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Abstract. We consider the Cauchy problem for the velocity-discrete
Boltzmann equations in any dimension. The velocity-discrete Boltzmann
equations can be considered as approximations of the original velocity-
continuous Boltzmann equation. The particles move with velocities in a
given finite set. We prove global in time existence of mild solutions to
the Cauchy problem for initial data with finite mass, entropy and entropy
production. The proof is based on the introduction of sets of particular
characteristics and a new strong compactness property of the integrated
collision frequency. The sets of particular characteristics are constructed
in order that the density and its associated collision frequency are bounded
from above. Their complements are of arbitrarily small measure. The strong
compactness property of the integrated collision frequency is based on the
Kolmogorov-Riesz theorem. This replaces the compactness of velocity av-
erages in the continuous velocity case, not available when the velocities are
discrete.

1 Introduction.

The Boltzmann equation is a fundamental mathematical model in the ki-
netic theory of gases. Replacing its continuum of velocities with a discrete
set of velocites is a simplification preserving the essential features of free
flow and quadratic collision term. Besides this fundamental aspect they can
approximate the Boltzmann equation with any given accuracy [9], and are
thereby useful for approximations and numerics. In the quantum realm the



discrete Boltzmann equation can also be more directly connected to micro-
scopic quasi/particle models.

A velocity-discrete model of a kinetic gas in R? is a system of partial differ-
ential equations having the form,

(at+vlvz>fZ:QZ(f7f)’ 1<:<p,

where f = (fi)i<i<p and f; = fi(t, z) are the phase space densities at time
t, position z, at given velocities v; € R%, 1 < i < p. The collision operator
Q = (Qi)1<i<p with gain part Q*, loss part Q~, and collision frequency v,
is given by

p
Qif, 1) =Qf (£, H=Qi (£,1), Q)= D T5 mfs

Jm,q=1
P
Jm,q=1
The collision coefficients satisfy
I‘Zq = F;;.‘q =17, >0, I‘Z =0. (1.1)

isi i ™1 is non-zero, then the conservation laws for mo-
If a collision coefficient L' ,
mentum and energy,

Vi + U = U + g, |vi|2 + |Uj|2 = |vm|2 + |vq|2, (1.2)

are satisfied. The velocity-discrete model is called normal [12] if any solution
of the equations

U (vi) + W (v)) = ¥(vm) + ¥(vy),

where the indices (7, j;m,q) take all possible values satisfying I‘;?q > 0, is
given by

U(v) =a+b-v+clv]?, for some constants (a,b,c) € R x R? x R.
The paper studies the Cauchy problem in the torus T¢ of R¢, i.e.

(8t+vlv2)f7«(t7z> :Ql(faf)(tvz)a t>07 ZGTd,
£i(0,2) = foi(z), =ze€TY, (1.4)



for a given initial datum fy. Solutions are considered in L! in one of the
following equivalent forms;
the exponential multiplier form,

fi (ta Z) = fOi(Z — tvi)e_ f?t vi (f)(t+s,24sv;)ds
0
+ / QF(f, [)(t+ s,z + sv;)e” J? vi(£)(trztrodr g
—t
aa. t>0, zeT? 1<i<p, (L)

the mild form,

0
fi(t,z) = foi(z — tvy) + /_t Qi(f, )t + s,z + sv;)ds,

aa. t>0, zeT? 1<i<p, (1.6)
the renormalized form [14],
(O +v; - Vo) In(1+ fi) = Qli(_{’;)v fi(0,) = foi, 1<i<p, (1.7)

in the sense of distributions.

For any T > 0, denote by L! ([0,7] x T%) the set of space-periodic non-
negative integrable functions. The main result of the present paper is

Theorem 1.1
Consider a non-negative initial value fy, with mass, entropy and entropy
production bounded,

/Td fOi(l +In fgl)(z)dz <cy, 1<i< D, (1.8)
p foifo;

> T0(foifoj — fomfog) In foZ 2 (2)dz < co, (1.9)
irjmg=1 om Jfog

for some cog > 0. For any T > 0 there exists a mild solution in
(LX([0,T) x T%))? to the Cauchy problem (1.3)-(1.4).

A general frame for velocity-discrete models of the Boltzmann equation has
been developped in [15] and [11]. Contrary to the velocity-continuous Boltz-
mann equation, there was up to now no global in time existence results



for the Cauchy problem of general velocity-discrete models. Existence and
uniqueness of global solutions to the Cauchy problem with small initial data
is proven in [10]. Convergence of two particular velocity-discrete schemes
to the Boltzmann equation is proven in [19]. Most mathematical results
for velocity-discrete models of the Boltzmann equation have been obtained
for specific models like the Carleman or Broadwell models, or in one space
dimension. An overview is given in [16]. Half-space problems [4] and weak
shock waves [5] for discrete velocity models have also been studied. A dis-
cussion of normal discrete velocity models can be found in [7]. In two dimen-
sions, special classes of solutions to the Broadwell model are given in [6], [§]
and [17]. In [13] the existence of continuous solutions to the two-dimensional
stationary Broadwell model in a rectangle for continuous boundary data is
proven. The paper [1] solves that problem in an L!-setting. Existence of
stationary solutions to the general velocity-discrete Boltzmann equation in
the plane is proven in [2]-[3].

The proof of Theorem 1.1 starts with a priori-estimates for (1.3)-(1.4) and
the control of mass, energy and entropy. The recourse to renormalized solu-
tions is classical [14]. After having constructed approximate solutions to the
problem, a compactness argument in the strong L' topology is required in
order to pass to the limit in the collision terms. Averaging lemmas as for the
continuous velocity Boltzmann equation can not be used when there is only
a finite number of velocities. Instead, we prove a weaker result, still relevant
for our purpose, i.e. the strong L'-compactness of the collision frequency
integrated along appropriate characteristics. Compactness is proven using
the Kolmogorov-Riesz theorem [18], [20]. Compared to the proofs in the sta-
tionary frame in the plane [2]-[3] where the same compactness is used, with
the two directions of two interacting velocities, a supplementary argument
has to be introduced in order to deal with the d—1 supplementary directions
that are involved. This is performed using the geometric properties of the
problem. The present approximation scheme has strongly converging inte-
grated collision frequency and weak convergence of the gain term. Together
they imply that the weak limit of the gain term equals the gain term of the
weak limit.

Approximations for bounded collision operators are constructed in Section
2. Some of their properties are studied in Section 3. ’Good’ i-characteristics
are stressed here where the i*" component of the phase density and its as-
sociated collision frequency are bounded from above. The complement is
of arbitrarily small measure. Section 4 is devoted to the proof of the key
lemma stating the L' compactness of the collision frequency integrated along



characteristics. The passage to the limit in the equations satisfied by the
approximations is performed in Section 5.

2 Approximations.

All along the paper, ¢y will denote constants only depending on fy. Let

u F, F,
k _ nk+ _ nk— k+ _ mq m q
Q" =Q" -Q", Qf(F )= > T} e
jm,q—l k
_ Fj
Q¥ (F,F) = Fyu(F), Z I E I
Jm,q=1 ?)( ?)

Lemma 2.1
For every k € N*, there is a unique solution F* € (L'.([0,T] x T%))"

OFF 4+ v; - V. FF = QF(F*, FF), (2.1)
Ff0,) = fy, 1<i<p. (2.2)

Proof of Lemma 2.1
Denote by a A b the minimum of two real numbers a and b. Denote by

fE=foink, 1<i<p.

Let S be the map defined on (L1 ([0,7] x T4)? by S(f) = F, where F =
(F)i<i<p is the solution of

p
(0 +vi - V.)Fy = Z r’.’?q( Fm fo B J ) (2.3)

) Fy Fi
= T+ fppfe 14l d

Fi(0,7) = fi. (2.4)

F = S(f) can be obtained as the limit in (L1 ([0, 7] x T%))” of the sequence
(F™)pen defined by F° = 0 and

p n " ’
(8t+7)i‘vz)f7in+1: Z I“m‘I<1Fm fq F+1 f] )

" 25)
an+1(07 ) = f(l)cz ) n € N. (2'6)



F™*1 can be written in the following exponential form,

F"'H(t7 z) = fOz z— tvz)e ] m,q (1 +

(t+ s,z + sv)
/tl—l— ’”1—|—f" '

fi ,
_ZI‘ / F.”( %)(t+r,z+rvz)dr

e Jim,g

(t+ s,z + sv;)ds

1+ff)

Jm,q 1

ds, 1<i<np.

(2.7)
The sequence (F™),¢n is monotone. Indeed, by the exponential form of F}l,
F)<F', 1<i<p

It F* < Fi’”l, 1 < i < p, then it follows from the exponential form that
Fi"+1 < Fl.”“. Moreover,

p n n+1
Z 8t + v - Fn+1 Z qu F Fm ) fq < 07
=1

F"L fq
Jim,q=1 1+ %

so that

- n+1 dz k.z ;
;/TdFi (t, 2)d S;/Tdfm( )dz, te€[0,T]. (2.8)

By the monotone convergence theorem, (F"),en converges in

(L'([0,T] x T%))" to a solution F of (2.3)-(2.4). The solution of (2.3)-(2.4)
is unique in the set of non-negative functions. Indeed, let G = (G;)1<i<p be
a non-negative solution of (2.3)-(2.4). By induction it holds that

VneN, F'<G;, 1<i<p, (2.9)

where (2.9) holds for n = 0, since G; > 0, 1 <7 < p. Assume (2.9) holds for
n. Using the exponential form of F;"*! implies F;"™! < G;. Consequently,

F<G;, 1<i<p (2.10)

Moreover, subtracting the partial differential equations satisfied by G; from
the partial differential equations satisfied by F;, 1 < i < p, and integrating



the resulting equation on [0,7] x T¢, it results

zp: (G, — F;)(t,z)dz=0, tel0,T]. (2.11)
— Jd

It follows from (2.10)-(2.11) that G = F.

The map S is a contraction in (L'([0, T3] x T%))? for a small enough time
T only depending on k. Hence by a Banach fixed point theorem, there is a
unique fixed point for S in (L1 ([0, T1]x Td))p . The procedure can be repeated
on [Ty, 2T], ..., which gives a solution F' to (2.1)-(2.2) in (L(0,7] x T%))".

|
3 Properties of the approximations
k
Denote by FF = Fsz :
1+
Lemma 3.1
Mass and energy are conserved by F*.
A variant Z/ Fk In .7-"’“ z)dz of entropy, and entropy dissipation
p F J—_'k
D7 FEFY — FF FRY In =2 (¢, 2)dtdz, (3.1)
o 2o, T T =R E 5

are uniformly bounded. (F¥)pen+ is weakly compact in L.

Proof of Lemma 3.1.
The conservations of mass and energy are straightforward. Denote (3.1)

k
by DF. Multiply (2.1) with In —4r, add the equations in i, integrate the
1450

resulting equation on [0,¢] x T¢ and use (1.8). Hence

p k k

F! F!
Z/ (Fk In FF — k(1 + =2)In(1 + —Z))(t, 2)dz
i—1 Td k k

k Tk
/ Z qu ]_—Ichk ]:k]:k)] i ]: <c¢y, te]0,T].
[0,t] x T4 ]:k]:k - ’

tjmq




This implies the uniform boundedness of (Dy)xen+. Moreover,

FE
k‘/ In(1+4+ =%)(t, 2)dz < FF(t,2)dz < «p.
Td ]{3 Td

Hence

p k

F!
Z/Td FFln 1 Lt 2)dz < e, t€[0,T]. (3.2)
i=1 + =

And so,

p
/ FFInFF(t, 2)dz
i1 Y 2€THFE(t,2)<k

k
+ln/ FF(t,2)(t,2) < co, te€]0,T].
2 Z2€THFF (t,2)>k

Together with the uniform boundedness of its mass, it implies the weak L'
compactness of (F¥)gen-. |

For any ¢ € {1, - -,p}, denote by I; the subset of {1,---,p} such that
j € I; if and only if there is F;'J?q > 0 for some (m,q) € {1,---,p}>.

Lemma 3.2
Let T > 0 be given. For every e > 0, there is a subset Qf’E of measure
smaller than coe of i-characteristics of [0,T] x T¢,

{(t+s,z4+sv;); (t,2) €[0,T], xT? s e [—t, T —t]},

such that

1 1
FE(t+ 5,2+ sv;) < = exp(2), (3.3)
€ €

Tt
1
and /t Ff(t+ 8,z + sv;)ds < - (t+s,z4+sv) ¢ QO jeJ.
(3.4)

Proof of Lemma 3.2.
It follows from

d s
?Ek(t s, 2+ svi)efo vE(F®) (t+r,z+10v;)dr >0, sc [—t,O], 5 de
S



that

T—t
Z e /t F}k(t+r,z+rvi)dr
FF(t+s,2+ sv;) < FF(T, 2 + (T — t)v;)edma 7

tel0,T], zeT¢ se[-t,T—t.

The bound [, F(T,Z)dZ < cy implies that the measure of the set A of
7 € T4 such that FNT,Z) > % is smaller than cge. Consequently

| {(t,2) €[0,T] x T% 2+ (T — t)v; € A} |< cpe.
Analogously, f[o T)xT4 Ff(r, 2)dzdr < ¢p, j € J;, implies

T—t
1
| {(t,2) € [0,T] x Td;/ Ff(t—l—r,z + rv;)dr > g} |< coe.

—t

The lemma follows. ]
Denote by
X the characteristic function of the complement of Q. (3.5)

4 Compactness of the collision frequency integrated
along characteristics.

Lemma 4.1

For everyi € {1,---, p}, the integrated collision frequency sequence associated
to Fl-k,

0
k
> (/ (DTN FF(t+s,2+ svi)ds) e
is compact in L.

Proof of Lemma 4.1.
Let i € {1,---,p}. Equation (1.3) can be rewritten as

(at + (Un - Ui) : vz)fn(t,z+tvl) = Qn(fa f)(t,Z +tU0)7 1 S n S D,

Consider (v, — v;)1<n<p as the set of interacting velocities, and
(falt, z+tv¢))1<n<p as the new unknown. It satisfies (1.3). Moreover, v; = 0

9



and 0y f; = Qi(f, f)- 0
Let j € J;. Let us prove the L' compactness of (f,t F]k(t +s, Z)ds)keN*'

The uniform equi-integrability of (fft Ff (t+s,2)ds)ken+ in the (1,0) direc-
tion is straightforward. Its uniform equi-integrability in the (1, v;) direction
is proven using the solution formula for F]k . Indeed, by the weak L' com-

pactness of (F*)pen-, it is sufficient to prove the uniform equi-integrability
of (f?t X?‘Ff“(t + s,2)ds) jen for € small enough. Moreover,

0
/t ((X;?’eFf)(t + s+ h,z+ hvj) — (X?‘Ff)(t +s,2))ds

0 h
—/ / (X?le(Fk,Fk))(t—i-s—i-r,z—i—rvj)dr ds, (4.1)
~tJo

so that, by the uniform boundedness of (3.1), and (3.3),
0
/‘/ ((X?’EFJk)(t + s+ h,z+ hvj) — (Xf’EF]k)(t + s, z))ds|dtdz
—t

c cAet 0 rh
<+ // / Ff(t—f—s—kr,z—f—rvj)drdsdtdz
—tJO

InA €
1
c chAee
< — . 4.2
~ InA + € (42)
Choosing A large enough, then h small enough closes the argument.
Complete v; by uy, - - -, ug_1 so that (vj,u1,- -, us_1) be a basis of R The

proof of Lemma 4.1 will be closed by proving the uniform equi-integrability
of (f?t ij(t + s,z)ds)keN* in the (0,u,) directions, 1 < n < d—1. Let
u € {uy,- -, uqg—1}. It is sufficient to prove the uniform equi-integrability
of (fi)t (X?‘Ff)(t + 5,2)ds), . i the (0,u) direction. Using the solution
formula for Ff ,

0
/ (X;?’EFJk(t + 8,2+ hu) — x?’eFf(t + s, z))ds

0
= /t (X;?’efé“j(z + hu — (t + s)v;) — X?’Efé“j(z —(t+ s)vj))ds

L R L S RGN ) (43)
Th(t,2) T(t,2)
where T (t, z) (resp. Tj(t,z)) are the triangles defined by
T(t,z) ={(t+s+rz+rv5); se[-t0, rel[-t—s0]},
(resp. Th(t,2) = {(t + s+ r,z +rv; + hu); s € [-t,0], r € [-t — 5,0]}).

10



When integrated with respect to (¢, z) € [0, T] x €2, the absolute value of the
second line of (4.3) tends to zero with h.

Let A(t,z), C(0,2), D(0, z + tv;) be the vertices of T (¢, 2), and
B(t,z+ hu), E(0,z + hu), F(0, z 4+ tvj + hu) be the vertices of Tj(t, 2).

Denote by Dy, the trapezoidal volume between T (¢, z) and Ty (t, z) connected
by the segments [A, B], [C, E] and [D, F].

Consider the (1,u) characteristics starting at 7 (¢, z). T (¢, z) splits into
T(t, Z) = Ah U (T(t, Z) \ Ah), (4.4)

where the forward in time (1,u) characteristics starting at Ap cross
ABFD before reaching Ty(t,z). Denote by Aj, the intersection of these
forward (1,u) characteristics with ABFD. Tp(t, z) splits into

Th(t, 2) = A, U (Th(t, 2) \ 4},), (4.5)

where the backward in time (1, u) characteristics starting at A} cross CDFE
before reaching 7 (t,z). Denote by Ay the intersection of these backward
(1,u) characteristics with CDFE. It holds that

[kt - [ Qi
Tr(t,2)

T (t,2)

= [+ [ Qi+ [ Qb Y
Th(t,2)\ A}, A Ap

h

h

([ [ QP+ [ Qi FY)
T(t,z) Ap,o

S RGO R VA
h

Ano

_/Ah Xf’EQf(F":,F"”H/Ah’O X QSIS 15)- (4.6)

11

An,o

XEQE(fE 15



Here the formal derivative ds which is removed in (4.10) can be made rigor-
ous by inserting a mollifier.
Consider the (1, —u) characteristics starting at 7 (¢, z). T (t, z) splits into

T(t,2) = Bno U (T (% 2) \ Buo), (4.7)

where the forward in time (1, —u) characteristics starting at By, cross CDFE
before reaching 7 (t,2). Denote by B o the intersection of these (1, —u)
characteristics with CDFE. Tp(t, z) splits into

Tn(t,z) = B, U (T (t,2)\ By), (4.8)

where the backward in time (1, —u) characteristics starting at Bj cross
ABFD before reaching 7 (¢,z). Denote by By, the intersection of these
backward (1, —u) characteristics with ABF D. It holds that

X;C’EQ?(FIC’F]C) - X?eQﬁj(FkaFk)
T(t:2)

S
z

)

Il
T

Tn(t,2)\Bj, B, Bh,o

/N

k7 k7
GQUEE PN + [ Qi P

By,

|
o

h,0

Jo, 4

/D (0 QE(F®, 7)) — - V. (( Q™ 1)

h

)

/ QU+ [ QY. (4.9)
By

12

QU+ [ Q[ Qi P

0, (X QY (F*, F¥))(t + s, 2 — su)) —/B xf’EQﬁ(fé,fé“H/B

K, k, k,
/ QR+ [ QRN+ [ Qi )
T (t,2)\Bh,o0 By, B o

XGQ(FFFY)



Adding (4.6) and (4.9) implies that

*\s

QY = [ Qb P
(t,z) T(t,2)

_/ O (X QE(F*, FrY)
D

h

1 ke k ok ke Ak k k
wa(= [ Qe s e p

h

- QU - / Q)

= [ QiR - [ bt P

ABFD CDFE
1
+2<—/ x?’ng(ijFk)Jr/ XSQE(F*, FF)
Ap B,
ke ke
b [ - [ @b ). (4.10)
Ah,O Bh,O
Moreover,
lim// X5 CQE(F, FY)|dtdz = 0 (4.11)
h—0 ABFD

by the weak L' compactness of ( Qik(F k F*))ken. Analogously,

I PQE(FR, Y dtdz =

and

i 1] Qi lardz —o.
h—0 Ap,0UBh o

This proves the uniform equi-integrability of (fft Ff (t+s, Z)ds)keN* in the
(0, u) direction. Hence there is translational equi-continuity of
(fft F]k(t + 8, 2)ds)gen, j € J;. This closes the proof of Lemma 4.1. ]

13



5 Passage to the limit

Denote by f the weak L' limit when k — +00 of (F*)ren+ up to a subse-
quence. Denote by F¢ (vesp. f§) the weak L' limit of (x®F*).ens (resp.
(x*€ f¥)ken+) up to a subsequence.

Lemma 5.1
For any (8 €]0,1[, there is a subset wg = (w;)1<i<p of ([O, T) x']I‘d)p consisting
of characteristics {(s, z + sv;); s € [0,T]}, with |w;| < B, such that

1
filt +s,2+sv;) < —ef, (t,z) ¢wg, se[-t,T—t], 1 <i<p. (5.1)

™| o

Proof of Lemma 5.1
Let 1 <4 <pand 8 > 0. Passing to the limit when k — 400 in

Xf’EFf(t + 8,2 + sv;)
< XPFN(T, 2+ (T — tyop)es "2 [ A EO et =t
(t,2) € [0,T] x T¢, s€[-t,T —1t], (5.2)

and taking into account that by Lemma 4.1 ( tT VE(ER)(r, z+(r—t)v;)ds)

is a strongly convergent sequence in L', it holds that

keN*

FE(t+ 8,2+ s03) < FS(T, 2 + (T — tyvg)el nDra+r=twdds (5 3

It follows from f[o 7yxra Vil f) (¢, 2)dzdt < co that

T C
{62 € T T [ n(f)z+ (= o > ) 1< 5.

Consequently there is some subset w;1 of [0, 7] x T¢ of measure smaller than
g such that

Fe(t,2) < ePFA(T, 2+ (T — t)vy), (t,2) ¢ wir. (5.4)

Passing to the limit in (5.4) when e — 0 by monotonicity arguments, implies
that

filt,2) < el fi(T, 2+ (T —t)vy), (¢,2) & wir. (5.5)

14



Hence there is w2 C [0, T] x T¢ of measure smaller than g such that

es, (t,2) & wit Uwio. (5.6)

Define w; as w; = wj1 Uwje and w = (w;)1<i<p- [ |

Denote by x s the characteristic function of the complement of wg.

Take a test function ¢ € C1([0,T] x T9).

Proving that f is a mild solution to (1.3)-(1.4) is equivalent to proving that
for 5 > 0,

/Xﬁiwfz‘(t, 2)dtdz — /xgﬂp(O, 2 — tv;) foi(z — tv;)dtdz
0

- / (/ Ji (00 +vi - Vo) (xit0) (t + 5, 2 + svi)ds)dtdz
—t

0
= / (/ xpi Qi(f, f)(t + s,z + svi)ds)dtdz, 1<i<p. (5.7)
—t

Lemma 5.2
The weak L limit f of a subsequence of (F¥)pen+ is a mild solution to the
Cauchy problem (1.3)-(1.4).

Proof of Lemma 5.2.
Fik satisfies the equation

/ XX Ff(t, 2)dtdz — / XX (0, 2 — tv;) f (2 — t;)dtdz
0
- / (/ Xf’er‘k (O +vi - V) (xgi)(t + 5,2 + svi)ds)dtdz
—t
0
= / (/ XaX,QE(F*, F*)(t + 5,2 + sv;)ds)dtdz. (5.8)
—t

Passing to the limit when & — 400 in the two first lines of (5.8) is straight-
forward. Their limit is

/X,ngf(t, z)dtdz — /X6i¢(0, z — tv;) £ (z — tv;)dtdz

0
- / (/ Ff (0 +vi - V) (xgith) (t + s, 2 + svi)ds) dtdz. (5.9)

—t

15



The passage to the limit when & — 400 in any term of the loss term of (5.8)
follows from an integration by parts

0 k k
. Fk F
/ Xﬁz‘T/)Xf’ le —L_(t+ 5,2+ sv;)ds
t

! Fk
- I+1+ -+
i k. 0 fpk
= Xﬁzwxz 76(07 Z = tvi) Osz (Z - tvi) / 7JFk(t + 58,2+ S?)Z‘)ds
1 + % —t 1 + TJ
0 k 0 k
d I F!
+/ *(Xﬁi@b)xf’e le (t+s,z+svi)/ ij (t+7 2+ rv)dr
~t ds 1+ - s J
k 1+
0 k
d k,e F;
—|—/ X,Bilbd*(xi’ ZFk)(t+s,z+svi)
—t S 1 + TZ
k,e 0 P}k
(it 2) / =(t+7, 2+ srv;)dr) ds. (5.10)

Passing to the limit when k& — 400 in the second and third lines of (5.10)
is straightforward. Their limit is

0
Nith(0, = — tv) [ (= — twy) / Fi(t+ 5,2+ sv)ds
—t

0 d 0
+ / s (xgi0) FY (t + 5,2 + sv;) / [t + 7,z +rv;)dr. (5.11)
—t s

k
By (3.1)-(3.3), (% (XfeFi’Fk) (t+s,2+ svi))keN* converges weakly in L! to
1 7

k

FFk .
L Fe(t+ s,z + sv;). Moreover, (Xf’e(t, z) fso 1 JF;C (t+ 7,2+ rv)dr), . 1
T
uniformly bounded in L>™ and converges strongly in L' to some G¢ ., such

Z?j’
that (Gf ;)ecjo,1[ increasingly converges in L' to fso fj(t+r,z+rv;)dr when
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€ — 0. And so,

0 pe FF Fk
lim (/ Xgi¥X; 7]Fk(t +8,2+ svi)ds> dtdz

= / (Xﬁﬂ/J(Q z — tv;) foi(z — tvg) /i filt+s,2+ sv,-)ds)dtdz

04q . 0
+/ (/_t ds (xpit) F (if—l—s,z—i—sv?;)/S fj(t+r’z+rvi)dr>dtdz

0
d
+/ xoitr (o FE(t 5,7+ 501) )G (5, 1,2) ds. (5.12)
t

By monotonicity arguments in L', the limit when ¢ — 0 in (5.12) can be
performed, leading to the limit

/ (Xﬁﬂl)(O, z = ;) foi(z — tvy) /_(1 Filt+s,2+ svi)ds)dtdz
+ / (/i %(Xﬂﬂﬁ)fi(t + 5,2 + sv;) /0 fitt+rz+ rvi)dr>dtdz

0 d 0
+/tX/3z‘¢<dei(t+8,Z+SUi)>/ it +r 24 rv)drds

= / (/i Xt fifi(t + s,z + svi)ds) dtdz. (5.13)

Similarly as for the loss term, the passage to the limit when k — +oo of
terms composing the gain term of Xf’EQf(Fk, F*) such as

0 k k

F, F,

XP(t, 2) / Mo (4 5, 2 + s;)ds,
A
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can be handled as follows

0 k k
5 Fh o Fl
Xr (t,z)/

.ﬁ(t—l—s,z—i-sv,-)ds
c1+ I o

0 k Fk’
k F
= (1, 2) / (=)

———— (t+ 5,2 + sv;)ds
1454 fe

k
0 k k
F F
— (1= x5t 2) / e

—t m1+
0 k k
F F
+/ Xf‘rf m
—t

k
Fm1+

(5.14)
When integrated over [0, 7]

Fk (t+ 5,2+ sv;)ds

Fk (t+ s,z + sv;)ds.

T?, the second (resp. third) line of (5.14)
tends to zero when € — 0 uniformly with respect to & € N* since

0 k k
F F
(t,z) — xf’e(t, Z)/

ﬁ(t+s,z+svi)ds
114 5a 1+ Lo

Fk:
(resp. (t,z —>/

Fk (t + s,z + sv;)ds)

is weakly compact in L! and the measure of Qp;° (resp. Qf’e) is of order €
When integrated over [0, T']

T?, the last line of (5.14) can be rewritten as
0 k k
3 F!
/(/ XBit X

- —(t+s,2+ svi)ds)dtdz
+ FT’” 1+ %‘1

AT

T Fk (t+s,2)dZ dsdt
+
El  Fy
2/(/ XBi@Z)X’:dEil . !
—t

7 (t+s,z+ svm)ds>dtdz
+oE L

(5.15)
The passage to the limit when & — +o0 in (5.15) can be performed like in
the loss term with a supplementary intermediate regularization of xg;. Its
next limit when ¢ — 0 is

/ (/i Xpit fon fy(t + 8,2 + svm)ds) dt dtdz (5.16)

18



And so, f satisfies (5.7). |
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