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Abstract. We consider the Cauchy problem for the velocity-discrete
Boltzmann equations in any dimension. The velocity-discrete Boltzmann
equations can be considered as approximations of the original velocity-
continuous Boltzmann equation. The particles move with velocities in a
given finite set. We prove global in time existence of mild solutions to
the Cauchy problem for initial data with finite mass, entropy and entropy
production. The proof is based on the introduction of sets of particular
characteristics and a new strong compactness property of the integrated
collision frequency. The sets of particular characteristics are constructed
in order that the density and its associated collision frequency are bounded
from above. Their complements are of arbitrarily small measure. The strong
compactness property of the integrated collision frequency is based on the
Kolmogorov-Riesz theorem. This replaces the compactness of velocity av-
erages in the continuous velocity case, not available when the velocities are
discrete.

1 Introduction.

The Boltzmann equation is a fundamental mathematical model in the ki-
netic theory of gases. Replacing its continuum of velocities with a discrete
set of velocites is a simplification preserving the essential features of free
flow and quadratic collision term. Besides this fundamental aspect they can
approximate the Boltzmann equation with any given accuracy [9], and are
thereby useful for approximations and numerics. In the quantum realm the
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discrete Boltzmann equation can also be more directly connected to micro-
scopic quasi/particle models.
A velocity-discrete model of a kinetic gas in Rd is a system of partial differ-
ential equations having the form,(

∂t + vi · ∇z
)
fi = Qi(f, f), 1 ≤ i ≤ p,

where f = (fi)1≤i≤p and fi = fi(t, z) are the phase space densities at time
t, position z, at given velocities vi ∈ Rd, 1 ≤ i ≤ p. The collision operator
Q = (Qi)1≤i≤p with gain part Q+, loss part Q−, and collision frequency ν,
is given by

Qi(f, f) = Q+
i (f, f)−Q−i (f, f), Q+

i (f, f) =

p∑
j,m,q=1

Γmqij fmfq,

νi(f) =

p∑
j,m,q=1

Γmqij fj , Q−i (f, f) = fi νi(f), i = 1, ..., p.

The collision coefficients satisfy

Γmqij = Γmqji = Γijmq ≥ 0, Γijij = 0. (1.1)

If a collision coefficient Γmqij is non-zero, then the conservation laws for mo-
mentum and energy,

vi + vj = vm + vq, |vi|2 + |vj |2 = |vm|2 + |vq|2, (1.2)

are satisfied. The velocity-discrete model is called normal [12] if any solution
of the equations

Ψ(vi) + Ψ(vj) = Ψ(vm) + Ψ(vq),

where the indices (i, j;m, q) take all possible values satisfying Γmqij > 0, is
given by

Ψ(v) = a+ b · v + c|v|2, for some constants (a, b, c) ∈ R× Rd × R.

The paper studies the Cauchy problem in the torus Td of Rd, i.e.

(∂t + vi · ∇z)fi(t, z) = Qi(f, f)(t, z), t > 0, z ∈ Td, (1.3)

fi(0, z) = f0i(z), z ∈ Td, (1.4)
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for a given initial datum f0. Solutions are considered in L1 in one of the
following equivalent forms;
the exponential multiplier form,

fi(t, z) = f0i(z − tvi)e−
∫ 0
−t νi(f)(t+s,z+svi)ds

+

∫ 0

−t
Q+
i (f, f)(t+ s, z + svi)e

−
∫ 0
s νi(f)(t+r,z+rvi)drds,

a.a. t > 0, z ∈ Td, 1 ≤ i ≤ p, (1.5)

the mild form,

fi(t, z) = f0i(z − tvi) +

∫ 0

−t
Qi(f, f)(t+ s, z + svi)ds,

a.a. t > 0, z ∈ Td, 1 ≤ i ≤ p, (1.6)

the renormalized form [14],

(∂t + vi · ∇z) ln(1 + fi) =
Qi(f, f)

1 + fi
, fi(0, ·) = f0i, 1 ≤ i ≤ p, (1.7)

in the sense of distributions.

For any T > 0, denote by L1
+([0, T ] × Td) the set of space-periodic non-

negative integrable functions. The main result of the present paper is

Theorem 1.1
Consider a non-negative initial value f0, with mass, entropy and entropy
production bounded,∫

Td
f0i(1 + ln f0i)(z)dz ≤ c0, 1 ≤ i ≤ p, (1.8)∫

Td

p∑
i,j,m,q=1

Γmqij
(
f0if0j − f0mf0q

)
ln

f0if0j

f0mf0q
(z)dz ≤ c0 , (1.9)

for some c0 > 0. For any T > 0 there exists a mild solution in(
L1

+([0, T ]× Td)
)p

to the Cauchy problem (1.3)-(1.4).

A general frame for velocity-discrete models of the Boltzmann equation has
been developped in [15] and [11]. Contrary to the velocity-continuous Boltz-
mann equation, there was up to now no global in time existence results
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for the Cauchy problem of general velocity-discrete models. Existence and
uniqueness of global solutions to the Cauchy problem with small initial data
is proven in [10]. Convergence of two particular velocity-discrete schemes
to the Boltzmann equation is proven in [19]. Most mathematical results
for velocity-discrete models of the Boltzmann equation have been obtained
for specific models like the Carleman or Broadwell models, or in one space
dimension. An overview is given in [16]. Half-space problems [4] and weak
shock waves [5] for discrete velocity models have also been studied. A dis-
cussion of normal discrete velocity models can be found in [7]. In two dimen-
sions, special classes of solutions to the Broadwell model are given in [6], [8]
and [17]. In [13] the existence of continuous solutions to the two-dimensional
stationary Broadwell model in a rectangle for continuous boundary data is
proven. The paper [1] solves that problem in an L1-setting. Existence of
stationary solutions to the general velocity-discrete Boltzmann equation in
the plane is proven in [2]-[3].

The proof of Theorem 1.1 starts with a priori-estimates for (1.3)-(1.4) and
the control of mass, energy and entropy. The recourse to renormalized solu-
tions is classical [14]. After having constructed approximate solutions to the
problem, a compactness argument in the strong L1 topology is required in
order to pass to the limit in the collision terms. Averaging lemmas as for the
continuous velocity Boltzmann equation can not be used when there is only
a finite number of velocities. Instead, we prove a weaker result, still relevant
for our purpose, i.e. the strong L1-compactness of the collision frequency
integrated along appropriate characteristics. Compactness is proven using
the Kolmogorov-Riesz theorem [18], [20]. Compared to the proofs in the sta-
tionary frame in the plane [2]-[3] where the same compactness is used, with
the two directions of two interacting velocities, a supplementary argument
has to be introduced in order to deal with the d−1 supplementary directions
that are involved. This is performed using the geometric properties of the
problem. The present approximation scheme has strongly converging inte-
grated collision frequency and weak convergence of the gain term. Together
they imply that the weak limit of the gain term equals the gain term of the
weak limit.
Approximations for bounded collision operators are constructed in Section
2. Some of their properties are studied in Section 3. ’Good’ i-characteristics
are stressed here where the ith component of the phase density and its as-
sociated collision frequency are bounded from above. The complement is
of arbitrarily small measure. Section 4 is devoted to the proof of the key
lemma stating the L1 compactness of the collision frequency integrated along
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characteristics. The passage to the limit in the equations satisfied by the
approximations is performed in Section 5.

2 Approximations.

All along the paper, c0 will denote constants only depending on f0. Let

Qk = Qk+ −Qk−, Qk+
i (F, F ) =

p∑
j,m,q=1

Γmqij
Fm

1 + Fm
k

Fq

1 +
Fq
k

,

Qk−i (F, F ) = Fi νi(F ), νi(F ) =

p∑
j,m,q=1

Γmqij
Fj(

1 + Fi
k

)(
1 +

Fj
k

) .
Lemma 2.1
For every k ∈ N∗, there is a unique solution F k ∈

(
L1

+([0, T ]× Td)
)p

to

∂tF
k
i + vi · ∇zF ki = Qki (F

k, F k), (2.1)

F ki (0, ·) = fk0i, 1 ≤ i ≤ p. (2.2)

Proof of Lemma 2.1
Denote by a ∧ b the minimum of two real numbers a and b. Denote by

fk0i = f0i ∧ k, 1 ≤ i ≤ p.

Let S be the map defined on (L1
+([0, T ] × Td)p by S(f) = F , where F =

(Fi)1≤i≤p is the solution of

(
∂t + vi · ∇z

)
Fi =

p∑
j,m,q=1

Γmqij

( Fm

1 + Fm
k

fq

1 +
fq
k

− Fi

1 + Fi
k

fj

1 +
fj
k

)
, (2.3)

Fi(0, ·) = fk0i . (2.4)

F = S(f) can be obtained as the limit in
(
L1

+([0, T ]×Td)
)p

of the sequence
(Fn)n∈N defined by F 0 = 0 and

(
∂t + vi · ∇z

)
Fn+1
i =

p∑
j,m,q=1

Γmqij

( Fnm

1 + Fnm
k

fq

1 +
fq
k

−
Fn+1
i

1 +
Fni
k

fj

1 +
fj
k

)
,

(2.5)

Fn+1
i (0, ·) = fk0i , n ∈ N. (2.6)
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Fn+1 can be written in the following exponential form,

Fn+1
i (t, z) = fk0i(z − tvi)e

−
∑
j,m,q

Γmqij

∫ 0

−t

fj

(1 +
Fni
k )(1 +

fj
k )

(t+ s, z + svi)ds

+

p∑
j,m,q=1

Γmqij

∫ 0

−t

Fnm

1 + Fnm
k

fq

1 +
fq
k

(t+ s, z + svi)

e

−
∑
j,m,q

Γmqij

∫ 0

s

fj

(1 +
Fni
k )(1 +

fj
k )

(t+ r, z + rvi)dr

ds, 1 ≤ i ≤ p.
(2.7)

The sequence (Fn)n∈N is monotone. Indeed, by the exponential form of F 1
i ,

F 0
i ≤ F 1

i , 1 ≤ i ≤ p.

If Fni ≤ Fn+1
i , 1 ≤ i ≤ p, then it follows from the exponential form that

Fn+1
i ≤ Fn+2

i . Moreover,

p∑
i=1

(
∂t + vi · ∇z

)
Fn+1
i =

p∑
j,m,q=1

Γmqij
(Fnm − Fn+1

m )

1 + Fnm
k

fq

1 +
fq
k

≤ 0,

so that

p∑
i=1

∫
Td
Fn+1
i (t, z)dz ≤

∑
i=1

∫
Td
fk0i(z)dz, t ∈ [0, T ]. (2.8)

By the monotone convergence theorem, (Fn)n∈N converges in(
L1([0, T ]× Td)

)p
to a solution F of (2.3)-(2.4). The solution of (2.3)-(2.4)

is unique in the set of non-negative functions. Indeed, let G = (Gi)1≤i≤p be
a non-negative solution of (2.3)-(2.4). By induction it holds that

∀n ∈ N, Fni ≤ Gi, 1 ≤ i ≤ p, (2.9)

where (2.9) holds for n = 0, since Gi ≥ 0, 1 ≤ i ≤ p. Assume (2.9) holds for
n. Using the exponential form of Fn+1

i implies Fn+1
i ≤ Gi. Consequently,

Fi ≤ Gi, 1 ≤ i ≤ p. (2.10)

Moreover, subtracting the partial differential equations satisfied by Gi from
the partial differential equations satisfied by Fi, 1 ≤ i ≤ p, and integrating
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the resulting equation on [0, T ]× Td, it results

p∑
i=1

∫
Td

(Gi − Fi)(t, z)dz = 0, t ∈ [0, T ]. (2.11)

It follows from (2.10)-(2.11) that G = F .
The map S is a contraction in (L1([0, T1] × Td))p for a small enough time
T1 only depending on k. Hence by a Banach fixed point theorem, there is a
unique fixed point for S in

(
L1([0, T1]×Td)

)p
. The procedure can be repeated

on [T1, 2T1], ..., which gives a solution F to (2.1)-(2.2) in
(
L1

+(0, T ]×Td)
)p

.

3 Properties of the approximations

Denote by Fki =
Fki

1+
Fk
i
k

.

Lemma 3.1
Mass and energy are conserved by F k.

A variant

p∑
i=1

∫
Td
F ki lnFki (·, z)dz of entropy, and entropy dissipation

∫
[0,T ]×Td

p∑
i,j,m,q=1

Γmqij
(
Fki Fkj −FkmFkq

)
ln
Fki Fkj
FkmFkq

(t, z)dtdz , (3.1)

are uniformly bounded. (F k)k∈N∗ is weakly compact in L1.

Proof of Lemma 3.1.
The conservations of mass and energy are straightforward. Denote (3.1)

by Dk. Multiply (2.1) with ln
Fki

1+
Fk
i
k

, add the equations in i, integrate the

resulting equation on [0, t]× Td and use (1.8). Hence

p∑
i=1

∫
Td

(
F ki lnF ki − k(1 +

F ki
k

) ln(1 +
F ki
k

)
)

(t, z)dz

+

∫
[0,t]×Td

∑
ijmq

Γmqij
(
Fki Fkj −FkmFkq

)
ln
Fki Fkj
FkmFkq

≤ c0, t ∈ [0, T ].
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This implies the uniform boundedness of (Dk)k∈N∗ . Moreover,

k

∫
Td

ln(1 +
F ki
k

)(t, z)dz ≤
∫
Td
F ki (t, z)dz ≤ c0.

Hence

p∑
i=1

∫
Td
F ki ln

F ki

1 +
Fki
k

(t, z)dz ≤ c0, t ∈ [0, T ]. (3.2)

And so,

p∑
i=1

∫
z∈Td;Fki (t,z)≤k

F ki lnF ki (t, z)dz

+ ln
k

2

∫
z∈Td;Fki (t,z)≥k

F ki (t, z)(t, z) ≤ c0, t ∈ [0, T ].

Together with the uniform boundedness of its mass, it implies the weak L1

compactness of (F k)k∈N∗ .

For any i ∈ {1, · · ·, p}, denote by Ij the subset of {1, · · ·, p} such that
j ∈ Ij if and only if there is Γmqij > 0 for some (m, q) ∈ {1, · · ·, p}2.

Lemma 3.2
Let T > 0 be given. For every ε > 0, there is a subset Ωk,ε

i of measure
smaller than c0ε of i-characteristics of [0, T ]× Td,

{(t+ s, z + svi) ; (t, z) ∈ [0, T ],×Td, s ∈ [−t, T − t]},

such that

F ki (t+ s, z + svi) ≤
1

ε
exp(

1

ε
), (3.3)

and

∫ T−t

−t
F kj (t+ s, z + svi)ds ≤

1

ε
, (t+ s, z + svi) /∈ Ωk

iε, j ∈ Ji.

(3.4)

Proof of Lemma 3.2.
It follows from

d

ds
F ki (t+ s, z + svi)e

∫ s
0 ν

k
i (Fk)(t+r,z+rvi)dr ≥ 0, s ∈ [−t, 0], z ∈ Td,
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that

F ki (t+ s, z + svi) ≤ F ki (T, z + (T − t)vi)e

∑
j,m,q

Γmqij

∫ T−t

−t
F kj (t+ r, z + rvi)dr

,

t ∈ [0, T ], z ∈ Td, s ∈ [−t, T − t].

The bound
∫
T2 F

k
i (T,Z)dZ ≤ c0 implies that the measure of the set A of

Z ∈ Td such that F ki (T,Z) > 1
ε is smaller than c0ε. Consequently

| {(t, z) ∈ [0, T ]× Td; z + (T − t)vi ∈ A} |≤ c0ε.

Analogously,
∫

[0,T ]×Td F
k
j (r, z)dzdr ≤ c0, j ∈ Ji, implies

| {(t, z) ∈ [0, T ]× Td;
∫ T−t

−t
F kj (t+ r, z + rvi)dr >

1

ε
} |≤ c0ε.

The lemma follows.

Denote by

χk,εi the characteristic function of the complement of Ωk,ε
i . (3.5)

4 Compactness of the collision frequency integrated
along characteristics.

Lemma 4.1
For every i ∈ {1, ···, p}, the integrated collision frequency sequence associated
to F ki ,∑

j∈Ji

(∫ 0

−t

(∑
m,q

Γmqij
)
F kj (t+ s, z + svi)ds

)
k∈N∗

is compact in L1.

Proof of Lemma 4.1.
Let i ∈ {1, · · ·, p}. Equation (1.3) can be rewritten as(

∂t + (vn − vi) · ∇z
)
fn(t, z + tvi) = Qn(f, f)(t, z + tv0), 1 ≤ n ≤ p,

Consider (vn − vi)1≤n≤p as the set of interacting velocities, and(
fn(t, z+tvi)

)
1≤n≤p as the new unknown. It satisfies (1.3). Moreover, vi = 0
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and ∂tfi = Qi(f, f).
Let j ∈ Ji. Let us prove the L1 compactness of

( ∫ 0
−t F

k
j (t+ s, z)ds

)
k∈N∗ .

The uniform equi-integrability of (
∫ 0
−t F

k
j (t+ s, z)ds)k∈N∗ in the (1, 0) direc-

tion is straightforward. Its uniform equi-integrability in the (1, vj) direction
is proven using the solution formula for F kj . Indeed, by the weak L1 com-

pactness of (F k)k∈N∗ , it is sufficient to prove the uniform equi-integrability

of (
∫ 0
−t χ

k,ε
j F kj (t+ s, z)ds)j∈N for ε small enough. Moreover,∫ 0

−t

(
(χk,εj F kj )(t+ s+ h, z + hvj)− (χk,εj F kj )(t+ s, z)

)
ds

=

∫ 0

−t

∫ h

0

(
χk,εj Qkj (F

k, F k)
)
(t+ s+ r, z + rvj)dr ds, (4.1)

so that, by the uniform boundedness of (3.1), and (3.3),∫
|
∫ 0

−t

(
(χk,εj F kj )(t+ s+ h, z + hvj)− (χk,εj F kj )(t+ s, z)

)
ds|dtdz

≤ c

ln Λ
+
cΛe

1
ε

ε

∫ ∫ 0

−t

∫ h

0
F ki (t+ s+ r, z + rvj)dr dsdtdz

≤ c

ln Λ
+
chΛe

1
ε

ε
. (4.2)

Choosing Λ large enough, then h small enough closes the argument.
Complete vj by u1, · · ·, ud−1 so that (vj , u1, · · ·, ud−1) be a basis of Rd. The
proof of Lemma 4.1 will be closed by proving the uniform equi-integrability
of
( ∫ 0
−t F

k
j (t + s, z)ds

)
k∈N∗ in the (0, un) directions, 1 ≤ n ≤ d − 1. Let

u ∈ {u1, · · ·, ud−1}. It is sufficient to prove the uniform equi-integrability

of
( ∫ 0
−t
(
χk,εj F kj

)
(t + s, z)ds

)
k∈N∗ in the (0, u) direction. Using the solution

formula for F kj ,∫ 0

−t

(
χk,εj F kj (t+ s, z + hu)− χk,εj F kj (t+ s, z)

)
ds

=

∫ 0

−t

(
χk,εj fk0j(z + hu− (t+ s)vj)− χk,εj fk0j(z − (t+ s)vj)

)
ds

+

∫
Th(t,z)

χk,εj Qkj (F
k, F k)−

∫
T (t,z)

χk,εj Qkj (F
k, F k), (4.3)

where T (t, z) (resp. Th(t, z)) are the triangles defined by

T (t, z) = {(t+ s+ r, z + rvj); s ∈ [−t, 0], r ∈ [−t− s, 0]},
(resp. Th(t, z) = {(t+ s+ r, z + rvj + hu); s ∈ [−t, 0], r ∈ [−t− s, 0]}) .
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When integrated with respect to (t, z) ∈ [0, T ]×Ω, the absolute value of the
second line of (4.3) tends to zero with h.

Let A(t, z), C(0, z), D(0, z + tvj) be the vertices of T (t, z), and
B(t, z + hu), E(0, z + hu), F (0, z + tvj + hu) be the vertices of Th(t, z).

Denote by Dh the trapezoidal volume between T (t, z) and Th(t, z) connected
by the segments [A,B], [C,E] and [D,F ].

Consider the (1, u) characteristics starting at T (t, z). T (t, z) splits into

T (t, z) = Ah ∪
(
T (t, z) \Ah

)
, (4.4)

where the forward in time (1, u) characteristics starting at Ah cross
ABFD before reaching Th(t, z). Denote by Āh the intersection of these
forward (1, u) characteristics with ABFD. Th(t, z) splits into

Th(t, z) = A′h ∪
(
Th(t, z) \A′h

)
, (4.5)

where the backward in time (1, u) characteristics starting at A′h cross CDFE
before reaching T (t, z). Denote by Ah,0 the intersection of these backward
(1, u) characteristics with CDFE. It holds that

∫
Th(t,z)

χk,εj Qkj (F
k, F k)−

∫
T (t,z)

χk,εj Qkj (F
k, F k)

=

∫
Th(t,z)\A′h

χk,εj Qkj (F
k, F k) +

∫
A′h

χk,εj Qkj (F
k, F k) +

∫
Āh

χk,εj Qkj (F
k, F k)

−
(∫
T (t,z)\Ah

χk,εj Qkj (F
k, F k) +

∫
Ah,0

χk,εj Qkj (F
k, F k) +

∫
Ah

χk,εj Qkj (F
k, F k)

)
−
∫
Āh

χk,εj Qkj (F
k, F k) +

∫
Ah,0

χk,εj Qkj (F
k, F k)

=

∫
Dh

∂s
(
χk,εj Qkj (F

k, F k)
)
(t+ s, z + su)−

∫
Āh

χk,εj Qkj (F
k, F k) +

∫
Ah,0

χk,εj Qkj (f
k
0 , f

k
0 )

=

∫
Dh

(
∂t
(
χk,εj Qkj (F

k, F k)
)

+ u · ∇z
(
χk,εj Qkj (F

k, F k)
))

−
∫
Āh

χk,εj Qkj (F
k, F k) +

∫
Ah,0

χk,εj Qkj (f
k
0 , f

k
0 ). (4.6)
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Here the formal derivative ∂s which is removed in (4.10) can be made rigor-
ous by inserting a mollifier.
Consider the (1,−u) characteristics starting at T (t, z). T (t, z) splits into

T (t, z) = Bh,0 ∪
(
T (t, z) \Bh,0

)
, (4.7)

where the forward in time (1,−u) characteristics starting at Bh cross CDFE
before reaching Th(t, z). Denote by B̄h,0 the intersection of these (1,−u)
characteristics with CDFE. Th(t, z) splits into

Th(t, z) = B′h ∪
(
T (t, z) \B′h

)
, (4.8)

where the backward in time (1,−u) characteristics starting at B′h cross
ABFD before reaching T (t, z). Denote by B̄h the intersection of these
backward (1,−u) characteristics with ABFD. It holds that

∫
Th(t,z)

χk,εj Qkj (F
k, F k)−

∫
T (t,z)

χk,εj Qkj (F
k, F k)

=

∫
Th(t,z)\B′h

χk,εj Qkj (F
k, F k) +

∫
B′h

χk,εj Qkj (F
k, F k) +

∫
B̄h,0

χk,εj Qkj (F
k, F k)

−
(∫
T (t,z)\Bh,0

χk,εj Qkj (F
k, F k) +

∫
B̄h

χk,εj Qkj (F
k, F k) +

∫
Bh,0

χk,εj Qkj (F
k, F k)

)
−
∫
B̄h,0

χk,εj Qkj (F
k, F k) +

∫
B̄h

χk,εj Qkj (F
k, F k)

=

∫
Dh

∂s
(
χk,εj Qkj (F

k, F k))(t+ s, z − su)
)
−
∫
B̄h,0

χk,εj Qkj (f
k
0 , f

k
0 ) +

∫
B̄h

χk,εj Qkj (F
k, F k)

=

∫
Dh

(
∂t
(
χk,εj Qkj (F

k, F k)
)
− u · ∇z

(
χk,εj Qkj (F

k, F k)
))

−
∫
B̄h,0

χk,εj Qkj (f
k
0 , f

k
0 ) +

∫
B̄h

χk,εj Qkj (F
k, F k). (4.9)
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Adding (4.6) and (4.9) implies that∫
Th(t,z)

χk,εj Qkj (F
k, F k)−

∫
T (t,z)

χk,εj Qkj (F
k, F k)

=

∫
Dh

∂t
(
χk,εj Qkj (F

k, F k)
)

+
1

2

(
−
∫
Āh

χk,εj Qkj (F
k, F k) +

∫
B̄h

χk,εj Qkj (F
k, F k)

+

∫
Ah,0

χk,εj Qkj (f
k
0 , f

k
0 )−

∫
B̄h,0

χk,εj Qkj (f
k
0 , f

k
0 )
)

=

∫
ABFD

χk,εj Qkj (F
k, F k)−

∫
CDFE

χk,εj Qkj (F
k, F k)

+
1

2

(
−
∫
Āh

χk,εj Qkj (F
k, F k) +

∫
B̄h

χk,εj Qkj (F
k, F k)

+

∫
Ah,0

χk,εj Qkj (f
k
0 , f

k
0 )−

∫
B̄h,0

χk,εj Qkj (f
k
0 , f

k
0 )
)
. (4.10)

Moreover,

lim
h→0

∫
|
∫
ABFD

χk,εj Qkj (F
k, F k)|dtdz = 0 (4.11)

by the weak L1 compactness of (χk,εj Q±kj (F k, F k))k∈N. Analogously,

lim
h→0

∫
|
∫
Āh∪B̄h

χk,εj Qkj (F
k, F k)|dtdz = 0,

and

lim
h→0

∫
|
∫
Ah,0∪B̄h,0

χk,εj Qkj (f
k
0 , f

k
0 )|dtdz = 0.

This proves the uniform equi-integrability of
( ∫ 0
−t F

k
j (t+ s, z)ds

)
k∈N∗ in the

(0, u) direction. Hence there is translational equi-continuity of
(
∫ 0
−t F

k
j (t+ s, z)ds)k∈N∗ , j ∈ Ji. This closes the proof of Lemma 4.1.
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5 Passage to the limit

Denote by f the weak L1 limit when k → +∞ of (F k)k∈N∗ up to a subse-
quence. Denote by F ε (resp. f ε0) the weak L1 limit of (χk,εF k)k∈N∗ (resp.
(χk,εfk0 )k∈N∗) up to a subsequence.

Lemma 5.1
For any β ∈]0, 1[, there is a subset ωβ = (ωi)1≤i≤p of

(
[0, T ]×Td

)p
consisting

of characteristics {(s, z + svi); s ∈ [0, T ]}, with |ωi| ≤ β, such that

fi(t+ s, z + svi) ≤
c

β
e

1
β , (t, z) /∈ ωβ, s ∈ [−t, T − t], 1 ≤ i ≤ p. (5.1)

Proof of Lemma 5.1
Let 1 ≤ i ≤ p and β > 0. Passing to the limit when k → +∞ in

χk,εi F ki (t+ s, z + svi)

≤ χk,εi F ki (T, z + (T − t)vi)eχ
k,ε
i (t,z)

∫ T
t νki (Fk)(r,z+(r−t)vi)dr,

(t, z) ∈ [0, T ]× Td, s ∈ [−t, T − t], (5.2)

and taking into account that by Lemma 4.1
( ∫ T

t νki (F k)(r, z+(r−t)vi)ds
)
k∈N∗

is a strongly convergent sequence in L1, it holds that

F εi (t+ s, z + svi) ≤ F εi (T, z + (T − t)vi)e
∫ T
t νi(f)(r,z+(r−t)vi)ds. (5.3)

It follows from
∫

[0,T ]×Td νi(f)(t, z)dzdt ≤ c0 that

| {(t, z) ∈ [0, T ]× Td;
∫ T

t
νi(f)(r, z + (r − t)vi)dr >

c

β
} |≤ β

2
.

Consequently there is some subset ωi1 of [0, T ]×Td of measure smaller than
β
2 such that

F εi (t, z) ≤ e
c
βF εi (T, z + (T − t)vi), (t, z) /∈ ωi1. (5.4)

Passing to the limit in (5.4) when ε→ 0 by monotonicity arguments, implies
that

fi(t, z) ≤ e
c
β fi(T, z + (T − t)vi), (t, z) /∈ ωi1. (5.5)
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Hence there is ωi2 ⊂ [0, T ]× Td of measure smaller than β
2 such that

fi(t, z) ≤
c

β
e
c
β , (t, z) /∈ ωi1 ∪ ωi2. (5.6)

Define ωi as ωi = ωi1 ∪ ωi2 and ω = (ωi)1≤i≤p.

Denote by χβ the characteristic function of the complement of ωβ.
Take a test function ψ ∈ C1([0, T ]× Td).
Proving that f is a mild solution to (1.3)-(1.4) is equivalent to proving that
for β > 0,∫

χβiψfi(t, z)dtdz −
∫
χβiψ(0, z − tvi)f0i(z − tvi)dtdz

−
∫ ( ∫ 0

−t
fi (∂t + vi · ∇z)(χβiψ)(t+ s, z + svi)ds

)
dtdz

=

∫ ( ∫ 0

−t
χβiψQi(f, f)(t+ s, z + svi)ds

)
dtdz, 1 ≤ i ≤ p. (5.7)

Lemma 5.2
The weak L1 limit f of a subsequence of (F k)k∈N∗ is a mild solution to the
Cauchy problem (1.3)-(1.4).

Proof of Lemma 5.2.
F ki satisfies the equation∫

χβiψχ
k,ε
i F ki (t, z)dtdz −

∫
χβiψχ

k,ε
i (0, z − tvi)fk0i(z − tvi)dtdz

−
∫ ( ∫ 0

−t
χk,εi F ki (∂t + vi · ∇z)(χβiψ)(t+ s, z + svi)ds

)
dtdz

=

∫ ( ∫ 0

−t
χβiψχ

k,ε
i Qki (F

k, F k)(t+ s, z + svi)ds
)
dtdz. (5.8)

Passing to the limit when k → +∞ in the two first lines of (5.8) is straight-
forward. Their limit is∫

χβiψF
ε
i (t, z)dtdz −

∫
χβiψ(0, z − tvi)f ε0i(z − tvi)dtdz

−
∫ ( ∫ 0

−t
F εi (∂t + vi · ∇z)(χβiψ)(t+ s, z + svi)ds

)
dtdz. (5.9)
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The passage to the limit when k → +∞ in any term of the loss term of (5.8)
follows from an integration by parts∫ 0

−t
χβiψχ

k,ε
i

F ki

1 +
Fki
k

F kj

1 +
Fkj
k

(t+ s, z + svi)ds

= χβiψχ
k,ε
i (0, z − tvi)

fk0i

1 +
fk0i
k

(z − tvi)
∫ 0

−t

F kj

1 +
Fkj
k

(t+ s, z + svi)ds

+

∫ 0

−t

d

ds

(
χβiψ

)
χk,εi

F ki

1 +
Fki
k

(t+ s, z + svi)

∫ 0

s

F kj

1 +
Fkj
k

(t+ r, z + rvi)dr

+

∫ 0

−t
χβiψ

d

ds

(
χk,εi

F ki

1 +
Fki
k

)
(t+ s, z + svi)

(
χk,εi (t, z)

∫ 0

s

F kj

1 +
Fkj
k

(t+ r, z + srvi)dr
)
ds. (5.10)

Passing to the limit when k → +∞ in the second and third lines of (5.10)
is straightforward. Their limit is

χβiψ(0, z − tvi)f ε0i(z − tvi)
∫ 0

−t
fj(t+ s, z + svi)ds

+

∫ 0

−t

d

ds

(
χβiψ

)
F εi (t+ s, z + svi)

∫ 0

s
fj(t+ r, z + rvi)dr. (5.11)

By (3.1)-(3.3),
(
d
ds

(
χk,εi

Fki

1+
Fk
i
k

)
(t+ s, z+ svi)

)
k∈N∗ converges weakly in L1 to

d
dsF

ε
i (t + s, z + svi). Moreover,

(
χk,εi (t, z)

∫ 0
s

Fkj

1+
Fk
j
k

(t + r, z + rvi)dr
)
k∈N∗ is

uniformly bounded in L∞ and converges strongly in L1 to some Gεi,j , such

that (Gεi,j)ε∈]0,1[ increasingly converges in L1 to
∫ 0
s fj(t+ r, z + rvi)dr when
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ε→ 0. And so,

lim
k→+∞

∫ (∫ 0

−t
χβiψχ

k,ε
i

F ki

1 +
Fki
k

F kj

1 +
Fkj
k

(t+ s, z + svi)ds
)
dtdz

=

∫ (
χβiψ(0, z − tvi)f ε0i(z − tvi)

∫ 0

−t
fj(t+ s, z + svi)ds

)
dtdz

+

∫ (∫ 0

−t

d

ds

(
χβiψ

)
F εi (t+ s, z + svi)

∫ 0

s
fj(t+ r, z + rvi)dr

)
dtdz

+

∫ 0

−t
χβiψ

( d
ds
F εi (t+ s, z + svi)

)
Gεi,j(s, t, z)ds. (5.12)

By monotonicity arguments in L1, the limit when ε → 0 in (5.12) can be
performed, leading to the limit∫ (

χβiψ(0, z − tvi)f0i(z − tvi)
∫ 0

−t
fj(t+ s, z + svi)ds

)
dtdz

+

∫ (∫ 0

−t

d

ds

(
χβiψ

)
fi(t+ s, z + svi)

∫ 0

s
fj(t+ r, z + rvi)dr

)
dtdz

+

∫ 0

−t
χβiψ

( d
ds
fi(t+ s, z + svi)

)∫ 0

s
fj(t+ r, z + rvi)dr ds

=

∫ (∫ 0

−t
χβiψfifj(t+ s, z + svi)ds

)
dtdz. (5.13)

Similarly as for the loss term, the passage to the limit when k → +∞ of
terms composing the gain term of χk,εi Qki (F

k, F k) such as

χk,εi (t, z)

∫ 0

−t

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds,
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can be handled as follows.

χk,εi (t, z)

∫ 0

−t

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds

= χk,εi (t, z)

∫ 0

−t
(1− χk,εm )

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds

− (1− χk,εi )(t, z)

∫ 0

−t
χk,εm

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds

+

∫ 0

−t
χk,εm

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds. (5.14)

When integrated over [0, T ] × Td, the second (resp. third) line of (5.14)
tends to zero when ε→ 0 uniformly with respect to k ∈ N∗ since

(t, z)→ χk,εi (t, z)

∫ 0

−t

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds,

(resp. (t, z)→
∫ 0

−t
χk,εm

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds)

is weakly compact in L1 and the measure of Ωk,ε
m (resp. Ωk,ε

i ) is of order ε.
When integrated over [0, T ]× Td, the last line of (5.14) can be rewritten as∫ (∫ 0

−t
χβiψχ

k,ε
m

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svi)ds
)
dtdz

=

∫ T

0

∫ 0

−t

∫
T2

χβiψχ
k,ε
m

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, Z)dZ dsdt

=

∫ (∫ 0

−t
χβiψχ

k,ε
m

F km

1 + Fkm
k

F kq

1 +
Fkq
k

(t+ s, z + svm)ds
)
dtdz. (5.15)

The passage to the limit when k → +∞ in (5.15) can be performed like in
the loss term with a supplementary intermediate regularization of χβi. Its
next limit when ε→ 0 is∫ (∫ 0

−t
χβiψfmfq(t+ s, z + svm)ds

)
dtdtdz. (5.16)
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And so, f satisfies (5.7).
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