and nK,F is the unit outward normal to K on F . For a
boundary face F ⊂ ∂Ω of an element K, the fluxes are defined as{

ûF := sD,

nK,F · q̂F := nK,F · qK + (uK − sD),
if F ⊂ ΓD, (2.2b){

ûF := uK + (nK,F · qK − sN),

nK,F · q̂F := sN,
if F ⊂ ΓN, (2.2c){

ûF := (uK + nK,F · qK + sR)/2,

nK,F · q̂F := (uK + nK,F · qK − sR)/2,
if F ⊂ ΓR. (2.2d)

The upwind fluxes are consistent, which means that û(u,q) = u and n · q̂(u,q) = n · q on
both interior and boundary faces when u and q are the solution of Problem (2.1). Under
standard assumptions, the method achieves the optimal convergence rate for the numerical
fields uh and qh in L2-norm, i.e. p+1 where p is the polynomial degree of the basis functions.
Error estimates have been derived for HDG formulations, equivalent to the DG formulation
above, for the Helmholtz problem with a Dirichlet boundary condition in [32] and a Robin
boundary condition in [17, 24]. By using a post-processing, the convergence rate for uh can
be increased by one, see e.g. [13].

2.3 Hybridization with numerical trace — Standard HDG method

In standard HDG formulations, an additional variable ûh corresponding to the numerical flux
û is introduced at the interface between the elements and on the boundary faces. The discrete
unknowns associated to the fields uh and qh are eliminated in the solution procedure, leading
to a reduced system with discrete unknowns associated to ûh on the skeleton.

The additional variable, which is called the numerical trace in the HDG litterature (see
e.g. [14]), belongs to the space V̂h defined as

V̂h :=
∏

F∈Fh

Pp(F ).

For any field ûh ∈ V̂h, there is one set of scalar unknowns associated to each face of the mesh.
After observing that

n · q̂(uh,qh) = uh + n · qh − ûh.

we obtain the following HDG formulation, where the numerical trace appears as a hybrid
variable:

Problem 2.2. Find (uh,qh, ûh) ∈ Vh×Vh× V̂h such that, for all (vh,ph, v̂h) ∈ Vh×Vh× V̂h,{
−ıκ(uh, vh)Th − (qh,∇vh)Th + ⟨uh + n · qh − ûh, vh⟩∂Th = 0,

−ıκ(qh,ph)Th − (uh,∇ · ph)Th + ⟨ûh,n · ph⟩∂Th = 0

and

⟨ûh, v̂h⟩Fh
− ⟨12(uh + n · qh), v̂h⟩∂Th\∂Ω − ⟨uh + n · qh, v̂h⟩ΓN

− ⟨12(uh + n · qh), v̂h⟩ΓR

= ⟨sD, v̂h⟩ΓD
− ⟨sN, v̂h⟩ΓN

+ ⟨12sR, v̂h⟩ΓR
.

5



This formulation is equivalent to the standard DG formulation (Problem 2.1) in the sense
that the discrete solutions uh and qh are identical, see e.g. [39].

In the HDG litterature [14, 32, 39], a generalization of the above formulation is often consid-
ered with

n · q̂(uh,qh) = n · qh + τ(uh − ûh),

where τ is the so-called stabilization function. In this work, we focus on the case where τ = 1,
which corresponds to the standard upwind fluxes and is widely used in practice.

Remark 2.3 (Source projection). The numerical trace ûh is a polynomial function on every
face, while the numerical flux û introduced in the previous section may be a more general
function at any boundary face where the boundary data does not belong to Pp(F ). Nev-
ertheless, in practice, equations (2.2b)-(2.2d) are still valid for ûh if the boundary data are
projected into the polynomial spaces.

Local element-wise discrete problems

In the solution procedure, the fields uh and qh are eliminated by solving local element-wise
problems, where the numerical trace is considered as a given data.

For each element K, the local problem reads:

Problem 2.4. Find (uK ,qK) ∈ Pp(K)×Pp(K) such that, for all (vK ,pK) ∈ Pp(K)×Pp(K),{
−ıκ(uK , vK)K − (qK ,∇vK)K + ⟨uK + n · qK , vK⟩∂K = ⟨s, vK⟩∂K ,

−ıκ(qK ,pK)K − (uK ,∇ · pK)K = −⟨s,n · pK⟩∂K ,

for a given surface data s ∈
∏

F∈FK
Pp(F ).

This local discrete problem is similar to a Helmholtz problem defined on K with a non-
homogeneous Dirichlet boundary condition on ∂K. The discrete problem is well-posed with-
out any condition, as shown e.g. in [31]. We include the proof here for the sake of completeness.

Theorem 2.5 (Well-posedness of the local discrete problem). Problem 2.4 is well-posed.

Proof. We simply have to prove that, if s = 0, the unique solution of Problem 2.4 is uK = 0
and qK = 0. For the sake of shortness, the subscript K is omitted for the local fields, the test
functions, and the unit outgoing normal. Taking both equations of Problem 2.4 with v = u
and p = q gives

−ıκ(u, u)K − (q,∇u)K + ⟨u+ n · q, u⟩∂K = 0,

−ıκ(q,q)K − (u,∇ · q)K = 0.

Integrating by part in both equations and taking the complex conjugate lead to

ıκ(u, u)K + (u,∇ · q)K + ⟨u, u⟩∂K = 0,

ıκ(q,q)K + (q,∇u)K − ⟨n · q, u⟩∂K = 0.
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Adding the four previous equations yields ⟨u, u⟩∂K = 0, and then u = 0 on ∂K. By using
this result in Problem 2.4, one has{

−ıκ(u, v)K + (∇ · q, v)K = 0,

−ıκ(q,p)K + (∇u,p)K = 0,

for all [v,p] ∈ Pp(K)×Pp(K). We conclude that

−iκu+∇ · q = 0,

−iκq+∇u = 0,

in a strong sense. Because there is no non-trivial polynomial solution to the previous equa-
tions, this yields the result.

Remark 2.6 (Conditioning). At the continuous level, Helmholtz problems with Dirichlet
boundary conditions are ill-posed if the frequency corresponds to an eigenvalue of the Laplace
operator. Here, the Dirichlet conditions are weakly imposed through penalization, so that
the discrete problem are always well-posed. Nevertheless, we shall see in Section 4.4 that the
matrices of the local systems becomes ill-conditioned as kh goes to zero.

2.4 Hybridization with characteristic variables — CHDG method

We propose a new hybridization procedure where the additional variable is associated to
incoming and outgoing fluxes at every face of the mesh. More precisely, the additional variable
corresponds to the incoming characteristic variable relative to each element.

Characteristic variables

At each interior face F ̸⊂ ∂Ω of an element K, the outgoing characteristic variable g⊕K,F and

the incoming characteristic variable g⊖K,F are defined as

g⊕K,F := uK + nK,F · qK , (2.3a)

g⊖K,F := uK′ − nK,F · qK′ , (2.3b)

respectively, where K ′ is the neighboring element. Let us highlight that the outgoing charac-
teristic variable depends only on values corresponding to elementK, whereas the incoming one
depends only on values corresponding to the neighboring element K ′. The outgoing charac-
teristic variable of one side corresponds to the incoming one of the other side, i.e. g⊕K,F = g⊖K′,F

and g⊖K,F = g⊕K′,F .

The characteristic variables can be interpreted as information transported towards the exterior
and the interior of K, respectively. Indeed, let us consider the time-domain version of the
governing equations. Assuming there is no source and the fields are varying only in direction
n, we get {

∂tu+ c ∂n(n · q) = 0,

∂t(n · q) + c ∂nu = 0.
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A simple linear combination gives the transport equations{
∂t(u+ n · q) + c ∂n(u+ n · q) = 0,

∂t(u− n · q)− c ∂n(u− n · q) = 0.

Therefore, g⊕ = u + n · q and g⊖ = u − n · q correspond to quantities transported in the
domain in directions +n (downstream) and −n (upstream), respectively, at velocity c. In the
CFD community, the variables g⊕ and g⊖ are generally called characteristic variables (see
e.g. [53]), and they are used to define upwind fluxes for solving time-dependent problems. For
more general problems, characteristic variables and upwind fluxes are obtained by solving
local Riemann problems along the normal direction, see e.g. [33, 53].

The numerical fluxes (2.2a) can be rewritten with the characteristic variables as{
ûF := (g⊕K,F + g⊖K,F )/2,

nK,F · q̂F := (g⊕K,F − g⊖K,F )/2.

If F is a boundary face, i.e. F ⊂ ∂Ω, the numerical fluxes and the outgoing characteristic
variable can be defined with (2.3a), but the incoming characteristic variable must be defined
differently because there is no neighboring element. It is defined as

g⊖K,F := 2sD − g⊕K,F , if F ⊂ ΓD, (2.4a)

g⊖K,F := g⊕K,F − 2sN, if F ⊂ ΓN, (2.4b)

g⊖K,F := sR, if F ⊂ ΓR. (2.4c)

By using these definitions, the numerical fluxes corresponding to the boundary conditions,
i.e. equations (2.2b)-(2.2d), are recovered. Therefore, the boundary conditions are prescribed
directly in the definition of the incoming characteristic variables.

CHDG formulation

In the proposed method, the additional variable, denoted g⊖h , corresponds to the incoming
characteristic variable at the boundary of all the elements. The variable g⊖h belongs to the
space Gh defined as

Gh :=
∏

K∈Th

∏
F∈FK

Pp(F ).

For any g⊖h ∈ Gh, there are two sets of unknowns at each interior face of the mesh, which
correspond to the incoming characteristic variable associated to the neighboring elements. In
the following, the method is called the CHDG method. The first letter of the name refers to
the “c” in “characteristic variable”.

The CHDG formulation reads:

Problem 2.7. Find (uh,qh, g
⊖
h ) ∈ Vh×Vh×Gh such that, for all (vh,ph, ξh) ∈ Vh×Vh×Gh,{

−ıκ(uh, vh)Th − (qh,∇vh)Th + ⟨12(g
⊕(uh,qh)− g⊖h ), vh⟩∂Th = 0,

−ıκ(qh,ph)Th − (uh,∇ · ph)Th + ⟨12(g
⊕(uh,qh) + g⊖h ),n · ph⟩∂Th = 0,
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and

⟨g⊖h −Π(g⊕(uh,qh)), ξh⟩∂Th = ⟨b, ξh⟩∂Th , (2.5)

with g⊕(uh,qh) := uh + n · qh.

The operator Π : Gh −→ Gh used in equation (2.5) is the global exchange operator. It is
the key mechanism to enforce the weak coupling of the element-wise problems at the interior
faces and to enforce the boundary conditions at the boundary faces. At interior faces, it
simply swaps the outgoing characteristics of the two neighboring elements. This definition is
suitably modified at boundary faces to account for boundary conditions. For each face F of
each element K, Π is defined as

Π(g⊕)|K,F =


g⊕K′,F if F ̸⊂ ∂Ω is shared by K and K ′,

− g⊕K,F if F ⊂ ΓD,

g⊕K,F if F ⊂ ΓN,

0 if F ⊂ ΓR,

(2.6)

for any g⊕ ∈ Gh. For each face F of each element K, the global right-hand side b is given by

b|K,F =


0 if F ̸⊂ ∂Ω,

2sD if F ⊂ ΓD,

− 2sN if F ⊂ ΓN,

sR if F ⊂ ΓR.

Therefore, Equation (2.5) is equivalent to the following relations:

⟨g⊖K,F , ξK,F ⟩F − ⟨uK′ + nK′,F · qK′ , ξK,F ⟩F = 0, if F ̸⊂ ∂Ω,

⟨g⊖K,F , ξK,F ⟩F + ⟨uK + nK,F · qK , ξK,F ⟩F = ⟨2sD, ξK,F ⟩F , if F ⊂ ΓD,

⟨g⊖K,F , ξK,F ⟩F − ⟨uK + nK,F · qK , ξK,F ⟩F = ⟨2sN, ξK,F ⟩F , if F ⊂ ΓN,

⟨g⊖K,F , ξK,F ⟩F = ⟨sR, ξK,F ⟩F , if F ⊂ ΓR,

for each face F of each element K. The first relation enforces that the incoming characteristic
variable of an element is the outgoing one of the neighboring element, and vice versa, for each
interior face. The other relations enforce the boundary conditions.

The CHDG formulation is equivalent to the standard DG formulation (Problem 2.1), and thus
to the standard HDG formulation (Problem 2.2). Similar to the standard HDG formulation,
the additional variable g⊖h is a polynomial function on each face, whereas the incoming char-
acteristic variable introduced previously could be a more general function on the boundary of
the domain. Nevertheless, equations (2.4a)-(2.4c) still hold up to projecting the right-hand
sides onto piecewise polynomials.

Local element-wise discrete problems

The hybridization procedure leads to a reduced system with discrete unknowns associated
to the incoming characteristic variable g⊖h on the skeleton. This elimination is achieved by

9



solving local element-wise problems, where the incoming characteristic variable is considered
as a given data.

For each element K, the local problem reads:

Problem 2.8. Find (uK ,qK) ∈ Pp(K)×Pp(K) such that, for all (vK ,pK) ∈ Pp(K)×Pp(K),{
−ıκ(uK , vK)K − (qK ,∇vK)K + ⟨12(uK + n · qK), vK⟩∂K = ⟨12s, vK⟩∂K ,

−ıκ(qK ,pK)K − (uK ,∇ · pK)K + ⟨12(uK + n · qK),n · pK⟩∂K = −⟨12s,n · pK⟩∂K ,

for a given surface data s ∈
∏

F∈FK
Pp(F ).

The local problem can be interpreted as a discretized Helmholtz problem defined on K with
a non-homogeneous Robin boundary condition on ∂K. We show hereafter that this discrete
problem is well-posed.

Theorem 2.9 (Well-posedness of the local discrete problem). Problem 2.8 is well-posed.

Proof. We simply have to prove that, if s = 0, the unique solution of Problem 2.8 is uK = 0
and qK = 0. For the sake of shortness, the subscript K is omitted for the local fields, the
test functions, and the unit outgoing normal. Taking both equations of Problem (2.8) with
v = u and p = q gives

−ıκ(u, u)K − (q,∇u)K + ⟨12(u+ n · q), u⟩∂K = 0,

−ıκ(q,q)K − (u,∇ · q)K + ⟨12(u+ n · q),n · q⟩∂K = 0.

Integrating by part in both equations and taking the complex conjugate lead to

ıκ(u, u)K + (u,∇ · q)K + ⟨u, 12(u− n · q)⟩∂K = 0,

ıκ(q,q)K + (q,∇u)K − ⟨n · q, 12(u− n · q)⟩∂K = 0.

Adding the four previous equations yields ⟨u, u⟩∂K + ⟨n · q,n · q⟩∂K = 0, which gives u = 0
and n · q = 0 on ∂K. By using these boundary conditions in Problem (2.8), we have that
the fields should be a solution of the strong problem. Because there is no solution with both
homogeneous Neumann and Dirichlet boundary conditions, this yields the result.

Remark 2.10 (Conditioning). In contrast to Helmholtz problems with Dirichlet boundary
conditions, the local problems with Robin boundary conditions are always well-posed at the
continuous level. We shall see in Section 4.4 that the matrices of the local systems stays well-
conditioned as kh goes to zero for low-order finite elements, and that the condition number
is smaller than with HDG for high-order finite elements.

3 Analysis of the reduced system for the CHDG method

In this section, we introduce and study the reduced version of the hybridized formulation with
characteristic variables (Problem 2.7). This version is obtained by solving the local element-
wise problems (Problem 2.8) and then eliminating the physical variables uh and qh from the
system.
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3.1 Formulation of the reduced system

In order to write the problem in a reduced formulation, we introduce the global scattering
operator S : Gh −→ Gh defined such that, for each face F of each element K,

S(g⊖h )
∣∣
K,F

:= uK(g⊖h ) + nK,F · qK(g⊖h ),

where (uK ,qK) is the solution of Problem 2.8 with the incoming characteristic data s :=
(g⊖K,F )F∈FK

contained in g⊖h as a given surface data. This operator can be interpreted as an
“incoming characteristic variable to outgoing characteristic variable” operator.

By using the operator S, Problem 2.7 is rewritten as:

Problem 3.1. Find g⊖h ∈ Gh such that, for all ξh ∈ Gh,

⟨g⊖h , ξh⟩∂Th − ⟨Π(S(g⊖h )), ξh⟩∂Th = ⟨b, ξh⟩∂Th .

In order to write the problem in a more compact form, we introduce the global projected right-
hand side bh := Phb ∈ Gh, where Ph : L2(∂Th) −→ Gh is the projection operator defined such
that ⟨Phb, ξh⟩∂Th = ⟨b, ξh⟩∂Th for all ξh ∈ Gh. Problem 3.1 can then be rewritten as:

Problem 3.2. Find g⊖h ∈ Gh such that

(I−ΠS)g⊖h = bh.

Problems 3.1 and 3.2 are equivalent to Problem 2.7 because the element-wise local problems
(Problem 2.8) are well-posed. As discussed in the introduction, Problem 3.2 is similar to
formulations obtained for DD and UWVF methods to solve Helmholtz problems.

3.2 Fixed-point problem

Problem 3.2 corresponds to a fixed-point problem. In this section, we prove that the operator
ΠS is a strict contraction. As a consequence, the fixed-point problem is always well-posed
and it can (at least in principle) be solved with stationary iterative procedures.

The properties of S and Π are proved by using a norm associated to Gh defined as

∥g⊖h ∥ :=

√ ∑
K∈Th

∑
F∈FK

∥g⊖K,F ∥2F ,

where ∥·∥2F is the natural norm of L2(F ). We start with a technical lemma.

Lemma 3.3. (i) The solution of Problem 2.8 verifies

∥uK + nK,F · qK∥2∂K + ∥uK − nK,F · qK − s∥2∂K = ∥s∥2∂K . (3.1)

(ii) The second term in the left-hand side of (3.1) vanishes if and only of s = 0.
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Proof. For the sake of shortness, the subscript K is omitted for the local fields, the test
functions, and the unit outgoing normal.

(i) Taking both equations of Problem 2.8 with v = u and p = q gives

−ıκ(u, u)K − (q,∇u)K + ⟨12(u+ n · q), u⟩∂K = ⟨12s, u⟩∂K
−ıκ(q,q)K − (u,∇ · q)K + ⟨12(u+ n · q),n · q⟩∂K = −⟨12s,n · q⟩∂K .

Integrating by part in both equations and taking the complex conjugate lead to

ıκ(u, u)K + (u,∇ · q)K + ⟨u, 12(u− n · q)⟩∂K = ⟨u, 12s⟩∂K
ıκ(q,q)K + (q,∇u)K − ⟨n · q, 12(u− n · q)⟩∂K = −⟨n · q, 12s⟩∂K .

Adding the four previous equations yields

1

2
⟨(u+ n · q), (u+ n · q)⟩∂K +

1

2
⟨(u− n · q), (u− n · q)⟩∂K

=
1

2
⟨s, (u− n · q)⟩∂K +

1

2
⟨(u− n · q), s⟩∂K ,

and then

∥u+ n · q∥2∂K + ∥u− n · q∥2∂K = ∥u− n · q∥2∂K − ∥u− n · q− s∥2∂K + ∥s∥2∂K ,

which gives the result (3.1).

(ii) If the second term in the left-hand side of (3.1) vanishes, then s = u−n ·q on ∂K. Using
this relation in Problem 2.8, we see that u and q must satisfy{

−ıκ(u, v)K − (q,∇v)K + ⟨n · q, v⟩∂K = 0,

−ıκ(q,p)K − (u,∇ · p)K + ⟨u,n · p⟩∂K = 0

for all v ∈ Pp(K) and q ∈ Pp(K), and integration by parts shows that u and q solve the
Helmholtz equation in strong form. But as we have already seen in the proof of Theorem 2.5,
there is no non-trivial polynomial solution, meaning that u = 0 and q = 0, and then s = 0.
The converse statement is direct, because the local problem is well-posed.

Theorem 3.4. The scattering operator S is a strict contraction, i.e.

∥S(g⊖h )∥ < ∥g⊖h ∥, ∀g⊖h ∈ Gh\{0}.

Proof. By Lemma 3.3, one has∑
K∈Th

∑
F∈FK

∥uK + nK,F · qK∥2F <
∑
K∈Th

∑
F∈FK

∥g⊖K,F ∥
2
F ,

for all g⊖h ∈ Gh\{0}. The result is a consequence of the definition of S.

Theorem 3.5. The exchange operator Π is a contraction, i.e.

∥Π(g⊖h )∥ ≤ ∥g⊖h ∥, ∀g⊖h ∈ Gh.

In addition, if ΓR = ∅, Π is an involution, i.e. Π2 = I, and an isometry, i.e.

∥Π(g⊖h )∥ = ∥g⊖h ∥, ∀g⊖h ∈ Gh.
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Proof. These results are straightforward consequences of the definition of Π.

As a consequence of the two previous theorems, we have the following lemma.

Corollary 3.6. The operator ΠS is a strict contraction, i.e.

∥ΠS(g⊖h )∥ < ∥g⊖h ∥, ∀g⊖h ∈ Gh\{0}.

The strict contraction property of Corollary 3.6 is due to the fact that Π and/or S dissipate
energy. In fact, with the CHDG method, the global scattering operator S is always strictly
contractant whereas, in a continuous context, it preserves energy. The proof of Theorem 3.4
uses the fact that there are no polynomial solution to the Helmholtz equation, and therefore,
the strict contraction property of S is a numerical artifact that is not physical. This can be
related to the fact the upwind DG scheme is a dissipative method to start with [2].

On the other hand, the exchange operator Π can only dissipate energy in the presence of
a Robin boundary (see the last line of (2.6)). It is an involution otherwise. It means that
for conservative methods (including standard conforming finite elements), where S does not
dissipate, ΠS should preserve energy if there is no physical dissipation. In fact, the convergence
of standard DD algorithms is proven only for energy-preserving problems with relaxation,
e.g. [12].

Therefore, we may identify two possible sources of dissipation that makes the CHDG system
contractant. The first source is numerical dissipation which is always present, but may become
small as the mesh is refined, leading to possibly slow convergence of fixed point iterations in
energy-preserving problem. The other source of dissipation comes from physical absorption
and should lead to faster convergence rates on fine meshes. The numerical examples we present
in Section 5.1 clearly depict how the presence or absence of physical dissipation impact the
convergence rates of fixed point iterations.

4 Linear algebraic systems

In this section, the algebraic systems resulting from the DG discretization and its two possible
hybridizations are studied for two dimensional problems. After a description of the polynomial
basis and reference benchmarks in Sections 4.1 and 4.2, respectively, the required memory
storage is discussed in Section 4.3. The condition numbers of the local element-wise matrices
and the global reduced matrices are discussed in Sections 4.4 and 4.5, respectively.

4.1 Polynomial basis functions

The physical fields uh and qh are represented with standard hierarchical shape functions.
These functions are built with tensor products of Lobatto shape functions (see e.g. [51, section
2.2.3] and [5]). For triangular elements, they are classified into vertex, edge, and bubble
functions. Since the bubble functions vanish on the edges of the triangle, only the degrees of
freedom associated to vertex and edge functions are involved in the boundary and interface
integrals of the variational formulations. In remainder of this work, the edges of the triangular
elements are called “faces” in order to follow the general terminology.
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The fields defined on the skeleton, i.e. ûh for HDG and g⊖h for CHDG, are univariate polyno-
mials. A possible choice for the shape functions would be the Lobatto shape functions, which
correspond to the restriction of the shape functions used for the physical fields. Instead, we
consider scaled Legendre shape functions, which are orthogonal in L2(F ) for each face F .
For each element, they are scaled in such a way that the local mass matrices are the identity
matrix, i.e.

(ϕF
i , ϕ

F
j )F = δij , for i, j = 1, . . . , Ndof·per·fce,

where ϕF
i and ϕF

j are the shape functions associated with the face F , and Ndof·per·fce is the
number of degrees of freedom per face.

The Lobatto functions and the scaled Legendre functions gives rigorously the same numerical
solution (up to floating point errors), as they are two equivalent sets of basis functions, but
they lead to different algebraic systems. Let us consider the algebraic system resulting from
the finite element discretization of Problem 3.1. With the Lobatto functions, the first term
of this problem corresponds to a mass matrix in the algebraic system. By contrast, with the
scaled Legendre functions, it corresponds to an identity matrix as the shape functions are
orthonormal.

In preliminary comparison studies (not shown), we have observed that, for both HDG and
CHDG methods, the convergence of the iterative solution procedures is faster with the scaled
Legendre functions than with the Lobatto functions. Here are two pieces of explanations:

• The system corresponding to the scaled Legendre functions, denoted Ag = b, can be
obtained from the system corresponding to the Lobatto functions, denoted ALobgLob =
bLob, by using a symmetric preconditionning by the mass matrix MLob associated to
the faces: (

M
−1/2
Lob ALobM

−1/2
Lob

)︸ ︷︷ ︸
A

(
M

1/2
LobgLob

)︸ ︷︷ ︸
g

=
(
M

−1/2
Lob bLob

)︸ ︷︷ ︸
b

.

Using the scaled Legendre functions instead of the Lobatto functions can then be con-
sidered as a preconditioning strategy.

• With the scaled Legendre basis functions, the scalar product (·, ·)F of two fields is equal
to the algebraic inner product on the corresponding components. Similarly, the L2-norm
of a field is equal to the 2-norm of its components. Therefore, the inner product and
the norm used in the standard iterative solution procedures are in some sense “natural”
for the considered problems. Let us note that, with the Lobbato functions, the scalar
product (·, ·)F could be used as inner product in weighted Krylov methods.

For the sake of brevity, only results with the scaled Legendre functions are presented in the
remainder of this article.

4.2 Reference benchmarks

In this work, we consider three benchmarks corresponding to different physical configurations,
already used in [9], to study the properties of the algebraic systems and the convergence of
iterative solution procedures. Snapshots of the real part of the solutions are shown in Figure 1.
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The numerical simulations have been performed with a dedicated MATLAB code. The mesh
generation and the visualization have been done with gmsh [29]. In all the cases, third-degree
polynomial bases, i.e. p = 3, have been used.

Benchmark 1 (Plane wave). The first benchmark is a simple plane wave propagating in
the unit square domain Ω = ]0, 1[× ]0, 1[. The reference solution reads

uref(x) = eıκd·x,

with the propagation direction d = (cos θ, sin θ) and a given angle θ. A non-homogeneous
Robin condition is prescribed on the boundary of the domain (i.e. ΓR := ∂Ω) with the
appropriate right-hand side term. By default, the parameters are κ = 15π and h = 1/16.
We have also considered a wavenumber twice larger, κ = 30π, with a spatial step h = 1/34
corresponding to a relative error close to the one with the default parameters.

Benchmark 2 (Cavity). The second benchmark is a cavity problem. The computational
domain is again the unit square domain Ω = ]0, 1[× ]0, 1[. A homogeneous Dirichlet condition
is prescribed on the boundary of the domain (i.e. ΓD := ∂Ω), and a unit source term is used
in the Helmholtz equation: {

−∆u− κ2u = 1, in Ω,

u = 0, on ΓD.

The reference solution is real. The eigenvalues and eigenmodes of this problem are κ2n,m :=
(n2 +m2)π2 and un,m := sin(nπx1) sin(mπx2), respectively, for all m,n > 0. The reference
solution is obtained semi-analytically by truncating the Fourier expansion (see e.g. [9]). By
default, the parameters are κ = (7 + 1/10)

√
2π and h = 1/10. We have also considered

a wavenumber closer to an eigenvalue, κ = (7 + 1/100)
√
2π, with a spatial step h = 1/15

corresponding to a relative error close to the one with the default parameters.

Benchmark 3 (Waveguide). The last benchmark is a half open waveguide problem. The
domain is Ω = ]0, 4[×]0, 1[, with a given length L. The open side of the waveguide corresponds
to the right side of Ω. An incident plane wave is prescribed at the open side by using a non-
homogeneous Robin condition:

∂nu− ıκu = eıκd·x, on ΓR := {4} × ]0, 1[,

with the propagation direction d = (cos θ, sin θ) and a given angle θ. A homogeneous Dirichlet
condition is prescribed on the other sides of Ω. The reference solution is computed by using a
semi-analytical approach described in [9]. By default, the parameters are κ = 6π and h = 1/8.
We have also considered a wavenumber twice larger, κ = 12π, with a spatial step h = 1/17
corresponding to a relative error close to the one with the default parameters.
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(a) Benchmark 1 (plane wave) (b) Benchmark 2 (cavity)

(c) Benchmark 3 (half-open waveguide)

Figure 1: Snapshots of the real part of the solution for the three benchmarks with the default parameters.

4.3 Memory storage

The total numbers of degrees of freedom (DOFs) with the DG, HDG and CHDG methods
are given respectively by

#(dofDG) = 3NtriNdof·per·tri,

#(dofHDG) = NfceNdof·per·fce,

#(dofCHDG) = 3NtriNdof·per·fce = (Nfce·bnd + 2Nfce·int)Ndof·per·fce,

with the numbers of faces Nfce, the number of boundary faces Nfce·bnd, the number of interior
faces Nfce·int and the number of triangles Ntri. Let us note that Nfce = Nfce·bnd +Nfce·int and
3Ntri = Nfce·bnd +2Nfce·int. For a scalar field, the numbers of DOFs per triangle and per face
are given respectively by Ndof·per·tri = (p+1)(p+2)/2 and Ndof·per·fce = p+1, where p is the
polynomial degree.

The number of DOFs is obviously far smaller with the hybridizable methods. It is nearly
twice larger with CHDG than with HDG because there are two characteristic variables per
interior face and only one numerical trace. The results would be similar in three dimensions.
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Table 1: Number of degrees of freedom (#dof) and number of non-zero entries (#nnz) in A for the different
DG methods (i.e. standard DG without hybridization, HDG and CHDG).

#dof #nnz

Benchmark 1
DG 18420 734510
HDG 3812 74192
CHDG 7368 114816

Benchmark 2
DG 7260 286703
HDG 1532 27600
CHDG 2904 45824

Benchmark 3
DG 19260 765020
HDG 4012 74512
CHDG 7704 121728

Upper bounds for the numbers of non-zero elements in the global sparse matrix A of the DG,
HDG and CHDG systems are given respectively by

#(nnzDG) ≲ Ntri

(
7N2

dof·per·tri + 54N2
dof·per·fce

)
,

#(nnzHDG) ≲ Nfce

(
5N2

dof·per·fce
)
,

#(nnzCHDG) ≲ Nfce

(
8N2

dof·per·fce
)
.

For the hybridizable methods, the matrix A is obtained after the elimination of the physical
unknowns. These bounds have been computed by using the rough approximation Nfce·bnd ≪
Nfce·int, which is valid only for large benchmarks. Under this approximation, we have

#(nnzCHDG)

#(nnzHDG)
≈ 1.6.

For the matrices of the reference benchmarks with the default parameters, this ratio varies
between 1.54 and 1.66 (see Table 1). For three-dimensional problems with tetrahedral ele-
ments, a similar reasoning leads to a ratio equal to 1.43. Therefore, although there are nearly
twice as many DOFs with CHDG than with HDG, the numbers of non-zero elements is not
increased as much.

4.4 Conditioning of the local matrices

With the hybridizable approaches, the construction of the matrice A, and the application
of A in matrix-free iterative procedures, requires the solution of local element-wise algebraic
systems. For the HDG and CHDG methods, these systems correspond to Problems 2.4
and 2.8, respectively. A bad conditioning of these systems could impact the quality of the
numerical solution, regardless of the solution procedure.

As a preliminary study of the conditioning of the local systems, we first consider an elementary
configuration used in [31]. The local systems are defined on a square element K of side length
h with the lowest polynomial degree, i.e. p = 0. With the HDG method, the local matrix
corresponding to Problems 2.4 with the shape functions ϕ1 = 1, ϕ1 = [1, 0]⊤ and ϕ2 = [0, 1]⊤

reads

Aloc = diag(4h− ıκh2,−ıκh2,−ıκh2)
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Figure 2: Maximum condition number of the local matrices with HDG (red curves) and CHDG (blue curves)
as a function of 1/(κh) for basis functions with polynomial degrees p = 1, 2 and 3.

and the condition number of this matrix is

cond(Aloc) =
√
1 + 16/(κh)2. (4.1)

With the CHDG method, the local matrix corresponding to Problem 2.8 reads

Aloc = diag(2h− ıκh2, h− ıκh2, h− ıκh2)

and the condition number of this matrix is

cond(Aloc) =
√

((κh)2 + 4)/((κh)2 + 1). (4.2)

The condition number of the HDG local matrix is always the largest. In addition, this
matrix becomes ill-conditioned as κh goes to zero, while the CHDG local matrix stays well-
conditioned with cond(Aloc) ≈ 2 for small values of κh. Although this simple setting is not
representative of practical situations, it already highlights the influence of the variables used
in the hybridization on the conditioning of the local matrices.

To continue the study, we consider a non-structured mesh for the unit square Ω = ]0, 1[2.
This mesh is made of 944 triangles with a characteristic length h close to 0.05. The condition
number of the corresponding local element-wise systems is computed for both HDG and
CHDG, with different polynomial degrees p = 1, 2, 3 and different wavenumbers κ.

The maximum condition number is plotted as a function of 1/(κh) on Figure 2 for the different
configurations. We observe that the condition number increases linearly with 1/(κh) in all the
cases, except for CHDG with p = 1. Therefore, refining the mesh for a given wavenumber, or
using a smaller wavenumber with a given mesh, increases the condition number of the local
matrices. Comparing the results with the HDG and CHDG methods for a given polynomial
degree p, we observe that the condition number is always higher with HDG than with CHDG.
Increasing p increases the condition number in all the cases.
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Table 2: Condition number of A for the three benchmarks with the different parameters and the different DG
methods, i.e. standard DG without hybridization, HDG and CHDG.

Benchmark 1 (plane wave) Benchmark 2 (cavity) Benchmark 3 (waveguide)

κ 15π 15π 30π 7.1
√
2π 7.1

√
2π 7.01

√
2π 6π 6π 12π

h 1/16 1/34 1/34 1/10 1/15 1/15 1/8 1/17 1/17
κh 2.95 1.39 2.77 3.15 2.10 2.08 2.36 1.11 2.22
DG 1.84 104 8.23 104 8.23 104 7.26 103 1.63 104 1.63 104 1.92 104 8.23 104 8.23 104

HDG 7.53 103 3.43 104 2.54 104 5.42 104 1.70 105 8.76 104 1.16 105 4.41 105 4.77 105

CHDG 1.07 103 1.86 103 3.41 103 8.45 103 1.38 104 7.67 103 1.03 104 1.96 104 4.54 104

4.5 Conditioning of the global matrices

The condition numbers of the global matrices A corresponding to the standard DG method
and the hybridizable DG methods (HDG and CHDG) are provided in Table 2 for the ref-
erence benchmarks with several sets of parameters. For each benchmark, the first column
corresponds to the default parameters. The third column corresponds to a wavenumber twice
larger (for benchmarks 1 and 3) or closer to a resonance mode (for benchmark 2) with a finer
mesh that provides that same relative error than the default parameters. The second column
corresponds to the default wavenumber with the finer mesh. The condition numbers have
been computed with the function condest in MATLAB.

We observe that the condition number is always smaller with CHDG than with HDG by
approximatively one order of magnitude in nearly all the cases. It is also smaller with CHDG
than with DG without hybridization, except for the cavity benchmark with κ = 7.1

√
2π where

the conditions numbers are close. By contrast, the condition number is smaller with HDG
than with DG for benchmark 1, but using HDG significantly increases the condition number
for benchmarks 2 and 3. For all the methods, the condition number increases by refining the
mesh (second column of each benchmark in Table 2) or using the second wavenumber with
the finer mesh (third column), except for the cavity case with CHDG.

5 Iterative solution procedures

In this section, we study the efficiency of iterative procedures for solving the linear systems
resulting from the DG discretization and the two hybridization strategies. With the CHDG
approach, the fixed-point iterative procedure can be considered thanks to the specific structure
of the gobal matrix, which we analyzed in Section 3. The convergence of the fixed-point
iterative scheme with CHDG is discussed in Section 5.1. The performance of DG, HDG and
CHDG with standard iterative schemes is discussed in Section 5.2.

5.1 Convergence of the fixed-point iterative scheme for CHDG

We consider the algebraic system obtained by using the CHDG approach (Problem 3.2) with
the discretization described in Section 4.1. This CHDG system can be written as

(I−ΠS)g = b,
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Figure 3: Spectrum of the iteration matrix ΠS of the fixed-point iterative scheme for the three benchmarks
with the default parameters and the CHDG method. The unit circle is plotted in red.

where I, Π and S are the identity, exchange and scattering matrices, respectively. As the
operator ΠS is a strict contraction (Corollary 3.6), the spectral radius of ΠS is strictly lower
than 1, i.e. ρ(ΠS) < 1. Therefore, the Richardson iterative scheme applied to this system
shall converge without relaxation (see e.g. [50]). For a given initial guess g(0), the procedure
reads

g(ℓ+1) = ΠSg(ℓ) + b, for ℓ = 0, 1, . . .

If the eigenvalues of the iteration operator are far from the unit disk, this procedure will con-
verge rapidly. As discussed in Section 3.2, this will depend on both the dissipative properties
of the upwind DG scheme and on the physical dissipation in the problem under consideration.

As a preliminary verification, we discuss the eigenvalues of the iteration matrix ΠS and the
spectral radius ρ(ΠS) by using the numerical benchmarks. The eigenvalues of the iteration
matrix are represented on Figure 3 for the three benchmarks with the default parameters.
The values of 1− ρ(ΠS) are given in Table 3 for different sets of parameters. The eigenvalues
and the spectral radius are obtained by using the function eigs in MATLAB.
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Table 3: Spectral radius ρ of the iteration matrix ΠS of the fixed-point iterative scheme for the three bench-
marks with different parameters and the CHDG method.

Benchmark 1 (plane wave) Benchmark 2 (cavity) Benchmark 3 (waveguide)

κ 15π 15π 30π 7.1
√
2π 7.1

√
2π 7.01

√
2π 6π 6π 12π

h 1/16 1/34 1/34 1/10 1/15 1/15 1/8 1/17 1/17
κh 2.95 1.39 2.77 3.15 2.10 2.08 2.36 1.11 2.22

1− ρ(ΠS) 2.9 10−3 7.8 10−5 5.5 10−4 2.8 10−4 1.5 10−5 1.4 10−5 5.5 10−5 2.5 10−6 2.9 10−5

In all the cases, the eigenvalues are strictly inside the unit circle, which is in agreement with
the theoretical result. We shall also observe in the next section that the iterative process
effectively converges. Nevertheless, some eigenvalues are close to the unit circle, so that the
spectral radius is close to one. For every benchmark, we observe that the spectral radius is
closer to one when using a finer mesh (second column of each benchmark in Table 3) or when
using the second wavenumber with the fine mesh (third column).

5.2 Comparison of DG, HDG and CHDG with standard iterative schemes

In practice, the iterative procedures to solve large-scale time-harmonic problems can be rather
sophisticated, because the corresponding algebraic linear systems are generally non-Hermitian
and ill-conditioned. The GMRES (generalized minimal residual) method with restart and
preconditioning strategies is one of the most widely used approach. For the standard version
without restart, the convergence is guaranteed, but the computational cost increases with the
number iterations, both in term of memory storage and floating-point operations. Alternative
Krylov methods are frequently considered, with smaller computational cost per iteration
and smaller memory footprint, but at the price of a larger number of iterations and/or a
convergence that is not always guaranteed.

For the sake of shortness, we only consider three standard iterative schemes to compare the DG
methods: the fixed-point iterative scheme (for CHDG only), the GMRES iteration without
restart and the CGN (conjugate gradient normal) method. The CGN iteration corresponds to
the conjugate gradient method applied to the normal equation, i.e. A∗Ag = A∗b. For a given
initial solution g(0), both GMRES and CGN produce an approximate solution g(ℓ) at step ℓ
that belongs to a certain Krylov subspace and that minimizes the 2-norm of the residual, i.e.
g(ℓ) minimizes f(g) = ∥b−Ag∥2. The approximate solution belongs to g(0)+Kℓ(A, r

(0)) with
GMRES and to g(0) +Kℓ(A

∗A,A∗r(0)) with CGN, where Kℓ is the Krylov subspace of order
ℓ (see e.g. [50]). The convergence rate of the CGN iterative process depends on the condition
number of A. The convergence can be slow if the condition number is large. Nevertheless, we
have observed that the condition number is nearly always smaller with CHDG than with the
other approaches (see Section 4.5).

To study the efficiency of the iterative schemes with the different methods, we consider the
relative error of the physical fields defined as√

∥uh − uref∥2Ω + ∥qh − qref∥2Ω
∥uref∥2Ω + ∥qref∥2Ω

,

where uref and qref correspond to the reference analytical or semi-analytical solution. The
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history of relative error is plotted in Figure 4 for the CGN scheme (lines with marker ◦), the
GMRES scheme (lines with marker •) and the fixed-point iterative scheme in the CHDG case
(lines with marker ×). The results have been obtained for DG without hybridization (green
lines), HDG (red lines) and CHDG (blue lines). The relative error obtained with a direct
solver is indicated by the horizontal dashed line.

First, let us analyze the results obtained with CHDG and fixed-point iterations (blue lines
with marker ×). The following observations can be made:

• For benchmark 1 (plane wave), the convergence of the iterative process is very fast. The
decay of error is slightly slower with the higher wavenumber. Compared to the other
approaches, CHDG with fixed-point iterations provides nearly the fastest convergence.

• By contrast, for benchmark 2 (cavity), the convergence of the fixed-point iterations is
very slow. This can be explained by the fact that this benchmark does not feature any
physical absorption. Therefore, as discussed in Section 3.2, the only source of dissipation
comes from the DG scheme. The decay of error is much slower for the wavenumber closer
to the resonance. Compared to the other methods, this approach provides the slowest
convergence.

• For benchmark 3 (half-open waveguide) with the first set of parameters (Figure 4e), the
relative error decays relatively rapidly during the 500 first iterations, then the decay
slows down dramatically, and the relative error is only about 10−1 at iteration 4,000.
With the higher wavenumber (Figure 4f), the relative error decays more rapidly until
approximatively 10−2 at iteration 4,000.

• The asymptotic regime of convergence has been reached in three cases, and the slopes
of error decay are coherent to the spectral radii obtained in Table 3: ρ = 1 − 2.8 10−4

for Figure 4c, ρ = 1− 1.5 10−5 for Figure 4d, and ρ = 1− 5.5 10−5 for Figure 4e. The
asymptotic regime starts at the beginning of the iterations in the cavity case.

To summarize, the fixed-point iterative process effectively converges for CHDG, but the per-
formance strongly depends on the physical setting. The convergence can be very fast for
purely propagative cases, and very slow for cavity or waveguide cases. In the latter cases, the
asymptotic regime, which can start relatively quickly, is rather slow.

We then discuss the convergence of the CGN and GMRES schemes with the different ap-
proaches, i.e. DG without hybridization, HDG and CHDG. We can make the following com-
ments:

• When using the CGN scheme (lines with marker ◦ on Figure 4), the convergence is
much faster with CHDG than with HDG and DG without hybridization in all the cases.
Comparing the last two approaches, the convergence is faster with HDG than with DG
without hybridization on Figures 4a, 4b and 4c, and the converse is true on Figures 4d,
4e and 4f.

• When using the GMRES scheme (lines with marker • on Figure 4), the fastest conver-
gence is still obtained with CHDG in all the cases, but the convergence is rather close
with HDG for the cavity benchmark (Figures 4c-4d) and the first waveguide benchmark
(Figures 4e). The convergence is generally faster with HDG than with DG without hy-
bridization, but the converse is true for the second waveguide benchmark (Figures 4f).

To summarize, if the problem is solved with either CGN or GMRES, the convergence of
the iterative process is always faster with the CHDG method. Using the standard HDG
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DG – GMRES . HDG – GMRES . CHDG – GMRES . Direct solver .
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(b) Benchmark 1 – κ = 30π – h = 1/34
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(d) Benchmark 2 – κ = (7 + 1/100)
√
2π – h = 1/15

0 500 1,000 1,500 2,000

10−2

10−1

100

Iteration

R
el
a
ti
v
e
er
ro
r

(e) Benchmark 3 – κ = 6π – h = 1/8

0 1,000 2,000 3,000 4,000

10−2

10−1

100

Iteration

R
el
a
ti
v
e
er
ro
rs

(f) Benchmark 3 – κ = 12π – h = 1/17
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Figure 4: Error history for the three benchmarks with different iterative schemes and different DG schemes.
The dashed horizontal lines correspond to the relative errors obtained with a direct solver.
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method generally speeds up the convergence in comparison with the DG method without
hybridization, but the converse is true for several cases.

Finally, let us compare the performance of CGN and GMRES when the CHDG method is
used (blue lines with markers ◦ and • on Figure 4). The convergence is always slightly
faster with GMRES than with CGN, but the difference is not very large. In the worst case
(Figure 4b), the number of iterations to achieve the reference relative error (obtained with the
direct solver) is twice larger with CGN than with GMRES. Considering the computational
cost of GMRES, which increases at each iteration, the CGN is a potential good candidate
for applicative cases. The complete analysis of the runtimes and computational costs, which
depend on the implementation, will be performed in future works

6 Conclusion

In this work, we propose a new hybridization technique, which we call the CHDG method,
for solving time-harmonic problems with upwind DG discretizations. While the auxiliary
unknowns used in the standard hybridization procedure correspond to a Dirichlet trace, the
auxiliary unknowns of the CHDG method correspond to characteristic variables. At the price
of increasing the required memory storage for the reduced linear system, this choice largely
improves the its properties and makes it more suitable for iterative solution procedures.

We study the properties of the local element-wise problems and the global linear systems for
the standard HDG method and the CHDG method. In order to investigate how the original
DG scheme and its hybridized versions interplay with usual iterative solvers, we provide a set
of 2D numerical results where the auxiliary unknowns are discretized with scaled Legendre
basis functions. The key properties of the CHDG may be summarized as follows.

With CHDG, the reduced system can be written in the form (I − ΠS)g = b, where the
operator ΠS is a strict contraction. It can be solved with a fixed-point iteration without
relaxation. This fixed-point iteration converges quickly in open domains, but unfortunately,
the convergence becomes slow when waves are trapped, like in waveguides or cavities.

The memory storage required to store an unknown vector of the reduced system is twice
larger with CHDG than with the standard HDG method. Similarly, the number of non-zero
entries in the CHDG matrix is multiplied by about 1.6 in 2D and 1.4 in 3D as compared to the
HDG matrix, with a similar filling pattern. In return, the condition number of the matrices
of the local element-wise systems is always smaller with CHDG than with the standard HDG
method. Similarly, the condition number of the global reduced matrix is also always smaller
with CHDG than with HDG. It is also smaller than the condition number of the global matrix
of the DG system without hybridization.

For the iterative solution procedure, we have employed the usual GMRES iteration (without
restart) and the CGN iteration. In both cases, the convergence of the iterative process is
always faster with CHDG than with HDG or DG without hybridization. Focusing on the
CHDG system, the number of CGN iterations is always larger than the number of GMRES
iterations, but the difference is rather limited for the benchmarks considered in this article.
Since restart must be employed for GMRES in practice, and since each GMRES iteration is
typically more costly than the corresponding CGN iteration, we believe that CGN may be a
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competitive approach to solve the CHDG system.

Although we focus on 2D benchmarks here, the definition of the method is valid for 3D cases.
Besides, the method is in principle not restricted to scalar problems, and electromagnetic or
elastic waves should be accessible as well because similar DG schemes with upwind fluxes
are already available. In future works, we will investigate in more depth the computational
aspects for solving iteratively 3D cases, high-order transmission conditions, and combinations
with preconditioning techniques and domain decomposition methods to accelerate further the
convergence of the iterative solution procedures.
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