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Abstract. Formal concept analysis is a mathematical framework based
on lattice theory that aims at representing the information contained
in binary object-attribute datasets (called formal contexts) in the form
of a lattice of so-called formal concepts. Since its introduction, it has
been extended to more complex types of data. In this paper, we are
interested in two of those extensions: relational concept analysis and
polyadic concept analysis that allow to process, respectively, relational
data and n-ary relations. We present a framework for polyadic relational
concept analysis that extends relational concept analysis to relational
datasets that are made of n-ary relations. We show its basic properties
and that it is a valid extension of relational concept analysis.

1 Introduction

Formal Concept Analysis (FCA [1]) is a mathematical framework based on lattice
theory that aims at representing the information contained in binary object-
attribute datasets (called formal contexts) in the form of a lattice of so-called
formal concepts. Formal concepts represent units of knowledge in the form of
hierarchical clusters which group objects depending on the attributes they share,
and are considered a powerful tool for knowledge representation and discovery.
Direct applications of formal concept analysis on real, more complex data –
which is not easily captured through binary contexts – are limited. Various
extensions exist to adapt and exploit this powerful formalism to handle more
complex data. In this paper, we are interested in merging two of these existing
extensions: relational concept analysis and polyadic concept analysis.

Relational Concept Analysis (RCA [2]) is an extension of the formal con-
cept analysis framework aimed at relational data that take the form of multiple
formal contexts with relations between their objects. The idea is to represent
the information contained in the relations through special relational attributes,
hereby enriching the descriptions of objects in the formal contexts. In this way,
RCA enables to group objects according to their similar attributes, but also de-
pending on the similarity of other groups of objects they are in relation with. It
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presents a unique approach to uncover similar relationships as well as knowledge
regarding interactions and impacts between independent yet connected set of
objects. RCA has been used with great success in fields as diverse as variability
modeling or feature location in software engineering [3,4], ontology restructur-
ing [5], tackling the complexity of interrelated legal documents [6], or the analysis
of ecological data about plants [7] or water quality [8].

Polyadic Concept Analysis (PCA [9]) is another extension of the formal con-
cept analysis framework aimed at multidimensional data, i.e. n-ary relations
between elements of n dimensions. For instance, objects described by attributes
under conditions in the tridimensional case. PCA enables a more fine-grained
and precise clustering of objects by considering different facets of these objects.
PCA and its tridimensional version, triadic concept analysis [10], have been
used for data exploration with multiple experts [11], or tri-clustering [12,13].
RDF datasets are also important examples of multidimensional data.

Such data rarely come alone and are generally part of a larger dataset con-
taining relations. Combining RCA and PCA would enable to analyse intercon-
nections between sets of objects while considering different conditions or facets of
these objects, hence unlocking a more fine-grained relational data analysis. How-
ever, as they are, these two frameworks are not compatible. In a triadic object-
attribute-condition setting, if we kept representing the information contained
in relations by adding elements to the set of attributes, under which condition
would a newly created attribute describe an object? To solve this problem, we
propose a new framework, Polyadic Relational Concept Analysis (PRCA), that
works on sets of n-dimensional contexts with relations between their objects.
PRCA is different from Graph-FCA [14], that also allows one to manipulate a
set of n-ary relations, since a Graph-FCA concept is a graph structure that is
not a formal concept of the input formal context, while PRCA outputs concept
n-lattices.

This paper presents the PRCA framework and some of its properties, includ-
ing the fact that applying PRCA to a bidimensional formal context yields the
same results as RCA, proving PRCA is a proper generalisation of RCA. Section
2 recalls the necessary background notions of formal concept analysis, relational
concept analysis and polyadic concept analysis. Section 3 contains the definition
of PRCA and an example of its application to a small toy dataset. Section 4
presents a proof that PRCA produces concepts that are in a one-to-one corre-
spondence with concepts of an n-context of the same dimensionality as the initial
context on which it is applied. This bounds the size of the output and implies
that PRCA is a proper generalisation of RCA.

2 Background Notions

2.1 Formal Concept Analysis

Formal concept analysis [1] (FCA) is a mathematical framework that aims at
using lattices to organise the units of knowledge that can be found in binary
data.



Polyadic Relational Concept Analysis 3

Definition 1 (Formal context). A formal context is a triple (O,A, I) in
which O is a set of objects, A is a set of attributes and I ⊆ O × A is a
binary relation between objects and attributes.

Formal contexts (or just contexts) formalise binary datasets and can be rep-
resented by a crosstable, as illustrated in Figure 1. This example has plants as
objects, and pests they repel as attributes.

Spodoptera (s) Milax gagates (m) Tetranychidae (t) Locust (ℓ)
Citrus (C) × ×
Alpinia (A) × ×

Pelargonium (P) × ×
Laphangium (L) × ×

Fig. 1: A formal context describing four plants as objects (Citrus, Alpinia,
Pelargonium and Laphangium) through four attributes (s,m, t, ℓ) represent-
ing the pest that are repelled by each of the plants. This particular con-
text, while not physically accurate, was inspired by project Knomana (https:
//agritrop.cirad.fr/591139/) [15].

Definition 2 (Derivation operators). Let (O,A, I) be a formal context. The
operators

(·)′ : 2O → 2A

A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ I}

and

(·)′ : 2A → 2O

O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ I}

are called the derivation operators of the formal context.

The two derivation operators of a formal context form a Galois connection
and, as such, their compositions (·)′′ are closure operators, i.e. X ⊆ X ′′, (X ′′)′′ =
X ′′ and if X ⊆ Y then X ′′ ⊆ Y ′′. Sets X such that X = X ′′ are said to be closed.

Definition 3 (Formal concept). Let C = (O,A, I) be a formal context. A
formal concept of C is a pair (E, I) ∈ 2O × 2A such that E = I ′ and I = E′.
The set E is called the extent and the set I the intent of the concept.

Formal concepts are by definition pairs of closed sets. They represent in-
teresting units of knowledge, or “classes”, found in the data. They correspond
to maximal rectangles of crosses in the crosstable representation of the formal
context (up to permutation of rows and columns).

https://agritrop.cirad.fr/591139/
https://agritrop.cirad.fr/591139/
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Definition 4 (Formal concept, alternative definition). Let C = (O,A, I)
be a formal context. A formal concept of C is a pair (E, I) ∈ 2O × 2A such that
E × I ⊆ I and both E and I are maximal for this property.

The set of formal concepts of a formal context C is denoted T (C). Formal
concepts can be ordered by the inclusion relations on their extents or intents:
(E1, I1) ≤O (E2, I2) ⇔ E1 ⊆ E2 or I2 ⊆ I1. The pair (T (C),≤O) is a complete
lattice [1] called the concept lattice of the formal context C.

The concept lattice of the formal context of Figure 1 is presented in Figure 3
(left-hand side). FCA allows here to group plants depending on pests they repel.
The concept ({A,L}, {t, ℓ}) means that there is no other plants than Alpinia
(A) and Laphangium (L) repelling both the pests tetranychidae (t) and locust
(ℓ), and that there is no other pests than tetranychidae and locust which are
repelled by both Alpinia and Laphangium. Its super-concept ({A,L, P}, {t})
groups all plants capable of repelling tetranychidae, that is, Alpinia, Laphangium
and Pelargonium (P ). Thus, in this specific dataset, all plants repelling locust
also repel tetranychidae (i.e., ℓ → t).

2.2 Relational Concept Analysis

Relational concept analysis (RCA [2]) is a generalisation of FCA to relational
binary datasets.

Definition 5 (Relational context family). A relational context family (RCF)
is a pair (C,R) such that:

– C = {Ci = (Oi,Ai, Ii)} is a set of formal contexts (object-attribute relations)

– R = {rk | rk ⊆ Oi × Oj , } is a set of relations between objects of source
contexts Ci and those of target contexts Cj.

We use src(r) and tar(r) to denote, respectively, the source and target context
of a relation r.

Relational context families formalise relational binary datasets. Both the con-
texts in C and the relations in R can be represented as binary crosstables but,
for the sake of clarity, we shall only depict contexts as crosstable and relations
as sets of pairs, as illustrated in Figure 2. Figure 3 depicts the concept lattices
obtained from the RCF in Figure 2. The Areas concept lattice (right-hand side)
presents 4 concepts. C3 groups all areas having Forest ecosystems, C2 all ar-
eas having both Forest and Grassland ecosystems, C1 areas which include both
Forest and Desert, and C0 the areas having the three ecosystems.

RCA aims at finding units of knowledge in the data, in the same fashion as
FCA, by taking into consideration not only objects and their attributes but also
their relations with other objects. In order to do so, information on the relations
is converted into attributes, enriching the descriptions of objects.

We use r(o) to denote the image of an object o ∈ Oi by a relation r ⊆ Oi×Oj .
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Plants Spodoptera (s) Milax gagates (m) Tetranychidae (t) Locust (ℓ)
Citrus (C) × ×
Alpinia (A) × ×

Pelargonium (P) × ×
Laphangium (L) × ×

Areas Forests (F) Desert (D) Grassland (G)
Europe (Eu) × ×
Africa (Af) × ×

South-East Asia (As) × ×
America (Am) × × ×

GrowsIn = {(C,Eu), (C,Af), (A,Eu), (A,Am), (P,As), (L,Eu)}

Fig. 2: A RCF containing two contexts (our plant context and a context about
areas and ecosystems), and a relation between the plants and the areas, stating
which plant grows in which area.

Definition 6 (Relational scaling of a context). Let (C,R) be an RCF, Ci =
(Oi,Ai, Ii) a context in C, R the set of relations in R for which Ci is the source
and Q a set of scaling operators. In this paper, we will only consider Q ⊆ {∃,∀}.
The formal context C+

i = (Oi,A+
i , I

+
i ) is defined such that

A+
i = Ai ∪ {qr.X | q ∈ Q, r ∈ R and X ∈ T (tar(r))}

and

I+
i = Ii ∪ {(o, qr.X) | X = (E, I) and E respects q w.r.t. r(o)}

We write C+ = {C+
i | Ci ∈ C}.

The computation of (C+,R) requires the formal concepts of all the contexts
in C that are targets of relations. For this reason, the RCA process uses two
steps iteratively:

– Compute all the concepts in all the contexts in C that are targets of relations
– Construct (C+,R) by using the concepts to generate new attributes.

We use C0 = C and Cm = C(m−1)+ to denote the state of the contexts at
step 0 and m, respectively. The process stops either when a user-defined number
of iterations has been reached or when the concept lattices of every contexts do
not change between Cm and Cm+1, which happens at some point [2].

Figs. 4 and 5 depict the result of the first (and final) step of the RCA process
on the Figure 2 RCF. Four new relational attributes, corresponding to the four
concepts in the lattice on the right-hand side of Fig 3, have been added to the
Plants context.
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Fig. 3: Concepts lattices of the Plants (left) and Areas (right) contexts depicted
in Figure 2.

RCA, by including relationships between Plants and Areas when building
units of knowledge, enable to group plants depending on the pests they repel,
while also considering the ecosystems of the areas they grow in. In the lattice of
Fig. 4, let us consider the concept ({L,A}, {ℓ, t,∃GrC1,∃GrC3}). In addition to
showing that locust (ℓ) and tetranychidae (t) are repelled by both Alpinia (A)
and Laphangium (L) (such as in the FCA case), it also shows that all plants
capable on repelling these two pests grow in areas containing desert ecosystems
(∃GrC3). The concept ({A,P}, {t, ∃GrC2, ∃GrC3}) groups all plants (Alpinia
(A) and Pelargonium (P )) repelling tetranychidae (t) and growing in areas that
correspond to C2 and C3, that is areas that have either forests, or grasslands and
forests as ecosystems. It is a sub-concept of ({P,L,A}, {t,∃GrC3}), which groups
all plants repelling tetranychidae. Hence, in this context family, all plants growing
in areas having grasslands are able to repel tetranychidae (i.e., ∃GrC2 → t).

Plants1 s m t ℓ ∃GrC0 ∃GrC1 ∃GrC2 ∃GrC3

Citrus (C) × × × ×
Alpinia (A) × × × × × ×

Pelargonium (P) × × × ×
Laphangium (L) × × × ×

Fig. 4: The context C+, where C is the plants context depicted in Figure 2 and
Q = {∃}. The new attributes ∃GrowsIn.Ci (abbreviated ∃GrCi) come from
the four concepts C0 = ({Am}, {D,G,F}), C1 = ({Am,Af,Eu}, {D,F}), C2 =
({As,Am}, {G,F}) and C3 = ({Am,Af,As,Eu}, {F}).
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Fig. 5: Concept lattice of Plants1. Applying the same process for another step
produces a concept lattice that is isomorphic to this one. Thus, the RCA process
ends.

2.3 Polyadic Concept Analysis

Polyadic concept analysis [9] (PCA) is the generalisation of FCA to datasets
that take the form of an n-ary relation.

Definition 7 (n-contexts). An n-context is an (n + 1)-tuple (D1, . . . ,Dn, I)
in which all the Di are sets called dimensions and I ⊆

∏
i∈{1,...,n} Di is an n-ary

relation between dimensions.

Similarly to the bidimensional case, n-contexts formalise n-dimensional bi-
nary datasets. They can be represented as n-dimensional crosstables as illus-
trated in Figure 6.

Plants s m t ℓ s m t ℓ

Citrus (C) × × × ×
Alpinia (A) × × × ×

Pelagonium (P) × × × ×
Laphangium (L) × × × ×

Root Leaf

Fig. 6: A 3-context representing plants (Citrus, Alpinia, Pelagonium and
Laphangium) that repel pests (s, m, t and ℓ), depending on their parts (leaf
or root).
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Formal contexts are 2-contexts.

Definition 8 (n-concepts). Let C = (D1, . . . ,Dn, I) be an n-context. An n-
concept of C is an n-tuple (X1, . . . , Xn) such that

∏
i∈{1,...,n} Xi ⊆ I and there

is no k ∈ {1, . . . , n} and xk ∈ Dk \ Xk for which (X1, . . . , Xk ∪ {xk}, . . . , Xn)
respects this property.

As in the bidimensional case, n-concepts are units of knowledge in the data.
They correspond to maximal n-dimensional boxes of crosses in the n-context.
We use T (C) to denote the set of n-concepts of an n-context C. For a concept
C = (X1, . . . , Xn), we use Di(C) = Xi to denote the ith component of the tuple.

The 3-concepts from Figure 6 are:

({L}, {Root, Leaf}, {t, ℓ}) ({A,L}, {Root, Leaf}, {t}) ({A,P, L}, {Leaf}, {t})
({C,A, P, L}, {Root, Leaf}, ∅) ({A,P}, {Leaf}, {m, t}) ({C,P}, {Root, Leaf}, {m})

({C,A, P}, {Leaf}, {m}) ({C}, {Root, Leaf}, {s,m}) (∅, {Root, Leaf}, {s,m, t, ℓ})
({A,L}, {Root}, {t, ℓ}) ({C,P}, {Root}, {s,m}) ({C,A, P, L}, ∅, {s,m, t, ℓ}).

PCA, by expressing conditions over which objects possess certain attributes,
enables to define groups of plants depending on which of their parts can be
used to repel pests. The concept ({A,L}, {Root}, {t, ℓ}) shows that Alpinia and
Laphangium form the group of all plants whose roots repel both tetranychidae
and locust. If we consider both the leaves and roots of Alpinia and Laphangium,
the same groups of plants can only repel tetranychidae, as shown in concept
({A,L}, {Root, Leaf}, {t}). Indeed, Alpinia leaves cannot repel locust, contrary
to Laphangium from which we can use both roots and leaves to repel tetrany-
chidae and locust, as shown by concept ({L}, {Root, Leaf}, {t, ℓ}).

The main theorem of PCA [9] states that, for any n-context C, (T (C),⊆D1

, . . . ,⊆Dn
) is a complete n-lattice called the concept n-lattice of C. A complete

n-lattice is an n-ordered set that possesses a particular set of joins. Those joins
are outside the scope of this paper but more details can be found in [16].

Definition 9. Let P be a set of elements and ≲i, i ∈ {1, . . . , n}, be quasi-orders.
P = (P,≲1, . . . ,≲n) is an n-ordered set if for A ∈ P and B ∈ P :

1. A ∼i B, ∀i ∈ {1, . . . , n} implies A = B (Uniqueness Condition)
2. A ≲i1 B, . . . , A ≲in−1

B implies B ≲in A (Antiordinal Dependency)

The concepts from an n-context form a n-ordered set together with n quasi-
orders ≲i, i ∈ {1, . . . , n}, defined as:

(A1, . . . , An) ≲i (B1, . . . , Bn) ⇔ Ai ⊆ Bi

The equivalence relation ∼i, i ∈ {1, . . . , n} is defined as:

(A1, . . . , An) ∼i (B1, . . . , Bn) ⇔ Ai = Bi

Much as in two dimensions, if a dimension of a concept grows, at least another
shrinks.
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3 Polyadic Relational Concept Analysis

Relational concept analysis does not work with multidimensional contexts be-
cause of the way the information on relations is integrated into the contexts as
attributes. Let us consider a 3-context describing objects through the attributes
they possess under some conditions. The objects of this 3-context are in relation
with objects of another context. Using the RCA approach, one would create
attributes from the concepts of the other context. However, where should these
attributes be placed? If we added the relational attributes to the set of attributes,
under which conditions are the objects described by them?

To solve this problem, we propose a new formalism, called Polyadic Relational
Concept Analysis (PRCA), in which the new “attributes” constructed from a
(quantifier, relation) pair at a given step form a new dimension in the n-context.
More formally:

Definition 10 (Polyadic relational context family). Let a polyadic rela-
tional context family (PRCF) be a pair (C,R) in which

– C = {Ci = (Di
1, . . . ,Di

ni
, Ii)} is a set of n-contexts with various numbers of

dimensions
– R = {rk | rk ⊆ Di

1 × Dj
1} is a set of relations between the elements of the

first dimensions (hereafter called objects without loss of generality) of source
n-contexts Ci and those of target n-contexts Cj.

Just as in RCA, we use src(r) and tar(r) to denote, respectively, the source
and target n-context of a relation r.

We use the polyadic relational context family that consists of the 3-context
Plants from Figure 6, together with the context Areas and the relation GrowsIn
from Figure 2 as a running example.

Similarly to RCA, we define the relational scaling of an n-context in or-
der to take into account information on the relations involving its objects.
We use the . notation to denote the clever fusion of two tuples, defined as
follows. Let xi ∈ Di for all i ∈ {1, . . . , n}. Let {i1, . . . , in} = {1, . . . , n} be
a set of indexes. Let (xi1 , . . . , xik) and (xik+1

, . . . , xin) be two tuples. Then,
(xi1 , . . . , xik).(xik+1

, . . . , xin) is the tuple (x1, . . . , xn).

Definition 11 (Relational scaling of an n-context). Let (C,R) be a PRCF,
Ci = (Di

1, . . . ,Di
n, Ii) an n-context in C, R the set of relations in R for which Ci

is the source and Q a set of scaling operators. We still only consider Q ⊆ {∃,∀}.
The formal context C+

i = {Di
1,Di+

2 , . . . ,Di+
n ,Di

n+1, . . . ,Di
n+m, Ii+} is defined

such that

Di+
j = Di

j ∪ {⟲j}, for all j ∈ {2, . . . , n}

Di
n+k = {⟲n+k} ∪ {qkrk.X | (qk, rk) ∈ Q×R and X ∈ T (tar(rk))}

with k ∈ {1, . . . ,m} and where ⟲i is called the link for dimension i.
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We extend the existing elements of Ii with elements from the new dimensions
Di

n+k.

Z =

{
(d1, . . . , dn, q1r1.X1, . . . , qmrm.Xm) | (d1, . . . , dn) ∈ Ii

and ∀k ∈ {1, . . . ,m},

{
rk(d1) ⊆ D1(Xk) if qk = ∀
rk(d1) ∩ D1(Xk) ̸= ∅ if qk = ∃

}
We then create new (n + 1)-tuples by bipartitioning their set of components

in every possible way and changing the elements of one of the subsets into links
for the corresponding dimensions.

Ii+ = Z ∪ {x.(⟲i1 , . . . ,⟲ik) | {i1, . . . , ik} ⊆ {2, . . . , n+m}

and ∃y ∈
k∏

l=1

Dil , x.y ∈ Z}.

We write C+ = {C+
i | Ci ∈ C}.

Less formally, the relational scaling of the n-context consists in creating a
new dimension for each quantifier and relation pair that contains elements con-
structed from concepts of the target context. Then, the whole descriptions of
objects are projected on the elements of the new dimensions iff the image of the
object by the relation satisfies the constraint of the quantifier w.r.t. the concept
used to create the element. An additional element ⟲i, called the link for dimen-
sion i, is added to each dimension except the first and all the “crosses” of I are
projected on this new element. Hence, ⟲i can be interpreted as a disjunction
over all the elements of Di and is used to link the dimensions in case a set of
objects is not described by any element Di.

Figure 7 shows the 4-context resulting from a step of this process for the
polyadic RCF described above. The new dimension corresponding to the re-
lational attributes is depicted on the bottom of the context. The layer of the
neutral element ⟲4 contains the starting 3-context. Then, the layers that corre-
spond to relational attributes are filled as described above, using the ∃ quantifier.
For instance, as (A,Am) is an element of the relation GrowsIn, and Am is in
the extent of Areas’ concept C0, the description of object A is copied on the
new layer corresponding to ∃GrC0. The lines that correspond to Root and Leaf
are copied as they are in the starting context, and the part that corresponds
to ⟲3 gets their union. Since only the object A is related via GrowsIn to an
element from C0’s extent, only object A’s description is present in this layer.
The next layer corresponds to a relation with C1’s extent. Objects C, A, and L
from Plants are related, in GrowsIn and with the quantifier ∃, to this concept.
Thus, their descriptions are copied in the layers corresponding to Root and Leaf,
and the union of their descriptions in ⟲3.

PRCA allows to find information we could read with RCA and PCA, and
to combine them to build fine-grained units of knowledge considering relation-
ships between different sets of entities (here the Plants and the Areas). The
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context discussed here can be found in Figure 7, and its concepts are listed in
Figure 8. The concept ({A,L}, {⟲2, t, ℓ}, {⟲3, root}, {⟲4,∃GrC1,∃GrC3}) shows
that Alpinia and Laphangium form the group of all plants repelling both tetrany-
chidae and locust, that they grow in area containing desert ecosystems (∃GrC3),
and while we can use their roots as repellent, we cannot use the leaves of
all of these plants for that purpose. More details about the elements of this
group can be found in more specific concepts. For instance, ({L}, {⟲2, t, ℓ}, {⟲3

, root, leaf}, {⟲4,∃GrC1,∃GrC3}) shows that Laphangium grows in areas that
have either forests, or deserts and forests as ecosystems, and that both its leaves
and roots can be used to repel tetranychidae and locust. Another concept,
({A}, {⟲2, t, ℓ}, {⟲3, root}, {⟲4,∃GrC0,∃GrC1,∃GrC2,∃GrC3}), shows that the
plant Alpinia can be found in areas with all types of ecosystems; however, only
its roots can be used to repel both tetranychidae and locust. The units of knowl-
edge built with PRCA enables to identify new type of fine-grained information
that we could not infer from using RCA and PCA separately, such as: leaf-based
repellents that work on both tetranychidae and locust can only be gathered in
areas that have either forests, or deserts and forests as ecosystems.

4 Properties of PRCA’s output

The PRCA process adds a new dimension to the context for every (quantifier,
relation) pair, at each step. This can quickly result in an overwhelming number
of dimensions. Even though we do not have tight upper bounds for the number
of n-concepts in an n-context at the time of writing, it is generally admitted that
this number quickly increases as dimensions are added [17] which could render
PRCA unusable on real data. In this section, we show that PRCA is indeed
usable as most of the concepts it produces are in a one-to-one correspondence
with the concepts of a context of the same dimensionality as the initial data. To
do this, we prove the following Theorem 1.

Theorem 1. Let C = (D1, . . . ,Dn, I) be an n-context.
Let C□ = (D1, . . . ,Dn,Dn+1, I□) be an (n+ 1)-context such that

(x1, . . . , xn, xn+1) ∈ I□ ⇒ (x1, y2, . . . , yn, xn+1) ∈ I□,∀(x1, y2, . . . , yn) ∈ I.

Let C△ = (D1,D2 ×Dn+1, . . . ,Dn ×Dn+1, I△) be an n-context such that

(x1, (x2, y2), . . . , (xn, yn)) ∈ I△ ⇔ (x1, x2, . . . , xn, yi) ∈ I□,∀i ∈ {2, . . . , n}.

We have that, if Cn+1 ̸= ∅,

(C1, . . . , Cn+1) ∈ T (C□) ⇔ (C1, C2 × Cn+1, . . . , Cn × Cn+1) ∈ T (C△).

Proof. First, we show ⇒. Let (C1, . . . , Cn+1) be a concept in T (C□). We have
that C1×...×Cn ⊆ I□ so we know that (x1, (x2, y2), . . . , (xn, yn)) ∈ I△ for all yi
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Plants1 ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C) × × × × × × × × ×
Alpinia (A) × × × × × × × × × ×

Pelagonium (P) × × × × × × × × × ×
Laphangium (L) × × × × × × × × ×

⟲3 Root Leaf
⟲4

Plants1 ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C)
Alpinia (A) × × × × × × × × × ×

Pelagonium (P)
Laphangium (L)

⟲3 Root Leaf
∃GrC0

Plants1 ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C) × × × × × × × × ×
Alpinia (A) × × × × × × × × × ×

Pelagonium (P)
Laphangium (L) × × × × × × × × ×

⟲3 Root Leaf
∃GrC1

Plants1 ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C)
Alpinia (A) × × × × × × × × × ×

Pelagonium (P) × × × × × × × × × ×
Laphangium (L)

⟲3 Root Leaf
∃GrC2

Plants1 ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C) × × × × × × × × ×
Alpinia (A) × × × × × × × × × ×

Pelagonium (P) × × × × × × × × × ×
Laphangium (L) × × × × × × × × ×

⟲3 Root Leaf
∃GrC3

Fig. 7: Context C+ extended with the relational attributes built from the concepts
of Areas.



Polyadic Relational Concept Analysis 13

(∅, {⟲2, s,m, t, l}, {⟲3, root, leaf}, {⟲4,∃GrC0, ∃GrC1, ∃GrC2,∃GrC3})
({C}, {⟲2, s,m}, {⟲3, root, leaf}, {⟲4, ∃GrC1,∃GrC3})
({A}, {⟲2,m, t, l}, {⟲3}, {⟲4, ∃GrC0,∃GrC1, ∃GrC2, ∃GrC3})
({A}, {⟲2,m, t}, {⟲3, leaf}, {⟲4, ∃GrC0, ∃GrC1,∃GrC2, ∃GrC3})
({A}, {⟲2, t, l}, {⟲3, root}, {⟲4,∃GrC0, ∃GrC1, ∃GrC2,∃GrC3})
({A}, {⟲2, t}, {⟲3, root, leaf}, {⟲4, ∃GrC0, ∃GrC1,∃GrC2, ∃GrC3})
({C,A}, {⟲2,m}, {⟲3, leaf}, {⟲4, ∃GrC1, ∃GrC3})
({P}, {⟲2, s,m, t}, {⟲3}, {⟲4, ∃GrC2, ∃GrC3})
({P}, {⟲2, s,m}, {⟲3, root}, {⟲4, ∃GrC2, ∃GrC3})
({P}, {⟲2,m}, {⟲3, root, leaf}, {⟲4, ∃GrC2, ∃GrC3})
({C,P}, {⟲2, s,m}, {⟲3, root}, {⟲4,∃GrC3})
({C,P}, {⟲2,m}, {⟲3, root, leaf}, {⟲4, ∃GrC3})
({A,P}, {⟲2}, {⟲3, root, leaf}, {⟲4, ∃GrC2,∃GrC3})
({A,P}, {⟲2,m, t}, {⟲3, leaf}, {⟲4, ∃GrC2, ∃GrC3})
({C,A, P}, {⟲2,m}, {⟲3, leaf}, {⟲4, ∃GrC3})
({L}, {⟲2, t, l}, {⟲3, root, leaf}, {⟲4, ∃GrC1,∃GrC3})
({A,L}, {⟲2, t, l}, {⟲3, root}, {⟲4,∃GrC1, ∃GrC3})
({A,L}, {⟲2, t}, {⟲3, root, leaf}, {⟲4, ∃GrC1, ∃GrC3})
({C,A,L}, {⟲2}, {⟲3, root, leaf}, {⟲4, ∃GrC1, ∃GrC3})
({A,P, L}, {⟲2, t}, {⟲3, leaf}, {⟲4, ∃GrC3})
({C,A, P, L}, {⟲2, s,m, t, l}, {⟲3, root, leaf}, ∅)
({C,A, P, L}, {⟲2}, {⟲3, root, leaf}, {⟲4,∃GrC3})
({C,A, P, L}, {⟲2, s,m, t, l}, ∅, {⟲4,∃GrC0, ∃GrC1, ∃GrC2,∃GrC3})
({C,A, P, L}, ∅, {⟲3, root, leaf}, {⟲4, ∃GrC0,∃GrC1, ∃GrC2, ∃GrC3})

Fig. 8: Concepts from Figure 7.
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such that (x1, x2, . . . , xn, yi) ∈ C1 × ...×Cn. If (C1, C2 ×Cn+1, . . . , Cn ×Cn+1)
is not a concept in T (C△), then there is a c1 ∈ C1 such that {c1} × (C2 ×
Cn+1) × · · · × (Cn × Cn+1) ⊆ I△ or there is a ci ∈ (Ci × Cn+1) such that
C1 × · · · × (Ci ×Cn+1)× · · · × (Cn ×Cn+1) ⊆ I△. In both cases, it implies that
(C1, . . . , Cn+1) is not a concept in T (C□) as it is not a maximal box. Hence,
(C1, C2 × Cn+1, . . . , Cn × Cn+1) ∈ T (C△).

Now, we show ⇐. Let (C1, (C2 × Cn+1), . . . , (Cn × Cn+1)) be a concept in
T (C△). We have that C1× (C2×Cn+1)× · · ·× (Cn×Cn+1) ⊆ I△ so C1×C2×
· · · × Cn+1 ⊆ I□. If (C1, . . . , Cn+1) is not a concept in T (C□), then there is a
ci ∈ Ci such that C1 × · · · × {ci} × · · · × Cn+1 ⊆ I□ for all i ∈ {1, . . . , n + 1}.
Then, (C1, (C2×Cn+1), . . . , (Cn×Cn+1)) is not a concept in T (C△) as it is not
a maximal box. Hence, (C1, . . . , Cn+1) ∈ T (C□).

The relational scaling of an n-context with a single (quantifier,relation) pair,
as described in Definition 11, is an instance of the (n + 1)-context C□ of the
theorem. Hence, this theorem tells us that the number of concepts produced
by PRCA is bounded by the maximal number of concepts in a context of the
same dimensionality as the initial context (plus some number of n-concepts with
empty components in the dimensions created by the process). Most importantly,
it means that PRCA produces what amounts to the elements of a concept lattice
when applied to a bidimensional context.

4.1 PRCA as a generalisation of RCA

In this section, we show that the concepts produced by PRCA when applied to
a dyadic context are the same as the ones produced by RCA (Proposition 1).
This validates PRCA as a generalisation of RCA.

Proposition 1. Let C = (D1,D2, I) be a dyadic context in a PRCF, T (C+
RCA)

the set of concepts of the context after an iteration of the RCA process and
T (C+

PRCA) the set of concepts of the context after an iteration of the PRCA
process. We have that

(X,Y, Z1, . . . , Zn) ∈ T (C+
PRCA) ⇔ (X, (Y \{⟲2})∪

n⋃
i=1

(Zi\{⟲i+2})) ∈ T (C+
RCA)

if Y,Z1, . . . , Zn ̸= ∅.

Proof. First, we show ⇒. If (X,Y, Z1, . . . , Zn) is a concept in T (C+
PRCA), then

for all x ∈ X and (y, z1, . . . , zn) ∈ Y ×Z1×· · ·×Zn, we have that (x, y, z1, . . . , zn)
is in the incidence relation I+

PRCA. From the construction of I+
PRCA, we have

that (x, y) ∈ I and, for all zi ̸=⟲i+2, either{
r(x) ∩A ̸= ∅ if zi = ∃r.(A,B)

r(x) ⊆ A if zi = ∀r.(A,B).
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Thus, (x, zi) is in I+
RCA. As a consequence, if (X, (Y \ {⟲2})∪

⋃n
i=1 Zi \ {⟲i+2})

is not a concept in T (C+
RCA), then either there is a v in D1 \ X such that

(v, y) is in I+
RCA for all y in (Y \ {⟲2}) ∪

⋃n
i=1(Zi \ {⟲i+2}), or there is a w in

((D2 \ {⟲2})∪
⋃n

i=1(D2+i \ {⟲2+i})) \ (Y ∪
⋃n

i=1 Zi) such that (x,w) is in I+
RCA

for all x ∈ X. By construction of I+
PRCA, we have that both those cases imply

that (X,Y, Z1, . . . , Zn) is not a concept in T (C+
PRCA), which contradicts our

hypothesis. Hence, (X, (Y \ {⟲2})∪
⋃n

i=1 Zi \ {⟲i+2}) is a concept in T (C+
RCA).

Now, we show ⇐. If (X, (Y \ {⟲2}) ∪
⋃n

i=1(Zi \ {⟲i+2})) is a concept in
T (C+

RCA), then for all x ∈ X and y ∈ Y \ {⟲2}, (x, y) is in I. Additionally, for
all z in

⋃n
i=1 Zi \ {⟲i+2}, either

{
r(x) ∩A ̸= ∅ if z = ∃r.(A,B)

r(x) ⊆ A if z = ∀r.(A,B)
.

Hence, by construction of I+
PRCA, X × Y × Z1 × · · · × Zn ⊆ I+

PRCA. Then, if
(X,Y, Z1, . . . , Zn) is not a concept in T (C+

PRCA), it means either that there is a
v in D1\X such that {v}×Y ×Z1×· · ·×Zn ⊆ I+

PRCA, that there is a w in D2\Y
such that X × {w} × Z1 × · · · × Zn ⊆ I+

PRCA, or that there is a zi in Di+2 \ Zi

such that X × Y × Z1 × · · · × {zi} × · · · × Zn ⊆ I+
PRCA. All three cases imply

that (X, (Y \ {⟲2}) ∪
⋃n

i=1(Zi \ {⟲i+2})) is not a concept in T (C+
RCA), which

contradicts our hypothesis. Thus, (X,Y, Z1, . . . , Zn) is a concept in T (C+
PRCA).

⊓⊔

Proposition 1 shows that the knowledge generated by applying PRCA on a
dyadic context or RCA is fundamentally the same, albeit through a reframing
of the relational attributes as new dimensions.

We now provide an example of the application of PRCA, as described in
Section 3, on the dyadic context depicted in Figure 2. The first step gives the
same concept lattices as in Figure 3. The context Plants is then extended with
a new dimension that contains the following elements

{⟲3,∃GrowsInC0,∃GrowsInC1,∃GrowsInC2,∃GrowsInC3},

while its second dimension is extended with ⟲2.

The incidence relation is built from the Plants context, by reporting the
description of the objects on the corresponding layers: first in the layer corre-
sponding to ⟲3 and then in the layers that correspond to concepts related to
each object via the quantifier.

Let us list the concepts from the 3-context in Figure 9:
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Plants+ ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ ⟲2 s m t ℓ

Citrus (C) × × × × × × × × ×
Alpinia (A) × × × × × × × × × × × × × × ×

Pelargonium (P) × × × × × × × × ×
Laphangium (L) × × × × × × × × ×

⟲3 ∃GrC0 ∃GrC1 ∃GrC2 ∃GrC3

Fig. 9: Our starting dyadic context is extended with a new dimension that con-
tains its relational attributes.

(∅, {⟲2, s,m, t, ℓ}, {⟲3,∃GrowsInC0,∃GrowsInC1,∃GrowsInC2,∃GrowsInC3})
({A}, {⟲2, t, ℓ}, {⟲3,∃GrowsInC0,∃GrowsInC1,∃GrowsInC2,∃GrowsInC3})
({C}, {⟲2, s,m}, {⟲3,∃GrowsInC1,∃GrowsInC3})
({P}, {⟲2,m, t}, {⟲3,∃GrowsInC2,∃GrowsInC3})
({A,P}, {⟲2, t}, {⟲3,∃GrowsInC2,∃GrowsInC3})
({C,P}, {⟲2,m}, {⟲3,∃GrowsInC3})
({A,L}, {⟲2, t, ℓ}, {⟲3,∃GrowsInC1,∃GrowsInC3})
({C,A,L}, {⟲2}, {⟲3,∃GrowsInC1,∃GrowsInC3})
({A,P, L}, {⟲2, t}, {⟲3,∃GrowsInC3})
({C,A, P, L}, {⟲2}, {⟲3,∃GrowsInC3})
({C,A, P, L}, ∅, {⟲3,∃GrowsInC0,∃GrowsInC1,∃GrowsInC2,∃GrowsInC3})
({C,A, P, L}, {⟲2, s,m, t, ℓ}, ∅)

Let us consider the concept ({A,P}{⟲2, t}, {⟲3,∃GrowsInC2,∃GrowsInC3})
from Figure 9. It provides the same information as the equivalent RCA concept
({A,P}, {t,∃GrowsInC2,∃GrowsInC3}) (see Figure 5). More generally, the RCA
concepts can be obtained from the PRCA concepts by removing the elements ⟲i

and merging the last two components. The concepts that contain empty sets in
any component except for the first one, such as ({C,A, P, L}, {⟲2, s,m, t, ℓ}, ∅),
do not correspond to RCA concepts. Thus, one can check that the mapping
described in Proposition 1 holds.

5 Discussion and Conclusion

Our proposed framework extends RCA to polyadic contexts. As such, it inherits
the drawbacks of both relational and polyadic concept analysis. At each step,
many new elements are created so dimensions can be big. As the number of n-
concepts grows quickly with the size of the n-context, the size of the output can
become overwhelming. In addition to that, efficient graphical representations of
n-lattices are still open questions so human interpretation of the output of PRCA
can be difficult. It would be interesting, as a future work, to study algorithms for
the interactive exploration of the n-lattice in line with those that exist for the
dyadic case [18]. However, the notion of neighbours of an n-concept in an n-lattice
is blurrier than in traditional lattices so the generalisation of such algorithms is
not straightforward.

The use cases for our methods are as wide as are RCA’s. It can be used
in place of RCA in dyadic relational datasets, and can take into account the
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eventual ternary or n-ary context in those datasets. These applications can be
as diverse as plants datasets [19] or families of RDF datasets.

Lastly, allowing n-ary relations in contexts is a step forward but, in our
framework, relations between objects of different contexts are still binary. As
these relations can also be n-ary in real datasets (or just in real life), it would be
interesting to improve the framework to take such relations into consideration.
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