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This work investigates nonlinear dimensionality reduction as a means of improving the
accuracy and stability of reduced-order models of advection-dominated flows. Nonlinear
correlations between temporal proper orthogonal decomposition (POD) coefficients can
be exploited to identify latent low-dimensional structure, approximating the attractor
with a minimal set of driving modes and a manifold equation for the remaining
modes. By viewing these nonlinear correlations as an invariant manifold reduction, this
least-order representation can be used to stabilize POD–Galerkin models or as a state
space for data-driven model identification. In the latter case, we use sparse polynomial
regression to learn a compact, interpretable dynamical system model from the time series
of the active modal coefficients. We demonstrate this perspective on a quasiperiodic
shear-driven cavity flow and show that the dynamics evolves on a torus generated by two
independent Stuart–Landau oscillators. The specific approach to nonlinear correlations
analysis used in this work is applicable to periodic and quasiperiodic flows, and cannot
be applied to chaotic or turbulent flows. However, the results illustrate the limitations
of linear modal representations of advection-dominated flows and motivate the use of
nonlinear dimensionality reduction more broadly for exploiting underlying structure in
reduced-order models.

Key words: low-dimensional models

1. Introduction

Many systems with complex, multiscale structure are nevertheless characterized by
emergent large-scale coherence (Haken 1983; Cross & Hohenberg 1993), generating
low-dimensional structure often conceptualized as an attracting or slow manifold. This
phenomenon is especially relevant in fluid dynamics, where successive bifurcations lead to
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increasingly complex behaviour and eventually the transition to turbulence (Landau 1944;
Stuart 1958; Lorenz 1963; Ruelle & Takens 1971; Swinney & Gollub 1981). Dynamical
models that capture this intrinsic low-dimensional structure can improve our physical
understanding and are critical for real-time optimization and control objectives (Noack,
Morzynski & Tadmor 2011; Brunton & Noack 2015; Rowley & Dawson 2017).

Close to a bifurcation, the dynamics is approximately restricted to the manifold
described by the amplitudes of the unstable eigenmodes. The evolution equations for these
effective coordinates are given by the normal form for the bifurcation (Guckenheimer &
Holmes 1983), the form of which can be deduced with symmetry arguments (Golubitsky &
Langford 1988; Glaz et al. 2017; Deng et al. 2020), weakly nonlinear analysis (Stuart 1958;
Sipp & Lebedev 2007; Meliga, Chomaz & Sipp 2009), or a centre manifold reduction
(Carini, Auteri & Giannetti 2015). Normal forms can describe a wide range of stereotypical
dynamics, including bistability, self-sustained oscillations and chaos.

These arguments are only valid near the bifurcation, although empirical methods can
generalize this approach beyond the point where models can be derived via asymptotic
expansions. These methods typically represent the field as a linear combination of
modes (Taira et al. 2017), followed by either Galerkin projection onto the governing
equations (Aubry et al. 1988; Holmes, Lumley & Berkooz 1996; Noack et al. 2003, 2011),
data-driven system identification (Brunton, Proctor & Kutz 2016; Loiseau & Brunton 2018;
Loiseau 2020; Rubini, Lasagna & Da Ronch 2020) or a hybrid of the two (Mohebujjaman,
Rebholz & Iliescu 2018; Xie et al. 2018).

A linear modal basis is typically derived as the solution to some optimization problem.
For example, proper orthogonal decomposition (POD) modes minimize the kinetic energy
of the unresolved fluctuations for a given basis size, with the residual monotonically
decreasing with the basis dimensionality (Holmes et al. 1996). On the other hand,
dynamic mode decomposition (DMD) incorporates temporal information via the spectral
decomposition of a best-fit linear evolution operator that advances the flow measurements
forward in time (Rowley et al. 2009a; Schmid 2010; Tu et al. 2014; Kutz et al. 2016).
DMD can also be viewed as a special case of a Koopman mode decomposition, which is
based on a spectral analysis of the evolution operator for nonlinear observables (Rowley
et al. 2009b; Mezić 2013; Brunton et al. 2022). Regardless of the optimization problem,
linear representations of convection-dominated flows fundamentally suffer from a large
Kolmogorov n-width, or a linear subspace that slowly approaches full kinematic resolution
with increasing dimension (Grimberg, Farhat & Youkilis 2020). In this case, even when
enough modes are retained to reconstruct the flow field, the Galerkin model may not
faithfully represent the underlying physics.

Reduced-order models based on heavily truncated linear representations are therefore
known to suffer from severe instabilities without careful closure modelling (Aubry et al.
1988; Noack et al. 2008; Wang et al. 2012; Maulik et al. 2019). From a numerical
perspective, part of the problem is the Galerkin formulation commonly used to derive
a set of time-continuous ordinary differential equations (Carlberg, Barone & Antil 2017;
Grimberg et al. 2020), but there are also at least two physical reasons for the instability of
projection-based models:

(i) The higher-order modes tend to represent smaller scales of the flow, which are
responsible for the bulk of energy dissipation, so that truncated models may not
accurately capture the energy cascade in the flow. This motivates eddy viscosity-type
modifications by analogy with classical turbulence closure models (Aubry et al.
1988; Wang et al. 2012) as well as alternative Galerkin schemes that explicitly target
energy balance (Balajewicz, Dowell & Noack 2013; Mohebujjaman et al. 2017).
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(ii) The dimensionality of the linear subspace required to reconstruct the flow field may
significantly exceed the intrinsic dimension of the attractor of the system. Since
traditional model reduction methods have one state variable per mode, the projected
dynamics may have many more degrees of freedom than the physical system. For
instance, the travelling wave solution to a linear advection equation on a periodic
domain may require arbitrarily many Fourier modes for a linear reconstruction, yet
with the method of characteristics the state is determined by a single degree of
freedom: the scalar phase.

The competition between these two effects tends to lead to fragile Galerkin systems
without further modelling. Enough modes must be retained to sufficiently resolve
dissipation, but this large number of kinematic modes may be considerably larger
than the number of dynamic degrees of freedom. Therefore, the dynamics of models
that include a large number of modes may not resemble that of the underlying flow.
A case study of these considerations is the pioneering work of Noack et al. (2003)
modelling the two-dimensional flow past a cylinder. With an augmented POD basis and a
careful dynamical systems analysis, they reduce a structurally unstable eight-dimensional
Galerkin system to a two-dimensional cubic model that reproduces the dominant flow
physics.

The issues of stability and validity are intimately connected to the question of
correlation. The temporal coefficients of POD modes are linearly uncorrelated on average
(Holmes et al. 1996), but no such guarantee is available for nonlinear correlation.
For example, one mode may be a harmonic of another; in this case, their temporal
coefficients are linearly uncorrelated but the harmonic is a perfect algebraic function of the
fundamental. If these coefficients are modelled independently, as in a classical Galerkin
system, slight inaccuracies can lead to decoherence and unphysical solutions.

In this work we show that nonlinear correlations can be exploited to identify and
enforce this phase coherence in reduced-order models, as shown schematically in figure 1.
After projecting data from a direct numerical solution of a quasiperiodic shear-driven
cavity flow onto a basis of DMD modes, the recently proposed randomized dependence
coefficient (Lopez-Paz, Hennig & Schölkopf 2013) allows us to clearly distinguish the
active degrees of freedom from correlated higher harmonics and nonlinear cross-talk. In
this minimal representation, the dynamics occurs on a 2-torus, while the rest of the modes,
which arise as triadic interactions of the active variables in the frequency domain, can be
expressed as polynomial functions of the dynamically active variables. The restriction
to this manifold stabilizes a standard POD-Galerkin model, avoiding both decoherence
and energy imbalance. This representation is also a natural basis for data-driven system
identification methods; we apply the sparse identification of nonlinear dynamics (SINDy)
algorithm (Brunton et al. 2016) and show that the flow can be accurately described by two
independent Stuart-Landau equations.

This laminar, quasiperiodic flow is chosen as an illustrative example where stable
and accurate low-dimensional models can be constructed without closure assumptions.
In particular, the modal amplitudes can be reconstructed to high accuracy with sparse
polynomial regression on the four active degrees of freedom. Although this approach to
addressing nonlinear correlations will only be valid for flows with discrete spectral content
(i.e. periodic or quasiperiodic dynamics), we expect that the problem of linear modal
decompositions overestimating the number of dynamically active degrees of freedom
will also be relevant for general advection-dominated flows, motivating future work on
nonlinear dimensionality reduction.
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Figure 1. Schematic of the model reduction approach exploiting nonlinear correlations. The flow fields are
first projected onto a linear modal basis Φ, yielding modal coefficients α(t). The quasiperiodic dynamics can
be described by four degrees of freedom; the rest of the modal coefficients can then be reconstructed with
polynomial functions consistent with triadic interactions in the frequency domain. The dynamics of the active
degrees of freedom can be modelled either by restricting the POD–Galerkin dynamics to the toroidal manifold
or by identifying a simple, interpretable dynamical system with the sparse identification of nonlinear dynamics
algorithm.

This work is organized as follows. In § 2 we use two model partial differential equations
(PDEs) to give brief analogies motivating our use of nonlinear correlation. We introduce
the open cavity flow and direct numerical simulation in § 3 and give POD and DMD
analyses in § 4. Section 5 introduces the reduced-order modelling techniques of Galerkin
projection and SINDy. In § 6 we show how nonlinear correlations arise in the modal
analysis of the flow and how this can be exploited for the reduced-order models. A
comparison and analysis of the various models is given in § 7, followed by a final
discussion in § 8.

2. The origins of nonlinear correlation

Many features of projection-based models of advection-dominated flows are demonstrated
by simple scalar PDEs. In particular, limitations of the Galerkin representation of
hyperbolic problems can be seen in the linear constant-coefficient advection equation,
while Burgers’ equation is a minimal example of the key role of nonlinearity in the full
Navier–Stokes equations.

2.1. The linear dispersion relation as nonlinear correlation
One of the fundamental reasons that Galerkin models of advection-dominated flows
tend to be fragile is that they introduce additional variables that do not correspond to
physical degrees of freedom. This is perhaps illustrated most clearly by the linear advection
equation on a periodic domain

ut + cux = 0, x ∈ (0, L) (2.1)

where u is a scalar amplitude, x is the spatial variable, and c is the constant advection speed
on a finite domain of length L. For any initial condition u(x, 0) = u0(x), this equation has
the simple travelling wave solution u(x, t) = u0(x − ct). Given the initial condition, the
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Figure 2. Linear advection equation with errors εn ∼ N (0, ε2) in the dispersion relation ωn = ckn. The
Galerkin model (grey) loses coherence with the exact solution (black) over a time scale 1/ε. If the polynomial
correlations implied by the dispersion relation are enforced explicitly, the model is robust to such errors.
Nonlinear correlation in the true system, given by (2.5), appears in the Lissajous-type phase portraits of the
Fourier coefficients (b–d). Similar behaviour manifests in Galerkin models of nonlinear advection-dominated
flows.

only effective degree of freedom is the phase ct/L. However, the problem could also be
solved by means of a Fourier expansion

u(x, t) =
∞∑

n=−∞
an(t)eiknx (2.2)

with kn = 2πn/L with time-varying modal coefficients an(t). The Galerkin system in this
orthogonal basis (see § 5) is

ȧn(t) = −iωnan(t), ωn = kncn = 0, ±1, ±2, . . . (2.3a,b)

The relationship between frequency ω and wavenumber kn is the dispersion relation; in
this case it implies that all scales are carried at the same speed c.

With this analytic dispersion relation, (2.3a,b) is equivalent to the travelling wave
solution, since an(t) = e−iωntan(0)

u(x, t) =
∞∑

n=−∞
an(0) exp(ikn(x − ct)) = u0(x − ct). (2.4)

However, the Galerkin model has introduced many degrees of freedom in the harmonics
an by artificially separating space and time. If the projection is approximated numerically
or with empirical basis modes, the estimated system may include some error, so that ωn =
knc + εn. In this case the Galerkin system will be dispersive, i.e. each wavenumber will
propagate with a slightly different speed. The travelling wave solution will tend to lose
coherence on a time scale 1/ε, as shown in figure 2.

An alternative perspective on the dispersion relation is that it specifies nonlinear
correlations between the temporal coefficients an, removing the spurious degrees of
freedom introduced by Galerkin projection. The linear dispersion relation ωn = nk1c
implies the nonlinear relationship for harmonics

an(t) = exp(−ink1ct)an(0) ∝ an
1, (2.5)

with the proportionality determined by the initial condition. Then the only degree of
freedom is a1, and the travelling wave solution is recovered by the Galerkin model
projected onto this mode. In dynamical systems terminology, the solution is restricted
to a one-dimensional manifold: a circle representing the phase of the leading Fourier
coefficient. In this case the decoherence does not lead to instability because the system
is purely linear with purely imaginary eigenvalues, but in nonlinear systems with non-zero
linear growth rates the departure from the solution manifold can be catastrophic.
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2.2. Triadic interactions and the energy cascade
For more general linear systems the preceding analysis is complicated by non-normality
and physical dispersion, and the concept of a dispersion relation is not well defined for
nonlinear dynamical systems. Nevertheless, analogous concepts are similarly important
in models of nonlinear PDEs. For example, Burgers’ model is a paradigmatic scalar
conservation equation illustrating many features of gas dynamics and nonlinear flows more
broadly. Burgers’ equation with viscosity ε is

∂u
∂t

+ u
∂u
∂x

= ε
∂2u
∂x2 , x ∈ (0, 2π). (2.6)

On a periodic domain, we can apply the same Fourier expansion (2.2) with L = 2π,
leading to the Galerkin ordinary differential equation (ODE) system

ȧk = −εk2ak − ik
∞∑

�=−∞
a�ak−�, k = 0, ±1, ±2, . . . . (2.7)

The two right-hand side terms in (2.7), originating from the viscous and nonlinear PDE
terms respectively, capture several key features of the full Navier–Stokes equations. First,
the convolution-type sum over wavenumbers � includes only pairs that sum to k; these are
the so-called ‘triadic’-scale interactions. Second, it can be shown that the nonlinear term is
energy preserving in the sense that when the energy aka∗

k is summed over all wavenumbers
the nonlinear term does not contribute to a net change in energy of the system. (A similar
result holds for inhomogeneous flows (Schlegel & Noack 2015).) This suggests that the
only role of nonlinearity is to transfer energy between scales. Meanwhile, the dissipation
rate of each mode scales quadratically with wavenumber so that the bulk of dissipation
occurs at the smallest scales.

The overall picture of the dynamics in the spectral domain is therefore that the nonlinear
term transfers energy from the more energetic large scales to the dissipative small scales.
Since (2.7) is very similar to the spectral form of the momentum equations for isotropic
turbulence (Tennekes & Lumley 1972), this ‘energy cascade’ is an important feature of real
viscous flows as well. The energy cascade points to another often-discussed issue with
Galerkin models: if the system is truncated at a wavenumber r which is not sufficiently
large to capture the net dissipation rate, the energy cascade is interrupted and the system
of ODEs will overestimate the energy, potentially even becoming unstable.

This issue is fundamentally different from the decoherence discussed in the context
of the linear advection equation. For example, the issue of fine-scale dissipation is also
present in the heat equation, given by (2.6)–(2.7) without the convective nonlinearity.
Whereas the Fourier–Galerkin representation of advection introduces spurious degrees
of freedom, this discussion suggests that in the representation of the heat equation all
coefficients are dynamically important (self-similarity notwithstanding). The Galerkin
system is therefore an ideal representation of the parabolic dynamics of the heat equation,
where the fundamental assumption of separation of variables is valid.

The inability of Fourier decomposition and POD to produce efficient representations of
travelling wave physics has long been recognized. Fundamentally, these decompositions
rely on a space–time separation of variables, which is not a valid assumption for travelling
waves. Many extensions to POD have been developed for translationally invariant systems
and systems with other symmetries (Rowley & Marsden 2000; Reiss et al. 2018; Rim, Moe
& LeVeque 2018; Mendible et al. 2020).

For general viscous, nonlinear, advection-driven fluid flows, we might expect advection,
triadic interactions and small-scale dissipation to all be relevant as a result of the
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joint hyperbolic–parabolic structure of the Navier–Stokes equations. The intrinsic
dimensionality of the system and, conversely, the inaptitude of the Galerkin model, may
not be a priori clear as a result of a complex interplay between these mechanisms.

For example, if the leading degree of freedom a1 tends to oscillate at a frequency ω0,
representing either a standing or travelling wave, then the a2 dynamics includes a term
of the form a2

1 ∼ e2iω0t. Similarly, ȧ3 ∝ a1a2 ∼ e3iω0t. In the energy cascade picture, these
higher-order modes act as forced, damped oscillators and will tend to respond at the forcing
frequencies. In this manner, triadic interactions in the wavenumber domain can also give
rise to nonlinear correlations in time and triadic structure in the frequency domain.

This effect is not necessarily limited to systems with spatial or temporal periodicity;
Rubini et al. (2020) investigated the application of system identification methods to a
chaotic lid-driven cavity flow and showed that sparse nonlinear coupling, analogous to
triadic interactions, were critical for resolving energy transfers across scales of the flow.
They distinguish between this empirical, a posteriori sparsity appearing in the statistics
and data-driven models, and the structural, a priori sparsity of systems such as (2.7),
which is generally lost in Galerkin models of inhomogeneous flows. Similarly, Schmidt
(2020) recently proposed a bispectral modal analysis technique that leverages approximate
sparsity in frequency interactions.

In analogy with the dispersion relation, these processes may result in latent structure
not immediately obvious in the Galerkin representation. If this structure is ignored, the
behaviour of the model may depart significantly from that of the underlying system.
For example, Majda & Timofeyev (2000) showed that a truncated Galerkin model
of the inviscid Burgers equation tends towards equipartition of energy rather than a
physical solution as a result of a catastrophic decoherence mechanism. Consequentially,
in the following sections we argue that nonlinear correlation and manifold restriction
plays an important role in the stability and accuracy of reduced-order models of
advection-dominated fluid flows.

3. Flow configuration

The flow considered in the present work is the incompressible shear-driven cavity flow
visualized in figure 3. It is a geometrically induced separated boundary layer flow having
a number of applications in aeronautics (Yu 1977) or for mixing purposes (Chien, Rising
& Ottino 1986). The leading two-dimensional instability of the flow is localized along
the shear layer delimiting the outer boundary layer flow and the inner cavity flow (Sipp
& Lebedev 2007; Sipp et al. 2010). This oscillatory instability relies essentially on two
mechanisms. First, the convectively unstable nature of the shear layer causes perturbations
to grow as they travel downstream. Once the perturbations impinge upon the downstream
corner of the cavity, instantaneous pressure feedback re-excites the upstream portion of the
shear layer. Coupling of these mechanisms gives rise to a linearly unstable feedback loop
at sufficiently high Reynolds numbers (Rec � 4120, see Sipp & Lebedev 2007). A similar
unstable loop exist for compressible shear-driven cavity flows, wherein the instantaneous
pressure feedback is replaced by upstream-propagating acoustic waves (Rossiter 1964;
Rowley, Colonius & Basu 2002; Yamouni, Sipp & Jacquin 2013). At higher Reynolds
numbers, the slowly recirculating flow inside the cavity can also perturb the shear layer.
This inner cavity mode is similar in spatial structure and oscillation frequency to those
observed in two-dimensional lid-driven cavity flows (Arbabi & Mezić 2017). Since the
shear layer instability and inner-cavity recirculation occur at incommensurate frequencies,
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the nonlinear coupling between these modes leads to a quasiperiodic dynamics, as
illustrated in figure 4.

Despite its apparent simplicity, this strictly two-dimensional linearly unstable flow
configuration has served multiple purposes over the past decade: illustration of optimal
control and reduced-order modelling (Barbagallo, Sipp & Schmid 2009; Loiseau &
Brunton 2018; Leclercq et al. 2019), investigation of the nonlinear saturation process
of flow oscillators (Sipp & Lebedev 2007; Meliga 2017) or as an introduction to DMD
(Schmid 2010). Recent work has also explored the linear stability of its three-dimensional
counterpart, in particular the influence of spanwise endwalls (Liu, Gómez & Theofilis
2016; Picella et al. 2018).

The dynamics of the flow is governed by the incompressible Navier–Stokes equations

∂u
∂t

+ ∇ · (u ⊗ u) = −∇p + 1
Re

∇2u

∇ · u = 0,

⎫⎬
⎭ (3.1)
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where u(x, t) = (u, v)T is the two-dimensional velocity field and p is the pressure field.
The Reynolds number is set to Re = 7500 based on the free-stream velocity U∞ and the
depth L of the open cavity. The computational domain and boundary conditions considered
herein are the same as in Sipp & Lebedev (2007), Sipp et al. (2010), Loiseau & Brunton
(2018), Bengana et al. (2019) and Leclercq et al. (2019), shown schematically in figure 3.

We perform direct numerical simulation (DNS) of the flow with the Nek5000
spectral element solver (Fischer, Lottes & Kerkemeir 2008). The mesh consists of
6100 eighth-order spectral elements, equivalent to roughly 3.8 × 105 grid points, refined
towards the walls and shear layer. The domain is therefore somewhat over-resolved
compared with similar studies in order to minimize any numerical errors in the Galerkin
projection for higher-order modes. Diffusive terms are integrated with third-order
backwards differentiation, while convective terms are advanced with a third order
extrapolation. We retain 30 000 snapshots from the DNS at sampling rate �t = 10−2, a
frequency roughly fifty times larger than the high-frequency oscillation of the shear layer.

Figure 3 depicts an instantaneous vorticity field obtained from DNS once the flow has
reached a statistical steady state. It shows the advection of a vortical structure along the
shear layer before it impinges the downstream corner of the cavity. These shear layer
oscillations arise as a linear instability mode of the steady base flow above Rec � 4120
(Sipp & Lebedev 2007). However, the Reynolds number of the present flow (Re = 7500)
is significantly larger than this critical Reynolds number, so the typical amplitude of
fluctuations is not infinitesimal and the associated Reynolds stressed are not negligible.

The physics of this flow are therefore fundamentally nonlinear in at least two respects.
First, the growth of the instability modes is checked by the Stuart–Landau nonlinear
stability mechanism, in which finite Reynolds stresses deform the steady base flow into the
post-transient mean (Sipp & Lebedev 2007; Meliga 2017). Second, a stability analysis of
the time-averaged mean flow at this Reynolds number reveals a second, weaker instability
associated with lower-frequency oscillations inside the cavity; see Appendix A and Sipp
et al. (2010). The incommensurate frequencies of these two instabilities give rise to a
quasiperiodic oscillatory dynamics.

Because the unstable base flow is of limited relevance in the statistically stationary
regime, it is more natural to decompose the instantaneous velocity field into a
time-averaged mean flow ū(x) and zero-mean fluctuations u′(x, t). For a detailed analysis
of the choice between base- and mean-flow expansions, see Sipp & Lebedev (2007).

Figure 4 shows the Fourier spectrum of the kinetic energy of the fluctuating component

E(t) = 1
2

∫
Ω

u′(x, t) · u′(x, t) dΩ (3.2)

integrated over the domain Ω . Such a spectrum is characteristic a of quasiperiodic
dynamics, as recently observed for a similar flow by Leclercq et al. (2019). As
demonstrated below, the two main frequencies correspond either to the dynamics of the
vortical structures along the shear layer (ωs) or to the low-frequency unsteadiness taking
place within the cavity (ωc). The power spectrum consists of approximately discrete
peaks, each of which can be accounted for by the sum or difference of these fundamental
frequencies and their harmonics. The observation that this spectrum can be generated
using only two main frequencies lets us hypothesize that the dynamics of the fluctuation
u′(x, t) around the mean flow ū(x) is amenable to a low-dimensional representation. This
flow is therefore of intermediate complexity, between weakly nonlinear flows, which can
be accurately described with normal form dynamics, and fully turbulent flows, which have
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many dynamical degrees of freedom and would likely require careful closure modelling to
approximately model the evolution of large-scale coherent structures.

4. Modal analysis

Linear modal analysis is a powerful tool for extracting low-dimensional coherent structure
in flows, even those characterized by strong nonlinearity. Here, we give only a brief
description; see Taira et al. (2017) for a comprehensive survey. We focus on truncated
(rank r) affine decompositions with space–time separation, of the form

u(x, t) � ū(x) +
r∑

k=1

ψk(x)ak(t), (4.1)

including for example global stability analysis (Theofilis 2011), POD (Lumley 1967;
Holmes et al. 1996) and DMD (Schmid 2010; Rowley et al. 2009b), but excluding
approaches such as non-modal stability analysis (Schmid 2007; McKeon & Sharma 2010)
and spectral POD (Towne, Schmidt & Colonius 2018). Broadly speaking, the goal of
modal analysis is to identify a suitable basis {ψk}r

k=1 in which to represent the flow
kinematics, while the reduced-order dynamical systems models discussed in § 5 treat the
time evolution of the coefficients a(t). Since the state is specified by the r-dimensional
coefficient vector, (4.1) is a linear dimensionality reduction.

4.1. Proper orthogonal decomposition
One of the most widely used techniques for dimensionality reduction and modal analysis
is POD, which solves the optimization problem

minimize {ψk}

〈∥∥∥∥∥u′ −
r∑

k=1

ψk
(
u′,ψk

)
Ω

∥∥∥∥∥
2〉

subject to
(
ψ j,ψk

)
Ω

= δjk (4.2)

in the norm induced by the energy inner product

(u, v)Ω ≡
∫

Ω

u(x) · v∗(x) dΩ, (4.3)

where 〈·〉 is an ensemble average, approximated in practice by a time average, δjk is the
Kronecker delta and the star indicates a complex conjugate. For data on a non-uniform
mesh, the inner product is computed with a weighted Riemann sum, approximating dΩ

with the mass matrix of the discretization. Thus, the objective is to minimize the residual
energy in a linear subspace of r orthonormal modes, providing an optimal low-rank
representation of the flow.

This problem can be solved with the calculus of variations, leading to the result that the
modes {ψk} are eigenfunctions of the correlation tensor C(x, x′):∫

Ω

C(x, x′)ψk(x
′) dΩ ′ = σ 2

k ψk(x), (4.4)

where C(x, x′) = 〈u(x, t)u∗(x′, t)〉 and {σk} are the POD eigenvalues, representing the
average fluctuation kinetic energy captured by each mode. The coefficients a(t) can be
extracted with the projection ak = (

u′,ψk
)
Ω

. In practice the correlation tensor is often
not feasible to construct, since it scales with the square of the discretized state dimension.
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Nonlinear correlations in reduced-order modelling

Instead it is approximated numerically with either a singular value decomposition (SVD)
or the snapshot method (Sirovich 1987; Holmes et al. 1996; Taira et al. 2017). In this
work we use the snapshot method as implemented in the modred library (Belson, Tu &
Rowley 2014), since it does not require storing the entire time series of high-dimensional
discretized velocity fields in memory.

The method of snapshots is based on simple linear algebraic manipulations of the
discretized form of the eigenvalue problem (4.4). We omit a derivation here as it is given
in standard references, e.g. Holmes et al. (1996). Rather than form the spatial correlation
tensor C(x, x′), we compute a temporal correlation matrix R with entries defined by

Rjk = 1
M

(
u(tj), u(tk)

)
Ω

, j, k = 1, 2, . . . , M. (4.5)

The temporal correlation matrix R has dimensions M × M, and is typically much smaller
than the discretized spatial correlation tensor. The eigenvalues of R approximate those of
C, and the modes that solve the discretized form of (4.4) are also given by

ψk = 1

σk
√

M

M∑
j=1

u(tj)Wjk, (4.6)

where RW = WΣ2 is the eigendecomposition of R.
The POD has the following useful properties:

(i) The spatial modes form an orthonormal set:
(
ψ j,ψk

)
Ω

= δjk.
(ii) The temporal coefficients are linearly uncorrelated: 〈ajak〉 = σ 2

k δjk.
(iii) The modes can be ranked hierarchically by average energy content σ 2

k .

Since POD can be viewed as a continuous form of the SVD, these properties are
analogous to unitarity of the matrices of left and right singular vectors. The singular
values quantify the statistical variance captured by the low-rank SVD approximation. As
a consequence of the hierarchical ordering, the POD can be computed without a priori
specification of the rank r, with the truncation determined later by a threshold based on the
residual energy. Finally, since the modes are a linear combination of DNS snapshots, the
reconstruction (4.1) automatically satisfies the incompressibility constraint and boundary
conditions.

We compute the POD from 4000 fields sampled at �t = 0.05, approximately ten times
the shear layer frequency, using the method of snapshots (Sirovich 1987). This is around
13 % of the total number of fields retained from the DNS, but is sufficient for statistical
convergence of the leading modes. The singular value spectrum and residual energy
are shown in figure 5. The singular values converge relatively quickly; the first pair of
modes contain 70 % of the fluctuation kinetic energy, the first six account for ∼90 %,
and by r = 64 approximately 99.97 % of the energy is recovered. We retain 64 modes for
further analysis and note that our modelling results are insensitive to moderate changes in
truncation.

Still, as we will show in § 6, the intrinsic dimensionality of the system is much smaller
than that of the linear subspace required for reconstruction. As with the advection system
in § 2, this is partly due to the representation of travelling waves, as shown in figure 6. This
is made clearer by a DMD analysis.
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Figure 5. Singular value spectrum of the quasiperiodic cavity flow. Black dots represent the normalized
squared singular values of the snapshot correlation matrix, indicating the fraction of fluctuation kinetic energy
resolved by each mode. Red crosses indicate the fraction of residual energy, or normalized cumulative sum of
squared singular values. Dashed lines indicate the number of modes retained (r = 64).
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Figure 6. Harmonic modes identified from POD and DMD analysis. The spatial fields and phase portraits
both indicate that certain mode pairs are harmonics arising from the description of wavelike motion in the
shear layer and inner cavity. Because DMD is based on both spatial and temporal correlation, this structure
is especially pronounced in the DMD coefficients. The vorticity plots are real parts of the DMD modes, but
analogous modes exist in the POD basis.

4.2. Dynamic mode decomposition
Although POD is guaranteed to provide an energy-optimal spatial reconstruction of the
flow field, it sacrifices all temporal information in the computation of the correlation
tensor. The POD basis is therefore purely kinematic and contains no dynamic information.
An alternative approach is to compute the discrete Fourier transform of the fields, which
suffers from the opposite issue: frequency information is perfectly resolved, but the result
is not necessarily associated with a useful reduced-order linear subspace for kinematic
representation. DMD, introduced by Schmid (2010), is a useful compromise between these
extremes.

DMD seeks to approximate a discrete-time linear evolution operator defined by

minimize A
〈
‖u(x, tn+1) − Au(x, tn)‖2

〉
. (4.7)

The description of nonlinear dynamics in terms a linear evolution operator acting on
observables has a deep connection to Koopman theory (Rowley et al. 2009b; Mezić 2013;
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Brunton et al. 2022). We will discuss this in § 8, but in terms of modal analysis it is more
useful to think of DMD as solving an alternative optimization to (4.2).

Given a series of snapshots, a least-squares solution to (4.7) could be found in terms
of the pseudoinverse of the snapshot matrix. However, this calculation is typically
computationally prohibitive, ill conditioned and disregards low-dimensional structure in
the flow. Instead, DMD seeks to approximate the spectral properties of the operator A
without explicitly forming it. There are a variety of algorithms to compute DMD in
conditions with limited or noisy data, but beginning with high-fidelity DNS snapshots
we follow the simple exact DMD algorithm introduced by Tu et al. (2014).

Beginning with a truncated POD basis and associated coefficients {a(tn)}M
n=1, the

coefficients are arranged into time-shifted matrices X = [a(t1) a(t2) · · · a(tM − 1)] and
X ′ = [a(t2) a(t3) · · · a(tM)]. Here, we assume the {tn} are evenly sampled in time, but
it is possible to account for situations where this is not the case. A least-squares solution
to (4.7) in the POD subspace is Ã = X ′X+, where X+ is the pseudoinverse. With some
assumptions, the spectrum of A is approximated by the spectrum of Ã, which can now be
easily computed via an eigendecomposition

Ã = VΛV−1, (4.8)

with Ã, V ,Λ ∈ Cr×r. For details on theory and algorithms of DMD, see Tu et al. (2014)
and Kutz et al. (2016). Based on this eigendecomposition, complex-valued DMD modes
{φk(x)} and associated projection coefficients α(t) are linear combinations of the POD
modes and coefficients, given by

φk(x) =
r∑

j=1

ψ j(x)Vjk α(t) = V−1a(t). (4.9a,b)

In principle the approximate time evolution is specified by the DMD eigenvalues {λk} =
diag(Λ), but in terms of reduced-order modelling the decomposition can also be viewed
as an alternative expansion to (4.1)

u(x, t) � ū(x) +
r∑

k=1

φk(x)αk(t). (4.10)

The DMD coefficient vector α(t) may then be modelled as a time series, as with the POD
coefficients a(t).

This representation is essentially a similarity transformation of the POD basis; the two
encode the same information and span the same subspace. However, the time dependence
in the optimization problem leads DMD to transform the POD basis to modes that tend
to have similar frequency content. In terms of the present analysis, figure 6 illustrates
the practical relevance of this. Whereas POD happens to identify modes that are roughly
coherent in time by coincidence only, the DMD modes are closer to pure harmonics. This
perspective on DMD also explains the approximately discrete peaks in figure 4; each DMD
eigenvalue (shown in figure 7) can be identified with some combination of the fundamental
frequencies of modes k = 1 and k = 5.

Based on the results in §§ 6 and 7, we hypothesize that DMD also filters frequency
content and accentuates nonlinear correlations for modes that are not pure harmonics.
This approximate nonlinear algebraic dependence clearly indicates a manifold structure of
much lower dimensionality than the linear subspace. Given these implications, the results
presented below are based on the DMD expansion (4.10).
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Figure 7. DMD frequencies ωk and average energy Ek = 〈|αk|2〉 along with vorticity plots for the real part
of the most energetic modes. The second mode pair (k = 3, 4) is a harmonic of the leading pair (k = 1, 2),
while the third pair (k = 5, 6) represents the low-frequency inner-cavity motion. Other modes (e.g. k = 7, 8)
are either harmonics or indicate nonlinear frequency cross-talk between these leading modes, as in figure 4.

5. Reduced-order models

The modal analyses discussed in § 4 may be viewed as linear dimensionality
reduction methods that transform the system to a compact coordinate system in
which low-dimensional dynamical systems models can be developed. In addition to an
inexpensive surrogate for the flow, such models can provide valuable insight into latent
structure of the physical solutions. Broadly speaking, two of the most common approaches
to nonlinear reduced-order modelling are projection-based models and data-driven system
identification, though many more tools are available for linear model reduction; see for
instance Antoulas (2005) and Benner, Gugercin & Willcox (2015). In this section we give
a brief overview of relevant material on projection-based modelling (§ 5.1) and the SINDy
framework for system identification (§ 5.2).

5.1. POD–Galerkin modelling
In projection-based modelling, the discretized governing equations are projected onto an
appropriate modal basis. For simple geometries, this might be done analytically, as for the
periodic problems in § 2 and in Noack & Eckelmann (1994), for instance. Although general
and expressive, this approach becomes challenging on complex domains and does not take
advantage of structure in the solutions to the particular PDE. As a result, it is increasingly
common to project onto an empirical basis, such as POD modes. Assuming that the flow
is statistically stationary and the ensemble is sufficiently resolved, this provides optimal
kinematic resolution in an orthonormal basis. The following Galerkin projection procedure
then leads to a minimum-residual system of ODEs in this basis.

Let N [u] = 0 be the Navier–Stokes equations in implicit form. By approximating the
flow field with a truncated linear combination of basis functions as in (4.1), we expect
some residual error r(x, t) in the approximated dynamics defined by

r(x, t) = N
[

ū(x) +
r∑

�=1

ψ�(x)a�(t)

]
. (5.1)
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In order to minimize the residual in this basis, the Galerkin projection condition is that
that the residual be orthogonal to each mode

0 = (
r,ψk

)
Ω

=
(

N
[

ū(x) +
r∑

�=1

ψ�(x)a�(t)

]
,ψk

)
Ω

. (5.2)

This leads to the linear-quadratic system of ODEs (Holmes et al. 1996; Noack et al. 2011)

ȧk = Ck +
r∑

�=1

Lk�a� +
r∑

�=1

r∑
m=1

Qk�ma�am, (5.3)

with constant, linear and quadratic terms given by

Ck =
(

−∇ · (ū ⊗ ū) + 1
Re

∇2ū,ψk

)
Ω

(5.4a)

Lk� =
(

−∇ · (ū ⊗ ψ� + ψ� ⊗ ū) + 1
Re

∇2ψ�,ψk

)
Ω

(5.4b)

Qk�m = (−∇ · (ψm ⊗ ψ� + ψ� ⊗ ψm),ψk
)
Ω

. (5.4c)

Note that the constant term vanishes if the flow is expanded about a steady-state solution
of the governing equations. Since the mean flow in this case is not a solution, this term
represents important mean-flow forcing and is not negligible. Here, we have also neglected
the pressure term, though including it does not significantly change any of the results; for
detailed discussion of this point see Noack, Papas & Monkewtiz (2005).

In principle, we might expect that the POD–Galerkin system (5.3) leads to approximate
solutions with comparable accuracy to the resolution of the expansion basis. However,
for reasons introduced in § 2, the long-time behaviour of the reduced-order model may
deviate significantly from that of the underlying physical system. In particular, solutions
of the model are not constrained to lie on an invariant manifold of the flow. For instance,
coefficients associated with shear layer or inner-cavity harmonics evolve independently
from the fundamental modes, eventually leading to an unphysical loss of coherence. This
effect cannot necessarily be attributed to any particular mode or interaction term, but is
related to the structure of the model itself when the POD–Galerkin method is applied to
advection-dominated flows.

Figure 8 shows the evolution of the fluctuation kinetic energy as predicted by the
POD–Galerkin system for various levels of truncation r. Although the estimate does tend
to improve with increasing r, none of these models capture the quasiperiodic dynamics of
the flow, and most exhibit significant instability. This is true despite (and, we will argue,
because of) the fact that these models have many more kinematic degrees of freedom than
the true dynamics underlying the post-transient cavity flow.

Finally, a model similar to (5.3) may also be derived beginning with the DMD expansion
(4.10). In this case, since the DMD basis is not orthonormal, the Galerkin projection
must be replaced with the more general oblique projection of Petrov–Galerkin methods
(Benner et al. 2015). We implement this with a coordinate transform of the standard
POD–Galerkin model based on the DMD eigenvector matrix V , i.e. a = Vα. For instance,
a DMD–Petrov–Galerkin model with the same truncation as the original POD model
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Figure 8. Evolution of the fluctuation kinetic energy predicted by POD–Galerkin reduced-order models of
various dimensions along with DNS values. Though all values of r shown here capture sufficient dissipation to
remain at finite energy, none resolves the true quasiperiodic dynamics.

has dynamics

α̇k = C̃k +
r∑

�=1

L̃k�a� +
r∑

�=1

r∑
m=1

Q̃k�ma�am, (5.5)

with the modified constant, linear and quadratic terms given in tensor summation notation
by

C̃k = V−1
kμ Cμ (5.6a)

L̃k� = V−1
kμ LμνVν� (5.6b)

Q̃k�m = V−1
kμ QμνρVν�Vρm. (5.6c)

The DMD–Petrov–Galerkin model can also be truncated differently from the
POD–Galerkin model by selecting a subset of the DMD eigenvectors, so that a = Ṽα
with a ∈ Rr, α ∈ Cs and Ṽ ∈ Cr×s, and with V−1 replaced by the pseudoinverse Ṽ+ in
(5.6).

Since this transformation is a rotation in the space of modal coefficients, the dynamics
and qualitative behaviour of the DMD–Galerkin models do not change compared with
figure 8. However, in the following we exploit nonlinear correlations in the coefficients
to restrict the dynamics to the manifold of the flow; this is more convenient in the
near-harmonic DMD basis, shown in figure 6. Since DMD analysis seeks to approximate
the spectrum associated with a linear evolution operator of the flow, this might be
considered analogous to the diagonalization step of a centre manifold or normal form
analysis.

5.2. Sparse identification of nonlinear dynamics
As an alternative to projection-based reduced-order modelling, a low-dimensional system
can be approximated directly from the data in a procedure typically called system
identification. In a continuous-time setting, this is done by estimating parameters Ξ for
a function f (a;Ξ) ≈ ȧ that solve the approximation problem

minimize Ξ
〈
‖ȧ − f (a;Ξ)‖2

〉
. (5.7)

This is similar to the residual minimization in Galerkin projection, except that knowledge
of the governing equations is neither required nor assumed. Instead, some intuition
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about the structure of the dynamics is typically encoded in the parameterization of
f . Different parameterizations lead to symbolic regression (Schmidt & Lipson 2009),
operator inference (Peherstorfer & Willcox 2016) or deep learning (Vlachas et al. 2018). In
the discrete-time counterpart to (5.7), the nonlinear autoregressive moving average model
with exogenous inputs (NARMAX) framework provides a powerful approach that can
incorporate time delays, stochastic forcing and exogenous inputs (Billings 2013).

In this work we apply the SINDy approach to system identification (Brunton et al. 2016).
Let Θ(a) denote a library of candidate functions of the time series a(t), e.g.

Θ
(
[a1 a2]T) =

[
a1 a2 a2

1 a1a2 a2
2 · · ·

]T
. (5.8)

We seek a sparse approximation ȧ ≈ f (a;Ξ) = ΞΘ(a) in the range of these candidate
functions. We can frame this as a linear algebra problem by forming the r × M data matrix
X as in § 4.2, where each column is a snapshot of modal coefficients in time. Similarly,
we estimate the time derivative Ẋ , in this case with second-order central differences. The
SINDy formulation of the optimization problem (5.7) is then

minimize Ξ
∥∥Ẋ − ΞΘ(X )

∥∥2
2 + γ ‖Ξ‖0, (5.9)

where ‖·‖p indicates the p-norm and γ is some regularization weight. This optimization
problem is non-convex and requires a combinatorial search over function combinations.
To avoid this, we follow Loiseau (2020) and approximate the solution to (5.9) with the
greedy forward regression orthogonal least squares (FROLS) algorithm used in NARMAX
analysis (Billings 2013). See Brunton et al. (2016), Loiseau & Brunton (2018) and Loiseau
(2020) for details on SINDy reduced-order modelling of fluid flows.

Although the systems obtained from POD–Galerkin projection will be dense in general,
we expect that the dynamics can be closely approximated by a sparse combination of
candidate functions. This may be justified intuitively by the sparse structure of the triadic
interactions in isotropic flow (see § 2.2), where only r2 out of r3 possible interactions are
admissible. Moreover, as observed in § 4.2, DMD approximates a diagonalization of the
evolution operator, so that by analogy with normal form theory we may reasonably hope
for a minimal representation of the dynamics if we work with DMD coefficients α rather
than POD coefficients a. More generally, sparsity promotion reflects the inductive bias of
Occam’s razor or Pareto analysis, where we expect that the most important features of the
dynamics will be due to a small subset of terms.

For incompressible flows, it has been repeatedly demonstrated that a library of low-order
polynomials provides a good basis of functions. Quadratic terms are clearly necessary
to capture the advective nonlinearity of the Navier–Stokes equations, but cubic terms
allow the model to resolve Stuart–Landau-type nonlinear stability mechanisms (Loiseau
& Brunton 2018). From a dynamical systems perspective, higher-order terms may be
necessary to describe phenomena such as subcritical bifurcations, but are not necessary
to resolve the nonlinear oscillator behaviour in the present case.

For PDEs with more general nonlinearity, low-order polynomials still present an
attractive basis for SINDy. In many interesting regimes the effect of the nonlinearity may
be relatively weak, so that quadratic and cubic polynomials can be seen as second- or
third-order Taylor series approximations to the underlying nonlinearity. Moreover, even
strongly nonlinear systems can be lifted with a change of variables to a coordinate system
wherein the dynamics is linear quadratic (Rowley, Colonius & Murray 2004; Qian et al.
2020).
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6. Nonlinear correlations

Sections 4 and 5 recapitulate well-known methodology for analysing and modelling
unsteady fluid flows. With a modal expansion and model reduction, the formally
infinite-dimensional PDE can be reduced to a set of coupled, nonlinear ODEs mimicking
the structure of the physical system. However, the POD analysis indicates that dozens of
modes are necessary for an approximately complete kinematic representation in a linear
basis, while the DMD analysis and power spectrum suggest that the dynamics of the flow
is quasiperiodic. A minimal description of the post-transient flow should therefore require
only a pair of oscillators evolving on a 2-torus, comprising four degrees of freedom.

This discrepancy can be understood qualitatively in light of the discussion in § 2.
Advection of nearly periodic fluctuations leads to the appearance of harmonic modes,
as shown in figures 6 and 7. Similarly, cross-talk between the incommensurate dominant
frequencies gives rise to modes that are not pure harmonics of either frequency. In the
low-dimensional subspace spanned by the leading POD/DMD modes, these can be viewed
as triadic interactions in the frequency domain. Again, since we seek structure that is
coherent at distinct frequencies, we will focus on the DMD coefficients in the following.

6.1. A model quasiperiodic cascade
Consider a model system of ODEs including cascading triadic-type interactions of the
form of (2.7) where self-sustaining oscillations drive higher-order degrees of freedom

a1 = Aeiωat, b1 = Beiωbt, (6.1a)

ȧk =
∑
|�|<k

a�ak−�, ḃk =
∑
|�|<k

b�bk−�, ċk =
∑
|�|<k

a�bk−�, k > 1. (6.1b)

For k = 2 the only interactions are at |�| = 1, generating second harmonics for a2 and
b2, and oscillations at ωa + ωb for c2. At k = 3, the forcing includes the k = 2 terms,
generating third harmonics for a3 and b3 and cross-talk for c3. Up to some complex scaling
the solutions take the form

a2 = A2 exp(2iωat), b2 = B2 exp(2iωbt), c2 = AB exp(i(ωa + ωb)t), (6.2a)

a3 = A3 exp(3iωat), b3 = B3 exp(3iωbt),

c3 = AB2 exp(i(ωa + 2ωb)t) + A2B exp(i(2ωa + ωb)t).

}
(6.2b)

By k = 3 the response of the ck cross-talk variable does not represent pure frequency
content. If these represented modal coefficients we would expect the dynamics at
(for instance) ωa + 2ωb and 2ωa + ωb corresponds to different spatial structures so
c3 and higher-order terms would be separated into distinct coefficients. This serves to
emphasize that the temporal coefficients and low-dimensional ODEs are only convenient
representations of the full spatio-temporal dynamics and are not fundamental physical
quantities.

A global observable such as the energy analogue
∑

k(|ak|2 + |bk|2 + |ck|2) will have
frequency content at all integer combinations of ωa and ωb. As with the linear advection
equation in § 2.1, these higher-order coefficients can be expressed as algebraic functions
of the fundamental oscillators. For instance, the cross-talk variable c3 can be replaced by
a1b2

1 + a2
1b1, up to scaling. This example shows that periodic oscillation with cascading

triadic interactions can generate quasiperiodic time series, point spectra similar to figure 4
and nonlinear algebraic dependence without direct interactions between the oscillators,
provided the dominant oscillation frequencies are incommensurate.
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Figure 9. Selected phase portraits of DMD coefficients along with measures of linear and nonlinear
correlation (Pearson’s ρ and the randomized dependence coefficient, respectively). While α1 and α3 are
linearly uncorrelated (ρ = 0), the clear functional relationship between the two is reflected in the randomized
dependence coefficient value; physically, α3 is a pure harmonic of α1. On the other hand, α17 corresponds to
a nonlinear cross-talk mode that has no clear correlation with α1, either linear or nonlinear. Nevertheless, it
can be accurately approximated by a simple polynomial function of the active degrees of freedom, as shown by
table 1 and figure 11.

6.2. The randomized dependence coefficient
As discussed in § 4, the POD coefficients are guaranteed to be linearly uncorrelated. The
same is not necessarily true of DMD coefficients, but in practice they tend to be minimally
correlated. However, as in the previous example, a network of triadic interactions forced by
a limited number of driving oscillators can exhibit pure algebraic dependence on the active
degrees of freedom. In other words, the higher-order variables can have perfect nonlinear
correlation, even when uncorrelated in a linear sense.

This is an intuitive result, but challenging to evaluate in a principled way. In a
probabilistic setting, mutual information is the most natural metric for generalized
correlation, but it requires estimating integrals over conditional probability distributions.
This is expensive and difficult for multidimensional signals, and the concept of mutual
information itself is not necessarily well suited for purely deterministic systems. To address
this issue, various nonlinear generalizations of the standard (Pearson’s) linear correlation
coefficient have been proposed in the statistics community. Recently, Lopez-Paz et al.
(2013) proposed the randomized dependence coefficient (RDC) as an efficient and
convenient metric for nonlinear correlation that has the properties defined by Rènyi (1959)
for generalized measures of dependence between variables.

The RDC combines linear canonical correlations analysis with randomized nonlinear
projections to estimate nonlinear dependence; details are presented in Lopez-Paz et al.
(2013). Figure 9 gives examples of both the standard linear correlation coefficient and
the RDC for several pairs of DMD coefficients. Coefficient pairs that are pure harmonics
tend to score highly on the RDC, while coefficients with nonlinear cross-talk or multiple
frequency components do not, even if there is a simple functional dependence on two
active coefficients. This limits the potential of the RDC for unravelling the multivariate
structure of the manifold, although it is a convenient diagnostic and visualization tool for
identifying independent, dynamically active modes.

For example, figure 10 shows both the phase portraits of leading DMD coefficients
(lower triangular portion) and the RDC values (upper triangular). In some cases (coloured
outlines), the modes are clearly pure harmonics of one of the two driving mode pairs.
This is reflected in the large values of the RDC for the harmonics, indicating that these
coefficients can be directly expressed as algebraic functions of one or the other driving
modes. However, based on the previous discussion we expect that coefficients representing
frequency cross-talk might be multivariate functions of both driving mode pairs. In this
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shear layer and inner cavity

Figure 10. Identification of the active degrees of freedom with the RDC. The lower triangular portion of the
figure shows phase portraits of the real (horizontal axis) and imaginary (vertical axis) DMD coefficients, while
the upper triangular portion depicts the RDC values scaled linearly in colour and radius. Two approximately
independent clusters can be identified: the shear layer dynamics (blue) and inner-cavity oscillations (red). Each
of these is associated with a dominant mode pair (solid borders) and pure harmonics (dashed borders) that
are strongly nonlinearly correlated with the dominant modes. The other modes also have simple polynomial
relationships with the active degrees of freedom but include cross terms that break the one-to-one nonlinear
correlation (see table 1 and figures 9 and 11).

case it is clear based on the energy content and harmonic structure of figure 10 that the
pairs (α1, α2) and (α5, α6) are the driving degrees of freedom, but chaotic or turbulent
flows might have more opaque causal structure.

6.3. Manifold reduction via sparse regression
Based on the RDC analysis of the previous section, it is clear that certain modes are
pure algebraic functions of one or the other driving mode pairs. In particular, harmonic
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modes such as those illustrated in figure 6 are polynomial functions of the fundamental
mode. However, as demonstrated by the model in § 6.1, triadic interactions can also
generate multivariate nonlinear correlations for modes representing frequency cross-talk.
In addition, from a dynamical systems perspective we expect that a quasiperiodic system
with two dominant frequencies should have a post-transient attractor described by four
degrees of freedom: two generalized amplitude and phase pairs.

If this is the case, the modes that are not pure harmonics may still be approximately
polynomial functions of the shear layer and inner cavity modes. We explore this hypothesis
with the same approach as outlined in § 5.2 for the SINDy algorithm. Denoting these
‘active’ degrees of freedom by α̂(t) = [α1 α2 α5 α6]T, the library Θ(α̂) is defined as in
(5.8). We assume the full coefficient vector can be approximated as

α ≈ HΘ(α̂), (6.3)

where the coefficient matrix H is relatively sparse, as for Ξ in the SINDy optimization
problem. For rows corresponding to active degrees of freedom, H are unit vectors that
produce an identity map (e.g. α1 = α̂1).

In this case one motivation for sparse regression is that the library Θ tends to be fairly
ill conditioned, so that approximation with a sparse combination of polynomials may help
avoid overfitting. In addition, based on the preceding discussions about DMD and triadic
interactions in frequency space, it is reasonable to expect that relatively few combinations
of the driving frequencies will correspond to each DMD coefficient. Once the coefficient
matrix H is identified via a sparse regression algorithm (we use FROLS, as for the
SINDy optimization), the functional relationships give a simple nonlinear dimensionality
reduction; in this case the ‘latent variables’ are the active degrees of freedom α̂ and we
can approximate the full coefficient vector with the function α ≈ h(α̂) = HΘ(α̂).

The key advantage to this representation of the modal coefficients is that it dramatically
restricts the dimensionality of the state space. In the case of the quasiperiodic shear-driven
cavity, we reduce from the r = 64-dimensional subspace spanned by the DMD modes
to a four-dimensional space of α̂. Moreover, as α2 = α∗

1 and α6 = α∗
5 , these mode

pairs represent two generalized amplitude–phase pairs, as expected for a dynamics with
a toroidal attractor. This eliminates the redundant variables introduced by the linear
space–time separation of variables via a nonlinear manifold reduction.

The benefit of this reduced state space is immediately clear for system identification;
we can apply SINDy to model the evolution of α̂ and reconstruct the full state from this
minimal representation. However, the manifold representation can also be used to improve
the stability and accuracy of the projection-based Galerkin models. For a general nonlinear
embedding of the form a = h(â) and dynamical system ȧ = f (a), consistency requires
ȧ = J(â) ˙̂a, where J(â) is the Jacobian of h evaluated at â. Equivalently,

dâ
dt

= J+(â)ȧ = J+(â)f (h(â)), (6.4)

where J+ is the pseudoinverse of J. This condition defines the reduced dynamics
by constraining the velocity of a to the tangent space of the manifold defined by h
(Guckenheimer & Holmes 1983; Lee & Carlberg 2020).

In the case of the linear-quadratic Galerkin dynamics (5.3) with the sparse polynomial
manifold equation (6.3), the Jacobian consists of rows of the identity matrix by virtue of
the fact that the reduced states α̂ are also contained in the full coefficient vector α. Then the
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manifold Galerkin dynamics is

α̇k = C̃k +
r∑

�=1

L̃k�h�(α̂) +
r∑

�=1

r∑
m=1

Q̃k�mh�(α̂)hm(α̂), k = 1, 2, 5, 6, (6.5)

where the tilde denotes the original POD–Galerkin operators rotated to the DMD
coordinates (see §§ 4 and 5). Note that if h contains polynomials up to order d, the
quadratic interactions in (6.5) lead to an effective nonlinearity of order 2d. This can be
viewed as a generalization of Stuart–Landau-type mean field models (Noack et al. 2003) or
centre manifold expansions (Guckenheimer & Holmes 1983; Carini et al. 2015), although
in these cases the manifold equation h is usually represented as a Taylor series truncated
at second order. This is sufficient near bifurcations, but the more general form enabled by
sparse regression allows improved resolution of the manifold structure.

7. Results

Despite the near-perfect kinematic resolution of the flow field in the POD basis, there is
no level of truncation, up to at least r = 64, that leads to a Galerkin system that is both
stable and reproduces the quasiperiodic dynamics of the flow, as illustrated in figure 8.
In this section we show that polynomial nonlinear correlations can be used to construct a
four-dimensional model that captures the major structure of the post-transient flow. Based
on these results, we argue that accurate kinematic resolution of the advection-dominated
flow in the modal basis creates spurious dynamic variables and fragility in the Galerkin
systems, as for the linear advection example in § 2.1.

7.1. Nonlinear correlation analysis
As discussed in the DMD analysis of § 4.2, several of the modal coefficients are nearly
pure harmonics of one of the two dominant frequencies, as a result of the the space–time
separation of variables of travelling wave-type structure in the physical field. This signature
is clear in the phase portraits in figures 6 and 10, where some coefficient pairs form
Lissajous orbits, which are characteristic of harmonic oscillators with frequencies at
an integer ratio. This is reflected in the relatively large scores of the RDC metric of
dependence between harmonic mode pairs (figure 10, upper triangular). This measure also
confirms that the shear layer dynamics and inner-cavity motions are nearly independent.

However, the modal analysis in § 4 and the power spectrum in figure 4 both indicate
that the flow cannot be described by purely independent oscillation. Instead, the
flow behaves more like the model in (6.1), where a linear-quadratic system is driven
by self-sustaining oscillators at incommensurate frequencies, with higher-order modes
connected via cascading nonlinear interactions. If this is indeed the case, the resulting
triadic structure would lead to energy content at frequencies that are not pure harmonics.
In other words, coefficients that are not significantly correlated with the driving oscillators
according to the RDC may instead have multivariate nonlinear correlation, or frequency
cross-talk.

Based on this intuition, we apply the sparse manifold regression approach described in
§ 6.3. By applying FROLS with a residual tolerance of 0.1 we find that DMD coefficients
up to α52 can be reconstructed with at least 90 % accuracy in a library of polynomials
in α̂ up to seventh order. Of these, 24 coefficients can be approximated with residual
10−2–10−3 with only one polynomial function of the active variables, indicating that the

938 A1-22

https://doi.org/10.1017/jfm.2021.994


Nonlinear correlations in reduced-order modelling

0

–0.001

0.001

–0.002

0.002

α17

α27

0

0

1 2 3
t

4

Figure 11. Example coefficient reconstructions α ≈ h(α̂) based on the leading DMD coefficients (—). The
sparse polynomial approximation (- -) for higher-order modes with pure frequency content (e.g. α17 ≈ h17(α̂))
tends to be more accurate than for modes with mixed content (α27).

mode approximately is a product of a single triadic interaction. None of the coefficients
require more than five terms (out of a library of 330).

This analysis also reveals that the higher-order coefficients have three distinct
relationships to the active degrees of freedom, as illustrated in figure 11 and table 1:

(i) Pure harmonics

αj ∝ αd
k α∗

k
d′
, k ∈ (1, 5). (7.1)

In this case the dominant frequency will be ωj ∼ (d − d′)ωk. These coefficients have
a high RDC score and have Lissajous-type phase portraits.

(ii) Nonlinear cross-talk

αj ∝ αc
1α

∗
1

c′
αd

5α∗
5

d′
, (7.2)

with dominant frequency ωj ∼ (c − c′)ωs + (d − d′)ωc. These coefficients have
multivariate nonlinear correlation with the active degrees of freedom, so may
not have high RDC score. Two-dimensional phase portraits will also not appear
meaningful. Still, the coefficients have energy content at a single frequency.

(iii) Mixed frequency content: these coefficients cannot be expressed as a single
polynomial term in α̂, but require 2–5 terms for a reasonably accurate approximation.
The coefficients may still be an algebraic function of the active variables (i.e. a sum
of terms like (7.1) and (7.2)), but will have energy content at various frequencies.

As shown by figure 11, the polynomial approximations tend to be more accurate for
coefficients with pure frequency content, although they do capture the dominant trends for
coefficients with mixed content. These sparse polynomial representations of higher-order
coefficients determine the manifold equation α = h(α̂) based on (6.3).

7.2. Manifold Galerkin model
This manifold restriction leads to effective higher-order nonlinearity in the reduced
dynamics for α̂, given by (6.5). In particular, since we include up to seventh-order
polynomials in the manifold equation, the effective dynamics based on the quadratic
Galerkin model involves 14th-order terms. Fortunately, provided H is sufficiently sparse,
the overall cost of evaluating the reduced-order model still only scales with r3 (from O(r)
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Coefficient Active terms Triadic frequencies DMD eigenvalue RDC vs α1

α3 α∗
1

2|α1|2 2ωs −0.000 + 23.4i 0.86
α17 α3

1α5 3ωs + ωc −0.007 + 37.9i 0.08
α27 α1α

2
5 , α1α

3
5 ωs + 2ωc, ωs + 3ωc −0.020 + 17.5i 0.26

Table 1. Representative nonlinear correlations identified by sparse regression, including pure harmonic (α3),
nonlinear cross-talk (α17) and mixed frequency content (α27). Polynomial combinations give rise to oscillations
at frequencies in terms of the shear layer ωs ≈ 11.7 and inner cavity ωc ≈ 2.7. For modes with nearly pure
frequency content (e.g. α3, α17), the resulting frequencies are close to those predicted by the DMD analysis.
The RDC between the coefficient and α1 is strongest for pure harmonics (α3), even though mixed frequency
modes can be accurately approximated with a simple polynomial function. See figure 10 for pairwise RDC
values for the leading 24 DMD coefficients.
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Figure 12. Evolution of the fluctuation kinetic energy for the reduced-order models compared with DNS.
By accounting for nonlinear correlations, both the manifold Galerkin and SINDy models remain at the correct
energy level at long times, despite having many fewer degrees of freedom than the standard Galerkin model (a).
Similarly, both models resolve the nonlinear interactions leading to the discrete peaks in the power spectrum
(b).

evaluations of the quadratic term). The advantage of this additional nonlinearity is that
the system is now constrained to the manifold determined by h(α̂). This mitigates both
the issue of spurious degrees of freedom in the Galerkin representation of hyperbolic
dynamics and the effect of truncating the dissipative scales of the energy cascade.

Simulation results for the manifold Galerkin model are shown in figure 12 along with
the SINDy model discussed in § 7.3. Whereas the standard Galerkin model eventually
overestimates the fluctuation energy and becomes aperiodic, the manifold restriction
applied to the same operators continues at the correct energy level and with approximately
discrete peaks in the frequency spectrum at the correct locations. Of course, there is
some phase drift for all models at long times, but the manifold reduction prevents the
higher-order coefficients from losing coherence with the dominant oscillations and causing
the amplitude drift as in the standard Galerkin model.
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7.3. SINDy model
The manifold restriction applied to the Galerkin model results in a significant reduction
in dimensionality and improvement in stability and accuracy. However, the full evolution
equation (6.5) is dense with O(r3) entries, where r is the size of the POD/DMD subspace,
not the number of active degrees of freedom. This is still a significant improvement
over both the DNS and the standard Galerkin model, but the physical picture of coupled
nonlinear oscillators giving rise to the quasiperiodic dynamics suggests that a simpler
model may capture the dominant features of the flow.

This desire for minimalistic models has been the motivation for several recent
applications of SINDy and related system identification techniques to model reduction.
However, when these methods are applied to modal coefficients, they also face the
fundamental representation issue challenging Galerkin models. That is, models with full
kinematic resolution will include spurious dynamical degrees of freedom. The issue is
exacerbated in data-driven methods, since both the dimension and the conditioning of the
library matrices tend to scale poorly with dimensionality.

For example, it is well known that the flow past a cylinder at Reynolds number 100
can be accurately described by a Stuart–Landau equation with two degrees of freedom.
However, fully reconstructing the post-transient vortex street requires of the order of ten
POD modes, all of which are harmonics of the leading pair. Loiseau, Brunton & Noack
(2018) addressed this by identifying the Stuart–Landau equation with SINDy along with a
similar sparse regression approach to (6.3) to algebraically reconstruct the harmonics.

Here we take a similar approach and assume that we do not need the full order-r
dynamics and manifold equation to describe the dynamics of the active degrees of freedom
α̂. In particular, we anticipate that the minimal description will take the form of coupled
Stuart–Landau equations. As described in § 5.2, we construct a library of candidate
polynomials including up to cubic terms in α1, α

∗
1 , α5 and α∗

5 .
We identify symbolic equations for the α1 and α5 dynamics with the FROLS algorithm,

for DMD coefficients α2 = α∗
1 and α6 = α∗

5 . FROLS is an iterative, forward greedy
algorithm that requires a stopping condition. Often a residual-error criterion is used, as
in § 7.1, but in this case the DMD modes are so close to pure linear oscillation that a single
linear term leaves a residual ∼10−6. Instead, we stop the iteration at the second term in
each equation, retaining a stabilizing cubic term. The resulting model takes the form

α̇1 = λ1α1 − μ1α1|α1|2 (7.3a)

α̇5 = λ5α5 − μ5α5|α5|2, (7.3b)

where all λ and μ coefficients are complex.
The system in (7.3) is a pair of independent nonlinear Stuart–Landau oscillators.

Recalling the toy model in § 6.1, independent oscillators that drive a cascade of triadic
interactions can lead to a quasiperiodic dynamics, even without direct dynamical coupling
between the oscillators. In contrast to the manifold Galerkin model, it is not necessary
to reconstruct the full vector of coefficients to solve this minimal system. Of course, the
full vector of coefficients can still be reconstructed after simulating (7.3) via the manifold
function h.

Figure 12 compares the fluctuation kinetic energy based on reconstructions from the
SINDy model with the standard and manifold Galerkin models. As for manifold Galerkin,
the SINDy model remains at the correct energy level at long times and reproduces the
characteristic structure of the power spectrum. A slightly more sensitive evaluation is
given in figure 13, which compares Lissajous figures of reconstructed near-harmonic
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Figure 13. Lissajous figures for the POD coefficients reconstructed from the manifold Galerkin and SINDy
reduced-order models (left). Both models accurately capture the shear layer instability and its harmonics (e.g.
α1, α3, α13, α23), although the manifold Galerkin model tends to underestimate the amplitude of the inner
cavity motions (e.g. α5, α22, α50). A Poincarè section of the toroidal attractor confirms this discrepancy, but
shows clearly that both models are quasiperiodic and remain on the approximate attractor.

POD modes. Both models accurately capture the harmonics associated with the shear
layer instability, but the Galerkin system somewhat underestimates the amplitude of the
inner-cavity mode and its harmonics.

Although the reduced state space of the pair of complex coefficients is four-dimensional,
the quasiperiodic oscillatory nature of the dynamics also offers a convenient symmetry
reduction for the purposes of visualization. With the amplitude–phase representation
αk = Rkeiφk , we can approximate the toroidal attractor in the three-dimensional space by
representing α5 as an expansion about the point in the complex plane defined by α1

x = (R1 + R2 cos φ2) cos φ1, (7.4a)

y = (R1 + R2 cos φ2) sin φ1, (7.4b)

z = R2 sin φ2. (7.4c)

Finally, the models can be compared in detail with a Poincarè section of this torus about
any convenient plane (we choose x = 0); both the three-dimensional phase portrait and
Poincarè section are also shown in figure 13.

As a result of the slight underestimation of energy in the inner cavity motions, the
Poincarè section for the manifold Galerkin model shows a somewhat smaller attractor
than the DNS and SINDy. In contrast, SINDy slightly overestimates the energy of the
inner-cavity oscillation, leading to an attractor section with somewhat larger radius. The
highly simplified structure of the SINDy model also leads to a circular section, while the
Galerkin system captures the rounded-square shape of the true section. This is likely a
consequence of the high-order effective nonlinearity in the Galerkin system, which allows
it to resolve more complex attractor shapes. Nevertheless, the SINDy system does give an
accurate estimate of the typical amplitude in the slice and preserves the coherence of the
harmonic modes for both the shear layer and inner-cavity oscillations.

In both the manifold Galerkin and SINDy models, the nonlinear correlations play a
critical role in the accuracy and stability of the reduced-order dynamics. The space–time
separation of variables applied to an advection-dominated flow introduces a significant
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number of modes that are necessary to reconstruct the field, but do not correspond to
independent degrees of freedom in the dynamics. Nonlinear correlations analysis provides
a straightforward, principled approach to restricting the Galerkin dynamics to the set of
active degrees of freedom, as well as convenient coordinates for system identification.

8. Discussion

It has been widely recognized for some time that Galerkin-type models of
advection-dominated flows are prone to fragility and instability. The majority of work
addressing this issue has focused on truncation of the energy cascade, leading to closures
in the vein of subgrid-scale large eddy simulation models (Rempfer & Fasel 1994; Wang
et al. 2012; Cordier et al. 2013; Östh et al. 2014; Pan & Duraisamy 2018; San & Maulik
2018). However, recent work including Carlberg et al. (2017); Grimberg et al. (2020);
Lee & Carlberg (2020) has begun questioning the fundamental suitability of Galerkin
projection for hyperbolic problems, pointing out for instance that any notion of optimality
associated with the Galerkin system is lost upon time discretization. This perspective
is supported by the observation that Galerkin-type reduced-order models often do not
significantly improve with increasing rank, as one might expect if the primary issue was
under-resolved dissipation, even when the dissipation rate is fully resolved. On the other
hand, when the modal basis is selected carefully and the flow is not advection-dominated,
heavily truncated Galerkin systems have been shown to accurately reproduce key features
of turbulent shear flows (Moehlis, Faisst & Eckhardt 2004; Grimberg et al. 2020; Cavalieri
2021). Again, this suggests that resolving energy transfer mechanisms is central to
constructing accurate reduced-order models.

In this work we have used a nonlinear correlations analysis of a quasiperiodic
shear-driven cavity flow to argue that decoherence resulting from the linear modal
representation of advecting structures also deserves consideration. This decomposition
introduces one temporal coefficient per spatial mode; in many cases this may result in
many more coefficients than there are degrees of freedom in the post-transient flow.
Galerkin models treat each coefficient as an independent degree of freedom; small errors
in the system of differential equations can lead to catastrophic decoherence and instability.
Instead, we show that exploiting statistical structure and algebraic dependence in the
temporal coefficients enables the reduction of the dynamical system to the true rank while
preserving the kinematic resolution of the modal basis.

The cavity flow is dominated by two key modal structures: a high-frequency shear layer
instability and low-frequency inner-cavity oscillation. The natural dynamics of the flow
is quasiperiodic, as can be seen from the characteristic power spectrum in figure 4. Both
the shear layer and inner-cavity features can be identified by a stability analysis of the
time-averaged mean flow (see Appendix A). However, linear modal representations (POD
or DMD) approximate the travelling wave structures in the nonlinear flow with not only the
fundamental stability modes, but also higher harmonics and nonlinear cross-talk modes,
each of which can be associated with one of the approximately discrete peaks in the power
spectrum.

The physical coherence (non-dispersion) of the fundamental flow features appears
as nonlinear correlation between temporal coefficients associated with harmonics and
cross-talk. This can also be conceptualized as triadic interactions in the frequency domain.
After using a RDC analysis to identify the dynamically active modes, we use sparse
polynomial regression to uncover simple algebraic relationships that account for ∼99.5 %
of the fluctuation kinetic energy.
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We give examples of two ways in which these relationships can be used to improve
reduced-order models. First, they act as a simple manifold equation constraining the
Galerkin dynamics to the post-transient attractor; this may be viewed as a data-driven
generalization of analytic invariant manifold reductions (e.g. Noack et al. 2003),
which rely on scale-separation arguments. Alternatively, the driving coefficients offer
a convenient basis for nonlinear system identification; we use the SINDy framework
(Brunton et al. 2016) to identify a simple model of the flow as a pair of independent
Stuart-Landau oscillators. The full flow field may then be reconstructed with the manifold
equation.

The manifold Galerkin system connects the reduced-order system to the governing
equations and may allow for more natural parametric variation, but requires accurate
estimates of the gradients of the POD modes and/or intrusive access to the full-order
solver. On the other hand, the SINDy model is compact, non-intrusive, and more amenable
to analytical treatment, though it cannot be directly connected to the underlying physical
equations and it is more difficult to capture parametric variation. In general, the most
appropriate choice is likely to be application dependent.

Regardless of the chosen model reduction technique, we conclude that exploiting
nonlinear structure in the modal coefficients is a natural and efficient approach to
improving the stability and accuracy of low-order models of this flow. In a broader sense,
our approach to this analysis (with the RDC and sparse polynomial regression) can be seen
as simple, interpretable manifold learning. This is sufficient for quasiperiodic dynamics,
since the form of the nonlinear dependence can be readily deduced by reasoning about
the triadic interactions. In the language of Koopman theory, the flow has a discrete or
point spectrum (Mezić 2013; Arbabi & Mezić 2017); more sophisticated analysis would be
necessary to extend these results to chaotic or turbulent systems with continuous spectra.

However, in these cases any invertible manifold learning method could be used to the
same end. This might include deep learning techniques such as autoencoder networks
(Bengio, Courville & Vincent 2013), an unsupervised method that learns a compressed
representation of high-dimensional data. Autoencoders have recently been explored for
black-box forecasting (Vlachas et al. 2018), system identification (Champion et al. 2019a)
and model reduction (Lee & Carlberg 2020). Regardless of the method, nonlinear
embedding recognizes the intrinsic dimensionality of the dynamics as distinct from that
of the linear subspace required to reconstruct the flow field.

There are also many opportunities for further work in reduced-order model
development. For instance, accounting for nonlinear correlations does not address the issue
of truncating the energy cascade. This does not pose a problem for the present laminar,
two-dimensional flow, but severe dimensionality reduction of any multiscale or turbulent
dynamics will necessarily act as a spatio-temporal filter. In other words, the dissipative
scales will generally not be correlated in any way with the large-scale dynamics and a
closure strategy is likely to be necessary in order to accurately capture the dissipation rate.
This is typically less of an issue in the system identification framework, since the natural
dynamics is estimated at once, including any effective closure models within the span of
the candidate functions. However, for more complex flows it may be necessary to employ
a more sophisticated optimization (Champion et al. 2019b), physics-based constraints
(Loiseau & Brunton 2018) or enforcement of long-term stability (Schlegel & Noack 2015;
Kaptanoglu et al. 2021). Despite prospective challenges in scaling this approach to chaotic
and turbulent flows, we expect that there are significant stability and robustness benefits
to be realized by exploiting nonlinear correlations in reduced-order models of coherent
structures in advection-dominated flows.
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Appendix A. Linear stability analysis

A key assumption in the present work is that analysis of the Navier–Stokes operator
linearized about the unstable steady state provides very limited insights into the
post-transient nonlinear dynamics. This precludes a number of powerful analytic tools
such as centre manifold analysis (Carini et al. 2015) and multiple scale expansions (Sipp &
Lebedev 2007), leaving semi-empirical or fully data-driven methods. In order to support
this assumption, this appendix briefly summarizes the results of such a linear stability
analysis.

Denoting the full flow field by q(x) = [
u(x) p(x)

]T, the base flow qb is the solution to
the steady-state Navier–Stokes equations

∇ · (ub ⊗ ub) = −∇pb + 1
Re

∇2ub, ∇ · ub = 0. (A1a,b)

Since this solution is linearly unstable, we approximate it with the selective frequency
damping algorithm (Åkervik et al. 2006). The linearized equations for the evolution of an
infinitesimal perturbation q′(x, t) are

∂u′

∂t
= − (u′ · ∇)ub − (ub · ∇) u′ − ∇p′ + 1

Re
∇2u′, ∇ · u′ = 0. (A2a,b)

Introducing a normal mode ansatz

q′(x, t) = q̂(x) exp((σ + iω)t), (A3)

where q′ = [
u′ p′]T, the linearized Navier–Stokes equations can be recast as a generalized

eigenvalue problem
(σ + iω) Bq̂ = Lq̂, (A4)

where L is the Jacobian matrix of the Navier–Stokes equations and B is the singular mass
matrix. The leading eigenpairs of the pencil (A, B) are then computed using an in-house
Krylov–Schur time-stepping algorithm (Edwards et al. 1994; Stewart 2001) implemented
in the spectral element solver Nek5000 (Fischer et al. 2008). For more details, see Edwards
et al. (1994), Stewart (2001), Bagheri et al. (2009), Sipp et al. (2010) or the recent review
chapter Loiseau et al. (2019).

Figure 14 depicts the eigenspectra of the operator linearized about base and mean
flows. Four complex conjugate pairs of eigenvalues lie within the upper half-complex
plane, indicating the base flow is strongly unstable. The most unstable eigenvalue is
σ ± iω = 0.90 ± 10.86i, where σ and ω are the growth rate and circular frequency of
the instability mode, respectively. This frequency differs by only 5 % to 10 % from the
dominant peak of the DNS (figure 4) and that given by the DMD analysis; leading
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Figure 14. Eigenspectrum of the Navier–Stokes operator at Re = 7500 estimated in three ways: linearized
in the vicinity of the base flow (BF, black circles), mean flow (MF, blue circles) and from dynamic mode
decomposition (DMD, red crosses). For the linear stability analyses, only eigenvalues for which a 10−8

convergence has been achieved are plotted. These eigenspectra have been computed using a time-stepper
Arnoldi algorithm with a sampling period �T = 0.1 and a Krylov subspace dimension of 1024 and 512 for
the base and mean flows, respectively. See § 4.2 for details on the DMD analysis.

Base flow 0.90 ± 10.86i 0.73 ± 13.75i 0.49 ± 7.85i 0.02 ± 16.65i
Mean flow 0.22 ± 11.68i 0.09 ± 3.03i 0.06 ± 2.38i 0.03 ± 14.68i
DMD 0.00 ± 11.68i 0.00 ± 23.36i 0.00 ± 2.87i 0.02 ± 3.68i

Table 2. Eigenvalues σ + iω of the least stable modes in a stability analysis of the base and mean flows,
along with DMD eigenvalues for the most energetic modes.

eigenvalues are compared in table 2. The associated eigenfunction (not shown) also closely
resembles the leading DMD mode φ1 shown in figures 6 and 7.

Although the stability analysis of the base flow provides some insight about the physical
origin of the high-frequency shear layer oscillation, there are two main reasons it is
insufficient to describe the nonlinear flow. First, there is no trace of the three additional
unstable modes predicted by the stability analysis in the direct numerical simulation.
Second, at the Reynolds number considered in this work, linear stability analysis of
the base flow is unable to predict the low-frequency inner-cavity oscillation. The higher
harmonics are also missing from the stability analysis, though this is to be expected of a
linear analysis. To the authors’ knowledge, there has not yet been a detailed explanation of
the process by which the additional unstable modes are superseded by the low-frequency
dynamics. For more details about the shear layer instability and its saturation process at
lower Reynolds number, see Meliga (2017).

Although it is not a steady-state solution of the Navier–Stokes equations, several studies
have shown that linearizing about the mean flow ū(x) nonetheless provides valuable
insights into the dynamics of coherent structures existing in the nonlinear flow (Malkus
1956; Barkley 2006; Mantič-Lugo, Arratia & Gallaire 2014; Beneddine et al. 2016; Meliga
2017). The analysis is the same as above, replacing the base flow qb(x) with the mean flow
q̄(x). In contrast to the base flow analysis, stability analysis of the mean flow does predict
both the shear layer instability and inner-cavity oscillations.

This improvement of the stability analysis about the mean flow accounts for its
increasing popularity in both modal (Sipp & Lebedev 2007; Beneddine et al. 2016)
and non-modal (McKeon & Sharma 2010) analysis. It is also appealing experimentally,
since the mean flow can be estimated practically for statistically stationary flows,
while unstable steady states are difficult to produce. However, from a numerical
perspective standard mean-flow analysis is not predictive in the sense that fully converged
statistics are necessary to compute the mean flow prior to the stability analysis.
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Predictive mean-flow analysis is the subject of ongoing work, for example with eddy
viscosity-based Reynolds-averaged Navier–Stokes mean-flow estimates (Pickering et al.
2020) or self-consistent modelling (Mantič-Lugo et al. 2014; Meliga 2017).

In this case, the mean-flow stability analysis supports the picture suggested by the
nonlinear correlations analysis; the four active degrees of freedom are related to the two
mode pairs corresponding to the shear layer instability and inner-cavity oscillation. In
the nonlinear DNS, interactions between these modes generate harmonics and frequency
cross-talk, although this structure is fully dependent on the active degrees of freedom.
Linear stability analysis assumes the perturbations have negligible energy and so it cannot
resolve the nonlinear interactions responsible for this behaviour.
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MANTIČ-LUGO, V., ARRATIA, V. & GALLAIRE, F. 2014 Self-consistent mean flow description of the

nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.
MAULIK, R., SAN, O., RASHEED, A. & VEDULA, P. 2019 Subgrid modelling for two-dimensional turbulence

using neural networks. J. Fluid Mech. 858, 122–144.
MCKEON, B.J. & SHARMA, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658,

336–382.

938 A1-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://nek5000.mcs.anl.gov
https://doi.org/10.1017/jfm.2021.994


Nonlinear correlations in reduced-order modelling

MELIGA, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a
second-order self-consistent description. J. Fluid Mech. 826, 503–521.

MELIGA, P., CHOMAZ, J.-M. & SIPP, D. 2009 Global mode interaction and pattern selection in the wake of
a disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.

MENDIBLE, A., BRUNTON, S.L., ARAVKIN, A.Y., LOWRIE, W. & KUTZ, J.N. 2020 Dimensionality
reduction and reduced-order modeling for traveling wave physics. Theor. Comput. Fluid Dyn. 34 (4),
385–400.
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