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Abstract— We investigate inexact proximity operators
for weakly convex functions. To this aim we derive sum
rules for proximal ε-subdifferentials, by incorporating
the moduli of weak convexity of the functions into the
respective formulas. This allows us to investigate inexact

proximity operators for weakly convex functions in terms
of proximal ε-subdifferentials.
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I. INTRODUCTION

Proximal operators are a fundamental tool in
constructing algorithms for solving large-scale convex
optimisation problems [10]. Responding to the need for
solving optimization problems with convex objectives
which do not fall into the class of typical convex
objective functions appearing in data analysis (see e.g.

the webpage [9]), a number of inexact (approximate)
proximal operators have been introduced, see e.g. [28],
[31], [20].

It is our aim to investigate inexact proximal operators
for a class of functions which is larger than the one
of convex functions: in the present work, we focus on
weakly convex functions, which have been appearing in
current models in data science problems in a rapidly
growing number.

a) Weak convexity: Weak convexity can be
considered as a special case of the general notions of γ-
paraconvexity and αp¨q-paraconvexity that were studied
by, among others, Jourani and Rolewicz [16], [23], [26].
For a general characterisation in Hilbert spaces, weakly
convex functions can be expressed as the difference
between a convex function and a quadratic function.
This class includes all the convex functions and all the
smooth (but not necessarily convex) functions with a
Lipschitz continuous gradient, together with many other
interesting non-convex functions. Examples of weakly
convex functions appearing in data analysis can be found
in [11] and in [6]. The growing interest in the use of this
class of function in many fields of applications suggested
the necessity of a careful analysis of their properties in

terms of subdifferentials and proximal operators, which
is the core of the present work.

b) Proximal Subdifferentials: It has already been
observed that the concept of subdifferential which is
particularly suitable when defining criticality for weakly
convex functions is that of proximal subdifferential

(see e.g. [13], [12]). There exists a vast literature
devoted to proximal subdifferentials, see e.g. in the
finite dimensional case, the monograph by Rockafellar
and Wets [21], in Hilbert spaces the work by Bernards
and Thibault [5]. In these monographs and papers, the
proximal subdifferential at a given x0 is defined locally,
in the sense that there exists a neighbourhood V of x0

and a constant C ě 0, such that for every x P V ,

xx˚, x ´ x0y ď fpxq ´ fpx0q ` C}x ´ x0}2. (1)

In our developments we make use of a property
that holds in the class of paraconvex functions,
called globalisation property. Precisely, in the class of
paraconvex functions, if (1) holds, then it holds globally
over the whole space (see Def. 1 and Prop. 1). More on
the globalization property can be found in [24].

We focus our analysis on the more general notion of
proximal ε-subdifferentials, which represents a useful
tool allowing to take into account inexactness and
perturbations in the resolution of optimisation problems.

c) Contribution: Our contribution addresses the
following issues.

1) We provide sufficient and necessary conditions
for the sum rule of the global proximal
ε-subdifferentials for the sum of two ρ-weakly
convex functions ( see Theo. 2 and Theo. 3)
(Section III).

2) By using the above theorems, in Prop. 4 and
Prop. 5, we investigate the relationship between the
ε-proximal operator of a ρ-weakly convex function
f and the ε-proximal subdifferential of f (Section
IV).

3) The notion of inexact (approximate) proximal point
that we infer can be related to Type-1 and Type-2
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approximations proposed in [28], [20] in the convex
settings (Section IV).

In the present work, we incorporate and make
a consistent use of the modulus of proximal
subdifferentiability and of the modulus of weak
convexity ρ into the calculus rules for proximal
ε-subdifferentials.

II. PRELIMINARIES

Before focusing on the class of weakly convex
functions, we introduce a more general notion of
γ-paraconvexity and the corresponding notion of
pγ, Cq-subdifferential as presented in [16]. The class of
γ-paraconvex functions has been studied by [23]. For
γ “ 2, we obtain weakly convex functions.

Definition 1 (γ-Paraconvexity): Let X be a normed
vector space. A function f : X Ñ p´8,`8s is said
to be γ ´ paraconvex if there exists a positive constant
C such that for λ P r0, 1s, p@px, yq P X

2q, the following
inequality holds:

fpλx`p1´λqyq ď λfpxq`p1´λqfpyq`Cλp1´λq}x´y}γ .

When α : r0,`8q Ñ r0,`8q is a non-
decreasing function with limtÓ0

αptq
t

“ 0, a function
f : X Ñ p´8,`8s is called αp¨q-paraconvex if there
exists a constant C ą 0 such that for λ P r0, 1s

p@px, yq P X
2q fpλx ` p1 ´ λqyq

ď λfpxq ` p1 ´ λqfpyq ` Cmintλ, 1 ´ λuαp}x ´ y}q

This class has been introduced by Rolewicz under
the name of αp¨q-strongly paraconvex functions and
investigated in a series of papers by Jourani [15], [16]
and Rolewicz [23], [26] . When αp}x ´ y}q “ }x ´ y}γ

the notion of αp¨q-paraconvexity coincides with the one
of γ-paraconvexity, (see [25, Lemma 5]). In Hilbert
spaces, when

lim sup
tÓ0

αptq

t2
ă `8,

then a αp¨q-paraconvex function is a difference of a
convex and a quadratic function and is called weakly

convex (see [26]).
Definition 2 (pγ, Cq´Subdifferential [16, Def. 3.1]):

Let X be a normed vector space. By X˚ we denote
the dual space of all continuous linear functionals
defined on X . Let γ ą 0 and C ą 0. Let x0 P X and
f : X Ñ p´8,`8s be finite at x0. A point x˚ P X

˚

is said to be a pγ, Cq-subgradient of f at x0 if there
exists a neighbourhood V of x0 such that

p@x P V q xx˚, x´x0y ď fpxq´fpx0q`C}x´x0}γ .

The set of all pγ, Cq´subgradients of f at x0 is
denoted by BLoc

pγ,Cqfpx0q and it is referred to as

pγ, Cq-Subdifferential. Whenever BLoc
pγ,Cqfpx0q ‰ H, we

say that f is proximally C-subdifferentiable at x0.
Proposition 1 ( [16, Prop. 3.1]): Let X be a normed

space. Let f : X Ñ p´8,`8s be γ-paraconvex with
γ ą 1. Then there exists C ą 0 such that

BLoc
pγ,Cqfpx0q “ Bpγ,Cqfpx0q

where

Bpγ,Cqfpx0q :“ tx˚ P X
˚ | xx˚, x ´ x0y ď

fpxq ´ fpx0q ` C}x ´ x0}γ @ x P X u .
The constant C can be chosen equal to the one appearing
in the definition of paraconvexity (Def. 1).

Occasionally, we will refer to the constant
C appearing in the definition of proximal
subdifferentiability as the modulus of proximal

subdifferentiability.
In the sequel we will use the global

p2, Cq-subdifferential of f at x which will be refferred
to as proximal subdifferential: (see e.g. [21], [5]).

Definition 3 (Global Proximal Subdifferential): Let
X be a normed vector space. Let f : X Ñ p´8,`8s,
ρ ě 0 and let x P dom f . Then the proximal

subdifferential of f at x0 with constant C ą 0 is
defined as the set

Bp2,Cqfpx0q :“ tx˚ P X
˚ | fpxq ě fpx0q

`xx˚, x ´ x0y ´ C}x ´ x0}2, @x P X u.
(2)

In view of (2), Bp2,0q denotes the subdifferential in the
sense of convex analysis. For simplicity, in this case we
will use the notation B 0 ” Bp2,0q.

When investigating inexact proximal points, the
following concept of proximal ε-subdifferentials is used.

Definition 4 (Global proximal ε-subdifferentials):

Let X be a normed vector space and ε ě 0. The
global proximal ε-subdifferentials of a function
f : X Ñ p´8,`8s at x0 P X for C ě 0 is defined as
follows:

B ε
p2,Cqfpx0q “ tv P X | s.t. fpxq ´ fpx0q ě

xv, x ´ x0y ´ C}x ´ x0}2 ´ ε @ x P X u.
Clearly, for every ε1 ě ε and C 1 ě C we have the
following inclusion

B ε
p2,Cqfpx0q Ď B ε1

p2,C1qfpx0q. (3)

In Hilbert spaces, a weakly convex function f in
the sense of Def. 1 for γ “ 2 and C “ ρ{2 can be
characterised by the fact that fp¨q `ρ{2} ¨ }2 is a convex
function. A proof can be obtained by directly adapting
the finite-dimensional proof given in [7, Prop. 1.1.3].
Such a function will then be referred to as a ρ-weakly

convex and ρ is known as modulus of weak convexity.
A variant of Prop. 1 corresponding to γ “ 2 and C

not necessarily coinciding with the weak convexity



parameter can be found in [29].

For any set-valued mapping M : X ⇒ X , we will use
the notation domM to indicate the set

domM :“ tx P X |Mpxq ‰ Hu,

while for a function f : X Ñ p´8,`8s, the notation
dom f will indicate the set

dom f :“ tx P X | fpxq ă `8u.

Proposition 2: Let X be a Hilbert space. Let
f : X Ñ p´8,`8s be a lower semicontinuous and
ρ-weakly convex function with ρ ě 0. Then for every
ε ě 0

dom B ε
p2,ρ{2qf “ dom B ε

0
pf `

ρ

2
} ¨ }2q

and
dom B ε

p2,ρ{2qf Ă dom f.

Moreover, for every ε ą 0

dom B ε
p2,ρ{2qf “ dom f.

Proof: We start by showing that for any
x0 P dom B ε

0
pf ` ρ

2
} ¨ }2q and ε ě 0, we have that

B ε
0

pf `
ρ

2
} ¨ }2qpx0q ´ ρx0 “ B ε

p2,ρ{2qfpx0q. (4)

Indeed, for any v P B ε
0

pf ` ρ
2

} ¨ }2qpx0q and x0 P
dom B ε

0
pf ` ρ

2
} ¨ }2q, we have

fpxq `
ρ

2
}x}2 ´ fpx0q ´

ρ

2
}x0}2 ě xv, x ´ x0y ´ ε

ðñ fpxq ´ fpx0q ě

xv ´ ρx0, x ´ x0y ´
ρ

2
}x ´ x0}2 ´ ε

which is equivalent to the fact that
v ´ ρx0 P B ε

p2,ρ{2qfpx0q and proves (4). Hence,
dom B ε

0
pf ` ρ

2
} ¨ }2q “ dom B ε

p2,ρ{2qf . Since B ε
0

corresponds to the ε-subdifferential for convex functions
and function pf ` ρ

2
qp¨q is convex, we have that for all

ε ą 0

dom B ε
0

pf `
ρ

2
} ¨ }2q “ dom pf `

ρ

2
} ¨ }2q

(see [2, Cor. 2.81]). Since dom f “ dom pf ` ρ
2

} ¨ }2q,
the assertion follows.

In Prop. 2, we include the assumption of lower
semicontinuity on f because it is required by [2, Cor.
2.81].

Definition 5 (ε-solution): Let X be a normed space.
Let f : X Ñ p´8,`8s be a proper function that is
bounded from below. Then, for any ε ě 0, the element
xε is said to be an ε-solution to the minimisation problem

minimize
xPX

fpxq

if the following condition is satisfied:

p@x P X q fpxεq ď fpxq ` ε.

Definition 6 (ε-C-critical point): Let X be a normed
space and ε ě 0. Let f : X Ñ p´8,`8s be a proper
function. A point x P X is said to be a ε-C-critical point

of f if 0 P B ε
p2,Cqfpxq. The set of ε-C-critical points is

identified as

ε -critC f :“ tx P X | 0 P B ε
p2,Cqfpxqu.

When f is ρ-weakly convex, it is of particular interest
to consider ε-ρ{2-critical points and then we write
"ε-critical points" and use the notation ε -crit.

Remark 1 (Fermat’s Rule): We highlight that
ε-C-criticality is a necessary condition for a point to be a
ε-solution. Notice that, by Prop. 2, dom f “ dom B ε

p2,Cqh.
If xε P dom f is an ε-solution of f , then

p@x P X q fpxq ě fpxεq ´ ε

ě fpxεq ´ C}x ´ xε}2 ´ ε

for every C ě 0. This implies 0 P Bε
p2,Cqfpxεq.

III. CALCULUS RULES

In the literature, there exist numerous results
providing calculus rules for the Fréchet, the limiting
and the proximal subdifferentials, see e.g. [16], [17],
[19], [18], [30] and many others. The main result of
the present section is stated in Theo. 2, where we
provide the conditions for a sum rule for the global
proximal ε-subdifferentials (in the sense of Def. 4)
of the sum of two weakly convex functions. The
proposed result allows to extend the sum rule in [16,
Theo. 5.1] – proved for exact proximal subdifferentials
in normed spaces – to proximal ε-subdifferentials in
Hilbert spaces: the interesting aspect of such rule is that
it allows to keep track of the modulus of weak convexity.

The following notion of ρ-conjugate function will be
used in the proof of Theo. 2.

Definition 7: Let X be a Hilbert space. Let
f : X Ñ p´8,`8s be a proper function. For every
ρ ě 0 the function phq˚

ρ : X Ñ r´8,`8s defined
as

pfq˚
ρpuq :“ sup

yPX

!

´
ρ

2
}y}2 ` xu, yy ´ fpyq

)

is called ρ-conjugate of f at u P X (when ρ “ 0 we
obtain the definition of the conjugate as defined in
convex analysis and in this case we omit the subscript).

We recall the following result, which is an important
fact in view of the proof of Theo. 2.

Theorem 1 ([22, Theo. 3] ): Let X be a Hilbert
space. Let f0, f1 : X Ñ p´8,`8s be proper convex



functions. Assume that dom f0Xdom f1 contains a point
at which either f0 or f1 is continuous. Then, for all
s, x P X we have

paq pf0 ` f1q
˚

psq “ min
p0,p1PX
s“p0`p1

 

f˚
0

pp0q ` f˚
1

pp1q
(

pbq B0 pf0 ` f1q pxq “ B0f0pxq ` B0f1pxq

Remark 2: By [3, Theo. 15.3 (Attouch–Brézis
Theorem)], [1] , paq of Theo. 1 can be proved under
the assumption that f0 and f1 are convex proper lsc
functions such that the conical hull of dom f0 ´ dom f1
is a closed linear subspace, i.e.,

0 P sripdom f0 ´ dom f1q,

where sri denotes the strong relative interior, see [3, Def.
6.9]. The regularity assumption in [1] is more general
than the one in [22] (see [1, Remark 1.3]). However, in
some cases it is easier to verify the regularity condition
requested in [22].

The following proposition provides an important
auxiliary fact used in the proof of Theo. 2.

Proposition 3: Let X be a Hilbert space. For i “
0, 1, let function fi : X Ñ p´8,`8s be proper lower
semicontinuous and ρi-weakly convex on X with ρi ě 0.
Assume that dom f0 X dom f1 contains a point at which
either f0 or f1 is continuous. Then the following holds:
for any s P dom pf0 ` f1q˚

ρ , there exist p0, p1 P X such
that s “ p0 ` p1 and

pf0 ` f1q˚
ρ0`ρ1

psq “ pf0q˚
ρ0

pp0q ` pf1q˚
ρ1

pp1q.

Proof: We have that f
0
p¨q “ f0p¨q ` ρ0{2} ¨ }2 and

f
1
p¨q “ f1p¨q ` ρ1{2} ¨ }2 are convex. By Theo. 1, there

exist p0, p1 such that s “ p0 ` p1 and

pf
0

` f
1
q˚psq “ pf

0
q˚pp0q ` pf

1
q˚pp1q

Notice that for i “ 0, 1

f
˚

i p¨q :“ sup
yPX

 

x¨, yy ´ f ipyq
(

“ sup
yPX

!

x¨, yy ´ fipyq ´
ρi

2
}y}2

)

“ pfiq
˚
ρi

p¨q

so
pf

0
` f

1
q˚psq “ pf0q˚

ρ0
pp0q ` pf1q˚

ρ1
pp1q

and in conclusion

pf0 ` f1q˚
ρ0`ρ1

psq “ pf0q˚
ρ0

pp0q ` pf1q˚
ρ1

pp1q.

Now we are ready to prove the following sum
rule for proximal ε-subdifferentials B ε

p2,ρ{2q. This result
generalises [14, Theo. 3.1.1] and [32, Theo. 2.8.7],
which are formulated for convex functions and convex

subdifferentials. An important aspect of our result –
which will be used below in the analysis of proximal
operators – is that it allows to keep track of the
modulus of proximal subdifferentiability (as related
to the modulus of weak convexity of the functions
involved).

Theorem 2 (Sum Rule for ε-subdifferential): Let
X be a Hilbert space. For i “ 0, 1, let function
fi : X Ñ p´8,`8s be proper lower semicontinuous
and ρi-weakly convex on X with ρi ě 0. Then, for all
x P dom f0 X dom f1 and for all ε0, ε1 ě 0 we have

Bε0
p2,ρ0{2qf0pxq ` Bε1

p2,ρ1{2qf1pxq Ď B ε
p2,ρ{2qpf0 ` f1qpxq

(5)
for all ε ě ε0 ` ε1 and for all ρ ě ρ0 ` ρ1. The equality

B ε
p2,pρ0`ρ1q{2qpf0 ` f1qpxq “

ď

ε0,ε1 | ε0`ε1ďε

Bε0
p2,ρ0{2qf0pxq ` B ε1

p2,ρ1{2qf1pxq (6)

holds when dom f0 X dom f1 contains a point at which
either f0 ` ρ0{2} ¨ }2 or f1p¨q ` ρ1{2} ¨ }2 is continuous.

Proof: For x P X , if w P B ε0
p2,ρ0{2qf0pxq,

v P B ε1
p2,ρ1{2qf1pxq, then it is clear that w ` v P

B ε
p2,pρ0`ρ1q{2qpf0 ` f1qpxq. Hence the inclusion (5) is

satisfied.
To prove the equality in (6), let us consider

x P dom f0 X dom f1 and u P B ε
p2,ρ{2qpf0 ` f1qpxq,

where ρ “ ρ0 ` ρ1. By [4, Theo. 2.4.ii, Eq. (5)] we
have

pf0 ` f1qpxq ` pf0 ` f1q˚
ρ pu ` ρxq

ď ´
ρ

2
}x}2 ` xu ` ρx, xy ` ε

(7)

The inequality in (7) implies that
u ` ρx P dom pf0 ` f1q˚

ρ . By applying Prop. 3,
there exist two elements p0, p1 P X such that
u ` ρx “ p0 ` p1 and

pf0 ` f1q˚
ρ pu ` ρxq “ f˚

ρ0
pp0q ` pf1q˚

ρ1
pp1q

so that (7) can be rewritten as

pf0 ` f1qpxq ` pf0q˚
ρ0

pp0q ` pf1q˚
ρ1

pp1q

ď ´
ρ

2
}x}2 ` xp0 ` p1, xy ` ε

for all x P dom f0Xdom f1. We now define the following
values

ε0 :“ f0pxq ` pf0q˚
ρ0

pp0q ´ xp0, xy `
ρ0

2
}x}2 ě 0 (8)

ε1 :“ f1pxq ` pf1q˚
ρ1

pp1q ´ xp1, xy `
ρ1

2
}x}2 ě 0 (9)



which are positive in view of the definition of ρ-
conjugate. Notice that (8) and (9) can be rewritten as

ε0 “ f0pxq ` pf0q˚
ρ0

ppp0 ´ ρ0xq ` ρ0xq

´xpp0 ´ ρ0xq ` ρ0x, xy `
ρ0

2
}x}2

ε1 “ f1pxq ` pf1q˚
ρ1

ppp1 ´ ρ1xq ` ρ1xq

´xpp1 ´ ρ1xq ` ρ1x, xy `
ρ1

2
}x}2

from which, by applying [4, Theo. 2.4.ii, Eq. (5)] in a
similar fashion as in (7), we obtain

pp0 ´ ρ0xq P B ε0
p2,ρ0{2qf0pxq

pp1 ´ ρ1xq P B ε1
p2,ρ1{2qf1pxq

which completes the proof.

Remark 3: When ε “ 0, the sum rule presented
in the theorem above can be shown to hold for γ-
paraconvex fuctions, γ ą 1, defined over complete
metric spaces (see [16, Theo. 5.1, Cor. 5.1]). The sum
rule in [16, Theo. 5.1, Cor. 5.1] also keeps track of the
modulus of subdifferentiability. Our effort in Theo. 2
is to extend this result to the more general notion of
ε-subdifferentials and, in order to do so, we exploited
the structure of Hilbert spaces. It is worth noticing that,
as in the case of the sum rule for Bpγ,Cq, also in the
case of the sum rule for Bε

pγ,Cq we are able to control
the modulus of proximal subdifferentiability.

Remark 4: Let fipxq, i “ 0, 1 be a ρi-weakly
convex function. If there exist p0, p1 such that
p0 ` p1 “ u P B ε

p2,pρ0`ρ1q{2qpf0 ` f1qpxq and

p0 P Bε0
p2,ρ0{2qf0pxq, p1 P B ε1

p2,ρ1{2qf1pxq

then by (3), for all ε1
i ą εi, i “ 0, 1, we have

p0 P B
ε1

0

p2,ρ0{2qf0pxq, p1 P B
ε1

1

p2,ρ1{2qf1pxq.

In particular, we can set ε1
1

` ε1
2

“ ε in (6).

In the following theorem we show that, in presence
of differentiable functions, the notion of proximal
ε-subdifferentials allows to infer an inclusion which
involves the gradient of the differentiable function.

Theorem 3: Let X be a Hilbert space. Let
f0 : X Ñ p´8,`8s be proper, convex and
differentiable with a L0-Lipschitz continuous gradient
on the whole space X . Let f1 : X Ñ p´8,`8s be
proper and ρ-weakly convex on X with ρ ě 0. We then
have the following inclusion

B ε
p2,ρ{2qpf0 ` f1qpxq Ă ∇pf0qpxq ` B ε

p2,ρ{2`L0{2qf1pxq

for all x P dom f1 such that B ε
p2,ρ{2qf1pxq ‰ H.

Proof: In view of [3, Lemma 2.64], both f0 and
´f0 are proximally L0-subdifferentiable on X . Precisely,
for f0 we have that for every x, y P X

p´f0qpyq ´ p´f0qpxq ě (10)

x∇p´f0qpxq | y ´ xy ´
L0

2
}y ´ x}2.

Let us choose x P dom f1 and take
v P B ε

p2,ρ{2qpf0 ` f1qpxq. For every y P X , by adding

pf1`f0qpyq´pf1`f0qpxq ě xv | y´xy´
ρ

2
}y´x}2´ε

and (10) we get

B ε
p2,ρ{2qpf1 ` f0qpxq ` ∇p´f0qpxq Ă B ε

p2,ρ{2`L0{2qf1pxq

i.e.

B ε
p2,ρ{2qpf1`f0qpxq Ă B ε

p2,ρ{2`L0{2qf1pxq`∇pf0qpxq.

Remark 5: We highlight the following facts.
‚ For ε ą 0, if f1 is also lower semicontinous, Theo.

3 holds for all x P dom f1 by Prop. 2.
‚ Theo. 3 still holds when f1 is convex, i.e. ρ “ 0, but

not for convex subdifferential. In fact the inclusion
becomes

B ε
0

pf0 ` f1qpxq Ă ∇pf0qpxq ` B ε
p2,L0{2qf1pxq.

IV. INEXACT PROXIMAL MAPS

In general settings, the computation of the proximal
map needs to be addressed as an independent
optimisation problem. Some practical examples involves
non-convex ℓp-seminorms (i.e. p P p0, 1q) or the convex
ℓp-norms (i.e. p ě 1), unless p takes some specific
values [8]. Another example is given by the combination
of a sparsity-promoting functions with a non-orthogonal
linear operator, as in the case of the popular discrete
Total Variation functional [27] (and its non-convex
modifications), which has been extensively used in the
context of image and signal processing. In these cases, at
each point, the proximal map is defined up to a certain
degree of accuracy and in the framework of proximal
algorithms, it is important to carry out a convergence
analysis that takes this fact into account. In order to
do so, we consider the concept of ε-solution for an
optimisation problem (see Def. 5) and the related notion
of ε-proximal point.

Definition 8 (ε-proximal point): Let X be a normed
vector space. Let function f : X Ñ p´8,`8s be proper
and bounded from below. Then for all y P X and for
all ε ě 0, any ε-solution to the proximal minimization
problem

minimize
xPX

fpxq `
1

2
}x ´ y}2, (11)



is said to be a ε-proximal point for f at y. The set of
all ε-proximal points of f at y is denoted as

ε-proxhpyq :“ tx P X |x is a ε-solution of (11)u

In the following result, we provide a relationship
between the ε-proximal operator and the ε-proximal
subdifferentials of weakly convex function, using the
sum rule from Theo. 3. Specifically, in Prop. 4, we keep
track of the constant C of the p2, Cq-subdifferential of
f .

Proposition 4: Let X be a Hilbert space. Let
f : X Ñ p´8,`8s be a proper, lower semicontinuous
ρ-weakly convex function that is bounded from below
on X . Let ε ě 0, α ą 0. Then for every y P X ,
xε P ε-proxαf pyq implies

y ´ xε

α
P B ε

p2,ρ{2`1{p2αqqfpxεq. (12)

If 1{α ą ρ, we obtain the equivalence

py P X q xε P ε-proxαf pyq

ðñ
y ´ xε

α
P B ε

p2,ρ{2`1{p2αqqfpxεq.

Proof: By the definition of ε-proximal point and
Remark 1 we have

xε P ε-proxαf pyq

ùñ 0 P B ε
p2,ρ{2q

ˆ

1

2α
} ¨ ´y}2 ` fp¨q

˙

pxεq.

The assumptions in Theo. 3 are satisfied since
f0p¨q “ 1

2α
} ¨ ´y}2 is differentiable on the whole space

and its gradient has a Lipschitz constant L0 “ 1{α,
hence we also have the inclusion

0 P ∇

ˆ

1

2α
} ¨ ´y}2

˙

pxεq ` B ε
p2,ρ{2`1{p2αqqfpxεq

“
xε ´ y

α
` B ε

p2,ρ{2`1{p2αqqfpxεq

which is equivalent to

y ´ xε

α
P B ε

p2,ρ{2`1{p2αqqfpxεq.

Remark 6: We highlight that (12) is related to the
notion of Type-2 approximation of the proximal point
that is proposed in [20], [28] in the convex settings.
In other words, by using the ε-proximal subdifferential
instead of the (convex) ε-subdifferential, we can obtain
a Type 2 approximation of the proximal point directly
from Def. 8.This is due to Theo. 3, at the expense of
increasing the modulus of proximal subdifferentiability
by 1{p2αq.

Remark 7 (ε-Subdifferential of a quadratic function ):

Let X be a Hilbert space. As a consequence of
[14, Formula 1.2.5], for a function of the form

h0pxq “ 1

2α
}x ´ y}2 for some y P X and α ą 0, we

have

B ε
0
f0pxq “ t

x ´ y

α
`

e

α
|
1

2α
}e}2 ď εu.

In view of Remark 7 and Theo. 2, we can provide another
interpretation for the ε-proximal points of a ρ-weakly
convex function in terms of proximal ε-subdifferentials,
where this time we are able to keep track of the modulus
of weak convexity of the function.

Proposition 5: Let X be a Hilbert space. Let
f : X Ñ p´8,`8s be a proper, lower semicontinuous
ρ-weakly convex function that is bounded from below
on X and let ε ě 0, α ą 0. If xε P ε -proxαf pyq, then
there exist ε0, ε1 ě 0 with ε0 ` ε1 ď ε and there exists
e P X with }e}2

2α
ď ε0 such that

y ´ xε ´ e

α
P B ε1

p2,ρ{2qfpxεq. (13)

If 1{α ą ρ, we obtain the equivalence
Proof: By definition of ε-proximal point we have

xε P ε-proxαf pyq

ùñ 0 P B ε
p2,ρ{2q

ˆ

1

2α
} ¨ ´y}2 ` fp¨q

˙

pxεq.

We can now apply Theo. 2, according to which there
exist ε0, ε1 ě 0 with ε0 ` ε1 ď ε such that

0 P B ε0
0

ˆ

1

2α
} ¨ ´y}2

˙

pxεq ` B ε1
p2,ρ{2qfpxεq. (14)

By applying Remark 7, we infer that there exists e P X

with }e}2

2α
ď ε0 such that

xε ´ y

α
`

e

α
P B ε0

0

ˆ

1

2α
} ¨ ´y}2

˙

pxεq

which implies

y ´ xε ´ e

α
P B ε1

p2,ρ{2qfpxεq.

Remark 8: The interpretation provided by proposition
5 is related to the notion of Type-1 approximation of the
proximal point that is proposed in [20], [28] for convex
functions.

Remark 9: Notice that (13) from Prop. 5 implies the
inclusion (12) from Prop. 4, which is based on Theo.
3. By definition of proximal ε-subdifferentials, (13) is
equivalent to

px P X q f pxq ´ f pxεq ě
B

y ´ xε

α
, x ´ xε

F

´
ρ

2
}x ´ xε}

2
´
A e

α
, x ´ xε

E

´ ε1.

We consider the following estimation
A e

α
, x ´ xε

E

ď ε0 `
1

2α
}x ´ xε}2



which stems from Cauchy-Schwarz and Young’s
inequality. It follows that

f pxq ´ f pxεq ě

B

y ´ xε

α
, x ´ xε

F

´

ˆ

ρ

2
`

1

2α

˙

}x ´ xε}
2

´ ε

that is equivalent to (12)

y ´ xε

α
P B ε

p2,ρ{2`1{p2αqqfpxεq.

The inclusion in (14) further leads to the following
corollary which is a generalisation of [20, Lemma 2]
from convex to proximal ε-subdifferentials.

Corollary 1: Let X be a Hilbert space. Let
f : X Ñ p´8,`8s be a proper, lower semicontinuous
ρ-weakly convex function that is bounded from below
on X and let ε ě 0. If xε P ε -proxαf pxq, then there

exist e P X with }e}2

2α
ď ε such that

y ´ xε ´ e

α
P B ε

p2,ρ{2qfpxεq

Proof: The proof is equivalent to the one from
Prop. 5, with the only difference that we exploit the fact
that the inclusion in (14) always implies the following
inclusion

0 P B ε
0

ˆ

1

2α
} ¨ ´y}2

˙

pxεq ` B ε
p2,ρ{2qfpxεqpxεq.

by (3) and the fact that ε0 and ε1 from Theo. 2 are
always smaller than ε.

V. CONCLUSIONS

We discussed inexact proximal operators (in the
sense of Def. 8) for weakly convex functions defined
on Hilbert spaces and their relationships to proximal
ε-subdifferentials. We highlighted the main differences
and similarities with the fully convex settings. An
important feature of the obtained results is that in Prop.
4 and Prop. 5 we are able to control the moduli of
proximal ε-subdifferentiability of f (in relation to the
moduli of weak convexity). Such result could contribute
to the convergence analysis of proximal algorithms
for solving optimization problems containing weakly
convex functions.
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