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Abstract

The main purpose of the paper is to uncover the connections between
kriging, energy minimization and properties of the ordinary least squares
and best linear unbiased estimators in the location model with correlated
observations. We emphasize the special role of the constant function and
illustrate our results by several examples.

1 Introduction

The paper makes connections between the following problems: (a) simple and
ordinary kriging with kernel K for prediction of values of a random field indexed
by a set X , (b) energy minimization for K, and (c) parameter estimation with
the Ordinary Least Squares Estimator (OLSE) and the Best Linear Unbiased
Estimator (BLUE) in the location model with observations whose correlation
is defined by K. In Section 2 we consider different versions of kriging, based
on both the OLSE and BLUE. There are no new results in this section but the
view-point towards different aspects of kriging is novel. Section 3 is auxiliary
and summarizes some known properties of energies, potentials and minimum-
energy measures, these properties being used in Section 4. The new results
of Section 3 are emphasized in Examples 1 and 2, which constitute about half
of this section. The most interesting discussions and important contributions
are contained Section 4, where various properties of the OLSE and BLUE are
considered. In Subsection 4.1 we summarize and discuss properties of these
estimators for fixed-size designs while in the rest of Section 4 we concentrate
on their asymptotic properties. An important result, connecting the energy
minimization problem with the asymptotic value of the sequence of variances
of the BLUE, is contained in Corollary 4.1: limn→∞ var(θ̂nBLUE) > 0 if and
only if the constant function on X belongs to the Reproducing Kernel Hilbert
Space (RKHS) generated by the kernel K, and, moreover, this limit is equal to
E ∗K = infµ

∫
X 2 K(x,x′)µ(dx)µ(dx′), where the infimum is taken over the set of

all signed measures on X of total mass 1. Another important theoretical result
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of the paper is contained in subsection 4.5, where we extend some well-known
results of Schoenberg [17] to the general class of so-called reduced kernels.

2 Kriging with the BLUE and OLSE

Consider the location model

y(x) = θ + ε(x), E{ε(x)} = 0, E{ε(x)ε(x′)} = K(x,x′), x,x′ ∈X , (1)

where X is some set and observations y(xj) of y(x) are performed at distinct
points xj of an n-point design Xn = {x1, . . . ,xn} ⊂ X . The kernel K is
assumed to be strictly positive definite (SPD), which means that for any n ∈ N,
the kernel matrix Kn = (K(xi,xj))

n
i,j=1 is SPD (as we assume that Xn contains

no repetitions). We denote kn(·) = [K(x1, ·), . . . ,K(xn, ·)]>.
The construction of best linear predictors of the value of y(x0) at a given

point x0 ∈ X is called “kriging”. Linear predictors of y(x0) have the form
ηn(x0) =

∑n
i=1 wiy(xi) = w>n yn, where wn = (w1, . . . , wn)> is the vector of

weights and yn = [y(x1), . . . , y(xn)]> is the vector of observations. The simpler
case when θ is known (and hence can be assumed to be 0), corresponds to
“simple kriging”; the general case of an unknown θ is called “ordinary kriging”.
In this paper we shall not consider the case of “universal kriging”, where the
mean of the random field y(x) is linearly parameterized, which corresponds to
the situation when y(x) = β>h(x) + ε(x) with h(x) = [h1(x), . . . , hp(x)]> a
vector of p known functions on X and β a vector of unknown parameters in
Rp.

2.1 Simple kriging

In this model, the Mean Squared Prediction Error (MSPE) of a general linear
predictor ηn(x0) = w>n yn is

ρ2n(x0,wn) = E{[ηn(x0)− y(x0)]
2} = K(x0,x0)− 2 w>n kn(x0) + w>nKnwn .

The Best Linear Predictor (BLP) at x0 minimizes ρ2n(x0,wn) in the class of all
linear predictors ηn(x0) = w>n yn and is given by η∗n(x0) = w∗>n yn with

w∗n = w∗n(x0) = K−1n kn(x0) .

Therefore, the BLP is

η∗n(x0) = k>n (x0)K−1n yn . (2)

Its MSPE equals

ρ∗n
2(x0) = ρ2n(x0,w

∗
n) = K(x0,x0)− k>n (x0)K−1n kn(x0) . (3)
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2.2 Ordinary kriging

BLUP. Consider the general model (1). The unbiasedness condition for the
predictor ηn(x0) = w>n yn is E{ηn(x0)} = E{y(x0)} = θ for all θ, which implies
w>n 1n = 1, where 1n = (1, . . . , 1)> ∈ Rn. The Best Linear Unbiased Predictor
(BLUP) at x0 minimizes ρ2n(x0,wn) with respect wn ∈ Rn satisfying w>n 1n = 1.
The Lagrangian of this constrained minimization problem is

L(wn, λn) = w>nKnwn − 2 w>n kn(x0) + 2λn(w>n 1n − 1),

with λn the Lagrange coefficient for the constraint, which gives the stationarity
conditions [

Kn 1n
1>n 0

](
wn

λn

)
=

(
kn(x0)

1

)
. (4)

By direct calculation, the solution of (4) is

ŵn = ŵn(x0) = K−1n kn(x0) +
[1− k>n (x0)K−1n 1n]K−1n 1n

1>nK−1n 1n
. (5)

The place of the BLUE of θ in the BLUP. From (5), we get the following
explicit expression for the BLUP:

η̂n(x0) = θ̂nBLUE + k>n (x0)K−1n (yn − θ̂nBLUE1n) (6)

where

θ̂nBLUE =
1>nK−1n yn

1>nK−1n 1n
.

is the BLUE of θ in the model (1). Indeed, the variance var(θ̂n) of any lin-

ear estimator θ̂n = w>n yn of θ equals w>nKnwn, the unbiasedness constraint

E{θ̂n} = θ for any θ imposes 1>nwn = 1, so that θ̂nBLUE = w>n,BLUEyn with

wn,BLUE =
K−1n 1n

1>nK−1n 1n
= arg min

wn: 1>nwn=1
w>nKnwn . (7)

The variance of θ̂nBLUE equals

var(θ̂nBLUE) = w>n,BLUEKnwn,BLUE = (1>nK−1n 1n)−1 . (8)

In Section 4.1 we shall see that var(θ̂nBLUE) is the energy for K of the minimum-
energy signed measure µ∗n of total mass 1, supported on Xn, µ∗n having weights
wn,BLUE.

Equations (2) and (6) show that we can perceive the BLUP η̂n as the BLP

η∗n applied to model (1) where the unknown θ is replaced by the BLUE θ̂nBLUE.
Also, the BLP η∗n(x0) and the BLUP η̂n(x0) are related by

η̂n(x0) = η∗n(x0) + [1− 1>nw∗n(x0)] θ̂nBLUE . (9)
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Equation (9) shows that η̂n(x) corrects η∗n(x) when 1>nw∗n(x) 6= 1. The MSPE
of η̂n(x0), called the ordinary kriging variance, equals

ρ̂2n(x0) = ρ∗n
2(x0) + [1− 1>nw∗n(x0)]2 var(θ̂nBLUE)

= K(x0,x0)− k>n (x0)K−1n kn(x0) +
(1− k>n (x0)K−1n 1n)2

1>nK−1n 1n
. (10)

Therefore ρ̂2n(x0) ≥ ρ∗n
2(x0) given by (3); this is due to the presence of the

unknown constant mean θ that needs to be estimated.

Use of a reduced kernel. Let us show that expressions of η̂n(x0) and ρ̂2n(x0)
can be simplified by considering a formal modification of the model. Define the
random field ε0(x) = ε(x)− ε(x0); it is centered and has covariance function

R(x,x′) = E{ε0(x)ε0(x′)} = K(x,x′)−K(x,x0)−K(x′,x0) +K(x0,x0) ,

sometimes called the reduction ofK with respect to the delta measure δx0 [16, 6],
or the version of K centered at δx0

[18]. It satisfies R(x,x0) = 0 for all x, and
the kernel matrix Rn with elements {Rn}i,j = R(xi,xj) satisfies

Rn = [In − 1n]

[
Kn kn(x0)

k>n (x0) K(x0,x0)

] [
In
−1>n

]
,

with In the n × n identity matrix. The kernel matrix Rn is strictly positive
definite when the xi are all pairwise different and x0 6∈ Xn. Since we can write
y(x) = θ + ε(x) = θ0 + ε0(x), with θ0 = θ + ε(x0) defining a new unknown
mean parameter, previous expressions for the predictor η̂n(x0) and the kriging
variance ρ̂2n(x0) remain valid when we substitute R for K. Since R(x,x0) = 0
for all x, we obtain

η̂n(x0) =
1>nR−1n yn

1>nR−1n 1n
and ρ̂2n(x0) =

1

1>nR−1n 1n
.

Notice that η̂n(x0) is the BLUE of θ0 and ρ̂2n(x0) is the variance of this estimator.
Reduction of K with respect to a general measure µ is considered in Section 4.5.

Prediction with the OLSE of θ. The OLSE θ̂nOLSE of θ in the model (1) is

simply the empirical mean θ̂nOLSE = ȳn = w>n,OLSEyn, where wn,OLSE = 1n/n.

As 1>nwn,OLSE = 1, θ̂nOLSE is unbiased; its variance equals

var(θ̂nOLSE) = w>n,OLSEKnwn,OLSE =
1

n2
1>nKn1n . (11)

From the Cauchy-Schwarz inequality,

var(θ̂nOLSE)

var(θ̂nBLUE)
=

1

n2
(1>nKn1n)(1>nK−1n 1n) ≥ (1>n 1n)2

n2
= 1 . (12)
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To predict with the OLSE θ̂nOLSE, we apply the simple kriging predictor (2)
to the centered observations y′n = yn− ȳn and then add the empirical mean ȳn
to the predictor η∗n. This yields a predictor having the same form as (6), but

with the OLSE ȳn = θ̂nOLSE substituted for the BLUE θ̂nBLUE:

η̂n,OLSE(x0) = ȳn + k>n (x0)K−1n (yn − ȳn1n) .

The MSPE of η̂n,OLSE(x0) is

ρ̂2n,OLSE(x0) = ρ∗n
2(x0) + [1− 1>nw∗n(x0)]2 var(θ̂nOLSE)

= K(x0,x0)− k>n (x0)K−1n kn(x0) + (1− k>n (x0)K−1n 1n)2
1>nKn1n

n2
,

and (12) implies ρ̂2n,OLSE(x0) ≥ ρ̂2n(x), where ρ̂2n(x) = ρ̂2n,BLUE(x0) is given by

(10). Although var(θ̂nOLSE) may be significantly larger than var(θ̂nBLUE), in prac-
tice ρ̂2n,OLSE(x0) is often only marginally larger than ρ̂2n(x) due to the factor

(1 − k>n (x)K−1n 1n)2, which tend to be small especially for large n. The right
panel of Figure 4 provides an illustration.

The variance var(θ̂nOLSE) correspond in fact to the energy for K of the em-
pirical measure µn = (1/n)

∑n
i=1 δxi on Xn. The notion of energy of a measure

for a kernel K is introduced in the next section.

3 Energy, potentials and minimum-energy mea-
sures

3.1 Energy and MMD

Let X be a compact set in a metric measurable space and K(x,x′) be a kernel;
that is, a symmetric function on X ×X → R. Unless otherwise stated, we
assume that K is uniformly bounded; that is, there exists a constant C such that
|K(x,x′)| ≤ C < ∞ for all x and x′ in X . Let M and M (1) be respectively
the sets of finite signed measures on X and of signed measures on X with total
mass 1. Also, let M+ and M+(1) be the sets of finite positive measures on X
and of probability measures on X , respectively. Note that the set M+(1) is
weakly compact whereas M (1) is not.

For any µ ∈M , the energy of µ is defined as

EK(µ) =

∫
X 2

K(x,x′)µ(dx)µ(dx′) ,

and |EK(µ)| <∞ as K is uniformly bounded.

Definition 3.1. A kernel K is Integrally Positive Definite (IPD) when EK(ν) ≥
0 for any ν ∈ M . It is Integrally Strictly Positive Definite (ISPD) if, in
addition, EK(ν) = 0 implies ν = 0.
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Definition 3.2. A kernel K is Conditionally Integrally Positive Definite (CIPD)
when EK(ν) ≥ 0 for all signed measures ν ∈ M such that ν(X ) = 0. It
is Conditionally Strictly Integrally Positive Definite (CISPD) if, in addition,
EK(ν) = 0 for a ν such that ν(X ) = 0 implies ν = 0. /

If the kernel K is IPD, then EK(µ) ≥ 0 for any µ ∈M . For µ, ν ∈M , we
also define the cross-energy by EK(µ, ν) =

∫
X 2 K(x,x′)µ(dx)ν(dx′) . As the

energies for both measures µ and ν are bounded, the Cauchy-Swartz inequality
implies that the cross-energy EK(µ, ν) is also bounded. If K is IPD or more
generally CIPD, then EK(·) is a convex functional on M (1); if K is CISPD,
then EK(·) is strictly convex on M (1). These properties remain valid without
the assumption that K is uniformly bounded (in particular for singular kernels
such that K(x,x) = +∞), but we must then restrict our attention to measures
with finite energy. In what follows, we assume that K is at least CIPD.

The Maximum Mean Discrepancy (MMD) between two measures µ and ν
in M (1) is

MMD(µ, ν) =
√

EK(µ− ν) .

As we have assumed that K is at least CIPD, MMD(µ, ν) is properly defined
for all µ, ν ∈M (1). If K is CISPD, then K is a characteristic kernel, and the
MMD defines a metric on the space of probability measures M+(1); see [20].

Another important notion is that of potential (kernel imbedding) of a (signed)
measure µ ∈ M , defined by Pµ(x) =

∫
X K(x,x′)µ(dx′). The space of poten-

tials is P = {Pµ(·), µ ∈ M }. We also define P+ = {Pµ(·), µ ∈ M+}, the set
of potentials associated with finite positive measures µ ∈M+.

3.2 Minimum-energy measures: optimality conditions

We denote by µ∗ = arg minµ∈M (1) EK(µ) the minimum-energy signed mea-
sure of total mass 1 (when it exists), and by µ+ = arg minµ∈M+(1) EK(µ) the
minimum-energy probability measure, for a given kernel K. We also denote
E +
K = minµ∈M+(1) EK(µ) = EK(µ+) and E ∗K = infµ∈M (1) EK(µ).

Theorem 3.1. Assume that K is CIPD.

(i) µ+ is a minimum-energy probability measure if and only if Pµ+(x) ≥ E +
K

for all x ∈ X . For any such measure µ+, Pµ+(x) = E +
K on the support

of µ+.

(ii) µ∗ is a minimum-energy signed measure of total mass one if and only if
Pµ∗(x) = E ∗K for all x ∈X .

(iii) There always exists a minimum-energy probability measure µ+, there may
not exist a minimum-energy signed measure µ∗ of total mass one. If K
is CISPD, then µ+ is uniquely defined and µ∗ is uniquely defined when it
exists.
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A noticeable consequence of Theorem 3.1 is that minimum-energy measures
for separable kernels can be deduced from their one-dimensional counterparts.
Indeed, consider a separable (tensor product) kernel K(x,x′) =

∏d
i=1Ki(xi, x

′
i)

on X = X1 × · · · ×Xd, where the Ki are univariate (C)ISPD kernels. Then,

the energy and potential of a product measure µ(dx) =
∏d
i=1 µi(dxi) satisfy

EK(µ) =
∏d
i=1 EKi(µi) and Pµ(x) =

∏d
i=1 Pµi(xi). Theorem 3.1 thus im-

plies that the minimum-energy probability measure µ+
K for K is the product

of the univariate minimum-energy probability measures µ+
Ki

, i.e., µ+
K(dx) =∏d

i=1 µ
+
Ki

(dxi), and if there exists a minimum-energy signed measure µ∗Ki for
Ki on Xi for each i, the minimum-energy signed measure µ∗K for K on X ex-

ists and equals µ∗K(dx) =
∏d
i=1 µ

∗
Ki

(dxi). Moreover, if, for each i, there exists

a minimum-energy signed measure µ∗Ki for Ki on Xi which coincides with µ+
Ki

,
the minimum-energy probability measure for Ki on Xi, then µ∗K for K on X
exists and coincides with µ+

K , the minimum-energy probability measure for K
on X .

For the proof of Theorem 3.1 see [13, Theorems 3.1 and 3.2]. Let 1X denote
constant function 1 on X (i.e., 1X (x) = 1 for all x ∈ X ). Theorem 3.1 has
the following corollary.

Corollary 3.1.

(i) µ∗ exists if and only if 1X ∈ P,

(ii) µ∗ = µ+ if and only if 1X ∈ P+.

Corollary 3.1 raises the importance of the establishing conditions on K such
that (a) 1X ∈ P and (b) 1X ∈ P+. The second condition will be considered in
the next subsection and we will return to condition (a) and its consequences in
Section 4.4; see Corollary 4.1.

3.3 Conditions guaranteeing that µ∗ exists and µ∗ = µ+

In view of Corollary 3.1-(ii), 1X ∈ P+ is equivalent to the existence of a
minimum-energy signed measure µ∗ of mass 1, with µ∗ being a probability
measure. An easy condition guaranteeing this is given in the following property,
which is a simple consequence of Theorem 3.1.

Corollary 3.2. Let µ+ be a minimum-energy probability measure. If µ+ is
supported on the whole set X , then µ+ is also a minimum-energy signed measure
of total mass one.

The proof of the next theorem, provided in [13], is based on the observation
that under the conditions of the theorem, the potential Pµ∗ is subharmonic
outside the support of µ∗. This theorem provides the most general sufficient
condition known to us.
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Theorem 3.2 (see Theorem 3.3 in [13]). Let K be an ISPD and translation in-
variant kernel, with K(x,x′) = Ψ(x−x′) and Ψ continuous, twice differentiable

except at the origin, with Laplacian ∆Ψ(x) =
∑d
i=1 ∂

2Ψ(x)/∂x2i ≥ 0, ∀x 6= 0.
Then there exists a unique minimum-energy signed measure µ∗ of mass 1 and
µ∗ is a probability measure.

Despite its generality, the conditions stated in Theorem 3.2 are rather dis-
appointing. First, when d = 1 they correspond to Ψ(x) being convex for x > 0,
a condition already mentioned in [7]. Second, when d ≥ 2 and Ψ(x − x′) =
ψ(‖x − x′‖), ψ must have a singularity at 0 to have ∆Ψ(x) ≥ 0 for all x 6= 0
(this is the case of Riesz kernels with ψ(t) = t−s when s ∈ [d − 2, d)). Finally,
these conditions are not necessary. As the example below illustrates, it is indeed
easy to construct translation invariant kernels for d = 1 such that Ψ(x) is not
convex for x > 0 but the minimum-energy signed measure µ∗ of mass 1 is a
probability measure.

Example 1. Consider the following linear combination of exponential and
Gaussian kernels: Ψ(x) = exp(−3 |x|/2) + exp(−x2) with X = [0, 1]. Then,
∆Ψ(x) < 0 for x ∈ (a, b) with a ' 0.0978, b ' 0.3534, but µ∗ is a probability
measure: µ∗ = α δ0 + α δ1 + (1− 2α)ξ, with α ' 0.4331 and ξ having a density
ϕ with respect to the Lebesgue measure on X ; see the left panel of Figure 1
for a plot of ϕ(x). The continuous BLUE is given by θ̂∞BLUE =

∫
y(x)µ∗(dx) =

α [y(0) + y(1)] + (1− 2α)
∫ 1

0
y(x)ϕ(x)dx; see Section 4.4.

By modifying the relative weights of the exponential and Gaussian ker-
nels, we can easily create situations where µ∗ exists but is not a probability
measure. The right panel of Figure 1 corresponds to Ψ(x) = exp(−3 |x|/2) +
(3/2) exp(−x2); there µ∗ = α δ0+α δ1+(1−2α)ξ with α ' 0.4893 and ϕ(x) < 0
for x ∈ (c, d), c ' 0.2659, d ' 0.7341. Corollary 3.2 implies that the support
of the minimum-energy probability measure µ+ is strictly included in X (and
indeed numerical computation shows that the density of the continuous compo-
nent of µ+ is zero in the central part of the interval [0, 1]).

For the exponential kernel alone, Ψ(x) = exp(−β|x|), the continuous com-
ponent is the Lebesgue measure µL = U[0,1] on X , and µ∗ = µ+ = (δ0 + δ1 +
β µL)/(β + 2); see [13]. The continuous BLUE is thus

θ̂∞BLUE =
1

β + 2

[
y(0) + y(1) + β

∫ 1

0

y(x)dx

]
.

The weights wn,BLUE defined by (7) are very different for the kernel Ψ(x) =
exp(−3 |x|/2) + exp(−x2) and for the Gaussian kernel Ψ(x) = exp(−x2); Fig-
ure 2 gives an illustration (log-scale) when Xn corresponds to n = 50 points
equally spaced in [0, 1]. Whereas the measure that allocates wn,BLUE to Xn forms
a discrete approximation of µ∗ when Ψ(x) = exp(−3 |x|/2) + exp(−x2), there is
no minimum-energy signed measure of total mass one when Ψ(x) = exp(−x2)
and the (signed) components wi of wn,BLUE have very large magnitudes and
strongly oscillate. /
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Figure 1: Density ϕ(x) of the continuous component of the minimum-energy
signed measure µ∗ on X = [0, 1]. Left: K(x, x′) = exp(−3 |x−x′|/2)+exp(−|x−
x′|2) (µ∗ is a probability measure). Right: K(x, x′) = exp(−3 |x − x′|/2) +
(3/2) exp(−|x− x′|2) (µ∗ is not a probability measure).

Figure 2: Components wi of the BLUE weights (7) for Xn = {(i−1)/(n−1), i =
1, . . . , n} with n = 50. Left: log10 wi when Ψ(x) = exp(−3 |x|/2) + exp(−x2);
Right: sign(wi) log10 |wi| when Ψ(x) = exp(−x2).

In Example 1, when K(x, x′) = Ψ(x− x′) = exp(−β|x− x′|) on X = [0, 1],
the continuous component of µ∗ is uniform on X , but we cannot have µ∗ =
U[0,1] when Ψ(x) is bounded, nonnegative, non-constant, and non-increasing for
x > 0: indeed, simple calculation shows that PµL(0) < PµL(1/2) so that PµL is
not constant on [0, 1]; see Theorem 3.1-(ii).

We formulate the following two conjectures for the case where X is a com-
pact subset of Rd with nonempty interior and K is translation invariant, i.e.,
K(x,x′) = Ψ(x− x′):

C1: For d > 1, µ∗ does not exist unless Ψ has a singularity at zero (see [14]
for properties and regularization of singular kernels).

C2: If Ψ is differentiable at the origin, then µ∗ does not exist.
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According to Corollary 3.1, to prove C2 it would be enough to show that
1X 6∈ P when Ψ is differentiable at the origin. Below we provide a simple
example that supports this conjecture.

Example 2. Consider the Matérn 3/2 kernel on X = [0, 1] with Ψ(x) =
(1 − β|x|) exp(−β|x|). It defines an RKHS on R, which we denote by HR; we
denote by ‖f‖HR the norm of a function f ∈ HR. The restriction of elements of
HR to X defines another RKHS HX , for which the norm is defined by

∀f ∈ HX , ‖f‖HX = min
f0∈HR:f0(x)=f(x), ∀x∈X

‖f0‖HR ,

see [1, Th. 6]. The inclusion 1X ∈ P means that there exists a signed measure
µ ∈M such that 1 = 1X (x) = Pµ(x) for all x ∈X . Consider the function 1X

defined on R by

1X (x) =

 (1− βx) exp(βx) for x ∈ (−∞, 0] ,
1 for x ∈ [0, 1] ,
(1 + β[x− 1]) exp[−β(x− 1)] for x ∈ [1,∞) .

It belongs to HR and coincides with 1X on X (so that 1X ∈ HX ). We then
investigate the possibility that 1X (x) = Pµ(x) =

∫
K(x − x′)µ(dx′) for µ a

measure supported on X . In the Fourier space, this gives 1̂X (ω) = Ψ̂(ω)M̂(ω),

with Ψ̂(ω) = 2
√

2β3/[
√
π(β2 + ω2)2] the Fourier transform of Ψ and M̂ the

Fourier transform of µ. This yields after some calculation

M̂(ω) =
i (β2 − ω2) [exp(−iω)− 1] + 2βω [exp(−iω) + 1]

4βω
,

and then

µ =

√
2π

4β

[
β2µL + 2β(δ0 + δ1) + δ

(1)
0 − δ

(1)
1

]
,

where
∫
R
f(x)δ

(1)
x dx = f ′(x) for any test function f , with f ′ the derivative of f .

Therefore, µ is not a measure, and the situation would be similar for any other
extension 1X of 1X . The (generalized) continuous BLUE of Section 4.4 is

θ̂∞BLUE =
2β [y(0) + y(1)] + β2

∫ 1

0
y(x)dx+ y′(0)− y′(1)

β2 + 2β
,

which involves the first-order derivatives of y. From Corollary 3.2, the non-
existence of a minimum-energy signed measure of total mass 1 implies that the
support of the minimum-energy probability measure µ+ is strictly included in
X . The numerical calculation of µ+ yields µ+ = α δ0 + α δ1 + (1− 2α)ξ, with
α ' 0.146 and ξ having the density shown in Figure 3.

In comparison, when using the same approach for the exponential (Matérn

1/2) kernel for which Ψ(x) = exp(−β|x|) and Ψ̂(ω) =
√

2β/[
√
π(β2 + ω2)], by

10



Figure 3: Density ϕ of the continuous component of the minimum-energy prob-
ability measure µ+ for Ψ(x) = (1− 10 |x|) exp(−10 |x|).

taking 1X (x) = exp(βx) on (−∞, 0], 1 on [0, 1], and exp[−β(x− 1)] on [1,∞),

respectively, we get M̂(ω) = {iβ [exp(−iω)−1] +ω[exp(−iω) + 1]}/(2ω), which
yields µ =

√
2π(δ0 + δ1 + β µL)/2, which is indeed a signed measure.

For smooth kernels, it is the non-existence of the signed measure µ∗ that
causes the strongly oscillating behaviour of the BLUE weights frequently ob-
served in practice: the (generalized) continuous BLUE involves derivatives of
y, the order of which is related to the degree of smoothness of Ψ; see the right
panel of Figure 2. There, as Ψ(x) = exp(−βx2) is infinitely differentiable at the

origin, derivatives of all orders are involved. As 1X 6∈ H(K), var(θ̂nBLUE) → 0
when the sequence of design points x1, x2 . . . is dense in X ; see Section 4.4. /

4 Properties of var(θ̂nOLSE) and var(θ̂nBLUE)

4.1 Fixed-size designs

Let us return to the discussion in Section 2 and consider the variances var(θ̂nOLSE)

and var(θ̂nBLUE) computed for the design Xn = {x1, . . . ,xn}, where the xi are

assumed to be distinct and the kernel K is SPD. In view of (11), var(θ̂nOLSE) can
be written as the energy

var(θ̂nOLSE) =

∫
X 2

K(x,x′)µn(dx)µn(dx′) = EK(µn) (13)

for the empirical probability measure µn assigning weights 1/n to the xi ∈ Xn.

From (7), the discrete BLUE θ̂nBLUE can be written as

θ̂nBLUE =

∫
X

y(x)µ∗n(dx) with µ∗n = arg min
νn

∫
X 2

K(x,x′)νn(dx)νn(dx′),

11



where νn belongs to the set of signed measures of total mass 1 supported on Xn.
The n-point optimal measure µ∗n concentrated on Xn has weights w∗n = wn,BLUE,
and in view of (8),

var(θ̂nBLUE) =

∫
X 2

K(x,x′)µ∗n(dx)µ∗n(dx′) = EK(µ∗n) .

The inequality (12) simply expresses the fact that EK(µ∗n) ≤ EK(µn), which
obviously follows from the definition of µ∗n.

Let λ1 and λn respectively denote the minimum and maximum eigenvalues
of the matrix Kn associated with the design Xn. We then have, for any u ∈ Rn,

u>u ≤ (u>Knu) (u>K−1n u) ≤ 1

4

(√
λ1
λn

+

√
λn
λ1

)2

, (14)

where we use the Cauchy-Schwarz inequality on the left and the Kantorovich
inequality on the right.

Since var(θ̂nBLUE) = 1>nK−1n 1n and var(θ̂nOLSE) = 1>nKn1n/n
2, see (8) and

(11), taking u = 1n in the left inequality, we obtain (12), where there is equality
if and only if 1n is an eigenvector of Kn; that is, Kn1n = λ1n for some λ > 0,
which means that the row (and column) sums of Kn are all identical. For other

(equivalent) characterizations of the equality var(θ̂nBLUE) = var(θ̂nOLSE), see [15,
Sect. 10.2]. The right inequality in (14) coincides with the celebrated upper

bound on var(θ̂nOLSE)/var(θ̂nBLUE) proved independently in [2] and [8]. However,
this upper bound is often rather pessimistic, and a better bound can be obtained
as follows. As EK(·) defines a convex functional on M (1), we have

EK(µ∗n) ≥ EK(µn) + FE (µn, µ
∗
n) ,

where, for any µ and ν in M (1), FE (µ, ν) denotes the directional derivative of
EK(·) at µ in the direction ν; that is,

FE (µ, ν) = lim
α→0+

EK [(1− ε)µ+ αν]− EK(µ)

α
.

Direct calculation gives FE (µ, ν) = 2
∫

X [Pµ(x)− EK(ν)]ν(dx), and thus

EK(µ∗n) ≥ EK(µn) + inf
ν∈M (1)

FE (µn, ν) = 2 inf
x∈X

Pµn(x)− EK(µn) .

Therefore,

var(θ̂nBLUE)

var(θ̂nOLSE)
≥ 2

infx∈X Pµn(x)

EK(µn)
− 1 .

Finally, the squared MMD between µn and µ∗n, with respective weights
wn,OLSE = 1n/n and wn,BLUE given by (7), is

MMD2(µn, µ
∗
n) = (wn,BLUE −wn,OLSE)>Kn(wn,BLUE −wn,OLSE)

= var(θ̂nOLSE)− var(θ̂nBLUE) .

12



4.2 Designs with increasing n

We start with an illustrative example.

Example 3. The left panel of Figure 4 shows the typical behaviour of the
variances var(θ̂nOLSE) and var(θ̂nBLUE) as n increases. In this example, X = [0, 1],
K is the exponential (Matérn 1/2) kernel K(x, x′) = exp(−5 |x − x′|) and the

sequence of designs Xn = {x(n)1 , . . . , x
(n)
n } consists of equidistant points x

(n)
i =

(i − 1)/(n − 1), i = 1, . . . , n. We can see that var(θ̂nBLUE) is monotonically

decreasing with n, whereas the behaviour of var(θ̂nOLSE) is non-monotonic. The

right panel demonstrates that the significantly larger variance of θ̂nOLSE compared

to θ̂nBLUE has little consequence on the prediction errors: the figure shows that
the difference between the integrated MSPEs for both estimators for the uniform
measure, i.e.,

∫
X ρ̂2n,OLSE(x)dx−

∫
X ρ̂2n,BLUE(x)dx, is negligible. Note that the

situation might be different for d > 1 and a design Xn less dense in X . /

Figure 4: Left: var(θ̂nOLSE) and var(θ̂nBLUE) as functions of n. Right: difference

between the integrated MSPEs for θ̂nOLSE and θ̂nBLUE as function of n.

Assume that K is a continuous SPD kernel and that the sequence {µn}
of empirical measures µn associated with the designs Xn = {x(n)

1 , . . . ,x
(n)
n }

(consisting of distinct points x
(n)
i ∈ X ) weakly converges as n → ∞ to some

limiting probability measure µ∞ (not necessarily uniform on X ). We assume
that X is a compact subset of Rd and that the support of µ∞ coincides with X .
In the community of optimal design of experiments, the limiting probability
measure µ∞ would be considered as an “approximate design”. As θ̂nOLSE =∫
y(x)µn(dx) for any Xn, the OLSE for the approximate design µ∞ is θ̂∞OLSE =∫
y(x)µ∞(dx). We will call this OLSE the “continuous OLSE”.

The inspection of Figure 4 suggests the following general questions.

(i) Does the limit limn→∞ var(θ̂nOLSE) exist and what is it?

13



(ii) Is it possible that limn→∞ var(θ̂nOLSE) = limn→∞ var(θ̂nBLUE) = 0?

(iii) Is the non-monotonic behaviour of var(θ̂nOLSE) similar to depicted in Fig-
ure 4 (left) typical?

(iv) Does the limit limn→∞ var(θ̂nBLUE) exist and what is it?

(v) Assuming limn→∞ var(θ̂nBLUE) > 0, what are the conditions guaranteeing

lim
n→∞

var(θ̂nOLSE) = lim
n→∞

var(θ̂nBLUE) ? (15)

We can give (at least partial) answers to all these questions. Let us start
with question (i). Since the probability measures µn weakly converge to µ∞,
the kernel K is continuous and bounded (as it is PD) and X is compact, (13)

gives var(θ̂nOLSE) = EK(µn) → EK(µ∞) = var(θ̂∞OLSE) as n → ∞. As K is PD,
EK(µ∞) ≥ 0. Families of kernels K and measures µ∞ such that EK(µ∞) = 0

are provided in Section 4.5; since var(θ̂nOLSE) ≥ var(θ̂nBLUE) for all n, these families
provide examples where we have an affirmative answer to question (ii).

The non-monotonic behaviour of var(θ̂nOLSE) queried in question (iii) is re-
lated to “Smit’s paradox” (see [9, p. 50]). This paradox is discussed in Sec-
tion 4.3 below. Question (iv) will be addressed in Section 4.4. Finally, con-
cerning (v), the conditions for (15) to hold follow from those mentioned in Sec-

tion 3.3: limn→∞ var(θ̂nOLSE) = limn→∞ var(θ̂nBLUE) if and only if µ∞ = µ+ = µ∗:
that is, the approximate design µ∞ coincides with the minimum-energy prob-
ability measure µ+, which at the same time equals µ∗, the minimum-energy
signed measure of mass one.

4.3 Behaviour of var(θ̂nOLSE) as n increases

Smit’s paradox refers to the non-monotonic behaviour of var(θ̂nOLSE) as shown
in the left panel of Figure 4. It was firstly observed and investigated in [22]
and [19] for a particular class of stationary kernels K(x, x′) = ψ(x − x′) with∫ 1

0
ψ(x)(1 − 2x) dx > 0 in the case of designs formed by equidistant points

in X = [0, 1] of the form (d) below for µ∞ = U[0,1]. At first glance, such

an increase of var(θ̂nOLSE) with n does not look natural, but in fact, when µ∞ 6=
µ+ = arg minµ∈M+(1) EK(µ) then any type of convergence of var(θ̂nOLSE) towards
EK(µ∞) is possible, including the one depicted in Figure 4 (left). Example 4
will give a further illustration.

The following four classes of designs Xn, defined for an arbitrary probability
measure µ∞ ∈M+(1), are often used in practical considerations:

(a) X1 = {x1} with arbitrary x1 ∈ X and Xn+1 = Xn ∪ {xn+1}, where
xn+1 = arg minx MMD2(µn,x, µ∞), where µn,x is the discrete measure
concentrated on the set of n+ 1 points Xn ∪ {x} and assigning the same
weight 1/(n+ 1) to all these points;

14



(b) Xn = {x1, . . . ,xn} are nested designs and the points {x1,x2 . . . , } are
chosen so that the sequence of empirical measures µn corresponding to
designs Xn converges to a probability measure µ∞;

(c) X = [0, 1] and Xn = {x(n)1 , . . . , x
(n)
n }, where x

(n)
j is the (j − 0.5)/n-

quantile of a given probability measure µ∞;

(d) X = [0, 1] and Xn = {x(n)1 , . . . , x
(n)
n }, where x

(n)
j is the (j − 1)/(n − 1)-

quantile of a given probability measure µ∞.

In all four cases, if µ∞ = µ+, then the empirical measures µn of designs
Xn converge to µ+ and therefore var(θ̂nOLSE) = EK(µn) → E +

K . In case (a), the
sequence EK(µn) is monotonously decreasing (with rate at least O([log n]/n),
see, e.g., [12]); in case (b) one should expect small fluctuations on the route to

the limit. In cases (c) and (d) the behaviour of var(θ̂nOLSE) is often monotonic;
however, for kernels such as K(x, x′) = cos2[βπ(x−x′)] or K(x, x′) = max{0, 1−
β|x−x′|} with β > 1, a rather irregular behaviour of var(θ̂nOLSE) may be observed.

Note finally that if θ is estimated by θ̂nOLSE, then the use of any other µ∞ than
µ+ is not optimal, and hence irrational. From this view-point, Smit’s paradox
has little practical significance.

Example 4. We use again the Matérn 1/2 kernel, as in Example 3 but with a

different correlation length. The behaviour of var(θ̂nOLSE) shown in the left panel
of Figure 5 for the two designs (c) and (d) with µ∞ = U[0,1] (6= µ+) is now
much different from that on the left panel of Figure 4. On the right panel the
kernel is K(x, x′) = max{0, 1 − 5 |x − x′|}, and var(θ̂nOLSE) oscillates during its
convergence to EK(µ∞) from below or from above. /

Figure 5: var(θ̂nOLSE) as a function of n for two different designs in [0, 1]: X
(1)
n =

{(i − 1)/(n − 1), i = 1, . . . , n} and X
(2)
n = {(i − 1/2)/n, i = 1, . . . , n}. Left:

K(x, x′) = exp(−|x− x′|); Right: K(x, x′) = max{0, 1− 5 |x− x′|}.
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4.4 Computing limn→∞ var(θ̂nBLUE), continuous BLUE

Consider the one-parameter model

y(xj) = θf(xj) + ε(xj), E{ε(x)} = 0, E{ε(x)ε(x′)} = K(x,x′),

which is a generalization of model (1) to an arbitrary measurable function f (we
have f = 1X in model (1)). As usual, assume that K is SPD so that all kernel
matrices Kn below are invertible and K generates an RKHS, which we denote
by H(K).

Assume that x1,x2 . . . is a dense sequence of distinct points in X and con-
sider the sequence of nested designs Xn = {x1, . . . ,xn}, n = 1, 2 . . . From
the definition of the discrete BLUE, we immediately conclude that the se-
quence of var(θ̂nBLUE) is monotonically decreasing with n. Therefore, the limit

limn→∞ var(θ̂nBLUE) exists and it is a non-negative number. The next theorem
(which is a corollary of Theorem 6C in [10]) gives the value of this limit in case
f ∈ H(K).

Theorem 4.1. f ∈ H(K) if and only if

var(θ̂nBLUE)→ 1/‖f‖H(K) as n→∞. (16)

In our main case, when f = 1X , the result (16) can be explained and

specialized as follows. In view of (7), the n-point BLUE θ̂nBLUE can be written

as θ̂nBLUE =
∫
y(x)µ∗n(dx), where µ∗n is the minimum-energy signed measure of

mass 1 concentrated on Xn and is defined by the vector of weights wn,BLUE.
Let Hn(K) be the RKHS induced by the kernel K on the set Xn. The scalar
product in Hn(K) is defined by 〈a,b〉Hn(K) = a>K−1n b for any a,b ∈ Rn;
see e.g. [11, Sect. 2.3.3]. The restriction of the function 1X to the set Xn

is the vector 1n and therefore (8) implies that the variance of θ̂nBLUE equals

var(θ̂nBLUE) = 1/‖1n‖Hn(K).
Assume that the function 1X belongs to H(K). Then, as this function is

continuous and the sequence of points x1,x2 . . . is dense in X , ‖1n‖Hn(K) →
‖1X ‖H(K) as n→∞, implying (16) for f = 1X . Moreover, if 1X ∈ P and hence
µ∗, the minimum-energy signed measure of mass 1, exists (see Corollary 3.1-(i)),
then the sequence of signed measures µ∗n weakly converges to µ∗. In this case,

we can define the continuous BLUE of θ by θ̂∞BLUE =
∫
y(x)µ∗(dx).

If 1X /∈ P, then µ∗ does not exist and the sequence of signed measures µ∗n
does not have a weak limit (as the set M (1) is not weakly compact, the sequence
{µ∗n} ⊂ M (1) does not necessarily have a convergent subsequence). In some
cases, we can define a generalized continuous BLUE of θ and sometimes write it
as θ̂∞BLUE =

∫
X y(x)φ(x)dx, where φ(x) is a generalized function or distribution

(see e.g. [5]). If φ(·) is a distribution rather than a function, then the expression

θ̂∞BLUE =
∫
y(x)φ(x)dx involves mean-square derivatives of the random field y(x),

which always exist if the kernel K is differentiable at the diagonal; see [3] for
details and references and Example 2 for an illustration.
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Theorem 4.1 in the case f = 1X is also closely related to the minimization
problem EK(µ)→ minµ∈M (1) considered in Section 3.2. If K is IPD, then E ∗K =

infµ∈M+(1) ≥ 0 and the above arguments imply that E ∗K = limn→∞ 1/var(θ̂nBLUE)
and 1X ∈ H(K) if and only if E ∗K > 0.

Summarizing, for the main case of interest here, with f = 1X , we conclude
the following.

Corollary 4.1.

(a) limn→∞ var(θ̂nBLUE) = E ∗K = 1/‖1X ‖H(K).

(b) limn→∞ var(θ̂nBLUE) > 0 if and only if 1X ∈ H(K).

4.5 Reduced kernels

Let K be any (uniformly bounded) kernel and µ ∈M . Then the reduced kernel
Kµ (the reduction of K with respect to µ) is defined by

Kµ(x,x′) = K(x,x′)− PK,µ(x)− PK,µ(x′) + EK(µ) . (17)

In the next theorem, we establish fundamental properties of reduced kernels
showing their specificity. Property (ii) implies, in particular, that MMD2(µ, ν) =
EK(µ − ν) = EKµ(ν) for any µ ∈ M and ν ∈ M (1). A consequence of this is
EKµ(µ) = 0 for any kernel K and any signed measure µ. In particular, if K is
an IPD kernel and µ ∈ M (1), then µ is the minimum-energy signed measure
of mass 1 for Kµ, with E ∗Kµ = EKµ(µ) = 0 implying that the non-zero constant

functions do not belong to the RKHS H(Kµ); see Corollary 4.1-(b). Property
(iii) is a generalization of Schoenberg’s result (see Sect. 3 in [17] and Sect. 9.1 in
[11]) where µ is a delta measure. Properties (iv) and (v) are further extensions
of this result.

Theorem 4.2.

(i) For any µ ∈M and ν ∈M (1), we have [Kµ]ν = Kν .

(ii) For any µ, ξ ∈M , we have

EKµ(ξ) = EK [ξ − ξ(X )µ] = EKµ [ξ − ξ(X )µ] . (18)

(iii) Let µ ∈M (1) be a discrete measure with finite support. Then

K is Conditionally Positive Definite (CPD) if and only if Kµ is PD.

(iv) For any µ ∈M (1), we have:

K is CIPD if and only if Kµ is IPD.

If, moreover, K is CISPD, then µ is the unique minimum-energy signed
measure in M (1) for Kµ.
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(v) Let µ ∈M (1) be a measure with infinite support and K be CISPD. Then
Kµ is SPD.

Proof. (i) We have:

[Kµ]ν (x,x′) = Kµ(x,x′)− PKµ,ν(x)− PKµ,ν(x′) + EKµ(ν) =

[K(x,x′)− PK,µ(x)− PK,µ(x′) + EK(µ)]−
∫

X

Kµ(x, z)ν(dz)

−
∫

X

Kµ(x′, z)ν(dz) +

∫
X 2

Kµ(z, z′)ν(dz)ν(dz′)

= [K(x,x′)− PK,µ(x)− PK,µ(x′) + EK(µ)]

− [PK,ν(x)− PK,µ(x)− EK(µ, ν) + EK(µ)]

− [PK,ν(x′)− PK,µ(x′)− EK(µ, ν) + EK(µ)]

+ [EK(ν)− 2EK(µ, ν) + EK(µ)] = Kν(x,x′) .

(ii) Direct calculation using (17) gives

EKµ(ξ) = EK(ξ)− 2 ξ(X ) EK(µ, ξ) + [ξ(X )]2 EK(µ) = EK [ξ − ξ(X )µ] .

Therefore, EKµ [ξ − ξ(X )µ] = EK [ξ − ξ(X )µ] = EKµ(ξ), which gives (18).

(iii) Let µ =
∑m
i=1 uiδsi with si ∈ X for all i and u>m1m =

∑m
i=1 ui = 1,

where um = (u1, . . . , um)>. Take any n-point design Xn ⊂ X . The corre-
sponding kernel matrix Kµn = [Kµ]n is given by

Kµn = Kn − pK,n(µ)1>n − 1np>K,n(µ) + EK(µ)1n1>n ,

where

pK,n(µ) = [PK,µ(x1), . . . , PK,µ(xn)]> . (19)

We have EK(µ) = u>mKmum and pK,n(µ) = Kn,mum, where Km is the kernel
matrix for the support points si of µ and {Kn,m}i,j = K(xi, sj); i = 1, . . . , n,
j = 1, . . . ,m.

For any zn ∈ Rn, we have

tn = z>nKµnzn = z>nKnzn − 2 (z>n 1n)[z>npK,n(µ)] + (z>n 1n)2EK(µ). (20)

Assume that K is CPD. If z>n 1n = 0, then tn = z>nKnzn ≥ 0. Otherwise,

tn = (z>n 1n)2 [w>n − u>m]

[
Kn Kn,m

K>n,m Km

] [
wn

−um

]
,

where wn = zn/(z
>
n 1n). As 1>nwn − 1>mum = 0 and K is CPD, tn ≥ 0.

Conversely, assume that Kµ is PD. For any zn ∈ Rn such that 1>n zn = 0,
(20) implies z>nKnzn = z>nKµnzn ≥ 0.
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(iv) Assume that K is CIPD. As µ ∈ M (1), for any ξ ∈ M the measure
ξ − ξ(X )µ has total mass zero, and (18) implies that EKµ(ξ) ≥ 0. Conversely,
assume that Kµ is IPD. For any ξ ∈M (0) we have EK(ξ) = EKµ(ξ) ≥ 0.

Assume now that K is CISPD. Take any ξ ∈ M (1). From (18), we have
EKµ(ξ) = EK(ξ − µ) ≥ 0 with equality if and only if ξ = µ, which proves that µ
is the unique minimum-energy signed measure in M (1) for Kµ.

(v) Take any n-point design Xn ⊂ X and any zn ∈ Rn, zn 6= 0n. If
sn = 1>n zn 6= 0, denote ξn = (1/sn)

∑n
i=1 ziδxi ; ξn belongs to M (1), it has

finite support and therefore cannot coincide with µ. This implies z>nKµnzn =
s2nEKµ(ξn) > 0. If sn = 0, denote νn =

∑n
i=1 ziδxi . From (18), we have

z>nKµnzn = EKµ(νn) = EK(νn), which is strictly positive since K is CISPD.

Example 5. The kernel K(x,x′) = −‖x − x′‖ is CPD; for µ = δ0 (the delta
measure at the origin), the associated reduced kernel is Kδ0(x,x′) = ‖x‖ +
‖x′‖ − ‖x − x′‖, i.e., the energy-distance kernel of [21], which is PD (but not
SPD as Kδ0(0,0) = 0). One may refer to [18] for a thorough exposition on
distance-induced kernels and their properties.

We finally make the following observation. Let K be a CI(S)PD kernel
and assume that there exists a minimum-energy signed measure of total mass
one µ∗ (µ∗ is uniquely defined from Theorem 3.1), with infinite support. From
Corollary 3.2, this is the case in particular when the minimum-energy probability
measure µ+ (which always exists) has full support, since then µ∗ = µ+. The
reduced kernel Kµ∗ is thus (S)PD from Theorem 4.2-(v). Since PK,µ∗(x) =
EK(µ∗) for all x ∈ X (see Theorem 3.1), we have, Kµ∗(x,x

′) = K(x,x′) −
EK(µ∗) for any x,x′ ∈ X , implying that K − C is (S)PD for any constant
C ≤ EK(µ∗).

5 Conclusions

We have shown the existing connections between the following problems: krig-
ing for prediction of values of a random field (Section 2), energy minimization
(Section 3), and parameter estimation in the location model with correlated ob-
servations, using the OLSE or the BLUE. As shown in Section 4, the asymptotic
variances of those estimators refer to different energy minimization problems.
It appears that the constant function 1X plays a very important role in our
study. In particular, as outlined in Corollary 4.1, the limiting value of the vari-
ances of the BLUE for a dense sequence of designs is positive if and only if 1X

belongs to the RKHS generated by the kernel K. In Subsection 3.3, we have
formulated two conjectures concerning the existence of µ∗, the minimum energy
signed measure of mass 1. In view of Corollary 3.1-(i), connecting the existence
of µ∗ to the property 1X ∈ P, where P is the space of potentials, these two
conjectures can be reformulated in terms of the constant function 1X , as writ-
ten below. We also add a third conjecture, where the implication “if” has been
established in [4].
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Assume that X is a compact subset of Rd with nonempty interior and that
the kernel K is translation invariant, i.e., K(x,x′) = Ψ(x− x′).

C1′: If Ψ(0) <∞ and d > 1, then 1X /∈ P.
C2′: If Ψ is differentiable at the origin, then 1X /∈ P.
C3: Assume that K is SPD and defines an RKHSH(K), and that the Fourier

transform Ψ̂ of Ψ has no mass at 0; then Ψ̂ is moment-determinant if and only
if 1X /∈ H(K).

Acknowledgments

This work was partly supported by project INDEX (INcremental Design of EX-
periments) ANR-18-CE91-0007 of the French National Research Agency (ANR).

References

[1] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in
Probability and Statistics. Springer, 2011.

[2] P. Bloomfield and G.S. Watson. The inefficiency of least squares.
Biometrika, 62(1):121–128, 1975.

[3] H. Dette, A. Pepelyshev, and A. Zhigljavsky. The BLUE in continuous-
time regression models with correlated errors. The Annals of Statistics,
47(4):1928–1959, 2019.

[4] H. Dette and A. Zhigljavsky. Reproducing kernel hilbert spaces, polynomi-
als and the classical moment problems. arXiv preprint arXiv:2101.11968,
2021.

[5] G. Dijk. Distribution Theory: Convolution, Fourier Transform, and
Laplace Transform. Walter de Gruyter, 2013.

[6] B. Gauthier and L. Pronzato. Convex relaxation for IMSE optimal design in
random field models. Computational Statistics and Data Analysis, 113:375–
394, 2017.
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