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On the protected nodes in exponential recursive trees

Mehri Javanian∗ Rafik Aguech†

August 28, 2023

Abstract

The exponential recursive trees model several kinds of networks. At each step of
growing of these trees, each node independently attracts a new node with probability
p, or fails to do with probability 1 − p. Here, we investigate the number of protected
nodes, total path length of protected nodes, and a mean study of the protected node
profile of such trees.

1 Introduction

A social networking site is an Internet-based platform which people use to build social re-
lationships with friends, family, colleagues, customers, or clients. Social networking can
have a social purpose, a business purpose, or both, through sites like Facebook, Twitter,
LinkedIn, Instagram, TikTok, Snapchat, Pinterest, Reddit, Tumblr, Telegram, WhatsApp
and YouTube. These sites allow people and corporations to connect with one another so
they can develop relationships very quickly and so they can share information, ideas, and
messages. Social networking has become a significant base for marketers seeking to engage
customers. In order to model certain aspects of fast-growing networks, the references [4] and
[8] introduce exponential binary trees and exponential recursive trees, respectively.

A rooted tree grown on n + 1 nodes labeled distinctly with the numbers 1, 2, . . . , n,
n + 1; is a recursive tree of age n, Tn, that is built by attaching, at the nth step, the new
node n+ 1 to one node of a recursive tree of age n− 1, Tn−1, according to some distribution
on the set {1, . . . , n} and independently of the structure of the tree Tn−1. As an example,
Figure 1 shows a sequence of recursive trees growing from a single node labeled with 1, T0,
into a tree of age 8, T8, in 8 steps. See a survey of results of recursive trees in [11].

The recursive trees are slow-growing where one node is added at each step. So, the
recursive tree models cannot be suitable for fast-growing phenomena (e.g., the Corona virus
spreads very quickly from person to person). In [8], a fast-growing analogue of recursive trees
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Figure 1: The evolution of a recursive tree in 8 steps.

has been defined as follows: Initially, T0 is a tree of a single root node. For n ≥ 1, at the
nth step, a tree of age n, Tn, is constructed when every node of the tree of age n− 1, Tn−1,
independently attracts a child with probability p ∈ (0, 1), or not to attract with probability
q := 1 − p. After the nth step, the obtained tree is called exponential recursive tree (ERT)
of index p. The trees in Figure 2 (a) illustrate a sequence of ERT of index p growing from
T0 into T7, a tree of probability p19q14 in the 7th step.

By a protected node in a rooted tree, we mean a node that is not a leaf and not all of its
children are leaves, for instance see Figure 2 (b). For many types of random trees, protected
nodes have been investigated, see e.g. [3, 5, 6, 7]. In this paper, we study the number of
protected nodes in exponential recursive trees (ERT). Here, we present the asymptotic ex-
pectation, variance and characterizing of the limiting distribution of the number of protected
nodes. Via contraction method, we also show the convergence in distribution for the sum
of depths of all protected nodes, i.e., the total path length of all protected nodes in ERT
of index p. Finally, we derive the expectation of protected node profile, i.e., the number of
protected nodes at the same level.

2 Setting and Preliminary Lemmas

Let Tn be an exponential recursive tree of age n and index p. Define

• Xn := the number of protected nodes in Tn,

• Rn := the event that the root of Tn is protected,

• |Tn| := the number of nodes in Tn (the size of Tn).
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Figure 2: (a) The evolution of an exponential recursive tree (ERT) of index p in 7 steps.
The probability of an ERT appears above it. (b) In T7, protected nodes are shown in black.

At the first step, if the root of T0 fails to attract a child, then T1 will be a root and after n−1
steps the root of T1 will produce an exponential recursive tree T ′n−1. Alternatively, if the root
of T0 attracts a child, then, in n− 1 steps, the child and the root will independently develop
two exponential recursive trees T ′′n−1 and T ′′′n−1, respectively. Let us indicate the number of
protected nodes in T ′n−1, T

′′
n−1 and T ′′′n−1 by X ′n−1, X

′′
n−1 and X ′′′n−1, respectively. Therefore,

X ′n−1, X
′′
n−1 and X ′′′n−1 are independent copies of Xn−1. We denote the events that the trees

T ′n−1, T
′′
n−1 and T ′′′n−1 have protected roots by R′n−1, R′′n−1 and R′′′n−1, respectively.

If 11A denotes the indicator function of an event A, then we define

I := 11{|T1|=2}, Jn := 11{|T ′′′n |=1}∩{|T ′′n |≥2}, Gn := 11{|T ′′n |=1}∩R′′′n . (1)

The proof of our results requires to prove the following Lemmas.

Lemma 1. By the above setting, for n ≥ 2, the probability of Rn is

P(Rn) =
n−1∑
k=1

pqk(1− qk)
n−1∏
i=k+1

(1− pqi). (2)

Proof. We can observe that

Rn =
[
{|T ′′n−1| ≥ 2} ∩ R′′′n−1 ∩ {|T1| = 2}

]
∪
[
R′n−1 ∩ {|T1| = 1}

]
∪
[
{|T ′′n−1| ≥ 2} ∩ {|T ′′′n−1| = 1} ∩ {|T1| = 2}

]
3



Figure 3: Graphs of P(Rn) versus p, for n = 2, . . . , 20 and n = 200. For each p, P(Rn) is
increasing in n. E.g., the bottom and top curves are the graphs of P(R2) and P(R20).

is credible for n ≥ 2. Since P(|T ′′n | ≥ 2) = 1 − P(|T ′′n | = 1) = 1 − qn and the trees T ′′n−1 and
T ′′′n−1 are developed independently, then

P(Rn) = p(1− qn−1)P(R′′′n−1) + qP(R′n−1) + pqn−1(1− qn−1)
= (1− pqn−1)P(Rn−1) + pqn−1(1− qn−1).

Iterating the recurrence we obtain the claim. See Figure 3 as a plot for P(Rn).

Lemma 2. By the above setting, we have the distributional equation

Xn
d
= X ′n−1(1− I) + (X ′′n−1 +X ′′′n−1 + Jn−1 −Gn−1)I, (3)

where the symbol
d
= denotes the equality in distribution.

Proof. In order to construct an exponential recursive tree Tn, a tree distributed like Tn,
we can attach the root of the tree T ′′′n−1 to the root of the tree T ′′n−1 by adding an edge.
Consequently, if |T ′′n−1| ≥ 2 and T ′′′n−1 is a leaf, then the number of protected nodes in Tn is
increased by 1; as the attaching causes the root of Tn to be protected. From the other point
of view, if |T ′′n−1| = 1 and the root of T ′′′n−1 is protected, then this protection is lost after the
attaching. Hence we obtain the assertion by (1).
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Lemma 3. For m ≥ 1, we have the following recurrences for E[Xm
n ] and E[Xm

n 11Rn ]:

E[Xm
n ] = (p+ 1)E[Xm

n−1] + p

m−1∑
k=1

(
m

k

)
E[Xk

n−1]E[Xm−k
n−1 ] + pqn−1

m−1∑
k=1

(
m

k

)
E[Xk

n−1]

+ pqn−1
m−1∑
k=1

(
m

k

)
(−1)m−kE[Xk

n−111Rn−1 ] + pqn−1
(
1− qn−1 + (−1)mP(Rn−1)

)
,

E[Xm
n 11Rn ] = (1− pqn−1)E[Xm

n−111Rn−1 ] + p
m∑
k=1

(
m

k

)
E[Xk

n−1]E[Xm−k
n−1 11Rn−1 ]

+ pqn−1
m∑
k=1

(
m

k

)
E[Xk

n−1] + pqn−1(1− qn−1).

Proof. Raise both sides of (3) to the mth power. So we get

Xm
n

d
= (X ′n−1)

m(1− I) +
∑

i,j,k,l≥0
i+j+k+l=m

(
m

i, j, k, l

)
(X ′′n−1)

i(X ′′′n−1)
jJkn−1(−Gn−1)

lI.

Now, separate the second term with (k = 0, l ≥ 1), (k ≥ 1, l = 0) and (k = 0, l = 0). Then

Xm
n

d
= (X ′n−1)

m(1− I) +
∑

i,j≥0, l≥1
i+j+l=m

(
m

i, j, l

)
(X ′′n−1)

i(X ′′′n−1)
j(−Gn−1)

lI

+
∑

i,j≥0, k≥1
i+j+k=m

(
m

i, j, k

)
(X ′′n−1)

i(X ′′′n−1)
j(Jn−1)kI +

∑
i,j≥0
i+j=m

(
m

i, j

)
(X ′′n−1)

i(X ′′′n−1)
jI. (4)

Note that, for i, j, k, l ≥ 1,

(Gn−1)
l = Gn−1 = 11{|T ′′n−1|=1}11R′′′n−1

, (X ′′n−1)
i11{|T ′′n−1|=1} = 0

(Jn−1)k = Jn−1 = 11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}, (X ′′′n−1)
j11{|T ′′′n−1|=1} = 0.

Therefore, the equation (4) can be simplified as

Xm
n

d
= (X ′n−1)

m(1− I) +
m−1∑
j=0

(
m

j

)
(X ′′′n−1)

j(−1)m−j11{|T ′′n−1|=1}11R′′′n−1
I

+
m−1∑
i=0

(
m

i

)
(X ′′n−1)

i11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}I +
m∑
i=0

(
m

i

)
(X ′′n−1)

i(X ′′′n−1)
m−iI. (5)
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Take the expectation of (5) and observe the independence in T ′n−1, T
′′
n−1 and T ′′′n−1, to write

E[Xm
n ] = qE[(X ′n−1)

m] + pE[(X ′′′n−1)
m] + pE[(X ′′n−1)

m] + p

m−1∑
i=1

(
m

i

)
E[(X ′′n−1)

i]E[(X ′′′n−1)
m−i]

+ p
m−1∑
i=1

(
m

i

)
(−1)m−iE[(X ′′′n−1)

i11R′′′n−1
]E[11{|T ′′n−1|=1}] + (−1)mpE[11R′′′n−1

]E[11{|T ′′n−1|=1}]

+ p
m−1∑
i=1

(
m

i

)
E[(X ′′n−1)

i11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}] + pE[11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}].

This yields the first recurrence of the Lemma, by the identical distribution in the subtrees
and

E[(X ′′n−1)
i11{|T ′′n−1|≥2}] = E[(X ′′n−1)

i(1− 11{|T ′′n−1|=1})] = E[(X ′′n−1)
i], i ≥ 1.

By the definitions of the subtrees T ′n−1, T
′′
n−1 and T ′′′n−1, observe that

Xm
n 11Rn

d
= (X ′n−1)

m11R′n−1
(1− I) + (X ′′n−1 + 1)m11{|T ′′′n−1|=1}11{|T ′′n−1|≥2}I

+ (X ′′n−1 +X ′′′n−1)
m11R′′′n−1

11{|T ′′n−1|≥2}I.

Taking the expectation of this equation, it implies the second recurrence of the Lemma.

3 The Expectation and Variance

In this section, we obtain the expectation and variance of Xn, using Lemma 1 and Lemma 3.

Theorem 4. Let Xn be the number of protected nodes in an exponential recursive tree of age
n and index p. For q := 1− p,

E[Xn] =
p

q

( n∑
j=2

(p+ 1)−jqj
(

1− qj−1 −
j−2∑
k=1

pqk(1− qk)
j−2∏
i=k+1

(1− pqi)
))

(p+ 1)n

=: µn,p(p+ 1)n, (µn,p < 1 for n ≥ 1 and p ∈ (0, 1)). (6)

See Figure 4 for some graphs of µn,p. For n ≥ 1, µn,p < µn+1,p. So µp := limn→∞ µn,p exists.

Proof. In Lemma 3, set m = 1 to obtain the recurrence

E[Xn] = (p+ 1)E[Xn−1] + pqn−1(1− qn−1)− pqn−1P(Rn−1),
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Figure 4: Graphs of µn,p versus p ∈ (0, 1), for n = 2, . . . , 20 and n = 200.

with initial condition E[X1] = 0. Iterating this formula, we find

E[Xn] =
n−2∑
j=0

(p+ 1)jpqn−j−1
(
1− qn−j−1 − P(Rn−j−1)

)
=
p

q

( n∑
j=2

(p+ 1)−jqj
(
1− qj−1 − P(Rj−1)

))
(p+ 1)n (7)

Substituting P(Rj−1) from (2) into (7), we get the exact solution in the Theorem.

In the second moment recurrence, we need E[Xn11Rn ] that is given in the following lemma.

Lemma 5. Let Yn := Xn11Rn, then

E[Yn] =

(
p
n−1∑
k=1

µn−k,p(p+ 1)−k
(
qn−k + P(Rn−k)

) n−1∏
i=n−k+1

(1− pqi)
)

(p+ 1)n + P(Rn)

=: αn,p(p+ 1)n + P(Rn) = αp(p+ 1)n +O(1), (8)

where αp := limn→∞ αn,p (see Figure 5) and the functions P(Rn) and µn,p are obtained in
Lemma 1 and Theorem 4, respectively.

Proof. In Lemma 3, set m = 1 to find the recurrence

E[Yn] = (1− pqn−1)E[Yn−1] + p
(
qn−1 + P(Rn−1)

)
E[Xn−1] + pqn−1(1− qn−1)

7



Figure 5: Graphs of αn,p versus p ∈ (0, 1), for n = 2, . . . , 20.

with initial condition E[Y1] = 0. Iterating this formula, we obtain

E[Yn] =
n−1∑
k=1

(
p
(
qk + P(Rk)

)
E[Xk] + pqk(1− qk)

) n−1∏
i=k+1

(1− pqi)

= p
n−1∑
k=1

µk,p(p+ 1)k
(
qk + P(Rk)

) n−1∏
i=k+1

(1− pqi) + P(Rn).

This implies the claim.

Theorem 6. By the above definitions for P(Rn), µn,p and αn,p, we have

E[X2
n] =

n−1∑
j=1

(
2pµ2

j,p(p+ 1)−n+j−1 + 2pqj(µj,p − αj,p)(p+ 1)−n−1

+ pqj
(
1− qj − P(Rj)

)
(p+ 1)−n−j−1

)
(p+ 1)2n =: βn,p(p+ 1)2n.

See Figure 6 for some graphs of βn,p with βp := limn→∞ βn,p.

Proof. In Lemma 3, set m = 2 to find the recurrence

E[X2
n] = (p+ 1)E[X2

n−1] + 2pE2[Xn−1] + 2pqn−1E[Xn−1]

− 2pqn−1E[Xn−111Rn−1 ] + pqn−1
(
1− qn−1 + P(Rn−1)

)
,

8



Figure 6: Graphs of βn,p and σn,p versus p ∈ (0, 1), for n = 2, . . . , 10.

with boundary condition E[X2
1 ] = 0. This standard linear recurrence has the solution

E[X2
n] =

n−2∑
j=0

(p+ 1)j
(

2pE2[Xn−j−1] + 2pqn−j−1E[Xn−j−1]

− 2pqn−j−1E[Yn−j−1] + pqn−j−1
(
1− qn−j−1 + P(Rn−j−1)

))
. (9)

After substituting (2), (6), (8) in (9), we have

E[X2
n] =

n−2∑
j=0

(
2pµ2

n−j−1,p(p+ 1)−j−2 + 2pqn−j−1(µn−j−1,p − αn−j−1,p)(p+ 1)−n−1

+ pqn−j−1(p+ 1)−2n+j
(
1− qn−j−1 − P(Rn−j−1)

))
(p+ 1)2n.

This yields the claimed result by changing n− j − 1→ j in the range of the above sum.

Corollary 7. By the above definitions for µn,p and βn,p, we have

Var[Xn] = (βn,p − µ2
n,p)(p+ 1)2n =: σn,p(p+ 1)2n.

See Figure 6 for some graphs of σn,p with limn→∞ σn,p =: σ2
p = βp − µ2

p.

Proof. Using Var[Xn] = E[X2
n]− E2[Xn] and Theorem 6, the proof is straightforward.

4 Convergence in Distribution

Here, we characterize the limiting distribution of Xn

(p+1)n
, i.e., a scaled version of Xn, the

number of protected nodes in an ERT of age n and index p, by its moments.
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Theorem 8. Let Xn be the number of protected nodes in an exponential recursive tree of age
n and index p. We have the convergence in distribution

Xn

(p+ 1)n
D−→ X∗,

where the limiting random variable X∗ has moments bm := E[Xm
∗ ] defined inductively by

bm =
p

(p+ 1)m − (p+ 1)

m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2,

with b1 = E[X∗] = µp = limn→∞ µn,p at the basis of the induction.

Proof. Scale the two recurrences in Lemma 3 by (p+ 1)nm to get

E
[( Xn

(p+ 1)n

)m]
=

1

(p+ 1)m−1
E
[( Xn−1

(p+ 1)n−1

)m]
+

p

(p+ 1)m

m−1∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k]
+ pqn−1

m−1∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
+ pqn−1

m−1∑
k=1

(
m

k

)
(−1)m−k

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1

(
1− qn−1 + (−1)mP(Rn−1)

)
, (10)

E
[( Xn

(p+ 1)n

)m
11Rn

]
=

1− pqn−1

(p+ 1)m
E
[( Xn−1

(p+ 1)n−1

)m
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1(1− qn−1)

+
p

(p+ 1)m

m∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k
11Rn−1

]
+ pqn−1

m∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
. (11)

According to the two recurrences (10) and (11) with finite limits

lim
n→∞

E
[ Xn

(p+ 1)n

]
= µp, and lim

n→∞
E
[ Xn

(p+ 1)n
11Rn

]
= αp,

we see that bm := limn→∞ E
[(

Xn

(p+1)n

)m]
exists, by induction on m, and we get

(p+ 1)mbm = (p+ 1)bm + p
m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2.

10



Using this recurrence and b1 = µp < 1, we can conclude that bm
m!

< 1 by induction on m
(this induction is shown in page 7 of [8] and in page 12 of [1], as well). Subsequently, for
|z| < 1, the series

∑∞
m=0

bm
m!
zm converges. Therefore, by Theorem 30.1 in [2], Xn

(p+1)n
converges

in distribution to a unique limit X∗.

5 The Total path length

Let In be the total path length of protected nodes in an exponential recursive tree Tn (the
tree of size n, at time n − 1), which is the sum of the depths of all protected nodes in Tn.
There are two scenarios at the first step: Either the root recruits a node (let us call it v), or

it does not. In the first scenario, by time n− 1, node v has acquired a subtree (call it T
(1)
n−1)

of total path length I
(1)
n−1 (measured from v), with I

(1)
n−1 distributed like In−1. Measured from

the root of Tn, each protected node in T
(1)
n−1 is at depth 1 plus its depth in T

(1)
n−1; there is a

total number of protected nodes in T
(1)
n−1 distributed like Xn−1. Therefore, the contribution

of T
(1)
n−1 to the total path length of protected nodes in Tn is distributed like I

(1)
n−1 +Xn−1.

In the meantime, the root is actively recruiting. Nodes not in Tn−1 (including) the root

of Tn form a tree of total path length I
(2)
n−1, with I

(2)
n−1 distributed like In−1. In this scenario,

Tn has a total path length of protected nodes distributed like I
(1)
n−1 + I

(2)
n−1 +Xn−1.

In the second scenario (failure to recruit in the first step), by time n− 1, the tree Tn has

a total path length of protected nodes Ĩ
(1)
n−1 distributed like In−1.

Lemma 9.
In

d
= I

(
I
(1)
n−1 + I

(2)
n−1 +Xn−1

)
+ (1− I) Ĩ(1)n−1 (12)

where I
(1)
n , (I

(2)
n , Xn), Ĩ

(1)
n and I are independent, I

(i)
n

d
= In for i = 1, 2, I is a Bernoulli

random variable with success probability p, and Xn is the number of protected nodes of an
exponential recursive tree at age n.

Remark 1. The internal path length can be obtained by another method, if we denote for all
k by

Nk = {at step k the root recruits a new child} ,

then, In satisfies, almost surely,

In =
n∑
k=1

INk
In−k +Xn − IRn , (13)

where In−k and Nk are independent.

11



5.1 Mean of In

Define, for all integer n, xn := E[Xn] and in := E[In]. From the Lemma 9, we deduce that

in = p (2 in−1 + xn−1) + q in−1 = (1 + p) in−1 + p xn−1. (14)

Proposition 10. The mean in of In is given by

E[In] = p (1 + p)n
n∑
k=1

µk, p,

and

lim
n

E
[

In
n (1 + p)n

]
= p µp,

where µk, p and µp are given respectively in Theorem 4.

Proof. By iteration, we conclude that the solution of the recurrence (14) is

in = p
n−1∑
k=1

(1 + p)n−kxk.

Since, for all k, xk = µk, p(1 + p)k and limn µn, p := µp, the claim of the lemma follows.

5.2 Second moment of In

To obtain the variance of In we need to compute, at first, bn := E[InXn].

Lemma 11. Using the notations (1), we have

bn = (1 + p) bn−1 + 2 p xn−1 in−1 + p qn−1
(
in−1 − E

[
In−1 IRn−1

])
.

Proof. The sequence Xn satisfies

Xn = I
(
X

(1)
n−1 +X

(2)
n−1 + Jn−1 −Gn−1

)
+ (1− I) X̃(1)

n−1, (15)

where

Jn = I{|T (1)
n |=1} I{|T (2)

n |≥2}
, Gn = I{|T (2)

n |=1} IR(1)
n
.

Multiplying (12) by (15) and recall that I := 11{|T1|=2}, we deduce,

Xn In = I
(
X

(1)
n−1 I

(1)
n−1 +X

(2)
n−1 I

(1)
n−1 + Jn−1 I(1)n−1 −Gn−1 I

(1)
n−1

)
+ I
(
X

(1)
n−1 I

(2)
n−1 +X

(2)
n−1 I

(2)
n−1 + Jn−1 I(2)n−1 −Gn−1 I

(2)
n−1

)
+ I
(
X

(1)
n−1X

(2)
n−1 +X

(2)
n−1X

(2)
n−1 + Jn−1X(2)

n−1 −Gn−1X
(2)
n−1

)
+ (1− I) X̃(1)

n−1 Ĩ
(1)
n−1.

12



On one hand, observe that, almost surely,

Jn−1X(2)
n−1 = I

(1)
n−1 Jn−1 = Gn−1 I

(2)
n−1 =

(
I
(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0,

Gn−1X
(2)
n−1 = Gn−1 I

(2)
n−1 =

(
I
(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0.

We deduce, almost surely, that

Jn−1 I(1)n−1 = Gn−1 I
(2)
n−1 = Jn−1X(2)

n−1 = Gn−1X
(2)
n−1 = 0.

On the other hand, from

I
(2)
n−1 Jn−1 =

(
I
(2)
n−1 I{|T (2)

n−1|≥2}

)
I{|T (1)

n−1|=1} = I
(2)
n−1 I{|T (1)

n−1|=1},

I
(1)
n−1Gn−1 =

(
I
(1)
n−1 IR(1)

n−1

)
I{|T (2)

n−1|=1},

we obtain

E
[
I
(2)
n−1 Jn−1

]
= E

[
I
(2)
n−1
]
E
[
I{|T (1)

n−1|=1}

]
= in−1 q

n−1,

E
[
I
(1)
n−1Gn−1

]
= E

[
I
(1)
n−1 IR(1)

n−1

]
E
[
I{|T (2)

n−1|=1}

]
= qn−1 E

[
I
(1)
n−1 IR(1)

n−1

]
.

Then

bn = p
(
bn−1 + xn−1in−1 + E

[
I
(1)
n−1 Jn−1

]
− E

[
I
(1)
n−1Gn−1

])
+ p
(
xn−1 in−1 + bn−1 + E

[
I
(2)
n−1 Jn−1

]
− E

[
I
(2)
n−1Gn−1

]
+ x2n−1 + E

[
(X

(2)
n−1)

2
]
− E

[
Gn−1X

(2)
n−1
])

+ q bn−1

= (1 + p) bn−1 + 2 p xn−1 in−1 + pE
[
I
(1)
n−1 Jn−1

]
+ p
(
E
[
I
(2)
n−1 Jn−1

]
− E

[
Gn−1X

(2)
n−1
]
− E

[
I
(2)
n−1Gn−1

]
− E

[
I
(1)
n−1Gn−1

])
.

So the assertion of the lemma follows.

To obtain a closed form of bn, we need to compute E
[
In IRn

]
.

Lemma 12.

E
[
In IRn

]
= q E

[
In−1 IRn−1

]
+ p qn−1 (in−1 + xn−1) + pE[In−1]P(Rn−1)

+ p
(
1− qn−1

)
E
[
In−1 IRn−1

]
+ p xn−1 P(Rn−1).

=
(
1− p qn−1

)
E
[
In−1 IRn−1

]
+
(
pP(Rn−1) + p qn−1

)
(in−1 + xn−1)

=
n−1∑
k=0

n∏
j=k+1

(
1− p qj−1

) (
pP(Rk) + p qk

)
(ik + xk) .

13



Proof. Since

Rn =
[
{|T1| = 1} ∩ R̃(1)

n−1

]
∪
[
{|T1| = 2} ∩ R(1)

n−1 ∩
{
|T (2)
n−1| ≥ 2

}]
∪
[
{|T1| = 2} ∩

{
|T (1)
n−1| = 1

}
∩
{
|T (2)
n−1| ≥ 2

}]
.

we have

IRn = (1− I) IR̃(1)
n−1

+ I{|T (1)
n−1|=1} I{|T (2)

n−1|≥2}
I + IR(1)

n−1
I{|T (2)

n−1|≥2}
I,

Multiplying by In, we obtain

In IRn = (1− I) Ĩ(1)n−1 IR̃(1)
n−1

+ I{|T (1)
n−1|=1} I{|T (2)

n−1|≥2}

(
I
(2)
n−1 +X

(2)
n−1
)
I

+
(
I
(2)
n−1 + I

(1)
n−1 +X

(2)
n−1
)
IR(1)

n−1
I{|T (2)

n−1|≥2}
I.

The result of the lemma is obtained by taking the expectation of this equation.

Using Lemmas 11 and 12, we deduce

Proposition 13. The second moment of In satisfies the following recursion

E[I2n] = (p+ 1) E[I2n−1] + 2p
(
i2n−1 + in−1 xn−1 + bn−1

)
+ pE[X2

n−1],

with as general solution

E[I2n] = p
n−1∑
k=1

(p+ 1)n−k
(
2(i2k + ik xk + bk) + E[X2

k ]
)
.

5.3 Convergence in Distribution of In

The aim of this section is to use the contraction method in [10] or the multivariate contraction
method in [9] to state the limiting distribution of În := In/n (1 + p)n.

To apply the contraction method, we set up some notation as follows: For a random
variable X, we write X ∼ λ if the distribution of X is λ, i.e. the law L(X) of X is λ. The
symbol ‖X‖2 := (E[|X|2])1/2 denotes the usual L2-norm of X. The Wasserstein-metric `2 is
defined on the space of probability distributions with existing second moments by

`2(X, Y ) := `2(L(X), L(Y )) := `2(λ, ν) := inf{‖X − Y ‖2 : X ∼ λ, Y ∼ ν}.

ByM2 the space of all probability distributions λ with mean p µp (as in Proposition 10) and
finite second moment is denoted. The metric space (M2, `2) is complete and convergence in
`2 is equivalent to convergence in distribution plus convergence of the second moments.

14



By equation (12) we have

In
n(1 + p)n

d
=

I
1 + p

· n− 1

n
·
( I

(1)
n−1

(n− 1)(1 + p)n−1
+

I
(2)
n−1

(n− 1)(1 + p)n−1

)
+

1− I
1 + p

· n− 1

n
·

Ĩ
(1)
n−1

(n− 1)(1 + p)n−1
+ I · Xn−1

n(1 + p)n
. (16)

Theorem 14. Let In and Xn be the total path length and the number of protected nodes
of an exponential recursive tree at age n, respectively. The normalized total path length
În := In/n (1 + p)n satisfies the distributional recursion

În
d
=

I
1 + p

· n− 1

n
·
(
Î
(1)
n−1 + Î

(2)
n−1
)

+
1− I
1 + p

· n− 1

n
· Î(1)n−1 + I · Xn−1

n(1 + p)n
, (17)

where Î
(1)
n , (Î

(2)
n , Xn), Î

(1)
n and I are independent, Î

(i)
n

d
= În for i = 1, 2, and I is a Bernoulli

random variable with success probability p, then În
D−→ Î, as n → ∞, where the random

variable Î is the unique distributional fixed-point of

Î
d
=

I
1 + p

(
Î(1) + Î(2)

)
+

1− I
1 + p

Î(1), (18)

with Î(i), i = 1, 2, are independent copies of Î and independent of I.

Proof. The equation (17) is an immediate consequence of the equation (16), where we define

Î
(3)
n := Ĩ

(1)
n /n (1 + p)n. Using Theorem 8 and Slutsky’s theorem, we have Xn−1

n(1+p)n−1

D−→ 0,

and then convergence in probability Xn−1

n(1+p)n−1

P−→ 0. That is,

În
d
=

I
1 + p

· n− 1

n
·
(
Î
(1)
n−1 + Î

(2)
n−1
)

+
1− I
1 + p

· n− 1

n
· Î(1)n−1 + op(1), (19)

where op(1) denotes a quantity tending to zero in probability. For purposes of convergence
we can, and hence will, ignore the op(1) term.

Consider the well-defined transformation T :M2 → M2,

T (λ) := L
( I

1 + p

(
Î
(1)
λ + Î

(2)
λ

)
+

1− I
1 + p

Î
(1)
λ

)
, (20)

where Î
(i)
λ := Î(i), i = 1, 2, and I are independent and Î(i) have λ as distribution.

At a first step, we have to prove that the transformation T has a unique fixed point with
respect to the `2-metric. Let λ, ν ∈M2 be given. By (20), we have

T (λ) = L
( I

1 + p

(
Î
(1)
λ + Î

(2)
λ

)
+

1− I
1 + p

Î
(1)
λ

)
,

T (ν) = L
( I

1 + p

(
Î(1)ν + Î(2)ν

)
+

1− I
1 + p

Î(1)ν

)
,
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`22(T (λ), T (ν)) ≤ 2
E[I2]

(1 + p)2
E
[∣∣Îλ − Îν∣∣]2 +

E [(1− I)2]
(1 + p)2

E
[∣∣Îλ − Îν∣∣]2

=
1

1 + p
E
[∣∣Îλ − Îν∣∣]2.

Therefore, we have `22(T (λ), T (ν)) ≤ 1
1+p

`22(λ, ν). Since 1
1+p

< 1, we deduce that T is
a contraction with respect to the `2-metric. Thus, Banach’s fixed point theorem provides
existence and uniqueness of solutions of the fixed point equation T (λ) = λ. By (19), if În
converges in distribution to some random variable Î, then Î satisfies (18). Consequently, the
distribution of Î will be λ0, the unique fixed point of T , i.e. L(Î) = T (λ0) = λ0. Therefore,

we have to prove limn→∞ `2(În, Î) = 0 to conclude În
D−→ Î.

Since Î
(i)
n

d
= În, Î(i)

d
= Î, for i = 1, 2, 3, we deduce

lim
n→∞

`22(În, Î) ≤ p

(1 + p)2
lim
n→∞

(∥∥∥n− 1

n
Î
(1)
n−1 − Î(1)

∥∥∥2
2

+
∥∥∥n− 1

n
Î
(2)
n−1 − Î(2)

∥∥∥2
2

)
+

1− p
(1 + p)2

lim
n→∞

∥∥∥n− 1

n
Î
(3)
n−1 − Î(3)

∥∥∥2
2

≤ 1

1 + p
lim
n→∞

∥∥În − Î∥∥2.
Therefore, we have

lim
n→∞

`22(În, Î) ≤ 1

1 + p
lim
n→∞

`22(În, Î).

This is true only if limn→∞ `2(În, Î) = 0.
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