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On the protected nodes in exponential recursive trees

Mehri Javanian∗ Rafik Aguech†

August 3, 2022

Abstract

The exponential recursive trees model several kinds of networks. At each step of
growing of these trees, each node attracts a new node with probability p, or fails to do
with probability 1− p. Here, we investigate the number of protected nodes, total path
length of protected nodes, and a mean study of the protected node profile of such trees.

1 Introduction

A social networking site is an Internet-based platform which people use to build social re-
lationships with friends, family, colleagues, customers, or clients. Social networking can
have a social purpose, a business purpose, or both, through sites like Facebook, Twitter,
LinkedIn, Instagram, TikTok, Snapchat, Pinterest, Reddit, Tumblr, Telegram, WhatsApp
and YouTube. These sites allow people and corporations to connect with one another so
they can develop relationships very quickly and so they can share information, ideas, and
messages. Social networking has become a significant base for marketers seeking to engage
customers. In order to model certain aspects of fast-growing networks, the references [4] and
[10] introduce exponential binary trees and exponential recursive trees, respectively.

A rooted tree grown on n + 1 nodes labeled distinctly with the numbers 1, 2, . . . , n,
n + 1; is a recursive tree of age n, Tn, that is built by attaching, at the nth step, the new
node n+ 1 to one node of a recursive tree of age n− 1, Tn−1, according to some distribution
on the set {1, . . . , n} and independently of the structure of the tree Tn−1. As an example,
Figure 1 shows a sequence of recursive trees growing from a single node labeled with 1, T0,
into a tree of age 8, T8, in 8 steps. See a survey of results of recursive trees in [13].

The recursive trees are slow-growing where one node is added at each step. So, the
recursive tree models cannot be suitable for fast-growing phenomena (e.g., the Corona virus
spreads very quickly from person to person). In [10], a fast-growing analogue of recursive
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Figure 1: The evolution of a recursive tree in 8 steps.

trees has been defined as follows: Initially, T0 is a tree of a single root node. For n ≥ 1, at the
nth step, a tree of age n, Tn, is constructed when every node of the tree of age n− 1, Tn−1,
independently attracts a child with probability p ∈ (0, 1), or not to attract with probability
q := 1 − p. After the nth step, the obtained tree is called exponential recursive tree (ERT)
of index p. The trees in Figure 2 (a) illustrate a sequence of ERT of index p growing from
T0 into T7, a tree of probability p19q14 in the 7th step.

By a protected node in a rooted tree, we mean a node that is not a leaf and not all of its
children are leaves, for instance see Figure 2 (b). For many types of random trees, protected
nodes have been investigated, see e.g. [3, 6, 8, 9]. In this paper, we study the number of
protected nodes in exponential recursive trees (ERT). Here, we present the asymptotic ex-
pectation, variance and characterizing of the limiting distribution of the number of protected
nodes. Via contraction method, we also show the convergence in distribution for the sum
of depths of all protected nodes, i.e., the total path length of all protected nodes in ERT
of index p. Finally, we derive the expectation of protected node profile, i.e., the number of
protected nodes at the same level.

2 Setting and Preliminary Lemmas

Let Tn be an exponential recursive tree of age n and index p. Define

• Xn := the number of protected nodes in Tn,

• Rn := the event that the root of Tn is protected,

• |Tn| := the number of nodes in Tn (the size of Tn).
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Figure 2: (a) The evolution of an exponential recursive tree (ERT) of index p in 7 steps.
The probability of an ERT appears above it. (b) In T7, protected nodes are shown in black.

At the first step, if the root of T0 fails to attract a child, then T1 will be a root and after n−1
steps the root of T1 will produce an exponential recursive tree T ′n−1. Alternatively, if the root
of T0 attracts a child, then, in n− 1 steps, the child and the root will independently develop
two exponential recursive trees T ′′n−1 and T ′′′n−1, respectively. Let us indicate the number of
protected nodes in T ′n−1, T ′′n−1 and T ′′′n−1 by X ′n−1, X ′′n−1 and X ′′′n−1, respectively. Therefore,
X ′n−1, X ′′n−1 and X ′′′n−1 are independent copies of Xn−1. We denote the events that the trees
T ′n−1, T ′′n−1 and T ′′′n−1 have protected roots by R′n−1, R′′n−1 and R′′′n−1, respectively.

If 11A denotes the indicator function of an event A, then we define

I := 11{|T1|=2}, Jn := 11{|T ′′′n |=1}∩{|T ′′n |≥2}, Gn := 11{|T ′′n |=1}∩R′′′n . (1)

The proof of our results requires to prove the following Lemmas.

Lemma 1. By the above setting, for n ≥ 2, the probability of Rn is

P(Rn) =
n−1∑
k=1

pqk(1− qk)
n−1∏
i=k+1

(1− pqi). (2)

Proof. We can observe that

Rn =
[
{|T ′′n−1| ≥ 2} ∩ R′′′n−1 ∩ {|T1| = 2}

]
∪
[
R′n−1 ∩ {|T1| = 1}

]
∪
[
{|T ′′n−1| ≥ 2} ∩ {|T ′′′n−1| = 1} ∩ {|T1| = 2}

]
3



Figure 3: Graphs of P(Rn) versus p, for n = 2, . . . , 20 and n = 200. For each p, P(Rn) is
increasing in n. E.g., the bottom and top curves are the graphs of P(R2) and P(R20).

is credible for n ≥ 2. Since P(|T ′′n | ≥ 2) = 1 − P(|T ′′n | = 1) = 1 − qn and the trees T ′′n−1 and
T ′′′n−1 are developed independently, then

P(Rn) = p(1− qn−1)P(R′′′n−1) + qP(R′n−1) + pqn−1(1− qn−1)

= (1− pqn−1)P(Rn−1) + pqn−1(1− qn−1).

Iterating the recurrence we obtain the claim. See Figure 3 as a plot for P(Rn).

Lemma 2. By the above setting, we have the distributional equation

Xn
d
= X ′n−1(1− I) + (X ′′n−1 +X ′′′n−1 + Jn−1 −Gn−1)I, (3)

where the symbol
d
= denotes the equality in distribution.

Proof. In order to construct an exponential recursive tree Tn, a tree distributed like Tn,
we can attach the root of the tree T ′′′n−1 to the root of the tree T ′′n−1 by adding an edge.
Consequently, if |T ′′n−1| ≥ 2 and T ′′′n−1 is a leaf, then the number of protected nodes in Tn is
increased by 1; as the attaching causes the root of Tn to be protected. From the other point
of view, if |T ′′n−1| = 1 and the root of T ′′′n−1 is protected, then this protection is lost after the
attaching. Hence we obtain the assertion by (1).
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Lemma 3. For m ≥ 1, we have the following recurrences for E[Xm
n ] and E[Xm

n 11Rn ]:

E[Xm
n ] = (p+ 1)E[Xm

n−1] + p

m−1∑
k=1

(
m

k

)
E[Xk

n−1]E[Xm−k
n−1 ] + pqn−1

m−1∑
k=1

(
m

k

)
E[Xk

n−1]

+ pqn−1

m−1∑
k=1

(
m

k

)
(−1)m−kE[Xk

n−111Rn−1 ] + pqn−1
(
1− qn−1 + (−1)mP(Rn−1)

)
,

E[Xm
n 11Rn ] = (1− pqn−1)E[Xm

n−111Rn−1 ] + p
m∑
k=1

(
m

k

)
E[Xk

n−1]E[Xm−k
n−1 11Rn−1 ]

+ pqn−1

m∑
k=1

(
m

k

)
E[Xk

n−1] + pqn−1(1− qn−1).

Proof. Raise both sides of (3) to the mth power. So we get

Xm
n

d
= (X ′n−1)m(1− I) +

∑
i,j,k,l≥0

i+j+k+l=m

(
m

i, j, k, l

)
(X ′′n−1)i(X ′′′n−1)jJkn−1(−Gn−1)lI.

Now, separate the second term with (k = 0, l ≥ 1), (k ≥ 1, l = 0) and (k = 0, l = 0). Then

Xm
n

d
= (X ′n−1)m(1− I) +

∑
i,j≥0, l≥1
i+j+l=m

(
m

i, j, l

)
(X ′′n−1)i(X ′′′n−1)j(−Gn−1)lI

+
∑

i,j≥0, k≥1
i+j+k=m

(
m

i, j, k

)
(X ′′n−1)i(X ′′′n−1)j(Jn−1)kI +

∑
i,j≥0
i+j=m

(
m

i, j

)
(X ′′n−1)i(X ′′′n−1)jI. (4)

Note that, for i, j, k, l ≥ 1,

(Gn−1)l = Gn−1 = 11{|T ′′n−1|=1}11R′′′n−1
, (X ′′n−1)i11{|T ′′n−1|=1} = 0

(Jn−1)k = Jn−1 = 11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}, (X ′′′n−1)j11{|T ′′′n−1|=1} = 0.

Therefore, the equation (4) can be simplified as

Xm
n

d
= (X ′n−1)m(1− I) +

m−1∑
j=0

(
m

j

)
(X ′′′n−1)j(−1)m−j11{|T ′′n−1|=1}11R′′′n−1

I

+
m−1∑
i=0

(
m

i

)
(X ′′n−1)i11{|T ′′n−1|≥2}11{|T ′′′n−1|=1}I +

m∑
i=0

(
m

i

)
(X ′′n−1)i(X ′′′n−1)m−iI. (5)
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Take the expectation of (5) and observe the independence in T ′n−1, T ′′n−1 and T ′′′n−1, to write

E[Xm
n ] = qE[(X ′n−1)m] + pE[(X ′′′n−1)m] + pE[(X ′′n−1)m] + p

m−1∑
i=1

(
m

i

)
E[(X ′′n−1)i]E[(X ′′′n−1)m−i]

+ p
m−1∑
i=1

(
m

i

)
(−1)m−iE[(X ′′′n−1)i11R′′′n−1

]E[11{|T ′′n−1|=1}] + (−1)mpE[11R′′′n−1
]E[11{|T ′′n−1|=1}]

+ p
m−1∑
i=1

(
m

i

)
E[(X ′′n−1)i11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}] + pE[11{|T ′′n−1|≥2}]E[11{|T ′′′n−1|=1}].

This yields the first recurrence of the Lemma, by the same distribution in the subtrees and

E[(X ′′n−1)i11{|T ′′n−1|≥2}] = E[(X ′′n−1)i(1− 11{|T ′′n−1|=1})] = E[(X ′′n−1)i], i ≥ 1.

By the definitions of the subtrees T ′n−1, T ′′n−1 and T ′′′n−1, observe that

Xm
n 11Rn

d
= (X ′n−1)m11R′n−1

(1− I) + (X ′′n−1 + 1)m11{|T ′′′n−1|=1}11{|T ′′n−1|≥2}I
+ (X ′′n−1 +X ′′′n−1)m11R′′′n−1

11{|T ′′n−1|≥2}I.
Taking the expectation of this equation, it implies the second recurrence of the Lemma.

3 The Expectation and Variance

In this section, we obtain the expectation and variance of Xn, using Lemma 1 and Lemma 3.

Theorem 4. Let Xn be the number of protected nodes in an exponential recursive tree of age
n and index p. For q := 1− p,

E[Xn] =
p

q

( n∑
j=2

(p+ 1)−jqj
(

1− qj−1 −
j−2∑
k=1

pqk(1− qk)
j−2∏
i=k+1

(1− pqi)
))

(p+ 1)n

=: µn,p(p+ 1)n, (µn,p < 1 for n ≥ 1 and p ∈ (0, 1)). (6)

See Figure 4 for some graphs of µn,p. For n ≥ 1, µn,p < µn+1,p. So µp := limn→∞ µn,p exists.

Proof. In Lemma 3, set m = 1 to obtain the recurrence

E[Xn] = (p+ 1)E[Xn−1] + pqn−1(1− qn−1)− pqn−1P(Rn−1),

with initial condition E[X1] = 0. Iterating this formula, we find

E[Xn] =
n−2∑
j=0

(p+ 1)jpqn−j−1
(
1− qn−j−1 − P(Rn−j−1)

)
=
p

q

( n∑
j=2

(p+ 1)−jqj
(
1− qj−1 − P(Rj−1)

))
(p+ 1)n (7)

Substituting P(Rj−1) from (2) into (7), we get the exact solution in the Theorem.
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Figure 4: Graphs of µn,p versus p ∈ (0, 1), for n = 2, . . . , 20 and n = 200.

In the second moment recurrence, we need E[Xn11Rn ] that is given in the following lemma.

Lemma 5. Let Yn := Xn11Rn, then

E[Yn] =

(
p
n−1∑
k=1

µn−k,p(p+ 1)−k
(
qn−k + P(Rn−k)

) n−1∏
i=n−k+1

(1− pqi)
)

(p+ 1)n + P(Rn)

=: αn,p(p+ 1)n + P(Rn) = αp(p+ 1)n +O(1), (8)

where αp := limn→∞ αn,p (see Figure 5) and the functions P(Rn) and µn,p are obtained in
Lemma 1 and Theorem 4, respectively.

Proof. In Lemma 3, set m = 1 to find the recurrence

E[Yn] = (1− pqn−1)E[Yn−1] + p
(
qn−1 + P(Rn−1)

)
E[Xn−1] + pqn−1(1− qn−1)

with initial condition E[Y1] = 0. Iterating this formula, we obtain

E[Yn] =
n−1∑
k=1

(
p
(
qk + P(Rk)

)
E[Xk] + pqk(1− qk)

) n−1∏
i=k+1

(1− pqi)

= p

n−1∑
k=1

µk,p(p+ 1)k
(
qk + P(Rk)

) n−1∏
i=k+1

(1− pqi) + P(Rn).

This implies the claim.
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Figure 5: Graphs of αn,p versus p ∈ (0, 1), for n = 2, . . . , 20.

Theorem 6. By the above definitions for P(Rn), µn,p and αn,p, we have

E[X2
n] =

n−1∑
j=1

(
2pµ2

j,p(p+ 1)−n+j−1 + 2pqj(µj,p − αj,p)(p+ 1)−n−1

+ pqj
(
1− qj − P(Rj)

)
(p+ 1)−n−j−1

)
(p+ 1)2n =: βn,p(p+ 1)2n.

See Figure 6 for some graphs of βn,p with βp := limn→∞ βn,p.

Proof. In Lemma 3, set m = 2 to find the recurrence

E[X2
n] = (p+ 1)E[X2

n−1] + 2pE2[Xn−1] + 2pqn−1E[Xn−1]

− 2pqn−1E[Xn−111Rn−1 ] + pqn−1
(
1− qn−1 + P(Rn−1)

)
,

with boundary condition E[X2
1 ] = 0. This standard linear recurrence has the solution

E[X2
n] =

n−2∑
j=0

(p+ 1)j
(

2pE2[Xn−j−1] + 2pqn−j−1E[Xn−j−1]

− 2pqn−j−1E[Yn−j−1] + pqn−j−1
(
1− qn−j−1 + P(Rn−j−1)

))
. (9)

After substituting (2), (6), (8) in (9), we have

E[X2
n] =

n−2∑
j=0

(
2pµ2

n−j−1,p(p+ 1)−j−2 + 2pqn−j−1(µn−j−1,p − αn−j−1,p)(p+ 1)−n−1

+ pqn−j−1(p+ 1)−2n+j
(
1− qn−j−1 − P(Rn−j−1)

))
(p+ 1)2n.

This yields the claimed result by changing n− j − 1→ j in the range of the above sum.
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Figure 6: Graphs of βn,p and σn,p versus p ∈ (0, 1), for n = 2, . . . , 10.

Corollary 7. By the above definitions for µn,p and βn,p, we have

Var[Xn] = (βn,p − µ2
n,p)(p+ 1)2n =: σn,p(p+ 1)2n.

See Figure 6 for some graphs of σn,p with limn→∞ σn,p =: σ2
p = βp − µ2

p.

Proof. Using Var[Xn] = E[X2
n]− E2[Xn] and Theorem 6, the proof is straightforward.

4 Convergence in Distribution

Here, we characterize the limiting distribution of Xn

(p+1)n
, i.e., a scaled version of Xn, the

number of protected nodes in an ERT of age n and index p, by its moments.

Theorem 8. Let Xn be the number of protected nodes in an exponential recursive tree of age
n and index p. We have the convergence in distribution

Xn

(p+ 1)n
D−→ X∗,

where the limiting random variable X∗ has moments bm := E[Xm
∗ ] defined inductively by

bm =
p

(p+ 1)m − (p+ 1)

m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2,

with b1 = E[X∗] = µp = limn→∞ µn,p at the basis of the induction.
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Proof. Scale the two recurrences in Lemma 3 by (p+ 1)nm to get

E
[( Xn

(p+ 1)n

)m]
=

1

(p+ 1)m−1
E
[( Xn−1

(p+ 1)n−1

)m]
+

p

(p+ 1)m

m−1∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k]
+ pqn−1

m−1∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
+ pqn−1

m−1∑
k=1

(
m

k

)
(−1)m−k

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1

(
1− qn−1 + (−1)mP(Rn−1)

)
, (10)

E
[( Xn

(p+ 1)n

)m
11Rn

]
=

1− pqn−1

(p+ 1)m
E
[( Xn−1

(p+ 1)n−1

)m
11Rn−1

]
+

1

(p+ 1)nm
· pqn−1(1− qn−1)

+
p

(p+ 1)m

m∑
k=1

(
m

k

)
E
[( Xn−1

(p+ 1)n−1

)k]
E
[( Xn−1

(p+ 1)n−1

)m−k
11Rn−1

]
+ pqn−1

m∑
k=1

(
m

k

)
1

(p+ 1)(m−k)n+k
E
[( Xn−1

(p+ 1)n−1

)k]
. (11)

According to the two recurrences (10) and (11) with finite limits

lim
n→∞

E
[ Xn

(p+ 1)n

]
= µp, and lim

n→∞
E
[ Xn

(p+ 1)n
11Rn

]
= αp,

we see that bm := limn→∞ E
[(

Xn

(p+1)n

)m]
exists, by induction on m, and we get

(p+ 1)mbm = (p+ 1)bm + p

m−1∑
i=1

(
m

i

)
bibm−i, m ≥ 2.

Using this recurrence and b1 = µp < 1, we can conclude that bm
m!

< 1 by induction on m
(this induction is shown in page 7 of [4] and in page 12 of [1], as well). Subsequently, for
|z| < 1, the series

∑∞
m=0

bm
m!
zm converges. Therefore, by Theorem 30.1 in [2], Xn

(p+1)n
converges

in distribution to a unique limit X∗.

5 The Total path length

Let denote by In be the total path length of protected nodes in an exponential recursive tree
after n steps: is the sum of depths of all protected nodes. At step one if the root recruits
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a new child then the total path length at step n is the total path length of the root at step
n− 1 (for the rest of steps) plus the total path length of the sub-tree with root the first child
of the root of the tree Tn and we have to add to all protected nodes of this sub-tree 1 ( the
distance between the first child and the root) , but if the root does not recruits a child at
step 1, then the total path length at step n will be the same as the total path length at a
step n − 1. Let In be the total path length of protected nodes in an exponential recursive
tree at time n, the following lemma holds

Lemma 9.
In

d
= I

(
I

(1)
n−1 + I

(2)
n−1 +X

(2)
n−1

)
+ (1− I) Ĩ(1)

n−1 (12)

where I
(1)
k , I2

k and Ĩ
(1)
k are independent copies of Ik and X̄k is the number of protected nodes

of an exponential recursive tree at time k.

The internal path length can be obtained by another method, if we denote for all k by

Nk = {at step k the root recruits a new child}

Lemma 10. The total path length In satisfies, almost surely,

In =
n∑
k=1

INk
In−k +Xn − IRn ,

where In−k is the total path length of the sub-tree with root the kth child of the root of hole
tree.

5.1 Mean of In

Denote, for all integer n, by and xn = E[Xn].

Lemma 11. The mean in of In is given by

E[In] = p (1 + p)n
n∑
k=1

µk, p,

and

lim
n

E
[

In
n (1 + p)n

]
= p µp,

where µk, p and µp are given respectively in Theorem 4
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Proof. Denote, for all integer n, by in = E[In], from the lemma (9) we deduce that

in = p (2 in−1 + xn−1) + q in−1 = (1 + p) in−1 + p xn−1.

By iteration we conclude that

in = p

n−1∑
k=1

(1 + p)n−k xk.

Since, for all n, xn = µn, p (1 + p)n and limn µn, p := µp exists , the claimed of the lemma
follows.

5.2 Second moment of In

To obtain the variance of In we need to compute bn := E [InXn]. Using the notations (1),
we have

Lemma 12.

bn = (1 + p) bn−1 + 2 p xn−1 in−1 + p qn−1
(
in−1 − E

[
In−1 IRn−1

])
.

Proof. The sequence Xn satisfies

Xn = I
(
X

(1)
n−1 +X

(2)
n−1 + Jn−1 −Gn−1

)
+ (1− I) X̃(1)

n−1, (13)

where

Jn = I{|T (1)
n |=1} I{|T (2)

n |≥2}, Gn = I{|T (2)
n |=1} IR(1)

n
.

Then multiplying (12) by (13) and recall that we deduce that I := 11{|T1|=2}, we deduce that,

Xn In = I
(
X

(1)
n−1 I

(1)
n−1 +X

(2)
n−1 I

(1)
n−1 + Jn−1 I

(1)
n−1 −Gn−1 I

(1)
n−1

)
+ I
(
X

(1)
n−1 I

(2)
n−1 +X

(2)
n−1 I

(2)
n−1 + Jn−1 I

(2)
n−1 −Gn−1 I

(2)
n−1

)
+ I
(
X

(1)
n−1X

(2)
n−1 +X

(2)
n−1X

(2)
n−1 + Jn−1X

(2)
n−1 −Gn−1X

(2)
n−1

)
+ (1− I) X̃(1)

n−1 Ĩ
(1)
n−1.

On one hand, observe that, almost surely, we have

Jn−1X
(2)
n−1 = I

(1)
n−1 Jn−1 = Gn−1 I

(2)
n−1 =

(
I

(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0,

Gn−1X
(2)
n−1 = Gn−1 I

(2)
n−1 =

(
I

(2)
n−1 I{|T (2)

n−1|=1}

)
IR(1)

n−1
= 0

12



we deduce, almost surely, that

Jn−1 I
(1)
n−1 = Gn−1 I

(2)
n−1 = Jn−1X

(2)
n−1 = Gn−1X

(2)
n−1 = 0.

On the other hand , from

I
(2)
n−1 Jn−1 =

(
I

(2)
n−1 I{|T (2)

n−1|≥2}

)
I{|T (1)

n−1|=1} =
(
I

(2)
n−1 − I

(2)
n−1 I{|T (2)

n−1|=1}

)
I{|T (1)

n−1|=1} = I
(2)
n−1 I{|T (1)

n−1|=1}

I
(1)
n−1Gn−1 =

(
I

(1)
n−1 IR(1)

n−1

)
I{|T (2)

n−1|=1}

we obtain

E
[
I

(2)
n−1 Jn−1

]
= E

[
I

(2)
n−1

]
E
[
I{|T (1)

n−1|=1}

]
= in−1 q

n−1

E
[
I

(1)
n−1Gn−1

]
= E

[
I

(1)
n−1 IR(1)

n−1

]
E
[
I{|T (2)

n−1|=1}

]
= qn−1 E

[
I

(1)
n−1 IR(1)

n−1

]
.

bn = p
(
bn−1 + xn−1in−1 + E

[
I

(1)
n−1 Jn−1

]
− E

[
I

(1)
n−1Gn−1

])
+ p
(
xn−1 in−1 + bn−1 + E

[
I

(2)
n−1 Jn−1

]
− E

[
I

(2)
n−1Gn−1

]
+ x2

n−1 + E
[
(X

(2)
n−1)2

]
− E

[
Gn−1X

(2)
n−1

])
+ q bn−1

= (1 + p) bn−1 + 2 p xn−1 in−1 + pE
[
I

(1)
n−1 Jn−1

]
+ p
(
E
[
I

(2)
n−1 Jn−1

]
− E

[
Gn−1X

(2)
n−1

]
− E

[
I

(2)
n−1Gn−1

]
− E

[
I

(1)
n−1Gn−1

])
.

To obtain a closed form of bn, we need to compute E
[
In IRn

]
.

Lemma 13.

E
[
In IRn

]
= q E

[
In−1 IRn−1

]
+ p qn−1 (in−1 + xn−1) + pE[In−1]P(Rn−1)

+ p
(
1− qn−1

)
E
[
In−1 IRn−1

]
+ p xn−1 P(Rn−1).

=
(
1− p qn−1

)
E
[
In−1 IRn−1

]
+
(
pP(Rn−1) + p qn−1

)
(in−1 + xn−1)

=
n−1∑
k=0

n∏
j=k+1

(
1− p qj−1

) (
pP(Rk) + p qk

)
(ik + xk)

Proof. Since

Rn =
[
{|T1| = 1} ∩ R̃(1)

n−1

]
∪
[
{|T1| = 2} ∩ R(1)

n−1 ∩
{
|T (2)
n−1| ≥ 2

}]
∪
[
{|T1| = 2} ∩

{
|T (1)
n−1| = 1

}
∩
{
|T (2)
n−1| ≥ 2

}]
.

13



we have

IRn = (1− I) IR̃(1)
n−1

+ I{|T (1)
n−1|=1} I{|T (2)

n−1|≥2} I + IR(1)
n−1

I{|T (2)
n−1|≥2} I,

Multiplying by In, we obtain

In IRn = (1− I) Ĩ(1)
n−1 IR̃(1)

n−1
+ I{|T (1)

n−1|=1} I{|T (2)
n−1|≥2}

(
I

(2)
n−1 +X

(2)
n−1

)
I

+
(
I

(2)
n−1 + I

(1)
n−1 +X

(2)
n−1

)
IR(1)

n−1
I{|T (2)

n−1|≥2} I.

The result of the lemma is obtained by taking the expectation of this equation.

Using lemmas (12) and (13), we deduce

Proposition 14. The second moment of In satisfies the following recursion

E[I2
n] = (p+ 1) E[I2

n−1] + 2p
(
i2n−1 + in−1 xn−1 + bn−1

)
+ pE[X2

n−1],

where the general solution is

E[I2
n] = p

n−1∑
k=1

(p+ 1)n−k
(
2(i2k + ik xk + bk) + E[X2

k ]
)
.

5.3 Convergence in Distribution

The aim of this section is to use the contraction method by Rosler and Neininger to state
the limiting distribution of În := In/n (1 + p)n. By equation (12) we have

In
n (1 + p)n

d
= I

(
I

(1)
n−1

n (1 + p)n
+

I
(2)
n−1

(n) (1 + p)n
+

X
(2)
n−1

n (1 + p)n

)
+ (1− I)

Ĩ
(1)
n−1

n (1 + p)n
(14)

All the conditions of the contraction method are satisfied (Theorem 3 of [12], page 8), then
we deduce that

Theorem 15. The normalized total path length: În = In/n (1 + p)n converges in distribution
to some random variable Î with distribution the unique solution the following equation in
distribution

Î
d
=

Ber(p)

1 + p

(
Î(1) + Î(2)

)
+

1− Ber(p)

1 + p
Î(3), (15)

where Î(i), i = 1, 2, 3, are independent copies of Î and independent of Ber(p).

14



Proof. The proof is based on the Lemma 3.1 page 502 of the paper [11].
Consider the transformation T :M2 → M2 defined by

T (µ)
d
=

Ber(p)

1 + p

(
Î(1) + Î(2)

)
+

(1− Ber(p))

1 + p
Î(3), (16)

where Î(i), i = 1, 2 3 and Ber(p) are independent and Î(i) have µ as distribution.

1. At a first step we have to prove that with respect to the metric L2
2 defined on M2 by

L2
2 (µ, ν) := min

{
E[|X − Y |2], where X, Y have µ and ν as distribution, respectively

}
,

the transformation have a unique fixed point. In fact let µ and ν be two measures of
M2

T (µ)
d
=

Ber(p)

1 + p

(
Î(1)
µ + Î(2)

µ

)
+

(1− Ber(p))

1 + p
Î(3)
µ ,

T (ν)
d
=

Ber(p)

1 + p

(
Î(1)
ν + Î(2)

ν

)
+

(1− Ber(p))

1 + p
Î(3)
ν ,

L2
2 (T (µ), T (ν)) = E

[
|T (µ)− T (ν)|2

]
= 2

E[(Ber(p))2]

(1 + p)2
E
[
Îµ − Îν

]2
+

E [(1− Ber(p))2]

(1 + p)2
E
[
Îµ − Îν

]2
=

1

1 + p
E
[
Îµ − Îν

]2
≤ 1

1 + p
L2

2 (µ, ν) .

Since 1/1 + p < 1 we deduce that T is a contracted transform and then it has only one
fixed point.

2. Heuristically speaking, it is clear that if În converges in distribution, the limit will be
the unique fixed point of the transformation T . We have to prove that

lim
n
L2

2

(
Î , În

)
= 0,

15



to conclude that În converges in distribution and in L2 to Î. We have

L2
2

(
Î , În

)
≤ E[Ber(p)]

(1 + p)2

∣∣∣(Î(1) − Î(1)
n−1

n− 1

n

)
+
(
Î(2) − Î(2)

n−1

n− 1

n

)∣∣∣2
2

+
E [1− Ber(p)]

(1 + p)2

∣∣∣Î(3) − Î(3)
n−1

n− 1

n

∣∣∣2
2
,

+ 2
E[Ber(p)]

(1 + p)2
E
[ X̃n−1

n (1 + p)n−1

(
Î(2) − Î(2)

n−1

n− 1

n

)]
+ 2

E[Ber(p)]

(1 + p)2
E
[ X̃n−1

n (1 + p)n−1

(
Î(1) − Î(1)

n−1

n− 1

n

)]
+

E[Ber(p)]

(1 + p)2

∣∣∣ X̃2
n−1

n (1 + p)n−1

∣∣∣2
2

=
p

(1 + p)2

(∣∣∣Î(1) − Î(1)
n−1

n− 1

n

∣∣∣2
2

+
∣∣∣Î(2) − Î(2)

n−1

n− 1

n

∣∣∣2
2

)
+

q

(1 + p)2

∣∣∣Î(3) − Î(3)
n−1

n− 1

n

∣∣∣2
2
,

+ 2
p

(1 + p)2
E
[ X̃n−1

n (1 + p)n−1

(
Î(2) − Î(2)

n−1

n− 1

n

)]
+ 2

p

(1 + p)2
E
[ X̃n−1

n (1 + p)n−1

(
Î(1) − Î(1)

n−1

n− 1

n

)]
+

E[Ber(p)]

(1 + p)2

∣∣∣ X̃2
n−1

n (1 + p)n−1

∣∣∣2
2
.

Then we deduce

lim
n
L2

2

(
Î , În

)
≤ 1

1 + p
lim
n

lim
n
L2

2

(
Î , În−1

)
,

this is true only if limn L2
2

(
Î , În

)
= 0.

6 Protected Node Profile

For all 0 ≤ k ≤ n let Pn,k (respectively Xn,k) be the number of protected nodes (be the
number of nodes at step n at level k) It is obvious that

Pn+1,k = Pn,k −
Pn,k∑
l=1

Ber(l)(p) +

Xn,k∑
i=1

IR̄n
i,k∩R

n+1
i,k

16



where R̄n
i,k ∩Rn+1

i,k is the event that the node number i ( from left to right) at level k is non

protected at step n but becomes protected at step (n + 1). The the sum
∑Xn,k

i=1 IR̄n
i,k∩R

n+1
i,k

represents the number of nodes that become protected only at step n,

Theorem 16. The expected value pn,k := E [Pn,k] satisfies, for all k < n,

pn,k = (1− p)n + p

k∑
i=2

qi−2

n−i∑
l=k

(
l − 1

k − 1

)(
n− i+ 1

k

)
p2kql−k

(
1− qn−i−l−1

)
.

Proof.

pn+1,k = pn,k − p pn,k + E
[
Xn,k E

[
IR̄n

i,k∩R
n+1
i,k

∣∣∣Xn,k

]]
= (1− p) pn,k + E

[
Xn,k P

(
R̄n
i,k ∩Rn+1

i,k

∣∣∣Xn,k

)]
.

For all l ≥ k, let B
(l)
i be the event that the birth date of node i is at step l, then we have

R̄n
i,k ∩Rn+1

i,k = ∪n−1
l=k B

(l)
i ∩ R̄n

i,k ∩Rn+1
i,k .

We obtain

P
(
R̄n
i,k ∩Rn+1

i,k

∣∣∣Xn,k

)
=

n−1∑
l=k

P
(
R̄n
i,k ∩Rn+1

i,k

∣∣∣B(l)
i , Xn,k

)
P
(
B

(l)
i

∣∣∣Xn,k

)
.

Since the node i to be protected, all his first children must recruits other children at times
between l + 1 and n, then denote, for all l + 1 ≤ s ≤ n, by An,k,l,s the event defined by: the
node i which have l as birth date recruits at a time s and the recruited node recruits only at
time (n+ 1).
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We conclude

P
[
R̄n
i,k ∩Rn+1

i,k

∣∣∣Xn,k

]
=

n−1∑
l=k

P
[
R̄n
i,k ∩Rn+1

i,k

∣∣∣B(l)
i , Xn,k

]
P
[
B

(l)
i

∣∣∣Xn,k

]
=

n−1∑
l=k

P
[
B

(l)
i

∣∣∣Xn,k

] n∑
s=l+1

P
[
An,k,l,s

∣∣∣B(l)
i , Xn,k

]
=

n−1∑
l=k

P
[
B

(l)
i

∣∣∣Xn,k

] n∑
s=l+1

p qn−s p

=
n−1∑
l=k

p

(
l − 1

k − 1

)
pk−1ql−1−(k−1)

n∑
s=l+1

p qn−s p

=
n−1∑
l=k

p3

(
l − 1

k − 1

)
pk−1ql−k

1− qn−l−1

p

=
n−1∑
l=k

p2

(
l − 1

k − 1

)
pk−1ql−k

(
1− qn−l−1

)
.

Finally we conclude that

pn+1,k = (1− p) pn,k +
n−1∑
l=k

p2

(
l − 1

k − 1

)
pk−1ql−k

(
1− qn−l−1

)
E[Xn,k].

Since, i is well known that E[Xn,k] = pk,
(
n
k

)
we deduce

pn+1,k = (1− p) pn,k +
n−1∑
l=k

p2

(
l − 1

k − 1

)(
n

k

)
p2k−1ql−k

(
1− qn−l−1

)
,

with starting condition pk+1,k = pk+1.
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