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Abstract

The quintic Ornstein-Uhlenbeck volatility model is a stochastic volatility model where the
volatility process is a polynomial function of degree five of a single Ornstein-Uhlenbeck process
with fast mean reversion and large vol-of-vol. The model is able to achieve remarkable joint
fits of the SPX-VIX smiles with only 6 effective parameters and an input curve that allows to
match certain term structures. We provide several practical specifications of the input curve,
study their impact on the joint calibration problem and consider additionally time-dependent
parameters to help achieve better fits for longer maturities going beyond 1 year. Even better,
the model remains very simple and tractable for pricing and calibration: the VIX squared is
again polynomial in the Ornstein-Uhlenbeck process, leading to efficient VIX derivative pricing
by a simple integration against a Gaussian density; simulation of the volatility process is exact;
and pricing SPX products derivatives can be done efficiently and accurately by standard Monte
Carlo techniques with suitable antithetic and control variates.

JEL Classification: G13, C63, G10.

Keywords: SPX and VIX modeling, Stochastic volatility, Pricing, Calibration.

1 Introduction

Since the financial crisis of 2008, derivatives on volatility became increasingly popular for hedging
purposes and for directional trading especially when combined with the underlying stock index. On
the US market, the VIX index introduced by the CBOE became one of the most widely followed
volatility index. By construction, the VIX expresses an interpolation between several points of the
SPX implied volatility term structure. This motivates the need for a consistent modeling of the
SPX and VIX.

By joint SPX–VIX calibration problem, we mean the calibration of a model across several ma-
turities to European call/put options on SPX and VIX together with VIX futures. Such joint
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calibration turns out to be quite challenging for several reasons: multitude of instruments to be
calibrated (SPX/VIX options and VIX futures, so three types of derivatives) across several maturi-
ties (to stay consistent with the construction of the VIX), characterized by an upward sloping VIX
implied volatility in contrast with the important at-the-money (ATM) SPX skew that becomes
more pronounced for smaller maturities.

Several attempts of joint calibration have been made with varying degree of success. However,
in general the models and/or the techniques considered are sophisticated and make use of jump
processes [3, 6, 18, 22, 23]; non-Markovian rough volatility [4, 10, 25] and path-dependent volatility
[16]; multiple-factors [7, 11, 16, 24]; optimal transport [13, 14, 15], randomization of the parameters
[12] and neural SDEs [17] to just name a few. The proposed solutions for the joint calibration
problem are hence rather challenging to put into practice and need specific advanced numerical
methods. This is the main motivation of our work.

Recently, the work of [2] identified for the first time a conventional one-factor Markovian continuous
stochastic volatility model that is capable of achieving remarkable fits for a wide range of maturity
slices of SPX and VIX implied volatilities together with the term structure of VIX futures. It is also
shown on an extensive empirical study between 2012 and 2022, that contrary to common beliefs,
the one factor Markovian model can jointly calibrate SPX and VIX without appealing to multiple-
factors, jumps, rough volatility or path-dependency and can achieve even better performances. In
[2], pricing of VIX and SPX derivatives has been done using quantization techniques and neural
networks in order to ensure a fair comparison between Markovian and non-Markovian models.

In the present work, we focus on the Markovian model identified in [2] and we show that the model is
tractable in addition to being remarkably flexible. The dynamics of the stochastic volatility process
in this model are given by a polynomial function of degree five of a single Ornstein-Uhlenbeck
process with fast mean reversion and large vol-of-vol. Hence the name: quintic Ornstein-Uhlenbeck
volatility model. The model has only 6 effective parameters and an input curve that allows to match
certain term structures. In particular, we will highlight the role of the input curve on the joint
calibration problem: a parametric forward variance curve can be used when calibrating few slices;
if the number of slices is increased then the input curve is first extracted from the forward variance
curve of the market and then tweaked in the calibration process. We also consider additionally
time-dependent parameters to help achieve better fits for longer maturities going beyond 1 year.

We show that the model is tractable as it offers an explicit expression for the VIX squared which
is again polynomial in the driving Ornstein-Uhlenbeck factor, leading to efficient VIX deriva-
tive pricing by integrating directly against a Gaussian density. Simulation of the volatility pro-
cess is exact so that pricing SPX products can be done efficiently and accurately by standard
Monte Carlo techniques with suitable antithetic and control variates. We also provide a note-
book with our implementation here: https://colab.research.google.com/drive/14nh9civ_

wgQv283eshBWnr146w7Xsbi5?usp=sharing.

For the first time in the literature, remarkable joint fits of SPX and VIX volatility surfaces and
VIX futures are achieved between 1 week and beyond 1 year. Although it is challenging, but
possible, for another model to achieve similar fits, it would be very difficult to do so with a simpler
continuous model than our quintic Ornstein-Uhlenbeck volatility model.

Outline. Section 2 introduces the model. Sections 3 and 4 detail the pricing of VIX and SPX
derivatives in the model. Calibration results on market data are shown in Sections 5 and 6.
Appendix A proves the martingality of the underlying process of the model.
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2 The quintic Ornstein-Uhlenbeck volatility model

The dynamics of the stock price S, with no interest nor dividends, is given by

dSt

St
= σtdBt,

σt =
√
ξ0(t)

p(Xt)√
E [p(Xt)2]

, p(x) = α0 + α1x+ α3x
3 + α5x

5,

Xt = εH−1/2

∫ t

0

e−(1/2−H)ε−1(t−s)dWs,

(2.1)

with B = ρW +
√
1− ρ2W⊥, (W,W⊥) a two-dimensional Brownian motion on a risk-neutral

filtered probability space (Ω,F , (Ft)t≥0,Q), ρ ∈ [−1, 1], non-negative coefficients α0, α1, α3, α5 ≥ 0
(α2 = α4 = 0), ε > 0, H ∈ (−∞, 1/2] and an input curve ξ0 ∈ L2([0, T ],R+) for any T > 0,
allowing the model to match certain term-structures observed on the market. For instance, the
normalization

√
E [p(Xt)2] allows ξ0 to match the market forward variance curve since

E
[∫ t

0

σ2
sds

]
=

∫ t

0

ξ0(s)ds, t ≥ 0.

The process X driving the volatility is an Ornstein-Uhlenbeck process with a fast mean reversion
of order (1/2−H)ε−1 and a large vol-of-vol of order εH−1/2 for small values of ε, that is

dXt = −(1/2−H)ε−1Xtdt+ εH−1/2dWt. (2.2)

Such parametrizations are reminiscent of the fast regimes extensively studied by Fouque et al. [9],
see also [8, Section 3.6], which corresponds to the case H = 0. They can also be linked to more
complex models such as jump models [20, 1] for H ≤ −1/2; and rough volatility models [2, 1] for
which H ∈ (0, 1/2) would play the role of the Hurst index. Letting the parameter H ∈ (−∞, 1/2]
free in our model introduces more flexibility and leads to better fits than in the aforementioned
models. Another advantage of such parametrization is to stabilize the calibrated value ofH through
time as opposed to calibrating directly on mean reversion and vol-of-vol parameters which are less
stable through time, see [2, Figure 3].

Taking p a polynomial of degree five allows us to reproduce the upward slope of the VIX smile.
Restricting the coefficients α to be non-negative (with α2 = α4 = 0) ensures the sign of the at-
the-money skew to be the same as ρ, see [2] for more details, as well as ensuring the martingale
property of S, whenever ρ ≤ 0 and α5 > 0, see Appendix A below.

We fix ε = 1/52 to further reduce the parameters, which gives 6 calibratable parameters:

Θ := {α0, α1, α3, α5, ρ,H}, (2.3)

plus the input curve ξ0(·). Numerical experiments show no significant adverse impact on the joint
calibration quality by narrowing the number of parameters.

3 Pricing VIX derivatives

An explicit expression for the VIX. One major advantage of our model is an explicit ex-
pression of the VIX. In continuous time, the VIX can be expressed as

VIX2
T = − 2

∆
E [log(ST+∆/ST ) | FT ]× 1002 =

1002

∆

∫ T+∆

T

ξT (u)du, (3.1)

3



with ∆ = 30 days and ξT (u) := E
[
σ2
u | FT

]
the forward variance process which can be computed

explicitly in our model as follows. First, we fix T ≤ u and rewrite X as

Xu = XT e
−(1/2−H)ε−1(u−T ) + εH−1/2

∫ u

T

e−(1/2−H)ε−1(u−s)dWs =: Zu
T +Gu

T ,

then, setting
g(u) = E[p(Xu)

2],

we have that

ξT (u) = E
[
σ2
u | FT

]
=

ξ0(u)

g(u)
E

( 5∑
k=0

αkX
k
u

)2 ∣∣∣ FT

 =
ξ0(u)

g(u)
E

[
10∑
k=0

(α ∗ α)kXk
u

∣∣∣ FT

]
,

where (α ∗ α)k =
∑k

j=0 αjαk−j is the discrete convolution. Using the Binomial expansion, we can
further develop the expression for ξT (u) in terms of Zu and Gu to get

ξT (u) =
ξ0(u)

g(u)

10∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)(
XT e

−(1/2−H)ε−1(u−T )
)i

E
[
(Gu

T )
k−i
]
, (3.2)

where we used the fact that Zu
T is FT -measurable and that Gu

T is independent of FT , with
(
k
i

)
=

k! /((k−i)! i! ) the binomial coefficient. Furthermore, Gu
T is a Gaussian random variable with mean

0 and variance ε2H

1−2H (1 − e−(1−2H)ε−1(u−T )). Recall that for a Gaussian variable Y ∼ N
(
0, σ2

Y

)
,

its moments E [Y p] for p ∈ N can be computed explicitly:

E [Y p] =

{
0 if p is odd

σp
Y (p− 1)! ! if p is even

with p! ! the double factorial. Therefore all moments of E
[
(Gu

T )
i
]
are given explicitly.

Going back to (3.1) and plugging the expression (3.2), the explicit expression of the VIX2
T turns

out to be polynomial in XT :

VIX2
T =

1002

∆

10∑
k=0

k∑
i=0

(α ∗ α)k
(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
k−i
]
e−(1/2−H)ε−1(u−T )iduXi

T

=
1002

∆

10∑
i=0

10∑
k=i

(
(α ∗ α)k

(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
k−i
]
e−(1/2−H)ε−1(u−T )idu

)
Xi

T

=
1002

∆

10∑
i=0

βiX
i
T , (3.3)

where

βi =

10∑
k=i

(α ∗ α)k
(
k

i

)∫ T+∆

T

ξ0(u)

g(u)
E
[
(Gu

T )
k−i
] (

e−(1/2−H)ε−1(u−T )i
)
du.

The integral inside βi can be easily computed, at least numerically for a variety of choices for ξ0(·).

Pricing VIX derivatives. Thanks to the closed expression of (3.3), VIX2
T is a polynomial in

XT that we denote by h(XT ). Since XT is Gaussian with mean 0 and variance σ2
XT

= ε2H

1−2H (1−
e−(1−2H)ε−1T ), pricing VIX derivatives with payoff function Φ is immediate by integrating directly
against the standard Gaussian density:

E [Φ(VIXT )] = E
[
Φ
(√

h(XT )
)]

=
1√
2π

∫
R
Φ
(√

h (σXT
x)
)
e−x2/2dx. (3.4)
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Example 3.1. To price VIX future prices, set Φ(v) = v and to price VIX vanilla call price, set
Φ(v) = (v−K)+. This integral (3.4) can be computed efficiently using a variety of quadrature tech-
niques. The Gaussian quadrature with 400 nodes seems to be more than enough to price accurately
VIX call and future prices.

4 Pricing SPX derivatives

To price SPX derivatives, we resort to using Monte Carlo simulations. Since X is a Ornstein-
Uhlenbeck process, it can be simulated exactly as opposed to using the Euler scheme which is
often inaccurate in a fast mean reversion regime. To simulate X, first define

X̃t = Xte
1/2−H

ε t = εH−1/2

∫ t

0

e
1/2−H

ε sdWs.

Then, X̃ can be simulated recursively by

X̃ti+1
= X̃ti +

√
ε2H/(1− 2H)

(
e

1−2H
ε ti+1 − e

1−2H
ε ti

)
Yi,

with Yi i.i.d. standard Gaussian. To get back to Xti+1
we just divide X̃ti+1

by e
1/2−H

ε ti+1 . This
setting allows us to easily vectorize computations.

To simulate the process log(S), we use the Euler scheme together with antithetic and control
variates, the so called turbocharging method as outlined in [19]. This means we only need to
simulate the part of log(S) that is FW measurable, we call this SW and can be simulated as

log(SW )ti+1
= log(SW )ti − 1/2 (ρσti)

2
(ti+1 − ti) + ρσti

√
ti+1 − tiYi.

The main idea of the turbocharging method is to 1) take advantage of the conditional log-normality
of S with respect to FW , hence removing the MC error from simulating W⊥, and 2) apply the
control variate in the form of a time option where one can again take advantage of the log-
normality and closed form solution. We refer readers to [19] for more details on the method and
to the notebook mentioned in the introduction for our implementation.

5 SPX/VIX Joint calibration

We now address the SPX-VIX joint calibration problem, that is the calibration of our model to
SPX European options, VIX European options and VIX futures across several maturities. Ideally,
one should calibrate for SPX options maturity up to one month ahead of that of the VIX options,
given that VIX encodes expected level of volatility for the next 30 days by definition.

The calibration of VIX futures is necessary as it is used to calculate VIX implied volatility. Recall
the implied volatility is calculated by inverting the Black and Scholes formula, that is, for a given
call price C0(K,T ) with strike K and maturity T , we find the unique σ(K,T ) such that

C0(K,T ) = F (T )N (d1)−KN (d2)

with

d1 =
log (F (T )/K) + 1

2σ(K,T )2T

σ(K,T )
√
T

, d2 = d1 − σ(K,T )
√
T ,

where N (x) is the cumulative density function of the standard Gaussian distribution and F (T )
denotes the futures price of the index: F (T ) = E [ST ] = S0 for the SPX in our model (2.1) and
F (T ) = E [VIXT ] for the VIX.
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To calibrate our model, we solve the following optimisation problem involving sum of root mean
squared error (RMSE):

min
Θ

{
c1

√∑
i,j

(
σΘ
spx(Ti,Kj)− σmkt

spx (Ti,Kj)
)2

+ c2

√∑
i,j

(
σΘ
vix(Ti,Kj)− σmkt

vix (Ti,Kj)
)2

+ c3

√∑
i

(
FΘ
vix(Ti)− Fmkt

vix (Ti)
)2}

.

Here, σmkt
spx (Ti,Kj), σ

mkt
vix (Ti,Kj) represent market SPX-VIX implied volatility with maturity Ti

and strike Kj . F
mkt
vix (Ti) is the market VIX futures price maturing at Ti. σ

Θ
spx(Ti,Kj), σ

Θ
vix(Ti,Kj)

and FΘ
vix(Ti) represent the same instruments, but coming from our model. The coefficients c1, c2

and c3 are some positive numbers used to assign different weights to the errors in SPX-VIX implied
volatility and VIX futures price. We chose arbitrarily c1 = 1, c2 = 0.1, c3 = 0.5 for our numerical
experiments.

We will now show how our model is well adapted to produce joint fits between SPX/VIX, with
daily SPX/VIX joint implied volatility surface data purchased from the CBOE website https:

//datashop.cboe.com/.

Extracting the forward variance curve ξ0(·). Using the well-known replication formula for
the log-contract in [5], we construct ξ0(·) such that∫ Ti+1

Ti

ξ0(s)ds = 2

(∫ S0

0

P0(K,Ti+1)

K2
dK +

∫ +∞

S0

C0(K,Ti+1)

K2
dK

)
(5.1)

− 2

(∫ S0

0

P0(K,Ti)

K2
dK +

∫ +∞

S0

C0(K,Ti)

K2
dK

)
,

where Ti are SPX option maturities from market data and C0(K,T ) and P0(K,T ) the price of a
call/put option with strike K and maturity T . Since market prices for out of the money call/put
options are not always available, we first interpolate the SPX market implied volatility surface,
each slice separately, using methods like SVI or SABR (after checking for arbitrage), and use the
fitted surface to compute the integral above.

We then approximate ξ0(t) by passing a cubic spline interpolation with nodes (ti, xi) with ti =

(Ti + Ti+1)/2 and xi =
√∫ Ti+1

Ti
ξ0(s)ds and then square the interpolation to ensure positivity of

the forward variance curve. Of course, piece-wise constant between [Ti, Ti+1) can also be used.

During the calibration procedure, we will let the optimisation algorithm move the model parameters
Θ defined in (2.3) and make adjustments to the value of the spline nodes xi as necessary to jointly
fit SPX and VIX derivatives.

Figure 1 shows the joint fit on the 23 October 2017, with calibrated parameters ρ = −0.6843, H =
−0.0358, (α0, α1, α3, α5) = (0.5907, 1, 0.2893, 0.0549):
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Figure 1: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines) jointly
calibrated with our model (full green lines) for 23 October 2017.

The forward variance curve has been adjusted to jointly fit the SPX and VIX smiles as shown in
Figure 2.

Figure 2: The blue line represent the forward variance curve stripped from market data using
Carr-Madan log contract formula in (5.1), the dotted green line is the adjusted forward variance
curve as part of the calibration to jointly fit SPX/VIX smiles on 23 October 2017, with the round
points representing cubic spline nodes.

For more joint surface fits and an empirical study on joint SPX/VIX volatility surface between
2011 and 2022 for our quintic Ornstein-Uhlenbeck model together with its calibrated parameters
across time, we refer the reader to [2].

Using parametric forward variance curves when calibrating fewer slices. Instead of
extracting forward variance curves from market data, it is also possible to use a parametric form
of the forward variance curve for example in the form of:

ξ0(t) = ae−bt + c(1− e−bt), (5.2)

with a, b, c > 0 to be calibrated.

The parametric forward variance curves offers less flexibility than that of extracted market forward
variance curve discussed before given its rigid form. However, it is still capable to fit two maturity
slices of SPX and one slice of VIX. We provide two examples here, with

1. joint fits of SPX options maturing in 9 days and 30 days, and VIX options maturing in 9 days)
using parameters ρ = −0.7316, H = −0.1382, (α0, α1, α3, α5) = (0.8169, 0.274, 0.1717, 0.0036),
a = 0.0084, b = 2.0436, c = 0.0441 shown in Figure 3,
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2. joint fits of SPX options maturing in 53 days and 88 days, and VIX options maturing in 58
days) with parameters ρ = −0.7001, H = 0.141, (α0, α1, α3, α5) = (0.7558, 1, 0.0885, 0.4421),
a = 0.012, b = 2.027, c = 0.033 shown in Figure 4.

Figure 3: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines) jointly
calibrated with our model with the parametric forward variance curve (5.2) for 23 October 2017.

Figure 4: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines) jointly
calibrated with our model with the parametric forward variance curve (5.2) for 23 October 2017.

Using a time dependent H parameter for fitting longer maturities. To fit even longer
maturities beyond 3 and 4 months, we propose to use a time-dependent parametrization of H in
(2.2) in the form of

H(t) = H0e
−κt +H∞(1− e−κt), (5.3)

with H0, H∞, κ > 0 to be calibrated. With this formulation, X remains a Gaussian Ornstein-
Uhlenbeck process with time dependent parameters and can also be simulated exactly. The formula
for VIX2

T remains polynomial in XT similar to (3.3).

Using time dependent parametrization of H, together with minor tweaks to the stripped forward
variance curve using (5.1) and letting the mean reversion speed ε free, we can jointly fit the SPX and
VIX surface beyond 1 year, with up to 8 slices for SPX and 6 slices for VIX as illustrated on Figure 5.
The calibrated parameters are ρ = −0.7466, (α0, α1, α3, α5) = (0, 0.0266, 0.2513, 0.00006), H0 =
0.3176, H∞ = −1.3665, κ = 1.2, ε = 0.1359. Figure 6 shows the forward variance curve ξ0(t) on 23
October 2017 stripped from the market vs. slightly adjusted forward variance as part of the joint
calibration, and Figure 7 shows the value of the calibrated H in (5.3) as function of time.
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Figure 5: SPX–VIX smiles (bid/ask in blue/red) and VIX futures (vertical black lines) jointly
calibrated with our model for time dependent H (full green lines) for 23 October 2017.

Figure 6: The blue line represent the forward variance curve stripped from market data using
Carr-Madan log contract formula as in (5.1), the dotted green line is the adjusted forward variance
curve as part of the calibration to jointly fit SPX/VIX smiles on 23 October 2017, with the round
points representing cubic spline nodes.

Figure 7: Value of H as a function of time as part of the calibration to jointly fit SPX/VIX smiles
on 23 October 2017.

Recommendation on the choice of the forward curve ξ0 and the parameters ε and H
for practical use of the model:
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� parametric ξ0 as in (5.2), fixed ε = 1/52 and constant coefficient H in (2.2) for fits of single
slice of VIX and two slices of SPX,

� tweaked stripped forward curve ξ0, fixed ε = 1/52 and constant H in (2.2) for joint fits on
several maturities up to 3 to 4 months,

� tweaked stripped forward curve ξ0, letting ε free and time-dependent H in (2.2) as in (5.3)
for joint fits on several maturities up to 18 months.

6 Additional graphs

6.1 Evolution of calibrated model parameters

In this section, we plot the evolution of all calibrated model parameters as part of the joint
calibration exercise in [2], where a total of 1,422 days of SPX and VIX joint implied volatility
between 2012 and 2022 were calibrated. All model parameters appears to be stable across time,
which is desirable from a practical point of view.

Figure 8: Evolution of the calibrated parameters from the quintic Ornstein Uhlenbeck volatility
model. The blue line is the actual value of the calibrated parameters, the orange line is the 30-day
moving average.
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6.2 Model calibration error

In this section, we take some of the examples provided in the previous sections and re-calibrate the
quintic Ornstein Uhlenbeck volatility model to a narrower range of moneyness (near the money).
We then plot the absolute calibration error (model implied volatility vs. mid implied volatility
from market data). To facilitate comparison, we plot the absolute calibration error as a multiplier
of half of the bid-ask spread, i.e. (absolute calibration error)/(0.5 × bid-ask spread). A multiplier
of less than 1 means the model implied volatility is within the bid-ask spread of market data.

Figure 9: SPX–VIX implied volatility absolute calibration error as a multiplier of half of the bid-
ask spread for 23 October 2017 using extracted forward variance curves.

Figure 10: SPX–VIX implied volatility absolute calibration error as a multiplier of half of the
bid-ask spread for 23 October 2017 using parametric forward variance curves.

Figure 11: SPX–VIX implied volatility absolute calibration error as a multiplier of half of the
bid-ask spread for 23 October 2017 using parametric forward variance curves.

These graphs show that the absolute calibration error multiplier is largely below 1 (i.e. within the
bid-ask spread), especially around the at the money level for both SPX and VIX smiles.
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A On the martingale property of S

We prove the true martingale property of the stock price S in the quintic Ornstein-Uhlenbeck
volatility model for constant forward variance curves.

Proposition A.1. Fix α5 > 0 and let ξ0 be such that ξ0(t) = ξ2E[p2(Xt)], for all t ≥ 0 for some
constant ξ > 0. If ρ ≤ 0, the process S in (2.1) is a true martingale.

A crucial ingredient for proving Proposition A.1 is the process

S̃ρ
t := exp

(
−1

2

∫ t

0

b2ρ(Xs)ds+

∫ t

0

bρ(Xs)dWs

)
, (A.1)

with
bρ(x) := ρξp(x) = ρξ(α0 + α1x+ α3x

3 + α5x
5).

The martingality of the process S̃ρ plays a crucial role in determining the martingale property of
S in (2.1). We first prove the martingality of S̃ρ.

Lemma A.2. Under the assumptions of Proposition A.1, the process S̃ρ in (A.1) is a true mar-
tingale.

Proof. If ρ = 0, the process S̃ρ is (trivially) a martingale equal to 1. For ρ < 0, we make use
of the general characterization in [21, Theorem 2.1].1 Following the paper’s notation, we set
l = −∞, r = +∞ with x ∈ (l, r) and write the process:

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = 0,

where µ(x) = ax, a ≤ 0 and σ(x) = η, with a = −(1/2 −H)ε−1 and η = εH−1/2. One can easily
check that σ(x) ̸= 0 for all x ∈ R, 1/µ, µ/σ2 and b2ρ/σ

2 are all locally integrable functions, so that

the assumptions of [21, Theorem 2.1] are met. Next, we introduce the auxiliary process X̃:

dX̃t = (µ+ ηbρ)(X̃t)dt+ ηdW̃t,

with its corresponding scale function

s̃(x) =

∫ x

c

p̃(y)dy,

for c ∈ R. We also define the function p̃(y) as:

p̃(y) := exp

(∫ y

c

−2au+ 2ηbρ(u)

η2
du

)
= exp{f(y, c)},

with

f(y, c) = − 1

η2
[
a(y2 − c2) + 2η(Bρ(y)−Bρ(c))

]
,

and Bρ the anti-derivative of bρ:

Bρ(y) = ρξ(α0y +
α1

2
y2 +

α3

4
y4 +

α5

6
y6).

The function y 7→ f(y, c) is a polynomial in y of which the leading term y6 has even power with
positive coefficient since α5 > 0, ξ > 0 and ρ < 0. Therefore,

s̃(+∞) =

∫ +∞

c

p̃(y)dy =

∫ +∞

c

exp{f(y, c)}dy = +∞,

s̃(−∞) = −
∫ c

−∞
p̃(y)dy = −

∫ c

−∞
exp{f(y, c)}dy = −∞,

so that X̃t does not exit the state space (−∞,+∞) at the boundary +∞ and −∞. Applying [21,
Theorem 2.1], which give us that S̃ρ

t is a martingale.
1We are indebted to an anonymous referee for pointing out this reference.
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Proof of Proposition A.1. It follows from (2.1), that S is a local martingale and non-negative, since

St = S0 exp

(
−1

2

∫ t

0

ξ0(u)

E[p2(Xu)]
p2(Xs)du+

∫ t

0

√
ξ0(u)

E[p2(Xu)]
p(Xu)

(
ρdWu +

√
1− ρ2dW⊥

u

))
.

It is therefore a supermartingale by Fatou’s lemma. To show that is a true martingale, it suffices
to argue that E[St] = S0 for any t ∈ R+. For this, we fix t > 0 and we start by getting rid of W⊥,
by conditionning on FW

t , to get

E [St] = S0E
[
exp{−1

2

∫ t

0

ξ2p2(Xs)ds+ ρ

∫ t

0

ξp(Xs)dWs}E
[
exp{

√
1− ρ2

∫ t

0

ξ2p(Xs)dW
⊥
s }

∣∣∣ FW
t

]]
.

Conditional on FW
t , the random variable

∫ t

0
ξp(Xs)dW

⊥
s is a centered Gaussian random variable

with variance
∫ t

0
ξ2p2(Xs)ds, which leads to

E [St] = S0E
[
S̃ρ
t

]
,

with S̃ρ defined in (A.1). From Lemma A.2, S̃ρ is a martingale, which shows that E [St] = S0 and
completes the proof.
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[11] Stéphane Goutte, Amine Ismail, and Huyên Pham. Regime-switching stochastic volatility
model: estimation and calibration to vix options. Applied Mathematical Finance, 24(1):38–
75, 2017.

13



[12] Lech A Grzelak. On randomization of affine diffusion processes with application to pricing of
options on vix and s&p 500. arXiv preprint arXiv:2208.12518, 2022.

[13] Ivan Guo, Gregoire Loeper, Jan Obloj, and Shiyi Wang. Joint modeling and calibration of spx
and vix by optimal transport. SIAM Journal on Financial Mathematics, 13(1):1–31, 2022.

[14] Julien Guyon. The joint s&p 500/vix smile calibration puzzle solved. Risk, April, 2020.

[15] Julien Guyon. Dispersion-constrained martingale schrödinger bridges: Joint entropic calibra-
tion of stochastic volatility models to s&p 500 and vix smiles. Available at SSRN 4165057,
2022.

[16] Julien Guyon and Jordan Lekeufack. Volatility is (mostly) path-dependent. Volatility Is
(Mostly) Path-Dependent (July 27, 2022), 2022.

[17] Julien Guyon and Scander Mustapha. Neural joint s&p 500/vix smile calibration. ssrn, 2022.

[18] Thomas Kokholm and Martin Stisen. Joint pricing of vix and spx options with stochastic
volatility and jump models. The Journal of Risk Finance, 2015.

[19] Ryan McCrickerd and Mikko S Pakkanen. Turbocharging monte carlo pricing for the rough
bergomi model. Quantitative Finance, 18(11):1877–1886, 2018.

[20] Serguei Mechkov. Fast-reversion limit of the heston model. Available at SSRN 2418631, 2015.
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