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Abstract

The paper covers the design and analysis of experiments to discriminate between two
Gaussian process models, such as those widely used in computer experiments, kriging, sensor
location and machine learning. Two frameworks are considered. First, we study sequential
constructions, where successive design (observation) points are selected, either as additional
points to an existing design or from the beginning of observation. The selection relies on
the maximisation of the difference between the symmetric Kullback Leibler divergences for
the two models, which depends on the observations, or on the mean squared error of both
models, which does not. Then, we consider static criteria, such as the familiar log-likelihood
ratios and the Fréchet distance between the covariance functions of the two models. Other
distance-based criteria, simpler to compute than previous ones, are also introduced, for which,
considering the framework of approximate design, a necessary condition for the optimality of
a design measure is provided. The paper includes a study of the mathematical links between
different criteria and numerical illustrations are provided.

Keywords: model discrimination; Gaussian random field; kriging

1 Introduction

The term ‘active learning’ (cf. Hino (2020) for a recent review) has replaced the traditional
(sequential or adaptive) ‘design of experiments’ in the computer science literature, typically
when the response is approximated by Gaussian process regression (GPR, cf. Sauer et al.
(2022)). It refers to selecting the most suitable inputs to achieve the maximum of information
from the outputs, usually with the aim of improving prediction accuracy. A good overview is
given in Chapter 6 of Gramacy (2020).

Frequently the aim of an experiment – in the broad sense of any data acquisition exercise
– may rather be the discrimination between two or more potential explanatory models. When
data can be sequentially collected during the experimental process, the literature goes back to
the classic procedure of Hunter and Reiner (1965) and has generated ongoing research (see e.g.
Schwaab et al. (2008), Olofsson et al. (2018) and Heirung et al. (2019)). When the design needs
to be fixed before the experiment and thus no intermediate data will be available, the literature
is less developed. While in the classical (non)linear regression case the criterion of T-optimality
(cf. Atkinson and Fedorov (1975)) and the numerous papers extending it was a major step, a
similar breakthrough for Gaussian process regression is lacking.

With this paper we would like to investigate various sequential/adaptive and non-sequential
design schemes for GPRs and their relative properties. When the observations associated with
the already collected points are available, one may base the criterion on the predictions and
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prediction errors (Section 3.1). On the one hand, one natural choice will be to put the next
design point where the symmetric Kullback-Leibler divergence between those two predictive
(normal) distributions differs most. On the other hand, when the associated observations are
not available, the incremental construction of the designs could be based on the mean squared
error (MSE) for both models, assuming in turn that either of the two models is the true one
(Section 3.2). The static construction of a set of optimal designs of given size for nominal
model parameters is the last mode we have considered (Section 4). Our first choice is to use the
difference between the expected values of the log likelihood ratios, assuming in turn that either
of the two models is the true one. This is actually a function of the symmetric Kullback-Leibler
divergence, which also arises from Bayesian considerations. In a similar spirit, the Fréchet
distance between two covariance matrices provides another natural criterion. Some further
novel but simple approaches are considered in this paper as well. In particular we are interested
whether complex likelihood-based criteria like the Kullback-Leibler-divergence can be effectively
replaced by simpler ones based directly on the respective covariance kernels. The construction
of optimal design measures for model discrimination (approximate design theory) is considered
in Section 5.

Eventually, to compare the discriminatory power of the resulting designs from different cri-
teria, one can compute the correct classification (hit) rates after selecting the model with the
higher likelihood value. A numerical illustration is provided in Section 6 for two Matérn kernels
with different smoothness.

2 Notation

One of the most popular design criteria for discriminating between rival models is T-optimality
(Atkinson and Fedorov, 1975). This criterion is only applicable when the observations are
independent and normally distributed with a constant variance. López-Fidalgo et al. (2007)
generalised the normality assumption and developed an optimal discriminating design criterion
to choose among non-normal models. The criterion is based on the log-likelihood ratio test under
the assumption of independent observations. We denote by ϕ0(y, x, θ0) and ϕ1(y, x, θ1) the two
rival probability density functions for one observation y at point x. The following system of
hypotheses might be considered:

H0 : ϕ(y, x) = ϕ0(y, x, θ0)

H1 : ϕ(y, x) = ϕ1(y, x, θ1)

where ϕ1(y, x, θ1) is assumed to be the true model. A common test statistic is the log-likelihood
ratio given as

L = − log
ϕ0(y, x, θ0)

ϕ1(y, x, θ1)
= log

ϕ1(y, x, θ1)

ϕ0(y, x, θ0)
,

where the null hypothesis is rejected when ϕ1(y, x, θ1) > ϕ0(y, x, θ0) or equivalently when L > 0.
The power of the test refers to the expected value of the log-likelihood ratio criterion under the
alternative hypothesis H1. We have

EH1(L) = E1(L) =

∫
ϕ1(y, x, θ1) log

{
ϕ1(y, x, θ1)

ϕ0(y, x, θ0)

}
dy

= DKL(ϕ1‖ϕ0), (1)
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where DKL(ϕ1‖ϕ0) is the KullbackLeibler distance between the true and the alternative model
(Kullback and Leibler, 1951).

Interchanging the two models in the null and the alternative hypothesis, the power of the
test would be

E0(−L) = DKL(ϕ0‖ϕ1). (2)

If it is not clear in advance which of the two models is the true model, one might consider to
search for a design optimising a convex combination of (1) and (2), most commonly using weights
1/2 for each model. This would be equivalent to maximising the symmetric Kullback-Leibler
distance

DKL(ϕ0, ϕ1) =
1

2
[DKL(ϕ0‖ϕ1) +DKL(ϕ1‖ϕ0)] .

In this paper we will consider random fields, i.e. we will allow for correlated observations.
When the random field is Gaussian, we might still base the design strategy on the log-likelihood
ratio criterion to choose among two rival models.

For a positive definite kernel K(x, x′) and an n-point design Xn = (x1, . . . , xn), kn(x) is the
n-dimensional vector (K(x, x1), . . . ,K(x, xn))> and Kn is the n×n (kernel) matrix with elements
{Kn}i,j = K(xi, xj). Although x is not bold, it may correspond to a point in a (compact) set
X ⊂ Rd. Assume that Y (x) corresponds to the realisation of a random field Zx, indexed by x in
X , with zero mean E{Zx} = 0 for all x and covariance E{ZxZx′} = K(x, x′) for all (x, x′) ∈X 2.
Our prediction of a future observation Y (x) based on observations Yn = (Y (x1), . . . , Y (xn))>

corresponds to the best linear unbiased predictor (BLUP) η̂n(x) = k>n (x)K−1
n Yn. The associated

prediction error is en(x) = Y (x)− η̂n(x) and we have

E{e2
n(x)} = ρ2

n(x) = K(x, x)− k>n (x)K−1
n kn(x) .

The index n will often be omitted when there is no ambiguity, and in that case ki(x) = kn,i(x),
Ki = Kn,i, ei(x) = en,i(x), ρ2

i (x) = ρ2
n,i(x) will refer instead to model i, with i ∈ {0, 1}. We shall

need to distinguish between the cases where the truth is model 0 or model 1, and following Stein
(1999, p. 58) we denote by Ei the expectation computed with model i assumed to be true. We
reserve the notation ρ2

i (x) to the case where the expectation is computed with the true model;
i.e.,

ρ2
i (x) = Ei{e2

i (x)} .

Hence we have ρ2
0(x) = E0{e2

0(x)} = K0(x, x)− k>0 (x)K−1
0 k0(x) and calculation gives

E0{e2
1(x)} = K0(x, x) + k>1 (x)K−1

1 K0K
−1
1 k1(x)− 2 k>1 (x)K−1

1 k0(x) , (3)

E0{[e1(x)− e0(x)]2} = E0{e2
1(x)} − E0{e2

0(x)} ,

with an obvious permutation of indices 0 and 1 when assuming the model 1 is true to compute
E1{·}.

If model 0 is correct, the prediction error is larger when we use model 1 for prediction than
if we use the BLUP (i.e., model 0). Stein (1999, p. 58) shows that the relation

E0{e2
1(x)}

E0{e2
0(x)}

= 1 +
E0{[e1(x)− e0(x)]2}

E0{e2
0(x)}
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shown above is valid more generally for models with linear trends. Also of interest is the assumed
mean squared error (MSE) E1{e2

1(x)} when we use model 1 for assessing the prediction error
(because we think it is correct) while the truth is model 0, and in particular the ratio

E1{e2
1(x)}

E0{e2
1(x)}

=
K1(x, x)− k>1 (x)K−1

1 k1(x)

E0{e2
1(x)}

,

which may be larger or smaller than one.
Another important issue concerns the choice of covariance parameters in K0 and K1. Denote

Ki(x, x
′) = σ2

i Ci,θi(x, x
′), i = 0, 1, (x, x′) ∈ X 2, where the σ2

i define the variance, the θi may
correspond to correlation lengths in a translation invariant model and are thus scalar in the
isotropic case, and C(x, x′) defines a correlation.

3 Prediction-based discrimination

For the incremental construction of a design for model discrimination, points are added condi-
tionally on previous design points. We can distinguish the case where the observations associated
with those previous points are available and can thus be used to construct a sequence of predic-
tions (sequential, i.e., conditional, construction) from the unconditional case where observations
are not used.

3.1 Sequential (conditional) design

Consider stage n, where n design points Xn and n observations Yn are available. Assuming that
the random field is Gaussian, when model i is true we have Y (x) ∼ N (η̂n,i(x), ρ2

n,i(x)). A rather
natural choice is to choose the next design point xn+1 where the symmetric Kullback-Leibler
divergence between those two normal distributions differs most; that is,

xn+1 ∈ Arg max
x∈X

ρ2
n,0(x)

ρ2
n,1(x)

+
ρ2
n,1(x)

ρ2
n,0(x)

+ [η̂n,1(x)− η̂n,0(x)]2

[
1

ρ2
n,0(x)

+
1

ρ2
n,1(x)

]
. (4)

Other variants could be considered as well, such as

xn+1 ∈ Arg max
x∈X

[η̂n,1(x)− η̂n,0(x)]2 ,

xn+1 ∈ Arg max
x∈X

[η̂n,1(x)− η̂n,0(x)]2

ρ2
n,0(x) + ρ2

n,1(x)
,

xn+1 ∈ Arg max
x∈X

[η̂n,1(x)− η̂n,0(x)]2

[
1

ρ2
n,0(x)

+
1

ρ2
n,1(x)

]
.

They will not be considered in the rest of the paper.
If necessary one can use plug-in estimates σ̂2

n,i and θ̂n,i of σ2
i and θi, for instance maximum

likelihood (ML) or leave-one-out estimates based on Xn and Yn, when we choose xn+1. Note
that the value of σ2 does not affect the BLUP η̂n(x) = k>nK−1

n Yn. In the paper we do not
address the issues related to the estimation of σ2 or of the correlation length or smoothness
parameters of the kernel; one may refer to Karvonen et al. (2020) and the recent papers Karvonen
(2022); Karvonen and Oates (2022) for a detailed investigation. The connection between the
notion of microergodicity, related to the consistency of the maximum-likelihood estimator, and
discrimination through a KL divergence criterion is nevertheless considered in Example 1 below.
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3.2 Incremental (unconditional) design

Consider stage n, where n design points Xn are available. We base the choice of the next point
on the difference between the MSEs for both models, assuming that one or the other is true.
For instance, assuming that model 0 is true, the difference between the MSEs is E0{e2

1(x)} −
E0{e2

0(x)} = E0{[e1(x)− e0(x)]2} = E0{[η̂n,1(x)− η̂n,0(x)]2}.
A first, un-normalised, version is thus

φA(x) = E0{[e1(x)− e0(x)]2}+ E1{[e1(x)− e0(x)]2}
= E0{e2

1(x)} − E0{e2
0(x)}+ E1{e2

0(x)} − E1{e2
1(x)} . (5)

A normalisation seems in order here too, such as

φB(x) =
E0{[e1(x)− e0(x)]2}

ρ2
n,0(x)

+
E1{[e1(x)− e0(x)]2}

ρ2
n,1(x)

=
E0{e2

1(x)}
E0{e2

0(x)}
+

E1{e2
0(x)}

E1{e2
1(x)}

− 2 . (6)

A third criterion is based on the variation of the symmetric Kullback-Leibler divergence (10)
of Section 4 when adding an (n+ 1)-th point x to Xn. Direct calculation, using

Kn+1,i =

(
Kn,i kn,i(x)

k>n,i(x) Ki(x, x)

)
, i = 0, 1 ,

and the expression of the inverse of a block matrix, gives

ΦKL [K0,K1](Xn ∪ {x}) = ΦKL [K0,K1](Xn) +
1

2

[
E1{e2

0(x)}
E0{e2

0(x)}
+

E0{e2
1(x)}

E1{e2
1(x)}

]
− 1 .

We thus define

φKL(x) =
1

2

[
E1{e2

0(x)}
E0{e2

0(x)}
+

E0{e2
1(x)}

E1{e2
1(x)}

]
− 1 , (7)

to be maximised with respect to x ∈X .
Although the σ2

i do not affect predictions, Ei{e2
j (x)} is proportional to σ2

i . Unless specific

information is available, it seems reasonable to assume that σ2
0 = σ2

1 = 1. Other parameters θi
should be chosen to make the two kernels the most similar, which seems easier to consider in
the approach presented in Section 4, see (11). In the rest of this section we suppose that the
parameters of both kernels are fixed.

The un-normalised version φA(x) given by (5) could be used to derive a one-step (non-
incremental) criterion, in the same spirit as those of Section 4, through integration with respect
to x for a given measure µ on X . Indeed, we have

E0{[e1(x)− e0(x)]2} = k>0 (x)K−1
0 k0(x) + k>1 (x)K−1

1 K0K
−1
1 k1(x)− 2 k>1 (x)K−1

1 k0(x) ,

so that∫
X

E0{[e1(x)− e0(x)]2} dµ(x) = trace
[
K−1

0 A0(µ) + K−1
1 K0K

−1
1 A1(µ)− 2 K−1

1 A0,1(µ)
]
,

where Ai(µ) =
∫
X ki(x)k>i (x) dµ(x), i = 0, 1, and A0,1(µ) =

∫
X k0(x)k>1 (x) dµ(x). Similarly,∫

X
E1{[e1(x)− e0(x)]2} dµ(x) = trace

[
K−1

1 A1(µ) + K−1
0 K1K

−1
0 A0(µ)− 2 K−1

0 A0,1(µ)
]
.

The matrices Ai(µ) and A0,1(µ) can be calculated explicitly for some kernels and measures µ.
This happens in particular when X = [0, 1]d, the two kernels Ki are separable, i.e., products of
one-dimensional kernels on [0, 1], and µ is uniform on X .
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Example 1: exponential covariance, no microergodic parameters. We consider Exam-
ple 6 in Stein (1999, p. 74) and take Ki(x, x

′) = e−αi|x−x
′|/αi, i = 0, 1. The example focuses on

two difficulties: first, the two kernels only differ by their parameter values; second, the particular
relation between the variance and correlation length makes the parameters αi not microergodic
and they cannot be estimated consistently from observations on a bounded interval; see Stein
(1999, Chap. 6). It is interesting to investigate the behaviour of the criteria (5), (6) and (7) in
this particular situation.

We suppose that n observations are made at xi = (i−1)/(n−1), i = 1, . . . , n ≥ 2. We denote
δ = δn = 1/[2(n − 1)] the half-distance between two design points. The particular Markovian
property of random processes with kernels Ki simplifies the analysis. The prediction and MSE at
a given x ∈ (0, 1) only depend on the position of x relative to its two closest neighbouring design
points; moreover, all other points have no influence. Therefore, due to the regular repartition of
the xi, we only need to consider the behaviour in one (any) interval Ii = [ai, bi] = [xi, xi+1].

We always have φA(x)→ 0 as x→ xi ∈ Xn. Numerical calculation shows that for δn small
enough, φA(·) has a unique maximum in Ii at the centre Ci = (xi + xi+1)/2. The next design
point xn+1 that maximises φA(·) is then taken at Ci for one of the n− 1 intervals, and we get

φA(Ci) =
1

4

(α1 − α0)2(α1 + α0)3

α0α1
δ4
n +O(δ5

n) , n→∞ .

Similar results apply to the case where the design Xn contains the endpoints 0 and 1 and
its covering radius CR(Xn) = maxx∈[0,1] mini=1,...,n |x − xi| tends to zero, the points xi being
not necessarily equally spaced: Ci is then the centre of the largest interval [xi, xi+1] and δn =
CR(Xn).

When δn is large compared to the correlation lengths 1/α0 and 1/α1, there exist two maxima,
symmetric with respect to Ci, that get closer to the extremities of Ii as α1 increases, and Ci
corresponds to a local minimum of φA(·). This happens for instance when α0 δn = 1 and
α1 δn & 2.600455.

A similar behaviour is observed for φB(x) and φKL(x): for small enough δn they both have
a unique maximum in Ii at Ci, with now

φB(Ci) =
1

4

(α1 − α0)2(α1 + α0)3

α0α1
δ3
n +O(δ4

n) , n→∞ ,

φKL(Ci) =
1

8

(α1 − α0)2(α1 + α0)3

α0α1
δ3
n +O(δ4

n) , n→∞ .

Also, φB(x) → 0 and φKL(x) → 0 as x → xi ∈ Xn. For large values of δn compared to the
correlation lengths 1/α0 and 1/α1, there exist two maxima in Ii, symmetric with respect to
Ci. When α0 δn = 1, this happens for instance when α1 δn & 2.020178 for φB(·) and when
α1 δn & 7.251623 for φKL(·). However, in the second case the function is practically flat between
the two maxima.

The left panel of Figure 1 presents φA(x), φB(x) and φKL(x) for x ∈ [x1, x2] = [0, 0.1] when
n = 11 (δn = 0.05) and α0 = 1, α1 = 10. The right panel is for α0 δn = 1, α1 δn = 10.

This behaviour of φKL(Ci) for small δn sheds light on the fact that α is not estimable in
this model. Indeed, consider a sequence of embedded nk-point designs Xnk , initialised with the
design Xn = Xn0 considered above and with nk = 2k (n0 − 1) + 1, all these designs having the
form xi = (i − 1)/(nk − 1), i = 1, . . . , nk. Then, CR(Xnk) = CR(Xj) = δj = 1/[2(nk − 1)] for
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Figure 1: φA(x), φB(x) and φKL(x), x ∈ [x1, x2], for n = 11 (δn = 0.05) in Example 1. Left: α0 = 1,
α1 = 10; Right: α0 = 20, α1 = 200.

j = nk, . . . , nk+1− 1 = 2nk− 2. For k large enough, the increase in Kullback-Leibler divergence
(10) from Xnk to Xnk+1

is thus bounded by c/(nk − 1)2 for some c > 0, so that the expected
log-likelihood ratio E0{Lnk} − E1{Lnk} remains bounded as k →∞.

More generally, denote by 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 the ordered points of an n-point
design Xn in [0, 1], n ≥ 3. Let i∗ ≥ 3 be such that |xi∗−2 − xi∗ | = mini=3,...,n |xi−2 − xi|. Then
necessarily |xi∗−2−xi∗ | ≤ 1/(dn/2e−1). Indeed, consider the following iterative modification of
Xn that cannot decrease mini=3,...,n |xi−2−xi|: first, move x1 to zero, then move x2 to x1; leave
x3 unchanged, but move x4 to x3, etc. For n even, the design X′n obtained is the duplication of
an (n/2)-points design; for n odd, only the right-most point xn remains single. In the fist case,
the minimum distance between points of X′n is at most 1/(n/2− 1), in the second case it is at
most 1/(dn/2e − 1). We then define Xn−1 = Xn \ {xi∗−1}. For n large enough, the increase
in Kullback-Leibler divergence (10) from Xn−1 to Xn is thus bounded by c/(dn/2e − 1)3 for
some c > 0 depending on α0 and α1. Starting from some design Xn0 , we thus have, for n0 large
enough,

ΦKL [K0,K1](Xn)− ΦKL [K0,K1](Xn0) ≤ c
n∑

k=n0+1

1

(dk/2e − 1)3
,

which implies limn→∞ΦKL [K0,K1](Xn) ≤ B for some B < ∞. Assuming, without any loss of
generality, that model 0 is correct, we have 0 ≤ E0{Ln} ≤ B (we get 0 ≤ E1{−Ln} ≤ B when
we assume that model 1 is correct), implying in particular that Ln does not tend to infinity a.s.
and the ML estimator of α is not strongly consistent.

Example 2: exponential covariance, microergodic parameters. Consider now two ex-
ponential covariance models with identical variances (which we take equal to one without any
loss of generality): Ki(x, x

′) = e−αi|x−x
′|, i = 0, 1.

Again, φA(x)→ 0 as x→ xi ∈ Xn and φA(·) has a unique maximum at Ci for small enough
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δn, with now

φA(Ci) =
1

2
(α2

1 − α2
0)2 δ4

n +O(δ5
n) , n→∞ .

There are two maxima for φA(·) in Ii, symmetric with respect to Ci for large δn: when α0 δn = 1,
this happens for instance when α1 δn & 2.558545. Nothing is changed for φB(·) compared to
Example 1 as the variances cancel in the ratios that define φB(·), see (3) and (6). The situation
is quite different for φKL(·), with

φKL(Ci) =
1

2

(α1 − α0)2

α0α1
+O(δn) , n→∞ ,

indicating that it is indeed possible to distinguish between the two models much more efficiently
with this criterion than with the two others. Interestingly enough, the best choice for next
design point is not at Ci but always as close as possible to one of the endpoints ai or bi,
with however a criterion value similar to that in the centre Ci when δn is small enough, as
limx→xi φKL(x) = (α1 − α0)2/(2α0α1). Here, the same sequence of embedded designs as in
Example 1 ensures that E0{Lnk} − E1{Lnk} → ∞ as k → ∞. Figure 2 presents φA(x), φB(x)
and φKL(x) in the same configuration as in Figure 1 but for the kernels Ki(x, x

′) = e−αi|x−x
′|,

i = 0, 1.

Figure 2: φA(x), φB(x) and φKL(x), x ∈ [x1, x2], for n = 11 (δn = 0.05) in Example 2. Left: α0 = 1,
α1 = 10; Right: α0 = 20, α1 = 200.

Example 3: Matérn kernels. Take K0 and K1 as the 3/2 and 5/2 Matérn kernels, respec-
tively:

K0,θ(x, x
′) = (1 +

√
3θ |x− x′|) exp(−

√
3θ |x− x′|) (Matérn 3/2) , (8)

K1,θ(x, x
′) = [1 +

√
5θ |x− x′|+ 5θ2 |x− x′|2/3] exp(−

√
5θ |x− x′|) (Matérn 5/2) . (9)

We take θ = θ0 = 1 in K0,θ and adjust θ = θ1 in K1,θ to minimise φ2 [K0,θ0
,K1,θ1

](µ) defined by

Eq. (13) in Section 4 with µ the uniform measure on [0, 1], which gives θ1 ' 1.1275. The left
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panel of Figure 3 shows K0,θ0=1(x, 0) and K1,θ(x, 0) for θ = 1 and θ = θ1 when x ∈ [0, 1]. The
right panel presents φB(x) and φKL(x) for the same n = 11-point equally spaced design Xn as
in Example 1 and x ∈ [0, 1] for K0,1 and K1,1.1275 (the value of φA(x) does not exceed 0.65 10−4

and is not shown). The behaviours of φB(x) and φKL(x) are now different in different intervals
[xi, xi+1] (they remain symmetric with respect to 1/2, however), the maximum of φKL(x) is
obtained at the central point x5. The behaviour of φKL(·) could be related to the fact that
discriminating between K0 and K1 amounts to estimating the smoothness of the realisation,
which requires that some design points are close to each other.

Figure 3: Left: K0,1(x, 0), K1,1(x, 0) and K1,1.1275(x, 0), x ∈ [0, 1]. Right: φB(x) and φKL(x) for
x ∈ [0, 1] and the same 11-point equally spaced design Xn = {0, 1/10, 2/10, . . . , 1} as in Example 1, with
K0,1 and K1,1.1275.

4 Distance-based discrimination

We will now consider criteria which are directly based on the discrepancies of the covariance
kernels. Ideally those should be simpler to compute and still exhibit reasonable efficiencies and
some similar properties. The starting point is again the use of the log-likelihood ratio criterion
to choose among the two models. Assuming that the random field is Gaussian, the probability
densities of observations Yn for the two models are

ϕn,i(Yn) =
1

(2π)n/2 det1/2 Kn,i

exp

[
−1

2
Y>n K−1

n,iYn

]
, i = 0, 1 .

The expected value of the log-likelihood ratio Ln = logϕ(Yn|0)− logϕ(Yn|1) under model 0 is

E0{Ln} =
1

2
log det(Kn,1K

−1
n,0)− n

2
+

1

2
trace(Kn,0K

−1
n,1)

and similarly

E1{Ln} =
1

2
log det(Kn,1K

−1
n,0) +

n

2
− 1

2
trace(Kn,1K

−1
n,0) .
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A good discriminating design should make the difference E0{Ln} − E1{Ln} as large as possible;
that is, we should choose Xn that maximises

ΦKL [K0,K1](Xn) = E0{Ln} − E1{Ln} =
1

2

[
trace(Kn,0K

−1
n,1) + trace(Kn,1K

−1
n,0)
]
− n

= 2DKL(ϕn,0, ϕn,1) , (10)

i.e. twice the symmetric Kullback-Leibler divergence between the normal distributions with
densities ϕn,0 and ϕn,1.

We may enforce the normalisation σ2
0 = σ2

1 = 1 and choose the θi to make the two kernels
most similar in the sense of the criterion Φ(·, ·) considered; that is, maximise

min
θ0∈Θ0, θ1∈Θ1

ΦKL [K0,K1](Xn) . (11)

The choice of Θ0 and Θ1 is important; in particular, unconstrained minimisation over the θi could
make both kernels completely flat or on the opposite close to Dirac distributions. It may thus
be preferable to fix θ0 and minimise over θ1 without constraints. Also, the Kullback-Leibler
distance is sensitive to kernel matrices being near singularity, which might happen if design
points are very close to each other. Pronzato et al. (2019) suggest a family of criteria based on
matrix distances derived from Bregman divergences between functions of covariance matrices
from Kiefer’s ϕp-class of functions (Kiefer, 1974). If p ∈ (0, 1), these criteria are rather insensitive
to eigenvalues close or equal to zero. Alternatively, they suggest criteria computed as Bregman
divergences between squared volumes of random k-dimensional simplices for k ∈ {2, . . . , d− 1},
which have similar properties.

The index n is omitted in the following and we consider fixed parameters for both kernels.
The Fréchet-distance criterion

ΦF [K0,K1](Xn) = trace
[
K0 + K1 − 2 (K0K1)1/2

]
, (12)

related to the Kantorovich (Wasserstein) distance, seems of particular interest due to the ab-
sence of matrix inversion. The expression is puzzling since the two matrices do not necessarily
commute, but the paper Dowson and Landau (1982) is illuminating.

Other matrix “entry-wise” distances will be considered, in particular the one based on the
(squared) Frobenius norm,

Φ2 [K0,K1](Xn) = trace
(
K2

0 + K2
1 − 2 K0K1

)
= trace

[
(K0 −K1)2

]
,

which corresponds to the substitution of K2
i for Ki in (12) for i = 0, 1. Denote more generally

Φp [K0,K1](Xn) = ‖K1 −K0‖pp =
n∑

i,j=1

|{K1 −K0}i,j |p = 1>n |K1 −K0|�p1n , p > 0 ,

where 1n is the n-dimensional vector with all components equal to 1, the absolute value is
applied entry-wise and �p denotes power p applied entry-wise.

Figure 4 shows the values of the criteria Φi [K0,1,K1,θ], i = 1, 2, ΦF [K0,1,K1,θ] and ΦKL [K0,1,K1,θ]

as functions of θ for the two kernels K0,θ and K1,θ given by (8) and (9) and the same regular
design as in Example 1: xi = (i − 1)/(n − 1), i = 1, . . . , 11. The criteria are re-scaled so
that their maximum equals one on the interval considered for θ. Note the similarity between
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Φ2 [K0,1,K1,θ](Xn) and ΦF [K0,1,K1,θ](Xn) and the closeness between the distance-minimising θ for
Φ1, Φ2 and ΦF . Also note the good agreement with the value θ1 ' 1.1275 that minimises
φ2 [K0,1,K1,θ1

](µ) from Eq. (13), see Example 3. The optimal θ for ΦKL [K0,1,K1,θ](Xn) is much
different, however, showing that the criteria do not necessarily agree between them.

Figure 4: Φi [K0,1,K1,θ](Xn), i = 1, 2, ΦF [K0,1,K1,θ](Xn) and ΦKL [K0,1,K1,θ](Xn) as functions of θ ∈
[0.75, 3] for the same 11-point equally spaced design Xn as in Example 1 and K0,θ, K1,θ given by (8) and
(9), respectively.

An interesting feature of the family of criteria Φp [K0,K1](·), p > 0, is that they extend
straightforwardly to a design measure version. Indeed, defining ξn as the empirical measure on
the points in Xn, ξn = (1/n)

∑n
i=1 δxi , we can write

Φp [K0,K1](Xn) = n2 φp [K0,K1](ξn) ,

where we define, for any design (probability) measure on X ,

φp(ξ) = φp [K0,K1](ξ) =

∫
X 2

|K1(x, x′)−K0(x, x′)|p dξ(x)dξ(x′) . (13)

Denote by Fp [K0,K1](ξ; ν) the directional derivative of φp [K0,K1](·) at ξ in the direction ν,

Fp [K0,K1](ξ; ν) = lim
α→0+

φp [K0,K1][(1− α)ξ + αν]− φp [K0,K1](ξ)

α
.

Direct calculation gives

Fp [K0,K1](ξ; ν) = 2

[∫
X 2

|K1(x, x′)−K0(x, x′)|p dν(x)dξ(x′)− φp [K0,K1](ξ)

]
,

and thus in particular

Fp [K0,K1](ξ; δx) = 2

[∫
X
|K1(x, x′)−K0(x, x′)|p dξ(x′)− φp [K0,K1](ξ)

]
.

One can easily check that the criterion is neither concave nor convex in general (as the matrix
|K1 − K0|�p can have both positive and negative eigenvalues), but we nevertheless have a
necessary condition for optimality.
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Theorem 1. If the probability measure ξ∗ on X maximises φp [K0,K1](ξ), then

∀x ∈X ,

∫
X
|K1(x, x′)−K0(x, x′)|p dξ∗(x′) ≤ φp [K0,K1](ξ

∗) .

Moreover,
∫
X |K1(x, x′)−K0(x, x′)|p dξ∗(x′) = φp [K0,K1](ξ

∗) for ξ∗-almost every x ∈X .

This suggests the following simple incremental construction: at iteration n, with Xn the cur-
rent design and ξn the associated empirical measure, choose xn+1 ∈ Arg maxx∈X Fp [K0,K1](ξn; δx) =

1>n |kn,0(x)− kn,1(x)|�p. It will be used in the numerical example of Section 6.2.

5 Optimal design measures

In this section we explain why the determination of optimal design measures maximising φp(ξ)
is generally difficult, even when limiting ourselves to the satisfaction of the necessary condition
in Theorem 1. At the same time, we can characterise measures that are approximately optimal
for large p.

We assume that the two kernels are isotropic, i.e., such that Ki(x, x
′) = Ψi(‖x − x′‖),

i = 0, 1, and that the functions Ψi are differentiable except possibly at 0 where they only admit
a right derivative. We define ψ(t) = |Ψ1(t)−Ψ0(t)|, t ∈ R+, and assume that the kernels have
been normalised so that K0(x, x) = K1(x, x); that is, ψ(0) = 0. Also, we only consider the
case where the function ψ(·) has a unique global maximum on R+. This assumption is not very
restrictive. Consider again the two Matérn kernels (8) and (9). Figure 5 shows the evolution of
ψ2(t) for K0 = K0,1 and K1 = K1,θ1 with two different values of θ1: θ1 = 1 and θ1 ' 1.1275; the
latter minimises φ2 [K0,1,K1,θ](µ) for µ being the uniform measure on [0, 1].

Figure 5: ψ2(t) for K0 = K0,1 and K1 = K1,θ1 with two different values of θ1.

In the following, we shall consider normalised functions ψ(·), such that maxt∈R+ ψ(t) = 1.
We denote by ∆ the (unique) value such that ψ(∆) = 1. On Figure 5, ∆ ' 0.7 when K1 = K1,1.
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5.1 A simplified problem with an explicit optimal solution

Consider the extreme case where ψ = ψ∗ defined by

ψ∗(t) =

{
1 if t = ∆,
0 otherwise.

(14)

Note that ψp∗(t) = ψ∗(t) for any p > 0; we can thus restrict our attention to p = 1 for the
maximisation of φp(ξ) defined by (13); that is, we consider

φ1(ξ) =

∫
X 2

ψ∗(‖x− x′‖) dξ(x)dξ(x′) .

Theorem 2. When ψ = ψ∗ and X ⊂ Rd is large enough to contain a regular d simplex with
edge length ∆, any measure ξ∗ allocating weight 1/(d + 1) at each vertex of such a simplex
maximises φ1(ξ), and φ1(ξ∗) = d/(d+ 1).

Proof. Since φ1(ξ) = 0 when ξ is continuous with respect to the Lebesgue measure on X ,
we can restrict our attention to measures without any continuous component. Assume that
ξ =

∑n
i=1wiδxi , with wi ≥ 0 for all i and

∑n
i=1wi = 1, n ∈ N. Consider the graph G(ξ) having

the xi as vertices, with an edge (i, j) connecting xi and xj if and only if ‖xi−xj‖ = ∆. We have

φ1(ξ) =
∑

(i,j)∈G(ξ)

wiwj ,

and Theorem 1 of Motzkin and Straus (1965) implies that φ1(ξ) is maximum when ξ is uniform
on the maximal complete subgraph of G(ξ). The maximal achievable order is d + 1, obtained
when the xi are the vertices of a regular simplex in X with edge length ∆. Motzkin and Straus
(1965) also indicate in their Theorem 1 that φ1(ξ∗) = 1 − 1/(d + 1). This is easily recovered
knowing that G(ξ∗) is fully connected with order d+ 1. Indeed, we then have

φ1(ξ) =
d+1∑
i=1

wi

d+1∑
j=1

j 6=i

wj =
d+1∑
i,j=1

j 6=i

wiwj = 1−
d+1∑
i=1

w2
i ,

which is maximum when all wi equal 1/(d+ 1).

5.2 Optimal designs for ψ(t) = |Ψ1(t)−Ψ0(t)|

The optimal designs of Theorem 2 are natural candidates for being optimal when we return to
the case of interest ψ(t) = |Ψ1(t) − Ψ0(t)|. In the light of Theorem 1, for a given probability
measure ξ on X , we consider the function

δξ(x) =

∫
X
ψp(‖x− x′‖) dξ(x′)− φp(ξ),

which must satisfy δξ(x) ≤ 0 for all x ∈X when ξ is optimal. For an optimal measure ξ∗ as in
Theorem 2, with support x1, . . . , xd+1 forming a regular d-simplex, we have

δξ∗(x) =
1

d+ 1

[
d+1∑
i=1

ψp(‖x− xi‖)− d

]
.
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One can readily check that δξ∗(xi) = 0 for all i (as ψ(‖xi − xj‖) = ψ(∆) = 1 for i 6= j and
ψ(0) = 0). Moreover, since ψ(·) is differentiable everywhere except possibly at zero, when
p > 1 the gradient of δξ∗(x) equals zero at each xi. However, these d+ 1 stationary points may
sometimes correspond to local minima — a situation when of course ξ∗ is not optimal. The left
panel of Figure 6 shows an illustration (d = 2) for p = 1.5, K0(x, x′) = exp(−‖x− x′‖) and K1

being the Matérn 5/2 kernel K1,1. The measure ξ∗ is supported at the vertices of the equilateral
triangle (0, 0), (∆, 0), (∆/2,

√
(3)∆/2) (indicated in blue on the figure), with ∆ ' 0.53 (the

value where ψ(·) is maximum). Here the xi correspond to local minima of δξ∗(x), ψ(·) is not
differentiable at zero but p > 1 so that δξ∗(·) is differentiable.

When p → ∞, ψp(·) approaches the (discontinuous) function ψ∗(·), suggesting that ξ∗ may
become close to being optimal for φp when p is large enough. However, when X is large, ξ∗

is never truly optimal, no matter how large p is. Indeed, suppose that X contains a point x∗
corresponding to the symmetric of a vertex xk of the simplex defining the support of ξ∗ with
respect to the opposite face of that simplex. Direct calculation gives

L = ‖xk − x∗‖ = 2 ∆

(
d+ 1

2 d

)1/2

.

The right panel of Figure 6 shows an illustration for K0 and K1 being the Matérn 3/2 and
Matérn 5/2 kernels K0,1 and K1,1, respectively. The measure ξ∗ is supported at the vertices of
the equilateral triangle with vertices (0, 0), (∆, 0), (∆/2,

√
(3)∆/2) with now ∆ ' 0.7. At the

point x∗, symmetric to xk, indicated in red on the figure, we have

δξ∗(x∗) =
1

d+ 1

d+1∑
i=1
i 6=k

ψp(‖x∗ − xi‖) + ψp(‖x∗ − xk‖)− d


=

1

d+ 1
ψp(L) > 0 , (15)

where the second equality follows from ‖x∗ − xi‖ = ∆ for all i 6= k, implying that ξ∗ is not
optimal. Another, more direct, proof of the non-optimality of ξ∗ is to consider the measure ξ̂
that sets weights 1/(d + 1) at all xi 6= xk and weights 1/[2(d + 1)] at xk and its symmetric x∗.
Direct calculation gives

φp(ξ̂) =
d

d+ 1

(
1− 1

d+ 1

)
+

2

2 (d+ 1)

[
d

d+ 1
+

1

2 (d+ 1)
ψp(L)

]
.

The first term on the right-hand side comes from the d vertices xi, i 6= k, each one having weight
1/(d+1) and being at distance ∆ of all other vertices, those having total weight 1−1/(d+1). The
second term comes from the two symmetric points xk and x∗, each one with weight 1/[2(d+ 1)].
Each of these two points is at distance ∆ from d vertices with weights 1/(d+ 1) and at distance
L of the other opposite point with weight 1/[2(d+ 1)]. We get after simplification

φp(ξ̂) =
d

d+ 1
+

ψp(L)

2 (d+ 1)2
> φp(ξ

∗) =
d

d+ 1
,

showing that ξ∗ is not optimal. Note that, for symmetry reasons, the design ξ̂ is not optimal
for large enough X . The determination of a truly optimal design seems very difficult. In the
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simplified problem of Section 5.1, where the criterion is based on the function ψ∗ defined by
(14), the measures ξ∗ and ξ̂ supported on d + 1 and d + 2 points, respectively, have the same
criterion value φp(ξ

∗) = φp(ξ̂) = d/(d+ 1) for all p > 0.
Although ξ∗ is not optimal, since ψ(‖x∗ − xk‖) < 1 (as ψ(t) takes its maximum value 1

for t = ∆), (15) suggests that ξ∗ may be only marginally suboptimal when p is large enough.
Moreover, as the right panel of Figure 6 illustrates, a design ξ∗ supported on a regular simplex
is optimal provided that X is small enough and p is large enough to make δξ∗(x) concave at
each xi (for symmetry reasons, we only need to check concavity at one vertex). In fact, p > 2
is sufficient. Indeed, assuming that p > 2 and that ψ(·) is twice differentiable everywhere, with
second-order derivative ψ′′(·), except possibly at zero, direct calculation gives

d2δξ∗(x)

dxdx>

∣∣∣∣
x=x1

=
1

d+ 1

pψp−1(∆)ψ′′(∆)

∆2

d+1∑
i=2

(x1 − xi)(x1 − xi)> ,

which is negative-definite (since ψ′′(∆) < 0, ψ(·) being maximal at ∆). The right panel of
Figure 6 gives an illustration. Note that p < 2 on the left panel, and the xi correspond to local
minimas of δξ∗(·). Figure 7 shows a plot of δξ∗(x) for p = 2 and K0 and K1 being the Matérn
3/2 and Matérn 5/2 kernels K0,1 and K1,1.07, respectively, suggesting that the form of optimal
designs may be in general quite complicated.

Figure 6: Surface plot of δξ∗(x) (x ∈ R2), the support of ξ∗ corresponds to the vertices of the equilateral
triangle in blue. Left: K0(x, x′) = exp(−‖x−x′‖) and K1 = K1,1 (∆ ' 0.53), p = 1.5; Right: K0 = K0,1,
K1 = K1,1 (∆ ' 0.7), p = 10; the red point x∗ is the symmetric of the origin (0, 0) with respect to the
opposite side of the triangle.

6 A numerical example

6.1 Exact designs

In this section, we consider numerical evaluations of designs resulting from the prediction-based
and distance-based criteria. Here, the rival models are the isotropic versions of the covariance
kernels used in Example 3 (Section 3.2) for the design space X = [0, 10]2, discretised at n = 25
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Figure 7: Surface plot of δξ∗(x) (x ∈ R2), the support of ξ∗ corresponds to the vertices of the equilateral
triangle in blue: K0 = K0,1, K1 = K1,1.07 (∆ ' 1.92), p = 2.

equally spaced points in each dimension. For an agreement on the setting of correlation lengths in
both kernels, we have applied a minimisation procedure. Specifically, we have taken θ = θ0 = 1 in
K0,θ(x, x

′) and adjusted the parameter in the second kernel minimising each of the distance-based
criteria for the design X625 corresponding to the full grid. This resulted in θ1 = 1.0047, 1.0285,
1.0955 and 1.3403, respectively, for ΦF ,Φ1,Φ2 and ΦKL. We have finally chosen θ1 = 1.07,
which seems to be compatible with the above values.

The left panel in Figure 8 shows the plot of the two Matérn covariance functions at the
assumed parameter values. This plot illustrates the similarity of the kernels which we aim to
discriminate. The right panel in the figure refers to the plot of the absolute difference between
the covariance kernels. The red line corresponds to the distance where the absolute difference
between them is maximal. This is denoted by ∆, which is equal to ∆ = 1.92 in this case.

The sequential approach is the only case where the observations Yn corresponding to the
previous design points Xn are used in the design construction. We use this information to
estimate the parameter setting at each step. The (box)plots of the maximum likelihood (ML)
estimates θ̂0 and θ̂1 of the inverse correlation lengths θ0 and θ1 of K0,θ(x, x

′) and K1,θ(x, x
′),

respectively, are presented in Figure 9. This refers to the case where the first kernel, Matérn
3/2, is the data generator. The θ̂0 estimates converge to their null value, θ0 = 1, drawn as
a red dashed line in the left panel of Figure 9, as expected due to the consistency of the ML
estimator in this case. For the second kernel to be similar to the first one (i.e., less smooth),
the θ̂1 estimates have increased (see the right panel). The decrease of the correlation length
causes the covariance kernel to drop faster as a function of distance. We defer from presenting
the opposite case (where the Matérn 5/2 is the data generator), which is similar.

Apart from the methods applied in Section 4, we have considered some other static ap-
proaches for discrimination. Ds-optimal design is a natural candidate that can be applied in the
distance-based fashion. For Ds-optimality, we require the general form of the Matérn covariance
kernel, which is based on the modified Bessel function of the second kind (denoted by Cν). It is
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Figure 9: Maximum likelihood estimates of the correlation lengths in Matérn kernels.
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given by

Kν(r) =
21−ν

Γ(ν)

(√
2ν rθ

)ν
Cν

(√
2ν rθ

)
. (16)

Smoothness, ν, is considered as the parameter of interest, while the correlation length θ is
assumed as nuisance. The first off-diagonal element in the 2× 2 information matrix, associated
with the estimation of parameters θ = (θ, ν), is

M(Xn,θ)12 =
1

2
trace

{
K−1
ν

∂Kν

∂θ
K−1
ν

∂Kν

∂ν

}
, (17)

see, e.g., Eq. (6.19) in Müller (2007). The other elements in the information matrix are calculated
similarly. We have used the supplementary material of Lee et al. (2018) to compute the partial
derivatives of the Matérn covariance kernel. Finally, the Ds-criterion is

ΦDs = |M(Xn,θ)|/|M(Xn,θ)11|, (18)

where M(Xn,θ)11 is the element of the information matrix corresponding to the nuisance pa-
rameter (i.e., in M(Xn,θ)11 both partial derivatives are calculated with respect to θ). In the
examples to follow we consider local Ds-optimal design; that is, the parameters θ and ν are set
at given values.

From a Bayesian perspective, models can be discriminated optimally when the difference
between the expected entropies of the prior and the posterior model probabilities is maximised.
This criterion underlies a famous sequential procedure put forward by Box and Hill (1967) and
Hill and Hunter (1969). Since such criteria typically cannot be computed analytically, several
bounds were derived. The upper bound proposed by Box and Hill (1967) is equivalent to the
symmetric Kullback-Leibler divergence ΦKL. Hoffmann (2017) derives a lower bound based on
a lower bound for the Kullback-Leibler divergence between a mixture of two normals, which is
given by Eq. (21) and is denoted by ΦΓ. Here, we assume equal prior probabilities. A more
detailed account of Bayesian design criteria and their bounds is given in Appendix A.

Table 1 collects simulation results for the given example. We have included the sequential
procedure (4) as a benchmark for orientation. For all other approaches the true parameter
values are used in the covariance kernels. Concerning static (distance-based) designs based on
maximisation of ΦF ,Φ1,Φ2,ΦKL,ΦΓ,ΦDs , for each design size considered we first built a an
incremental design and then used a classical exchange-type algorithm to improve it. These
designs are thus not necessarily nested, i.e., Xn 6⊂ Xn′ for n < n′.

Each design of size n was then evaluated by generating N = 100 independent sets of n
observations generated with the assumed true model, evaluating the likelihood functions for
these sets of observations for both models, and then deciding for each set of observations which
model has the higher likelihood value. The hit rate is the fraction of sets of observations where
the assumed true model has the higher likelihood value. The procedure was repeated by assuming
the other model to be the true one. The two hit rates are then averaged and stated in Table 1,
which contains the results for all the criteria and design sizes we considered. For the special
case of the sequential construction (4), the design path depends on the observations generated
at the previously selected design points; that is, unlike for the other criteria, for a given design
size n each random run produces a different design. To compute the hit rates for a particular n
we used N = 100 independent runs of the experiment.
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Table 1: Comparison of average hit rates in different methods for the first numerical example.

Average hit rate

Design size 5 6 7 8 9 10 20 30 40 50

Sequential (4) 0.500 0.535 0.540 0.595 0.570 0.640 0.695 0.715 0.740 0.770

φA 0.505 0.500 0.530 0.525 0.505 0.510 0.520 0.535 0.585 0.635

φB 0.520 0.545 0.575 0.585 0.615 0.650 0.785 0.875 0.900 0.910

φKL 0.520 0.545 0.575 0.585 0.615 0.650 0.785 0.870 0.915 0.925

ΦF 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.900 0.925 0.950

Φ1 0.525 0.520 0.555 0.540 0.550 0.610 0.725 0.890 0.910 0.920

Φ2 0.525 0.520 0.555 0.540 0.550 0.610 0.715 0.860 0.890 0.910

ΦKL 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.895 0.925 0.955

ΦΓ 0.595 0.625 0.610 0.645 0.675 0.700 0.795 0.895 0.935 0.940

ΦDs 0.540 0.575 0.590 0.620 0.650 0.675 0.805 0.850 0.855 0.925

The hit rates reported in Table 1 reflect the discriminatory power of the corresponding
designs. One can observe that ΦF and as expected ΦKL are outperforming in terms of hit rates.
The Bayesian lower bound criterion ΦΓ is similar to the symmetric ΦKL. The sequential design
strategy (4) does not behave as well as the outperforming ones. It is, however, the realistic
scenario that one might consider in applications as it does not assume knowledge of the kernel
parameters. The effect of this knowledge can thus be partially calibrated for by comparing the
first line against the other criteria.

6.2 Optimal design measure for φp

Theorem 1 also allows the use of approximate designs as it presents a necessary condition for
optimality of the family of criteria φp, p > 0. This is more extensively discussed in the previous
section. Here we present the numerical results for two specific cases of p = 2 and p = 10. To
reach a design which might be numerically optimal (or at least nearly optimal), we have applied
the Fedorov-Wynn algorithm (Fedorov, 1971; Wynn, 1970) on a dense regular grid of candidate
points.

Numerical results show that for very small p (e.g., p = 1) explicit optimal measures are hard
to derive. The left panel in Figure 10 presents the measure ξ∗2 obtained for φ2. To construct
ξ∗2 , we have first calculated an optimal design on a dense grid by applying 1000 iterations of the
Fedorov-Wynn algorithm (see the comment following Theorem 1); the design measure obtained
is supported on 9 grid points. We then applied a continuous optimisation algorithm (library
NLopt (Johnson, 2021) through its R-interface nloptr) initialised at this 9-point design. The 9
support points of the resulting design measure ξ∗2 are independent of the grid size; they receive
unequal weights, proportional to the disk areas on Figure 10-left. Any translation or rotation
of ξ∗2 yields the same value of φ2.
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As the order p increases, we eventually reach an optimal measure with only three support
points and equal weights. The right panel in Figure 10 corresponds to the optimal design mea-
sure computed for φ10. This has, similarly as before, resulted from application of a continuous
optimisation initialised at an optimal 3-point design calculated with the Fedorov-Wynn algo-
rithm on a grid. This optimal design measure ξ∗10 has three support points, drawn as blue dots,
with equal weights 1/3 represented by the areas of the red disks. The blue line segments between
every two locations have length ∆ ' 1.92, reflecting the ideal interpoint distance (see the right
panel of Figure 8), in agreement with corresponding discussions in Section 5. Also here the
optimal designs are rotationally and translationally invariant, and thus any design of such type
is optimal as long as the design region is large enough to fit it.
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Figure 10: Left: The optimal measure for φ2. Right: The optimal measure for φ10.

7 Conclusions

In this paper we have considered the design problem for the discrimination of Gaussian process
regression models. This problem differs considerably from the well-treated one in standard
regression models and thus offers a multitude of challenges. While the KL-divergence is a
straightforward criterion, it comes with the price of being computationally demanding and
lacking convenient simplifications such as design measures. We have therefore introduced a
family of criteria that allow such a simplification at least in special cases and have investigated
its properties. We have also compared the performance of these and other potential criteria
on several examples and see that KL-divergence can be effectively replaced by simpler criteria
without much loss in efficiency. In particular designs based on the Fréchet-distance between
covariance kernels seem to be competitive. Results from the approximate design computations
indicate that for classical isotropic kernels, designs with d + 1 support points placed at the
vertices of a simplex of suitable size are optimal for distance-based criteria φp when p is large
enough.
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Appendix

A Notes on Box-Hill-Hunter Bayesian criteria for model dis-
crimination between Gaussian random fields

Chapter 5 of Hoffmann (2017) contains an overview of Bayesian design criteria for model dis-
crimination and some useful bounds on them. We assume there are M models m0, . . . ,mM−1.
The most common Bayesian design criterion for model discrimination has the following form:

ΦΛ(Xk) = −
M−1∑
i=0

p(mi) log(p(mi)) +

∫
Yk∈Y

p(Yk)
M−1∑
i=0

p(mi|Yk) log(p(mi|Yk)) dYk, (19)

where the data Yk = (Y1(x1), . . . , Yk(xk))
> are observed at the design Xk = (x1, . . . , xk),

p(mi) denotes the prior and p(mi|Yk) the posterior model probability of model mi and p(Yk)
is the marginal distribution of Yk with respect to the models. Hence, this criterion is the
(expected) difference of the model entropy and the conditional model entropy (conditional on
the observations). The posterior model probability p(mi|Yk) is defined by

p(mi|Yk) ∝ p(Yk|mi)p(mi),

where p(Yk|mi) is the likelihood of model mi (marginalised over the parameters), and p(Yk) is
given by

p(Yk) =
M−1∑
i=0

p(Yk|mi)p(mi).

The first term in (19) does not depend on the design and can therefore be ignored.
A common alternative formulation of criterion (19) is the one adopted by Box and Hill (1967)

and Hill and Hunter (1969), which will henceforth be called Box-Hill-Hunter (BHH) criterion:

ΦΛ(Xk) =
M−1∑
i=0

p(mi)

∫
Yk∈Y

p(Yk|mi) log

(
p(Yk|mi)

p(Yk)

)
dYk. (20)

In our case, if we assume point priors for the kernel parameters, we have

p(Yk|mi) = ϕ(Yk|ηk,i,Kk,i),

where ηk,i = (η1,i(x1), . . . , ηk,i(xk))
> is the mean vector of model i at design Xk, Kk,i is the

k × k kernel matrix of model i with elements given by {Kk,i}j,l = Ki(xj , xl), and ϕ(·|η,K) is
the normal pdf with mean vector η and variance-covariance matrix K.

For example, for a static design involving n design points, we set k = n and assume that
ηn,i = 0 for each design Xn. The model probabilities p(mi) would just be the prior model
probabilities before having collected any observations.

In a sequential design setting, where n observations Yn have already been observed at
locations Xn and we want to find the optimal design point x where to collect our next ob-
servation, we have k = 1 and set ηk,i to the conditional mean η̂n,i(x) = kn,i(x)>K−1

n,iYn and

Kk,i to the conditional variance ρ2
n,i(x) = Ki(x, x) − kn,i(x)>K−1

n,i kn,i(x), where kn,i(x)> =
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(Ki(x, x1), . . . ,Ki(x, xn)), see Section 3.1. The prior model probabilities would have to be set
to the posterior model probabilities given the already observed data:

p(mi) = p(mi|Yn) ∝ ϕ(Yn|0,Kn,i) p(mi).

It follows that p(Yk) is a mixture of normal distributions. The criterion representations (19)
and (20) cannot be computed directly. However, several bounds have been developed for the
criterion, the most famous being the classic upper bound derived by Box and Hill (1967).

A.1 Upper bound

The upper bound has the following form (see also Hoffmann (2017, Thm. 5.2, p. 168)):

ΦU (Xk) =
1

2

M−1∑
i=0

M−1∑
j=0

p(mi)p(mj)

{∥∥ηk,i − ηk,j
∥∥2

K−1
k,j

+ trace
(
Kk,iK

−1
k,j

)
− n

}
.

For M = 2, the formula simplifies to

ΦU (Xk) =
1

2
p(m0)p(m1)

{∥∥ηk,0 − ηk,1
∥∥2

K−1
k,0

+
∥∥ηk,0 − ηk,1

∥∥2

K−1
k,1

+trace
(
Kk,0K

−1
k,1

)
+ trace

(
Kk,1K

−1
k,0

)
− 2n

}
.

This is equivalent to the symmetric Kullback-Leibler divergence that we use as the criterion
ΦKL (with p(m0) = p(m1) = 1/2 and ηk,0 = ηk,1 = 0) .

A.2 Lower bound

Hershey and Olsen (2007, Sec. 7) derive a lower bound for the Kullback-Leibler divergence
between a mixture of two normals, see also Hoffmann (2017, Thm. 5.4 and Cor. 5.5, pp. 173–
174). This result is then used by Hoffmann (2017) to find a lower bound for the BHH criterion
ΦΛ(Xk) (Hoffmann, 2017, Thm. 5.9, p. 178). This lower bound is given by

ΦΓ(Xk) = −
M−1∑
i=0

p(mi) log


M−1∑
j=0

p(mj) exp

(
−1

2
Γ(Xk)ij

) ,

where
Γ(Xk)ij =

∥∥ηk,i − ηk,j
∥∥2

K−1
k,j

+ trace
(
Kk,iK

−1
k,j

)
− log det

(
Kk,iK

−1
k,j

)
− n.
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For M = 2, as is the relevant case for our setup we get

ΦΓ(Xk) = −p(m0) log

{
p(m0)

+p(m1) exp

(
−1

2

[∥∥ηk,0 − ηk,1
∥∥2

K−1
k,1

+ trace
(
Kk,0K

−1
k,1

)
− log det

(
Kk,0K

−1
k,1

)
− n

])}
−p(m1) log

{
p(m1)

+p(m0) exp

(
−1

2

[∥∥ηk,0 − ηk,1
∥∥2

K−1
k,0

+ trace
(
Kk,1K

−1
k,0

)
− log det

(
Kk,1K

−1
k,0

)
− n

])}
(21)

where ϕi(·) = ϕ(·|ηk,i,Kk,i), which we are also using to compute designs in Section 6.1 (again
with p(m0) = p(m1) = 1/2 and ηk,0 = ηk,1 = 0).
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