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INTRODUCTION

In a global context where the general trend is to reduce greenhouse gas emissions, it has become necessary to reduce fuel consumption of future aircrafts. One of the solutions lies in the NLF (Natural Laminar Flow) strategy, which consists on ensuring that pressure gradients on a profile are optimized in order to delay the transition. Despite extensive research is carried out about NLF, a laminar boundary layer is hard to obtained due to its high sensitivity to surface imperfections (rivets, junctions, etc.) inherent to the manufacturing processes.

The e 𝑁 method [START_REF] Smith | Transition, Pressure Gradient and Stability Theory[END_REF][START_REF] Van Ingen | A suggested semi-empirical method for the calculation of the boundary layer transition region[END_REF] is one of the most efficient tool to predict correctly the transition location. The 𝑁 factor represents the amplification of the boundary layer instabilities and transition occurs when the 𝑁 factor reaches a critical value 𝑁 tr . A surface irregularity usually has a localized effect on the vicinity of the defect and is responsible of a 𝑁 factor shift. Many studies have looked for empirical correlations linking the type of defect and its geometric characteristics to the Δ𝑁 shift. Wind tunnel experiments were conducted by Crouch et al. [START_REF] Crouch | Modeling gap effects on transition dominated by tollmien-schlichting instability[END_REF] on gaps and by Wang and Gaster [START_REF] Wang | Effect of surface steps on boundary layer transition[END_REF] on BFS. These studies showed that the Δ𝑁 corresponded to 0.12𝑏 * tanh(36 ℎ * 𝑏 * ) for the gaps and 4ℎ * -1.40 for the BFSs, where ℎ * and 𝑏 * denote the non-dimensional step height and step width respectively. These empirical relations have the advantage of being simple to implement and not requiring additional experimental or numerical calculations in addition to those required for a smooth surface. On the other hand, each correlation corresponds only to a particular defect geometry and often applies only in a certain range of parameters.

Traditional numerical methods used to predict the transition, such as Local Stability Theory (LST) [START_REF] Perraud | Laminarturbulent transition prediction in the presence of surface imperfections[END_REF] or Parabolized Stability Equations (PSE) [START_REF] Thomas | Effect of small surface deformations on the stability of tollmien-schlichting disturbances[END_REF], have given satisfactory results for dealing with smooth cases or with surface defects of restricted dimensions. However, the effect of a surface irregularity on the transition is poorly taken into account by these methods because of the assumptions made on the base flow. To overcome these limitations, Worner et al. [START_REF] Worner | Humps/Steps Influence on Stability Characteristics of Two-Dimensional Laminar Boundary Layer[END_REF] and Edelmann and Rist [START_REF] Edelmann | Impact of Forward-Facing Steps on Laminar-Turbulent Transition in Transonic Flows[END_REF] used Direct Numerical Simulations (DNS) to study the impact of humps and Forward-Facing Steps (FFS) respectively on the transition. More recently, Franco Sumariva et al. [START_REF] Franco Sumariva | On the influence of two-dimensional hump roughness on laminar-turbulent transition[END_REF] introduced the Adaptive Harmonic Linearized Navier-Stokes (AHLNS) method which they coupled with PSE upstream and downstream of the region with strong streamwise flow variations to study the effect of humps on the transition. A similar technique is used by Hildebrand et al. [START_REF] Hildebrand | Predicting Boundary-Layer Transition over Backward-Facing Steps via Linear Stability Analysis[END_REF] to study Backward-Facing Steps (BFS), by coupling PSE at the inlet domain with Harmonic Linearized Navier-Stokes (HLNS) in the vicinity of the defect.

Nowadays, the rise of Neural Networks (NN) makes it possible to predict instabilities by taking into account many input parameters in a robust manner. Crouch et al. [START_REF] Crouch | Transition prediction for three-dimensional boundary layers in computational fluid dynamics applications[END_REF] used NN for determining the instability growth rates for calculating the 𝑁 factors to predict transition caused by crossflow and Tollmien-Schlichting (TS) waves instabilities. Lately, Giannopoulos and Aider [START_REF] Giannopoulos | Prediction of the dynamics of a backward-facing step flow using focused time-delay neural networks and particle image velocimetry data-sets[END_REF] predicted the dynamics of a BFS flow using velocity fields as inputs for a NN. More recently, Zafar et al. [START_REF] Zafar | Convolutional neural network for transition modeling based on linear stability theory[END_REF] proposed a transition model based on convolutional neural networks to predict the growth rates of instabilities in two-dimensional incompressible boundary layers. The same authors also developed a transition model based on recurrent neural networks to predict the 𝑁 factor envelope as well as the transition position for different wing profiles [START_REF] Zafar | Recurrent neural network for end-to-end modeling of laminar-turbulent transition[END_REF]. The use of artificial NN could allow, due to their architecture, to take into account more complex relations between the geometrical characteristics of a defect in the evaluation of the Δ𝑁 compared to the previous empirical correlations.

The aim of this paper is to use NN methods taking into account different geometric and aerodynamic parameters of several types of gap-like surface defects to generate new Δ𝑁 models and to make the prediction of the transition to turbulence of a two-dimensional incompressible boundary layer more accurate.

COMPUTATIONAL STRATEGY

Governing equations

The flow considered is a boundary layer developing on a flat plate with surface defect and governed by the incompressible two-dimensional Navier-Stokes equations:

∇• 𝒖 = 0, ( 1a 
)
𝜕 𝑡 𝒖 + (𝒖 • ∇) 𝒖 = - 1 𝜌 ∇ 𝑝 + 𝜈Δ𝒖, ( 1b 
)
where 𝒖 is the velocity vector, 𝑝 is the pressure, 𝜌 is the fluid density and 𝜈 is the kinematic viscosity. The state vector 𝒒 = (𝒖, 𝑝) is decomposed into a steady base flow 𝑸 = (𝑼, 𝑃) plus an unsteady small perturbations field 𝒒 ′ = (𝒖 ′ , 𝑝 ′ ) in the form:

𝒒(𝒙, 𝑡) = 𝑸(𝒙) + 𝜀𝒒 ′ (𝒙, 𝑡), 𝜀 ≪ 1, (2) 
where 𝑥 and 𝑦 are the streamwise and normal components of the position vector 𝒙 respectively, and 𝑡 represents time.

Introducing this decomposition into (1), the steady Navier-Stokes equations governing the base flow are obtained:

∇• 𝑼 = 0, (3a) 
(𝑼 • ∇) 𝑼 = - 1 𝜌 ∇ 𝑃 + 𝜈Δ𝑼. (3b) 
At the first order, the LNS equations governing the dynamic of the perturbations developing onto the base flow are written in the form:

∇• 𝒖 ′ = 0, (4a) 
𝜕 𝑡 𝒖 ′ + (𝑼 • ∇) 𝒖 ′ + 𝒖 ′ • ∇ 𝑼 = - 1 𝜌 ∇ 𝑝 ′ + 𝜈Δ𝒖 ′ . (4b)
The set of equations ( 4) is used to calculate the evolution of a small perturbation 𝒒 ′ in the boundary layer in a linear regime. Perturbations and forcing term are assumed to be harmonic in time as follow:

𝒒 ′ (𝒙, 𝑡) = q(𝒙) e -𝑖 𝜔𝑡 (5) 
where 𝜔 = 2𝜋 𝑓 is the real angular frequency of the perturbations and 𝑓 is the disturbance frequency. Introducing this decomposition into (4), the governing equations of the spatial structure of the perturbations ( û, p) are obtained:

∇• û = 0, (6a) 
-𝑖𝜔 û + (𝑼 • ∇) û + ( û • ∇) 𝑼 = - 1 𝜌 ∇ p + 𝜈Δ û. (6b)

N factor and 𝚫𝑵 method

Assuming that the TS modes are dependent on both 𝑥 and 𝑦 directions, their amplification can be quantified by an infinity norm 𝐴(𝑥), i.e. the maximum absolute value of the longitudinal velocity along the wall normal coordinate at each position in streamwise direction, as follows:

𝐴(𝑥) = max 𝑦 | û(𝑥, 𝑦)| . ( 7 
)
This method is similar to an e 𝑁 method when taking the logarithm of this normalized amplitude:

𝑁 𝑓 (𝑥) = ln 𝐴(𝑥) 𝐴 0 , (8) 
where 𝐴 0 is the initial wave amplitude at point 𝑥 0 (the critical point at which the instability starts to amplify). Each 𝑁 𝑓 factor curve is defined for a given non-dimensional reduced frequency F defined as

𝐹 = 2𝜋 𝑓 𝜈 𝑈 2 ∞ × 10 6 . ( 9 
)
Since there is no a priori knowledge on which frequency will be responsible for triggering transition, an envelope curve of the maximum 𝑁 𝑓 factors over a large range of frequencies is defined as:

𝑁 (𝑥) = max 𝑓 𝑁 𝑓 (𝑥). (10) 
The 𝑁 factor method assumes that the transition occurs at a position 𝑥 tr for which the envelope curve 𝑁 reaches a certain threshold value 𝑁 tr . The Δ𝑁 method enables the extension of the e 𝑁 method to cases including a surface defect: the 𝑁 factor for a smooth case configuration is artificially shifted by an additional amplification caused by the defect with a value of Δ𝑁:

𝑁 = 𝑁 sm + Δ𝑁, (11) 
where 𝑁 sm is the 𝑁 factor evaluated for a smooth surface. The transition position is therefore shifted upstream as the threshold value 𝑁 tr is reached earlier.

Flow configuration and numerical method

Equations in Section 2.1 are solved by the Onera's code Pims2d and the numerical methods used are presented here.

Defect configuration

Different geometries of steps and gaps are studied in this work. The generic parameters defining such defects are two heights ℎ 1 and ℎ 2 , the width 𝑏 and the incompressible boundary layer displacement thickness for a flat plate at zero pressure gradient at the defect location 𝛿 1,d . The value of 𝛿 1 at a given position 𝑥 is given by the semianalytical Blasius solution 𝛿 1 (𝑥) = 1.72 √︃ 𝜈 𝑥 𝑈 ∞ . This set of 4 parameters is shown in Fig. 1 and aims to geometrically represents any type of gap-like surface defect (cavity, BFS, sequence of BFS and FFS, etc.) in order to standardize the existing correlations linking the geometric parameters to the Δ𝑁. In the rest of this study, the geometrical dimensions of the gap are made non-dimensional by 𝛿 1,d and will be denoted hereinafter ℎ * 1 , ℎ * 2 and 𝑏 * , and the aerodynamic parameter defining the position of the defect 𝛿 1,d will be the Reynolds number Re 𝛿 1,d .

𝑈 ∞ ℎ 1 ℎ 2 𝑏 𝛿 1,d
Figure 1: Surface defect parameters.

Base flow

The computational domain extends in the 𝑥-direction from an abscissa corresponding to Re 𝛿 1,in = 350 to an abscissa corresponding to Re 𝛿 1,out = Re 𝛿 1,d + 1000, and in the 𝑦-direction over a height 𝐻 = 30𝛿 1,out . A boundary layer develops and encounters a gap with non-dimensional heights ℎ * 1 and ℎ * 2 and non-dimensional width 𝑏 * at an abscissa corresponding to Re 𝛿 1,d . No-slip boundary condition is imposed at the wall while a free-slip condition with zero normal-stress is prescribed as an outflow condition. A self-similar boundary layer profile with displacement thickness 𝛿 1,in is imposed at the inlet boundary.

A two-dimensional triangulation of the domain is performed with the FreeFem++ finite element library [START_REF] Hecht | New development in freefem++[END_REF] with a Delaunay-Voronoi algorithm. Equations ( 3) are discretized with Taylor-Hood finite elements P 2 for the velocity field and P 1 for the pressure. The non-linear solution of the base flow is solved with a classical Newton method, by gradually decreasing the value of the kinematic viscosity from 𝜈 = 1 m 2 s -1 until the value corresponding to the desired Reynolds number Re 𝛿 1,d is reached.

LNS computation

Once the base flow is calculated, the TS waves are artificially excited by introducing a volume force term in the LNS equations [START_REF] Crouch | Modeling gap effects on transition dominated by tollmien-schlichting instability[END_REF]. The computational domain for the LNS calculations is similar to the base flow domain, but has a reduced height of 𝐻 = 15𝛿 1,out to avoid having a too large number of vertices. The base flow is thus interpolated on the new mesh and equations ( 6) are discretized with Taylor-Hood finite elements P 2 for the velocity field and P 1 for the pressure. LNS calculations are performed both on a smooth surface and on a surface with defect, for 91 non-dimensional reduced frequencies in the range 𝐹 ∈ [25, 160] to generate the 𝑁 factor curve. This frequency zone is chosen because it delimits the locally unstable region of a Blasius boundary layer.

Code validation

To validate Pims2d in presence of surface imperfection, the configuration studied by Hildebrand et al. [START_REF] Hildebrand | Predicting Boundary-Layer Transition over Backward-Facing Steps via Linear Stability Analysis[END_REF] is reproduced. The boundary layer meets a BFS of slope 𝜃 = 75 • and height ℎ * = 0.72 at the abscissa 𝑥 𝑑 = 0.30 m. The flow has the following characteristics: a freestream velocity 𝑈 ∞ = 28 m s -1 , a displacement thickness at the defect location 𝛿 1,d = 6.90 × 10 -4 m and a freestream unit Reynold number Re ∞ = 1.86 × 10 6 m -1 . Figure 2 compares the 𝑁 factor curves for different frequencies obtained by our method to those obtained by Hildebrand et al. [START_REF] Hildebrand | Predicting Boundary-Layer Transition over Backward-Facing Steps via Linear Stability Analysis[END_REF]. The results match perfectly with the HLNS calculations and validate Pims2d in the presence of surface irregularities. ) for a boundary layer in presence of a BFS.

STUDY OF A CRITICAL STEP AND GAP

The study of a critical gap which parameters are detailed in Table 1 is done in this section in order to detail the database generation process for a particular case. Figure 3 shows the pressure distribution at the wall and exhibits a favorable pressure gradient upstream of the gap, followed by a a region with strong adverse pressure gradient and finally a zone with again a favorable pressure gradient approaching towards zero at the infinite downstream of the defect. These pressure variations are responsible for a separation bubble and have an impact on the boundary layer thickness. This one becomes thinner just upstream of the gap when the pressure gradient is negative, and then thickens in the defect. At a certain distance from the gap, the boundary layer recovers the behavior of an unperturbed Blasius boundary layer.

Once the base flow is calculated, equations ( 6) are solved for 91 non-dimensional reduced frequencies in the range 𝐹 ∈ [25, 160] and the TS wave amplification curves at the specified frequencies are obtained. The maximum of these amplifications gives the 𝑁 factor curve shown in Fig. 4. This curve is compared to the 𝑁 sm curve obtained for a smooth case and allows to visualize quantitatively the effect of a groove on the transition.

At the upstream infinity, the amplification of the pertur- bations is equivalent with or without irregularity. Slightly upstream of the defect, the favorable pressure gradient region tends to stabilize the disturbances by thinning the boundary layer. However, just after the gap, the 𝑁 factor increases abruptly to an 𝑁 max value and recovers the behavior of the flat plate configuration at the downstream infinity but has been shifted by a Δ𝑁 far factor. It is usual to consider that the transition to turbulence occurs when the value of the 𝑁 factor reaches the threshold value 𝑁 tr = 9 in flight conditions for TS transition scenario. The case considered here is therefore critical in that it triggers turbulence at the defect due to the value of the Δ𝑁 max , while the smooth case is always below 𝑁 tr and therefore remains laminar. The different Δ𝑁 values for this case are reported in Table 2. 

NEURAL NETWORK MODEL

Definition

An artificial neuron is a non-linear function that associates to an input vector x = (x 1 , . . . , x 𝑛 ) an output y, as follow:

y = 𝜎 𝑛 ∑︁ 𝑖=1 w 𝑖 x 𝑖 + b 𝑖 , (12) 
where 𝜎 is an activation function, w = (w 1 , . . . , w 𝑛 ) is the vector of connection weights and b is a bias. The activation function introduces non-linearity, allowing the ). The figure also shows the amplification curves for all calculated frequencies ( ) as well as that of the most amplified frequency (

).

neuron to represent arbitrarily complex functional relations between the input variables and corresponds in this study to a rectified linear unit (ReLU) function defined below:

𝜎(𝑧) = max(0, 𝑧). (13) 
A Neural Network (NN) is a structure composed of successive hidden layers between the input layer and the output layer, where the output of a neuron becomes the input of all the units of the next layer. The learning of the NN consists in iteratively adjusting the weights and biases of the network by minimizing a loss function L.

Generation of training data

Inputs of the NN are Re 𝛿 1,d as aerodynamic variable and ℎ * 1 , ℎ * 2 and 𝑏 * as geometric parameters. The range of parameters detailed in Table 3 have been selected to represent both stable and critical cases that can trigger the transition, according to the criteria defined by Beguet et al. [START_REF] Beguet | Modeling of transverse gaps effects on boundarylayer transition[END_REF]. For each sample of input parameters generated, Pims2d provides as output the values Δ𝑁 max and Δ𝑁 far , which will be the outputs to be predicted by the NN. 

Database analysis

Figure 5 illustrates the influence of the input geometrical parameters on the Δ𝑁 for each case in the database. Analysis of Fig. 5(a) shows that the Δ𝑁 max is higher the closer the defect configuration is to a BFS, i.e. the higher ℎ * 1 is and the lower ℎ * 2 is. As illustrated in Fig. 5(b), the highest values of Δ𝑁 max correspond to the highest 𝑏 * when Δℎ = |ℎ * 1ℎ * 2 | < 0.5. On the other hand, beyond this threshold, the width does not seem to play a determining role and a correlation seems to exist between the heights difference Δℎ and the value of Δ𝑁 max . Moreover, the Δ𝑁 max seems to reach a limit around 2 for Δℎ < 0.5, i.e. for cavities with same heights, while a geometry closer to BFS (high Δℎ) is more destabilizing. There also appears to be a strong linear relation between the Δ𝑁 max and Δ𝑁 far values, as shown in Fig. 5(c). This could translate in future studies into the need to know only one of the two Δ𝑁 to predict the other.

Neural network predictions and validation 4.4.1 Implemented neural networks

Neural network with different structures regarding the number of hidden layers and the number of neurons in each layer are considered. The structure of these networks is detailed in Table 4. Each training of the network is done on a normalized training dataset representing 80% of the total dataset (i.e. 600 samples) and randomly selected, while the validation is done on the remaining 20% which have never been seen by the network (i.e. 150 samples).

The loss function to be minimized by the network during the training is defined as the Mean Square Error (MSE) between the real values y (𝑖) and the values predicted by the neural network ỹ(𝑖) :

L = 1 𝑛 𝑛 ∑︁ 𝑖=1 ỹ(𝑖) -y (𝑖) 2 . (14) 
In order to evaluate the model, the metric used is the Mean Absolute Error (MAE) 𝜖 MAE described below:

𝜖 MAE = 1 𝑚 𝑚 ∑︁ 𝑖=1 y (𝑖) -ỹ(𝑖) , (15) 
where 𝑚 is the size of the validation dataset. The results obtained for each network are listed in the Table 4. 

Re 𝛿 1,d ℎ * 1 ℎ * 2 𝑏 * Δ𝑁 max

Validation of neural network results

Once validated on the validation dataset, the NN model is compared to the experimental results of Crouch et al. [START_REF] Crouch | Modeling gap effects on transition dominated by tollmien-schlichting instability[END_REF]. These authors experimentally studied the effect of gaps with identical depths on the transition, for ranges of non-dimensional heights up to 5 and widths up to 50. According [START_REF] Crouch | Surface step effects on boundary-layer transition dominated by tollmien-schlichting instability[END_REF], the uncertainty on the experimental Δ𝑁 value is assumed to be ±0.15 (±10 mm on the transition position). An empirical Δ𝑁 is proposed from the experiments, which takes into account both the height of the gap and its width. This correlation has the advantage of capturing the limiting behavior between a deep and shallow gap:

Δ𝑁 Cr ≈ 0.12𝑏 * tanh 36 ℎ * 𝑏 * . (16) 
The comparison between the experimental results, the results from the correlation ( 16) and the results from the model generated by the neural network B is shown in Fig. 7. Since the authors of the experimental data did not provide all the data necessary to reproduce their study, the Reynolds number Re 𝛿 1,d is chosen as Re 𝛿 1,d = 1700, and the widths chosen are 𝑏 * = 4.3, 10, 14, 23 and 45 depending on the width range considered. A good agreement is observed between the experimental data and the NN prediction as long as we stay in the range of heights and widths studied by the networks. Outside this range, i.e. in the yellow and hatched zones of the graph, corresponding to ℎ * ≥ 3 and 𝑏 * ≥ 20, the results are more balanced. For widths studied by the network, the predictions for heights greater than those in the dataset match the experimental results. On the other hand, when the width of the surface irregularity moves away from the range of values known by the network, this one does not predict correctly the Δ𝑁 max anymore. However, the experimental points corresponding to Δ𝑁 max > 6 probably do not correspond to the transition due to TS waves as explained by the authors, but rather to a bypass transition phenomenon. These points correspond to defect geometries located in the critical zone defined by Beguet et al. [START_REF] Beguet | Modeling of transverse gaps effects on boundarylayer transition[END_REF]. Moreover, as explained by Crouch and Kosorygin [START_REF] Crouch | Surface step effects on boundary-layer transition dominated by tollmien-schlichting instability[END_REF], a difficulty lies in comparing the values of an experimental Δ𝑁 to the values of a numerical Δ𝑁. Indeed, the latter is determined by the global change of the amplification factor in the vicinity of the defect without the knowledge of the actual transition location, while the experimental Δ𝑁 is related to the specific modes responsible for the transition. Δ𝑁 max results from the NN model seems to reproduce the experimental Δ𝑁 whereas one should expect an better agreement with the Δ𝑁 far . Unfortunately, only one streamwise position of the gap on the flat plate is available in these experiments.

A second position would have give insights on which Δ𝑁 to be considered. Recently, Methel et al. [START_REF] Methel | Experimental investigation on the effect of forwardfacing steps and gaps combined with wall suction on boundary layer transition[END_REF] have investigated the effect of gaps and forward facing steps on transition on a flat plate with wall suction at a position corresponding to Re 𝛿 1,d = 1640. Some cases without suction have been extracted to be compared to the NN predictions. The agreement between the Δ𝑁 Exp obtained experimentally and the Δ𝑁 far predicted from the NN is good considering the 𝜖 MAE value of each neural network. This comparison can be found in Table 5. The last two gaps are out of the training range.

In order to verify the network's ability to correctly predict the Δ𝑁 outside of its training area, Wang and Gaster [START_REF] Wang | Effect of surface steps on boundary layer transition[END_REF] experimental results on BFS are replicated. The parameter ℎ * 2 is set to zero, while the parameter 𝑏 * is set to zero in a first step and set to 20 in a second step, to ap- 16) and by the Δ𝑁 max predicted by the neural network B ( ). The yellow area ( ) and shaded areas correspond to range of heights and widths that has not been trained by the network. A case with 𝑏 * = 0 is geometrically close to a BFS, while the 𝑏 * = 20 case allows us to know if a large distance between a BFS and an FFS amounts to simulating a BFS. Both cases are situated outside the learning area of the networks. The results are plotted in Fig. 8 and show reasonable agreement between the experiment and the neural predictions, keeping in mind that the network has not been trained with a pure BFS configuration. It is interesting to note that the neural results with 𝑏 * = 20 seem slightly closer to the experimental results when ℎ * 1 < 1.2, while beyond this limit the neural results with 𝑏 * = 0 seem better. In both cases, the observed differences are small and suggest that a "pure" BFS and a succession of BFS and FFS separated by a distance 𝑏 * = 20 have a similar impact on the boundary layer stability. The NN results corresponding to Re 𝛿 1,d > 2000, located outside the training region for the Reynolds number, are represented by filled symbols to differentiate them and have a larger error compared to the experimental results. It is interesting to note that our results are located between the curves corresponding to the Wang and Gaster [START_REF] Wang | Effect of surface steps on boundary layer transition[END_REF] and Hildebrand et al. [START_REF] Hildebrand | Predicting Boundary-Layer Transition over Backward-Facing Steps via Linear Stability Analysis[END_REF] correlations on BFS, recalled below:

Δ𝑁 Wang = 4ℎ * 1 -1.4, (17a) 
Δ𝑁 Hild = 3ℎ * 1 -0.55. (17b) 

CONCLUSION

A new method for predicting the transition to turbulence of incompressible two-dimensional boundary layers in the presence of gap-like surface defects has been presented. This method is based on the e 𝑁 method and a NN is used to determine the value of the Δ𝑁 generated by the surface irregularity. The proposed model relies on four distinct parameters defining the geometry of the defect and its aerodynamic environment which are its two heights, its width and the Reynolds number based on the displacement thickness of a Blasius boundary layer at the defect position.

The database was generated with the Pims2d code whose advantage is to be quite flexible in the creation of the studied groove mesh, allowing to easily implement boundary layer stability calculations, while the currently existing methods for the prediction of the transition in presence of defects are rather complex to implement. This code has been validated in the case of a boundary layer around a BFS, showing a good agreement with results from AHLNS calculations.

The average error committed by the model is around 8 × 10 -2 on the Δ𝑁 , which allows a fairly robust prediction of the criticality of the surface irregularity. Contrary to the empirical correlations already existing in the literature, the model generated by the NN generalizes to any type of gap insofar as the characteristics of the defect are within the range of parameters studied by the network. The parametrization of the surface defects enables to extend the model to other defects, for instance for BFS.

Encouraging results have been presented in this sense. This work can be followed up by a comparison between the results obtained by the NN model and experimental results on step and gap defects carried out in Onera's wind tunnels. The database will be progressively extended to other types of surface defects and will be expanded to take into account the effects of compressibility and pressure gradients.
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 3 Figure 3: Pressure distribution at the wall in the boundary layer.
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 4 Figure 4: 𝑁 factor envelope curve with defect () and for the same aerodynamic configuration but without defect (). The figure also shows the amplification curves for all calculated frequencies ( ) as well as that of the most amplified frequency ().
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 5 Figure 5: (a)-(b) Evolution of Δ𝑁 max as a function of geometric parameters and (c) evolution of Δ𝑁 far as a function of Δ𝑁 max .
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 6 Figure 6: Neural Model methodology.
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 57 Figure 7: Comparison of the Δ𝑁 obtained experimentally by Crouch et al. [4] ( ), by the correlation (16) and by the Δ𝑁 max predicted by the neural network B ( ). The yellow area () and shaded areas correspond to range of heights and widths that has not been trained by the network.
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 8 Figure 8: Comparison between predictions of network B, wind tunnel experiments of Wang and Gaster [16] and empirical correlations for BFS. The filled symbols () correspond to ranges of Re 𝛿 1,d for which the network has not been trained.

Table 1 :

 1 Aerodynamic and geometric parameters.

	Re 𝛿 1,d	ℎ * 1	ℎ * 2	𝑏 *
	1795.52 1.72 0.47 7.54

Table 2 :

 2 𝑁 max and Δ𝑁 values for a critical case.

	𝑁 max Δ𝑁 max Δ𝑁 far
	10.10	5.59	3.63

Table 3 :

 3 Statistical description of the database with 750 observations.

	Parameter	Min	Max
	Re 𝛿 1,d ℎ * 1 ℎ * 2 𝑏 * Δ𝑁 max Δ𝑁 far	901.53 1999.41 0.10 3 0 2.90 0.52 14.98 0.03 10.71 0.01 6.51

Table 4 :

 4 Details of networks architectures and results. Architecture of the network corresponds to the number of neurons in each layer.

	Network	Architecture	Parameters 𝜖 MAE
	A B C	[4 -80 -2] [4 -20 -20 -2] [4 -15 -15 -15 -2]	562 562 587	0.07 0.09 0.08

Table 5 :

 5 Comparison between Methel et al.[START_REF] Methel | Experimental investigation on the effect of forwardfacing steps and gaps combined with wall suction on boundary layer transition[END_REF] experimental results without wall suction on a gap and the Δ𝑁 far predicted by the neural networks ℎ

	1.90 3.80 1.90 12.70 1.90 22.20 1.90 28.60	0.15 0.34 0.96 2.20	-0.06 0.46 1.24 1.74	-0.06 0.47 1.10 1.12	0.17 0.58 1.50 2.28
	proximate as closely as possible the geometry of a BFS.

* 𝑏 * Δ𝑁 Exp Δ𝑁 far A Δ𝑁 far B Δ𝑁 far C
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SUPPLEMENTARY MATERIAL

The three networks developed in this paper are available at the following address: https://doi.org/10.5281/zenodo.6074956 [START_REF] Rouviere | Neural Prediction Model for Transition Onset of aBoundary-Layer in Presence of 2D Surface Defects[END_REF]. This repository also contains a python script Main.py and a jupyter script Main.ipynb containing explanations and examples on how to use these NN.