Maciej Doł Ęga

AND Thomas Gerber
email: thomas.gerber@epfl.ch

Jacinta Torres
email: jtorres@impan.pl

A POSITIVE COMBINATORIAL FORMULA FOR SYMPLECTIC KOSTKA-FOULKES POLYNOMIALS I: ROWS

Keywords: combinatorial representation theory, Kostka-Foulkes polynomials, Lecouvey's conjecture, charge, type C

We prove a conjecture of Lecouvey, which proposes a closed, positive combinatorial formula for symplectic Kostka-Foulkes polynomials, in the case of rows of arbitrary weight. To show this, we construct a new algorithm for computing cocyclage in terms of which the conjecture is described. Our algorithm is free of local constraints, which were the main obstacle in Lecouvey's original construction. In particular, we show that our model is governed by the situation in type A. This approach works for arbitrary weight and we expect it to lead to a proof of the conjecture in full generality.

INTRODUCTION

The main motivation for this work is understanding an interplay between combinatorics and representation theory which is highly manifested in the structure of so-called Kostka-Foulkes polynomials. Let g be a complex, simple Lie algebra of rank n. Kostka-Foulkes polynomials K λ,µ (q) are defined for two dominant integral weights as the transition coefficients between two important bases of the ring of symmetric functions in the variables x = (x 1 , ..., x n) over Q(q): Hall-Littlewood polynomials P λ (x; q) and Weyl characters χ µ (x). They are q-analogues of weight multiplicities [START_REF] Kato | Spherical functions and a q-analogue of Kostant's weight multiplicity formula[END_REF], affine Kazhdan-Lusztig polynomials [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on singular spaces[END_REF][START_REF] Kato | Spherical functions and a q-analogue of Kostant's weight multiplicity formula[END_REF], and appear in various other situations in geometric and combinatorial representation theory (see [START_REF] Brylinski | Limits of weight spaces, Lusztig's q-analogs, and fiberings of adjoint orbits[END_REF]JLZ00] and references therein). We refer the reader to Section 3.1 for a precise definition of Kostka-Foulkes polynomials and recommend [NR03] as a thorough reference.

Due to their interpretation as Kazhdan-Lusztig polynomials, we know that Kostka-Foulkes polynomials have nonnegative integer coefficients. This fact leads to one of the most important unsolved problems in combinatorial representation theory: Problem 1.1. Find a set T (λ, µ) and a combinatorial statistic ch : T (λ, µ) → Z ≥0 such that the Kostka-Foulkes polynomial K λ,µ (q) is the generating function of T (λ, µ) with respect to ch. In other terms find T (λ, µ) and ch such that K λ,µ (q) = T ∈T (λ,µ) q ch(T) .

(1.1) Since K λ,µ (q) is a q-deformation of weight multiplicities then #T (λ, µ) = K λ,µ (1) is the dimension of the µ-weight space of the irreducible, finite dimensional g-module of highest weight λ. In particular, in order to tackle Problem 1.1 and find an appropriate set T (λ, µ), it seems natural to seek for an object which parametrizes the aforementioned µ-weight space of the irreducible, finite dimensional g-module of highest weight λ. This approach turned out to be very succesful in type A n-1 , that is when g = sl(n, C). In this case dominant integral weights are identified with partitions of at most n -1 parts, and a natural candidate for T (λ, µ) is the set SSYT(λ, µ) of semistandard Young tableaux of shape λ and weight µ. In this context, Foulkes conjectured the existence of such a statistic [Fou74], which was explicitly found by Lascoux and Schützenberger [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF]. They called their statistic charge (which explains our abbreviation ch used also in the general context of arbitrary type) and established the celebrated formula of Problem 1.1 in type A n-1 . Let us briefly describe this statistic. We start by defining the charge statistic ch on standard words in the alphabet A n = {1, ..., n}, that is words where each i ∈ A n appears exactly once. Standard words are naturally identified with permutations by setting w = σ(1) • • • σ(n), where σ ∈ S(n) is a permutation. We define ch(w) -the charge of w -recursively:

(1) set c(1) = 0, (2) for r ≥ 2, define c(r) = c(r -1) if σ -1 (r) < σ -1 (r -1), and c(r) = c(r -1) + 1 otherwise, (3) set ch(w) = n i=1 c(i). Let w be a word in the alphabet A n such that the number of occurrences of i + 1 in this word is less or equal to the number of occurrences of i for each i + 1 ∈ A n . For such a word, we can extract its standard subwords w 1 , ..., w m as follows: the first subword w 1 of w is obtained by selecting the rightmost 1 in w, then the rightmost 2 appearing to the left of the selected 1, and so on until there is no k + 1 to the left of the current value k being selected. At this point, we select the rightmost k + 1 in w and continue with the previous process until the largest value appearing in w is reached. The subword w 1 is obtained by erasing all the letters from w that were not selected and we proceed by selecting w 2 by the same procedure performed on the word consisting of the letters that were not selected so far. We continue, until no letters are left. Finally, we will define ch(w) by setting ch(w) = m i=1 ch(w i). One can show that ch is constant on Knuth equivalent words (see [But94, Proposition 2.4.21]), which allows to define ch as a statistic on semistandard Young tableaux with partition weight. In practice, if T ∈ SSYT(λ, µ) is a semistandard Young tableau of shape λ and weight µ, one may define ch(T) as ch(w(T)), where w(T) is its south-western row word 1 Example 1.2. Let T = 1 1 1 2 3 2 2 4 3 5

. The south-western row word w(T) of T is 3522411123.

From it we may extract the subwords w 1 = 35241, obtained as 3 52 2 411 123 (we mark selected letters by a hat), w 2 = 213, obtained as 21 12 3, which finally gives w 3 = 12. Their charges are ch(w 1) = 2, ch(w 2) = 1 and ch(w 3) = 1, respectively. Therefore ch(T) = ch(3522411123) = 2 + 1 + 1 = 4.

A thorough introduction to Kostka-Foulkes polynomials in type A n-1 and the charge statistic from a purely combinatorial point of view is carried out in [Mac95]. We refer the reader to [But94] for a beautiful exposition and proof of (1.1), which makes use of a recursive formula for computing Kostka-Foulkes polynomials due to Morris [Mor63]. The aforementioned recursive formula, in turn, is deduced from a formula for Hall-Littlewood polynomials discovered by Littlewood [Lit61]. It is worth mentioning here that there are various generalizations of Problem 1.1 in type A leading to many open problems, see [Mac88, LLT97, Hai01, LLM03, GH07, Doł19] among others.

In this work, we focus on Problem 1.1 for type C n , that is, in case of the symplectic Lie algebra g = sp(2n, C). To the best of our knowledge this is the only case of Problem 1.1 having an explicit conjectural solution, which was formulated by Lecouvey in [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]. In this case, the dominant integral weights λ, µ can again be identified with partitions of at most n parts, however there are several natural combinatorial candidates for the set T (λ, µ) such as King tableaux [START_REF] King | Weight multiplicities for the classical groups, Group theoretical methods in physics[END_REF], De Concini tableaux [DC79] or Kashiwara-Nakashima tableaux [KN94] that we also call symplectic tableaux. The last model denoted SympTab n (λ, µ) will be of particular importance in this paper as Lecouvey's conjecture is formulated in terms of symplectic tableaux. These are defined to be semistandard Young tableaux with some additional constraints (see Section 3.2 and [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]) and entries in the ordered alphabet

C n = {n < • • • < 1 < 1 < • • • < n},
such that the shape of a tableau is given by λ and its weight by µ. Here, the weight of a tableau with entries in C n is defined slightly differently than the weight of a tableau of type A n-1 and is given by the vector (a n , ..., a 1), where a i is the difference between the number of occurrences of i's and i's in T . Lecouvey defined a charge statistic ch n : SympTab n (λ, µ) → Z ≥n by analogy to the situation in type A n-1 . Before we describe Lecouvey's construction, which might seem quite technical, let us first recall this specific situation in type A n-1 to motivate the reader 2 . The idea is that there is a procedure, known as cocyclage and denoted CoCyc A , whose successive applications to any semistandard Young tableau yield a tableau whose weight is equal to its shape, see Section 2.5 for details. This defines a poset structure on the set of semistandard Young tableaux: T → T whenever T = CoCyc A (T). It is readily shown that whenever T → T then ch(T) = ch(T) -1. Moreover, one easily checks that if the shape and the weight of T coincide, then ch(T) = 0, therefore ch(T) = k where k ≥ 0 is the smallest integer such that CoCyc k A (T) has weight equal to its shape. This way, we can compute charge without referring to the standard subwords. In Proposition 2.19 we show that the cocyclage poset in type A carries an additional structure in terms of unimodal compositions. This structure is "lifted" to type C, as is outlined in Section 1.1 below.

Before we describe Lecouvey's conjectural solution to Problem 1.1 involving cocyclage it is worth mentioning already proposed partial solutions to Problem 1.1 in type C n . In [START_REF]Combinatorics of crystal graphs and Kostka-Foulkes polynomials for the root systems B n , C n and D n[END_REF] Lecouvey defined a certain statistic on the set of Kashiwara-Nakashima tableaux SympTab n (λ, µ) and he showed that for some special pairs (λ, µ) his statistic indeed gives the correct answer for Problem 1.1. However, he also showed that in general, his statistic does not give the correct answer for this problem. On the other hand the solution in the weight zero case has been given recently in [LL18, Theorem 6.13], using the aforementioned 2

The cocyclage described here is the one used in Lecouvey's paper [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]. Note that there are some other variants, see for instance [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF]But94,[START_REF] Lothaire | Algebraic combinatorics on words[END_REF]. combinatorial model of T (λ, µ) called King tableaux. Their result relies on an interpretation of Kostka-Foulkes polynomials in terms of generalized exponents which holds in this special case of weight zero. Notably, their formula relies in a deciding way on a formula for generalized exponents in terms of branching multiplicities, and their methods suggest explicit ways in which several branching rules [Sun90, Kwo18, ST18] could be related to each other.

1.1. Main result and methodology. In order to define the statistic ch n : SympTab n (λ, µ) → N and formulate his conjecture, Lecouvey proceeded by analogy to the situation in type A n-1 described above. He used a symplectic version of column insertion, which he introduced in [Lec02], to define a symplectic cocyclage operation CoCyc C which transforms a symplectic tableau T ∈ SympTab n into a symplectic tableau CoCyc C (T) ∈ SympTab m for m ≥ n. The statistic ch n is defined as follows. Let T ∈ SympTab n be a symplectic tableau. In [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF], Lecouvey showed that there exists a non-negative integer m such that CoCyc m C (T) is a column C(T) of weight zero. We denote by m(T) the smallest non-negative integer with this property. For a symplectic column C of weight zero we set

E C = {i ≥ 1|i ∈ C, i + 1 / ∈ C}. The charge of C is defined by ch n (C) = 2 i∈E C (n -i),
and the charge of an arbitrary symplectic tableau T is defined by

ch n (T) = m(T) + ch n (C(T)).
Lecouvey [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF] conjectured the following solution of Problem 1.1 in type C n : Conjecture 1.3. Let µ, λ be partitions with at most n parts. Then

K Cn λ,µ (q) = T ∈SympTab n (λ,µ)
q chn(T) . (1.2) Our main result reads as follows.

Theorem 1.4. Let λ = (p) and µ = (µ n , . . . , µ 1) be an arbitrary partition. Then Conjecture 1.3 holds true:

K Cn λ,µ (q) = T ∈SympTab n (λ,µ)
q chn(T) .

A pivotal point in our methodology, and one which we expect will have impact on the study of the general case of Conjecture 1.3, is a reformulation of Lecouvey's construction in the setting of Theorem 1.4 by providing a new algorithm to compute CoCyc k C (T) for arbitrary integer k. The big advantage of our approach is that in Algorithm 2, which completes this task, we are able to eliminate local constraints which appear in the original construction in two different contexts:

• we need to compute CoCyc k-1 C (T) in order to compute CoCyc k C (T); • for each column of CoCyc k-1 C (T), we need to insert boxes recursively into consecutive subcolumns of size 2.

In order to free ourselves from the second constraint we give a formula for inserting an entry into a whole column at once, which is given by Proposition 3.3. Although more technical in appearance, our new definition allows us to have a full grasp of the symplectic cocyclage procedure. We show in Theorem 4.12 that for a partition λ = (p) which consists of one row and for an arbitrary partition µ the symplectic tableau CoCyc k C (T), where T ∈ SympTab n (λ, µ), is given by Algorithm 2. The main philosophy of Algorithm 2 is that in order to compute CoCyc k C (T), it is enough to only apply CoCyc A to certain standard Young tableaux and then apply a very simple function which changes the entries of the outcome.

As an application, we are able to compute ch n (T) directly from T and, using simple recurrence for Hall-Littlewood polynomials of type C n proved by Lecouvey in [Lec05, Theorem 3.2.1.], we deduce Theorem 1.4. We believe that our strategy might lead us to the solution of Conjecture 1.3 in full generality. Indeed, the restriction λ = (p) is due to the fact that symplectic tableaux of row shape coincide with semistandard tableaux with entries in the alphabet C n (see Proposition-Definition 3.1). In particular, there exists a unique standard tableau of shape (p), and Algorithm 2 consists in applying CoCyc A multiple times to this unique tableau. It seems likely that in the more general case there exists a "right" labelling of the boxes of any symplectic tableau T of arbitrary shape, such that a very similar procedure could be followed to compute CoCyc k C (T) and therefore ch n . So far, this question remains open and we will be investigating this in the future. 1.2. Organization of the paper. In Section 2 we introduce all the necessary combinatorial preliminaries to follow the rest of the paper. Moreover, in Proposition 2.19, we show that the cocyclage in type A n-1 carries an extra structure in terms of unimodal compositions. In Section 3, we introduce necessary combinatorics in type C n , including the original definition of insertion and its non-recursive form given by Proposition 3.3. We also present the cocyclage algortithm of Lecouvey, the definition of the charge statistic on symplectic tableaux, and state his conjectural positive formula for symplectic Kostka-Foulkes polynomials. In Section 4 we describe Algorithm 2 producing a certain tableau which we show coincides with the tableau obtained from a row tableau by performing the cocyclage operation k times. We conclude this section by proving Lecouvey's conjecture for λ = (p) and arbitrary µ in Section 4.4, which follows from our algorithmic description. Since the proof of our description of the cocyclage in type C is the most technically involved part of the paper, we present it in a separate Section 5.

PRELIMINARIES

2.1. Tableaux. A composition α l of size l ∈ Z ≥0 is a sequence of non-negative integers α = (α 1 , α 2 , . . .) ∈ Z Z >0 ≥0 such that i α i = l and such that α i = 0 implies that α i+1 = 0 for any i ∈ Z >0 . In particular, there are only finitely many non-zero α i and we denote their number by (α) calling it the length of the composition α. We will also use the notation |α| = l. We denote the set of compositions of size n by Comp l , and we set Comp = l Comp l . For any positive integer i ∈ Z >0 and for any composition α ∈ Comp l we define a new composition α -i as follows:

α -i = α if α j = i for all j ∈ Z >0 ; (α 1 , . . . , α j-1 , α j+1 , . . .) where j = min{k : α k = i}.

For convenience we denote the unique composition (0, 0, . . .) of size 0 by 0. To any α ∈ Comp l we associate its diagram defined by:

D α = {(i, j) : 1 ≤ i ≤ α -j , j ≤ -1} ⊂ Z >0 × Z <0 .
The elements of D α , referred to and denoted as boxes, are linearly ordered by the socalled natural order, starting from the north-western box and reading boxes row by row from left to right. Formally, this is the following variant of the lexicographic order:

(i 1 , j 1) ≤ (i 2 , j 2) ⇐⇒ j 1 > j 2 or j 1 = j 2 , i 1 ≤ i 2 . For c ∈ [1, |α|]
we denote the c-th box of D α in natural order by c , or by c when it does not lead to confusion.

Example 2.1. Let α = (3, 1, 2) ∈ Comp 6 . The set of boxes defined by D α is pictured below, where each (i, j) ∈ D α lies in its corresponding box.

(1,-1) (2,-1) (3,-1)

(1,-2) (1,-3) (2,-3)
The elements of D α are ordered with respect to the natural order as:

(1, -1) < (2, -1) < (3, -1) < (1, -2) < (1, -3) < (2, -3).

We will sometimes identify α and D α .

Let (A, ≺) be a linearly ordered alphabet with minimal element a. For any composition α l we define a tableau T of shape α and entries in A to be a filling of the boxes of the diagram of α by elements from alphabet A. Formally, T is a function

T : D α → A.
The content of a tableau T of shape α is the multiset of its entries. When A is a countable ascending chain (with minimal element a), we say that a tableau has weight β = (β 1 , β 2 , . . .) when its content is given by the multiset

{a β 1 , (a+) β 2 , . . . , (a+ k) β k+1 , . . . },
where a+ denotes the successor of a, and a+ k+1 = a + k + . We call a tableau semistandard if for any pair of boxes lying in the same row the content of the left box is smaller than or equal to the content of the right box, and such that for any pair of boxes lying in the same column the content of the upper box is smaller than the content of the lower box, that is such that T (i, j) ≤ T (i + 1, j) and T (i, j) < T (i, j -1). We call a tableau standard if it is semistandard of weight β which is a column, that is, β = (1, 1, . . . , 1). Definition 2.2. We call a tableau natural if it is semistandard and if it has the property that for boxes a ≤ b in the natural order T (a) ≤ T (b). , that is, T ((1, -1)) = a = T ((2, -1)), T ((3, -1)) = b = T ((1, -2)), and T ((1, -3)) = c = T ((2, -3)). Then T is a semistandard, natural tableau of shape α with entries in A and weight (2, 2, 2).

We are particularly interested in compositions with some additional properties. We call a composition α unimodal if it is unimodal as a sequence, that is there exists j ∈ Z >0 such that

α 1 ≤ • • • ≤ α j ≥ α j+1 ≥ • • • .
A partition is a composition with non-increasing elements (in particular, partitions are unimodal). Its diagram is called a Young diagram. A partition λ of size l is denoted by λ l. We denote the set of partitions of size l by Part l and Part = l Part l . Finally we denote the set of tableaux (semistandard and standard tableaux, respectively) of shape α and weight β by Tab A (α, β) (SSTab A (α, β), STab A (α), respectively) and we denote by Tab l (A), SSTab l (A), STab l (A), (YTab l (A), SSYTab l (A), SYTab l (A),, respectively) the set of tableaux, semistandard tableaux, standard tableaux (Young tableaux, semistandard Young tableaux, standard Young tableaux, respectively) of size l, that is

Tab l (A) = α,β l Tab A (α, β), YTab l (A) = λ l,β l Tab A (λ, β), SSTab l (A) = α,β l SSTab A (α, β), SSYTab l (A) = λ l,β l SSYTab A (λ, β), STab l (A) = α l STab A (α), SYTab l (A) = λ l
SYTab A (λ).

We will drop the index l to denote the corresponding union over all positive integers l. Moreover, when the alphabet is clear from the context, we will drop A in these notations.

D α = {(1, -1), (1, -2), (3/2, -2), (5/2, -2), (3, -2)} ,
which is represented by .

In turn, an augmented tableau T is the filling of a diagram of an augmented composition by elements of A. Formally, T is a function D (α,b) → A. An augmented tableau T of shape (α, b) induces two regular tableaux T -and T + of shape α defined by

T -: D α → A c → T (c) if c = b T (b -) if c = b T + : D α → A c → T (c) if c = b T (b +) if c = b
Remark 2.5. The augmented tableau T is determined by the tableau T + , the box b and the entry

j ∈ A such that T (b -) = T -(b) = j.
We represent the augmented tableau T by the tableau T -(or equivalently T +) in which we replace box b by the split box j i , where j is as in Remark 2.5.

For any (augmented) tableau T , we will denote its shape by shape(T) ∈ Comp ∪ Comp + . For a composition α l, we denote Tab + A (α) the set of augmented tableaux of shape α + for some augmentation α + of α and weight β l + 1, and we call l the size of T ∈ Tab + (α). As before, we will denote the set of all augmented tableaux of size l by

Tab + l (A) = α l
Tab + A (α).

Gravity.

Reordering the parts of a composition α l gives a partition λ l. Note that λ can be also seen as the result of lifting all the boxes in each column of α so that after the lift, the boxes in the given column are lying in consecutive rows starting from the first row.

For this reason, we denote by grav the map Comp l → Part l , α → λ and call it the gravity map. This description induces a map Tab l → YTab l on tableaux, which restricts to a map SSTab(α, β) → SSYTab(grav(α), β) and which we denote by the same symbol.

Example 2.6. We have grav

  1 2 3 4 4 5 6 5   = 1 3 5 6 2 4 4 5 . 2.4. Shifting. Let l ∈ Z ≥0 and define shift : Comp l → Comp l as follows shift(α) = α if α = (1 l , 0, . . .) for some l ∈ Z ≥0 ; α -e i + e i+1 otherwise;
where e i = (0, . . . , 0 i -1 times , 1, 0 . . .) and i = min{j | α j = max k α k }. Geometrically, it can be interpreted as removing the rightmost upper box from a diagram α and adding a box at the end of the next row. Note that shift clearly preserves the subset of unimodal compositions.

Example 2.7. Let α = . We have shift(α) = .

The shift operator induces a map on natural tableaux (see Definition 2.2): given a natural tableau T of shape α, shift(T) is the unique natural tableau of shape shift(α) and same entries as T .

Example 2.8. Take A = {1, 2, 3, 4} and let T =

1 2 2 3 4 . We have shift(T) = 1 2 2 3 4
.

Given a composition α and a partition µ, we are interested in the following algorithm, which will produce a new composition. We will apply the shift operator to α, unless the maximum size of its parts is equal to µ 1 . If this comes to be the case, we remove the first part of size µ 1 from α, and we update µ by removing µ 1 from it. We repeat this procedure until the largest part of α and µ are different. This step of the procedure is formally described by Algorithm 1. In Lemma 2.12 we show that this algorithm in fact terminates. We think of our algorithm as repeated application of a weighted shift operation.

Example 2.9. Let α = (3, 2, 1) and µ = (2, 2). We first apply shift two times:

shift 2 = shift =
, which is the minimal number of shifts of α to obtain a composition whose maximum part is equal to 2 = µ 1 . At this step we remove the first part of shift 2 (α), which is the first part of size 2, to obtain , and we update µ = (2). Since the largest parts of α and µ are still equal, we remove them again to obtain α = (2) and µ = ∅. This part of the algorithm corresponds to simp(shift 2 (α), µ) given by Algorithm 1. We can now apply shift to α to obtain shift = , which finishes our algorithm since columns are by definition fixed points for shift. Therefore our algorithm terminates after 3 applications of the weighted shift operator.

We now give a formal definition of our algorithm. We first define the operator

simp : Comp × Part → Comp × Part
recursively as follows.

Algorithm 1 Defining simp(α, µ).

Input: A partition µ and a composition α.

Output: A pair (β, ν) ∈ Comp × Part. β = α ν = µ while max β k = ν 1 do ν = ν \ ν 1 β = β \ max β k end while
Note that simp corresponds to a succesive removal of the largest parts in α and µ until they are different. Now, each step of our weighted shift algorithm may be described by the operator:

wshift(α, µ) = (shift(α), µ) if (α, µ) = simp(α, µ); shift simp(α, µ) 1 , simp(α, µ) 2 otherwise;
where simp(α, µ) i denotes the i-th coordinate of simp(α, µ).

Remark 2.10. Note that wshift(α, 0) = (shift(α), 0).

As in the case of shift, the map wshift induces a map on the set of tableaux whose weight is a partition, which we denote by the same symbol. More precisely, if α is the shape of T and µ its weight, the shape of wshift(T) is wshift(α, µ) 1 and the weight of wshift(T) is wshift(α, µ) 2 .

Example 2.11. Take A = {1, 2, 3, 4} and T =

1 1 1 2 2 3 4
, so that α = (3, 3, 1) and µ = (3, 2, 1, 1). Then wshift(T) =

1 1 2 3 .
Lemma 2.12. For any pair (α, µ) ∈ Comp × Part there exists an integer m and a partition ν such that wshift m (α, µ) = ((1 l), ν) and is a fixed point of wshift (for some l ≥ 0), that is ν 1 = 1.

Proof. We define some variation of the lexicographic order ≥ lex on Comp × Part as follows:

(α, µ) > (β, ν) if and only if µ ≥ lex ν and max k α k > max k β k or max k α k = max k β k = s and min{j : α j = s} < min{j : β j = s}. Now, notice that -for any pair (α, µ) ∈ Comp × Part, we have (α, µ) > wshift(α, µ) or wshift(α, µ) = (α, µ); -for any pair (α, µ) ∈ Comp × Part, we have | wshift(α, µ)| ≤ |(α, µ)|, where |(α, µ)| = |α| + |µ|. In particular the set {wshift k (α, µ) : k ∈ Z ≥0 } is finite, and there exists k ∈ Z ≥0 such that wshift k+1 (α, µ) = wshift k (α, µ).
But the only fixpoints of wshift are of the form ((1 l), ν) for some l ≤ |α| and ν 1 = 1, which follows immediately from the definition of wshift. The proof is concluded.

We define

(2.1) m µ (α) = min{m| wshift m+1 (α, µ) = wshift m (α, µ)}.
Corollary 2.13. In the special case α = (p), |µ| ≤ p we have

m µ (α) = i (i -1)µ i + (p -|µ|)(p -|µ| + 2 (µ) -1) 2 .
Proof. In order to compute m µ (α), we need to shift the diagram (p) as many times as we need to obtain a column shape, remembering that whenever we obtain a shape β such that µ i = max k β k , we erase the longest row (which we call reduction) and then we apply shift operator to a new shape. In this case, this longest row is the first row of β, which is a direct consequence of the proof of Lemma 2.12. Consider a tableau of shape α filled by numbers in a way that all the entries in i-th row are i -1. Notice that the difference between the sum of the contents of this tableau of shape shift α and the sum of the contents of this tableau of shape α is equal to 1. In particular, since we were erasing (during reduction) rows of length µ i filled by i -1, we obtain at the end a column of length p -|µ| filled by consecutive entries starting from (µ) (we performed reduction precisely (µ) times). Therefore

m µ (α) = i (i -1)µ i + 1≤i≤p-|µ| ((µ) + i -1) = i (i -1)µ i + p -|µ| + (µ) 2 - (µ) 2 = i (i -1)µ i + (p -|µ|)(p -|µ| + 2 (µ) -1) 2 .
Finally, define a local shift operator

locshift : Comp + l ∪ Comp l → Comp + l ∪ Comp l+1
by shifting the split box, if it exists, onto the next column if there is a next column (hence preserving the augmented shape), and by replacing the split box by a normal box and putting another box to its right otherwise. For a composition α ∈ Comp l , we define locshift(α) as the augmented composition obtained by removing the rightmost upper box from the diagram of α and by splitting the first box in the next row.

Lemma 2.14. Let α ∈ Comp l be a unimodal composition, let j = min{i | α i = max k α k } and r = α j+1 . Then

shift(α) = locshift r+1 (α).
Proof. By definition, locshift(α) is an augmentation of α-e j , where e j = (0, . . . , 0

j -1 times
, 1, 0 . . .)

and j = min{i | α i = max k α k }.
Then the augmented boxes of locshift r (α) will lie precisely in the last column and in row j + 1. Therefore

locshift r+1 (α) = α -e j + e j+1 = shift(α), as desired. Example 2.15. locshift 3 = locshift 2 = locshift = .
Just as is the case of shift, the map locshift naturally induces a map on augmented natural tableaux, which we denote by the same symbol.

Cocyclage in type

A n-1 . The north-eastern column word w(T) of a tableau T is obtained from T by reading its entries, column-wise, from right to left and top to bottom. In the rest of this section, fix n ∈ Z ≥0 and consider the type A n-1 alphabet A n = {1, . . . , n}.

Following [START_REF] Lascoux | Sur une conjecture de H. O. Foulkes[END_REF], we define the cocyclage of semistandard Young tableau as follows. Let T be a semistandard Young tableau such that no letter of A n appears in all columns. In this case, we say that the cocyclage is authorized for T . We set CoCyc A (T) = x → T , where T is the unique semistandard Young tableau such that w(T) ≡ u and w(T) = xu for a word u and a letter x = 1, and where ≡ is the congruence relation generated by the plactic relations, see [START_REF] Lothaire | Algebraic combinatorics on words[END_REF], and * → U is the column Schensted insertion of the letter * ∈ A into the semistandard Young tableau U .

Example 2.16. Let n = 5 and T = 1 1 2 3 5 4

. Then w(T) = 215134, so we take u = 15134 and x = 2. We have that u = w(T) where T =

1 1 3 5 4
, hence the cocyclage of T is the tableau

CoCyc A (T) = 2 → T = 1 1 5 2 3 4
. Now we can define cocyclage more generally. Let T be a semistandard Young tableau whose weight is not equal to its shape. If there is a letter of A n contained in every column of T , we say that the cocyclage is not authorized for T , and we define the reduction of T to be the tableau red(T) obtained by deleting (recursively for every such), all occurences of and replacing all i > by i -1. Then the cocyclage is authorized for red(T) and we define CoCyc A (T) = CoCyc A (red(T)).

Example 2.17. The cocyclage is not authorized for the tableau T = 1 1 1 2 2 3 4

. We compute

red(T) = 1 1 2 3 and we get CoCyc A (T) = CoCyc A (red(T)) = 1 1 2 3 .
Remark 2.18. Let λ, µ be two partitions of the same size, and let T ∈ SSYTab(λ, µ).

Note that simp has the following interpretation: simp(λ, µ) 1 is the shape of red(T) and simp(λ, µ) 2 is its weight (see Algorithm 1).

A quick comparison of Example 2.17 and Example 2.11 suggests that wshift corresponds to CoCyc A . This is indeed the case for natural tableaux (modulo gravity). Although the proof is easy, it seems that this simple description of cocyclage was overlooked in the literature. Moreover, it will link the cocylage in type A with the cocyclage in type C as we will show in Section 4 (see also Remark 4.8 and Remark 4.15).

Proposition 2.19. Let T be a natural tableau T ∈ SSTab(α, µ) where α is a unimodal composition and µ a partition. Then

CoCyc A (grav(T)) = grav(wshift(T)).

Proof. First assume that the cocyclage is authorized for T . Let a , a+1 be consecutive boxes in D α with respect to the natural order, with k = T (a), = T (a+1). Let C be the column of T containing a+1 and let C = grav C . Then

k → C = D ,
where D is obtained from C by replacing the entry T (a+1) = by k. Since this property only depends on the relative position of the entries in T , it follows by induction on the number of columns that grav(locshift r+1 (T)) = CoCyc A (grav(T)).

where r = α j+1 and j = min{i | α i = max k α k }. By Lemma 2.14 we have locshift r+1 (T) = shift(T), which yields CoCyc A (grav(T)) = grav(shift(T)). Now, since cocyclage is authorized for T , this means that we do not have to use reduction, and therefore by Remark 2.18 we simply have wshift(T) = shift(T). This finishes the proof in this case. Assume now that the cocyclage is not authorized for T . Then there exists some letter ∈ A n appearing in each column of T . We have max α k = µ , since the same number can only appear once in each column (since T is semistandard). Since µ is a partition, this implies µ 1 = ... = µ and α 1 = . . . = α = µ = max α k . Therefore, since α is unimodal, α is a partition. This gives

LECOUVEY'S CONJECTURE, SYMPLECTIC INSERTION AND COCYCLAGE

3.1. Kostka-Foulkes polynomials. Let Φ be a finite, reduced root system and Φ + ⊂ Φ a choice of positive roots. We denote by W the corresponding Weyl group. Similarly, let Λ be the integral weight lattice and Λ + its dominant part. Let Z[Λ] = Span Z {e λ : λ ∈ Λ} denote the group ring of Λ. We denote by : Z[Λ] → Z[Λ] the skew-symmetrizing operator, that is

(f) = w∈W (-1) (w) w(f),
where f ∈ Z[Λ]. We also recall the the definition of the Weyl character:

χ(λ) = (e λ+ρ) (e ρ) ,
where λ ∈ Λ + is dominant and ρ = 1 2 α∈Φ + α. This is the character of an irreducible gmodule of highest weight λ, where g is the complex semisimple Lie algebra associated with Φ. The Hall-Littlewood polynomial P λ (q) is a one-parameter deformation between Weyl characters and orbit sums m(λ) = |W λ | -1 w∈W e w(λ) , where W λ < W is the stabilizer of λ. Indeed,

P λ (q) =   e λ+ρ α∈Φ: λ,α >0 (1 -qe α)   / (e ρ)
and P λ (0) = χ(λ) is the Weyl character while P λ (1) = m(λ) is the orbit sum. The Kostka-Foulkes polynomials K λ,µ (q) ∈ Z[q] for λ, µ ∈ Λ + are then defined as the coefficients in the decomposition of the Weyl characters in the basis of Hall-Littlewood polynomials:

(3.1)

χ(λ) = µ∈Λ + K λ,µ (q)P µ (q).
Note that K λ,µ (1) is the dimension of the µ-weight space of an irreducible g-module of highest weight λ. Moreover, it was conjectured by Lusztig [START_REF] Lusztig | Singularities, character formulas, and a q-analog of weight multiplicities, Analysis and topology on singular spaces[END_REF] and proven by Kato [START_REF] Kato | Spherical functions and a q-analogue of Kostant's weight multiplicity formula[END_REF] that Kostka-Foulkes polynomials are appropriately normalized Kazhdan-Lusztig polynomials. This implies that K λ,µ (q) ∈ Z ≥0 [q] has nonnegative integer coefficients, which naturally leads to Problem 1.1.

In the following we are going to investigate Problem 1.1 when Φ is the root system of type C n . We will use the superscript C n to indicate that we work in this case.

Symplectic tableaux.

Let n be a positive integer and λ, µ partitions with at most n parts. From now on, g = sp 2n (C) will be the complex symplectic Lie algebra, whose associated root system is of type C n . A Kashiwara-Nakashima tableau, or symplectic tableau of shape λ and weight µ is a Young tableau

T ∈ β SSYTab Cn (λ, β), such that -C n = {n < • • • < 1 < 1 • • • < n},
-we take the union over β of the form

β = (k n + µ n , k n-1 + µ n-1 , . . . , k 1 + µ 1 , k 1 , . . . , k n),
where k 1 , . . . , k n ∈ Z ≥0 and µ = (µ n , . . . , µ 1), -each one of its columns is admissible, -The split version of T is semistandard. The last two conditions will not be used in this work, therefore we refer the reader to [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF] for a detailed definition. Given partitions µ, λ we will denote the set of symplectic tableaux of shape λ and weight µ by SympTab n (λ, µ). The following proposition justifies why we do not need the last two defining properties of symplectic tableaux.

Proposition-Definition 3.1. Let λ = (p) and µ be a partition. Then

SympTab n (λ, µ) = k 1 ,...,kn∈Z ≥0 SSYTab Cn (λ, (k n +µ n , k n-1 +µ n-1 , . . . , k 1 +µ 1 , k 1 , . . . , k n)).
We will also use the following notation:

C = n∈Z ≥1 C n = {• • • < n < • • • < 1 < 1 < . . . n < . . . },
with the convention that n = n and

SympTab n (λ) = µ SympTab n (λ, µ), SympTab n = λ SympTab n (λ).
For two integers i ≤ j, we will use the following notation:

[i, j] C := {k ∈ [i, j] : k = 0} where [i, j] = {k ∈ Z|i ≤ k ≤ j}.
We are interested in the set of symplectic tableaux since these objects give a natural basis of the µ-weight space of an irreducible g-module of highest weight λ in type C, see [KN94]. Therefore

K Cn λ,µ (1) = | SympTab n (λ, µ)|. 3.3. Symplectic insertion.
We recall the definition of symplectic insertion as introduced in [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]. Given a letter * ∈ C and an admissible column C (again, we do not really need the definition of admissibility in this work, but roughly speaking this is a condition which assures that the insertion * → C described in the following part produces a symplectic tableau, see [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]), the insertion * → C is defined as follows. If * is larger than all the letters of C, then place it in a new box at the bottom of C. This yields a column C and we set

* → C = C . Otherwise, if C = a consists of only one box, set * → C := * a .
The insertion of a letter into a column of length at least 2 is defined inductively as follows.

For the base case, assume that C = Note that cases (I1) and (I2) amount to ordinary column bumping. Let C be of length k ≥ 3, and suppose that the insertion of a letter into a column of length k -1 has been already defined and yields an n-symplectic tableau of shape (2, 1 k-2). Write

C = a 1 a 2 . . . a k and C = a 2 . . . a k . Let * → C = β 2 y b 3 . . . b k and β 2 → a 1 y = b 1 z b 2 . Then * → C := b 1 z . . . b k-1 b k ,
which is a symplectic tableau.

Example 3.2. Take * = 3 and C = 5 3 1 3

. We first need to compute 3 → 3 1 3

. For this we compute 3 →

1 3 = 2 1 2 and 2 → 3 1 = grav 3 2 1 = 3 1 2
, and we get 3

→ 3 1 3 = 3 1 2 2
. Finally, since 3 →

5 1 = grav 5 3 1 = 5 1 3 , we get * → C = 5 1 3 2 2
.

The above definition is not very helpful in practice. Indeed, we would like to understand the global impact of inserting a letter into a column, while the nature of presented definition is local and recursive. The following proposition lets us overcome this difficulty.

Proposition 3.3. Let C be a column, that is, a Young tableau of shape (1, . . . , 1), and let * be an entry not larger than the maximal entry of C. The insertion * → C can be classified into three cases depending on whether * is barred, and whether * belongs to C. These cases (and corresponding subcases) amounts to performing the operations presented in Fig. 1, followed by applying grav, where parameters * , a, b, c, d, m, n, r, x, y, z are described below:

. . . • Case 2.1 from Fig. 1 with

• a ≥ 0, 1 ≤ b ≤ i, c ≥ 0, • n > i, • m > i -b + 1 (defined whenever c > 0). • Case 2.2 from Fig. 1 with • a ≥ 0, 1 ≤ b ≤ i, b -c > 0, d ≥ 0, • n > i, • m > i -c + 1. • Case 2.3 from Fig. 1 with • a ≥ 0, 1 ≤ b ≤ i, c ≥ 1 (C necessarily contains x),
• y < i -b + 1 ≤ x, with the condition that there is a box between x and i-b+1

if i -b + 1 = x, • n > i.
• Case 3. When * = i is barred and i / ∈ C we have the following subcases:

• Case 3.1 from Fig. 1 with • a ≥ 0, b ≥ 1 (C necessarily contains x) • n > i > m, • y < i ≤ x. • Case 3.2 from Fig. 1 with • a ≥ 1, (C necessarily contains n), b, c ≥ 0,
• n > m > i, with the possibility that m or n do not appear in C (whenever a = 1 or b = 0, respectively) • r > n + b, whenever b > 0.

Proof. By searching the tree presented on Figure 2, we are ensured that we are always in Case 1 -Case 3 and that all the cases are pairwise distinct. We prove the formulas of Case 1 -Case 3 by induction on the length of C. In the case of columns of length at most 2, this description coincides with the original definition. Fix > 2, assume that the claim holds for all columns of length -1 and let C be a column of length . Let C be a column obtained from C by removing its top box t . By definition, * → C is obtained by first performing * → C = C t and then inserting the top entry of C into t t . Since the analysis of all the cases is very similar, we only show the proof of Case 1 and Case 2.2 (where all the possible difficulties are present), leaving the proof of the other cases as an easy exercise.

Case 1. We have either c > 0 or c = 0. In the case c > 0, performing * → C yields the shape C y+b described by Case 1, by induction hypothesis. Then we have to insert the top entry u of C (which is either the top entry of C in the case c > 1 or is equal to y + b) into the column t y+b . Since we have t < u < y + b, we need to apply the local insertion rule (I1), which yields the shape described by Case 1. In the case c = 0, we have either b > 0 or b = 0. Suppose first b = 0. Then either y is the top entry of C, the second entry from the top, or the k-th entry from the top with k > 2. In the first case, we have t = y. Therefore, by induction hypothesis, i → C = C t where the top entry of C is i. Thus, it remains to insert i into y t , which, by the local insertion rule (I2), simply bumps out y since i ≤ y. In the second . Once again, this yields the shape described in Case 1.

Case 2.2. We have either d > 0 or d = 0. In the case d > 0, performing i → C yields the shape described by Case 2.2, by induction hypothesis. We have to insert the top entry u of C , which coincides with the top entry of C and satisfies t < u < i -c + 1, into the column

t i-c+1
. By the local insertion rule (I1), this simply bumps out the entry i -c + 1, which yields the shape described in Case 2.2. In the case d = 0, we either have b -c > 1 or b -c = 1. Suppose b -c > 1. By induction hypothesis, after performing i → C , which is described by Case 2.2, we have to insert i -c to the column . Here again we apply the local insertion rule (I3), which yields

grav i-b+2 i-b+1 i-b+2 = grav i-c+1 i-b+1 i-c+1
. In both cases we obtain Case 2.2 described in the statement.

The proof of the remaining cases is analogous.

We can now define the insertion * → T of a letter * into a symplectic tableau T . This is achieved by the following recursive procedure. Let T denote the result of inserting * into the first column of T according to the previous rule. Denote by T the tableau obtained from T by removing its first column. If T is a column, juxtapose this column with T . Otherwise, T is the juxtaposition of a column and a box b . Then juxtapose this column with (b → T). It is proved in [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF] that this procedure yields a well-defined map between SympTab n and SympTab n+1 . Let α be a unimodal composition and T ∈ Tab Cn (α) such that grav(T) ∈ SympTab n . We call such a tableau symplectic of shape α. We can use Proposition 3.3 to define the insertion * → T of a letter * ∈ C n . In order to do this, we follow the above definition of the insertion but additionally recording the vertical shift between the columns of T and the vertical shift of the box bumped out. Note that this definition naturally extends the definition of the insertion to tableaux of partition shape to tableaux of unimodal composition shape and grav(* → T) = * → (grav T). In particular, the insertion of an entry into an n-symplectic tableau yields an n + 1-symplectic tableau. 3.4. Symplectic cocyclage and charge. Before we describe the statistic ch n , we need to introduce the type C analogue of the cocyclage presented in Section 2.5. Let T be a symplectic tableau and let w = w(grav T) be the column reading word of the associated Young tableau. If w = xu where x is a letter, it is readily shown that u is the word of a symplectic tableau U , obtained from T by removing the corresponding box. The cocyclage operation on w is η(w) = ux. The cocyclage operation may or may not be authorized for a given symplectic tableau T . The following result from [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]4.3] characterizes this property.

Proposition-Definition 3.5. Let µ be a partition with at most n parts, and let T be a symplectic tableau of weight µ with at least two columns. The cocyclage operation is not authorized on T if and only if there exists 1 ≤ p ≤ n such that µ p equals the number of columns of T (which is equivalent to the condition that µ n equals the number of columns of T since µ is a partition).

In fact, if T is a symplectic tableau for which the cocyclage operation is not authorized, we can construct from T a symplectic tableau, called the reduction red(T) of T , for which the cocyclage is authorized. Let t : C → C be the map defined as follows:

t(c) = i + 1 if c = i, i + 1 if c = i.
We define red(T) of T recursively as follows.

(1) Set P = T .

(2) Delete all the n's from P and apply t to all entries x of P such that n < x < n to obtain a new (possibly empty) tableau T . (3) If T is authorized, then set red(T) = T . Otherwise, set P = T and go back to the previous step.

Remark 3.6. Let T ∈ SympTab n (α, µ). Note that Algorithm 1 was defined in a way that it mimics steps in reduction of T . Therefore it is clear that red(T) ∈ SympTab n (simp(α, µ)).

By convention, if the cocyclage operation is authorized on T we set red(T) = T . By construction, the cocyclage is authorized for red(T).

E C = {i ≥ 1|i ∈ C, i + 1 / ∈ C}. The charge of C is defined by ch n (C) = 2 i∈E C (n -i),
and the charge of an arbitrary symplectic tableau T is defined by

ch n (T) = m(T) + ch n (C(T)).
3.5. Breaking down the insertion of a letter/box in a tableau. In this section we describe the cocyclage CoCyc C in terms of augmented tableaux introduced in Section 2.2. This description is an important tool to describe an iterated application of cocyclage as a simple operation related with an iterated application of cocyclage in type A. Let α l -1 be unimodal, and let T ∈ Tab + (α) be an augmented tableau of shape (α, b) such that T + has admissible columns and let j = T -(b). Write T + as the concatenation of its columns T = C 1 C 2 . . . C t , and let m be such that b ∈ C m . We define a map locins :

Tab + (α) → Tab + l-1
Tab l as follows

locins(T) =                C 1 . . . C m-1 C m C m+1 . . . C t ∈ Tab l if j → C m = C m is a column, C 1 . . . C m-1 C m C m+1 . . . C t ∈ Tab l if j → C m = C m j is not a column and j → C m+1 = C m+1 is a column, T ∈ Tab + l-1
otherwise, where

• T + = C 1 . . . C m-1 C m C m+1 . . . C t , • T has shape (α, b) with b = (m + 1, -r) ∈ D α ,
• r is the row of j in j → C m+1 = C m+1 j , where j → C m = C m j ,

• T -(b) = j (which determines T by Remark 2.5).

Note that clearly, there exists k ≤ t such that locins k (T) ∈ Tab l . With this definition, the insertion j → T for a tableau T of shape α can be identified with the following procedure:

(1) start with the augmented tableau T of shape (α, b) such that T+ = T , b is the box in the first column of T with the smallest entry j such that j ≤ j , and T-(b) = j (this determines T by Remark 2.5), (2) apply locins recursively until the result is a tableau. In particular, the cocyclage of a tableau has the following description in terms of locins. Lemma 3.9. Let T be an authorized symplectic tableau of shape α and let r ∈ Z >0 be such that locshift r (shape(T)) = shift(shape(T)). Then CoCyc C (T) = red(locins r-1 (locshift(T))). by Case 1 of Proposition 3.3.

INSERTION AND SHIFTING

In this section we will construct the new algorithm computing CoCyc k C (T) for arbitrary k > 0 and for T ∈ SympTab((p)), that is T is a symplectic tableau of row shape. Our algorithm does not rely on the particular form of CoCyc k-1 C (T), which allows us to overcome the problem of controlling many local dependencies present in Lecouvey's original algorithm. This will enable us to prove Conjecture 1.3 in Section 4.4 for λ = (p) and arbitrary µ.

= δ α ((1, -1), (2, -1)) = δ α ((1, -1), (1, -2)) 1 = δ α ((1, -1), (2, -2)) = δ α ((1, -1), (3, -2)) = δ α ((1, -1), (1, -3)).
For the rest of this section, we will consider the following situation. Let T ∈ SympTab n ((p), µ) for some positive integer p and some partition µ = (µ n , . . . , µ 1). By Proposition-Definition 3.1, there exists

(k 1 , . . . , k n) ∈ Z n ≥0 such that T is the unique element of the set SSYTab Cn ((p), (k n + µ n , k n-1 + µ n-1 , . . . , k 1 + µ 1 , k 1 , . . . , k n)).
Let α = wshift k ((p), µ) 1 for some integer k ≥ 0. Note that when computing wshift k ((p), µ), we reduced the number of parts in the corresponding pair of a composition and a partition precisely nred := (µ) -(wshift k ((p), µ)) 2 times. Moreover, strictly from the definition of wshift we know that |α| = p -R≤i≤n µ i , where R = n -nred +1. It will be convenient to consider the following tableau, which keeps track of reductions. Definition 4.3. With the previous notations, we denote T α the tableau of row shape obtained from T by (1) deleting µ i occurences of i for i = R, . . . , n, (2) increasing all unbarred entries (respectively decreasing all barred entries) of the resulting tableau by nred.

Remark 4.4. In other words, T α is the unique element of the set

SSYTab C n+nred ((|α|), ν) with ν = (k n , . . . , k R , k R-1 + µ R-1 , . . . , k 1 + µ 1 , 0, ..., 0 2 nred
, k 1 , . . . , k n). Also, note that for µ = 0, T α coincides with T for all α.

Example 4.5. Let T = 2 2 2 1 2 , so that , p = 5, n = 2, µ = (2, 1) and (k 2 , k 1) = (1, 0). Take k = 4, and compute wshift 4 ((p), µ) = ((2, 1), (1)). We see that we have made one reduction, so that nred = 1, and R = 2. We get T α = 3 2 3 with the convention that boxes are labeled by [1, |α|] in the natural order:

T α (1) = 3, T α (2) = 2 and T α (3) = 3.
We are ready to describe our construction of a tableau T k of shape α, which we will later show to be equal to CoCyc k (T). This construction is very algorithmic in nature, and its formal definition is given by Algorithm 2. In order to help the reader going smoothly through this formal definition we will describe first the main idea of the algorithm and we will illustrate it by two examples. Notice first that for any symplectic tableau of weight µ and shape λ the number |λ| -|µ| is always even. Indeed, there are precisely |λ| -|µ| boxes in this tableau, whose multiset of contents Cont is invariant by changing each content into its opposite, that is Cont = Cont. Moreover, these contents are non-decreasing in the natural order, therefore we can naturally match the corresponding boxes into pairs, called partners, such that their contents are opposite. Finally, if we know µ and if we know the positive contents of the partners, we can recover our initial tableau. This idea illustrates how our algorithm, consisting in two main steps, works:

(1) Decompose the set of boxes of α into two disjoint sets: partners and singles.

(2) Assign a content to each box to obtain the tableau T k . This procedure will depend on whether the box is a partner or a single. If µ = 0, then the set of singles is empty, so the first step in our algorithm is trivial. We start by analyzing this example, which is much simpler and gives a good insight of how the second step of the algorithm is working.

Example 4.6 (Weight zero). Let T be a tableau of shape (2q) and weight zero (note that all tableaux of weight zero must have an even number of boxes). We label its boxes by elements in the interval

T k (D) = T α (D) + δ α (D , D) if D > q, T k (D) if D ≤ q.
In particular, partner boxes have opposite contents.

This coincidental correctness is broken when k = 8 (for k = 7 partners are assigned the same as at the beginning). Algorithm 2 produces the following tableau

T 8 = 3 2 2 2 1 1 1 1 3 1 1 1 1 3 3 = 2 2 2 2 1 1 1 1 2 1 1 1 1 2 2 ,
where the tableau on the right hand side is obtained by keeping partners the same as at the beginning and applying (4.1) to compute their contents. Note that this tableau is not even semistandard. Let us analyze in details the case k = 9. We claim that the algorithm produces the following tableau

T 9 = 3 2 2 2 1 1 1 1 3 1 1 1 1 3 3 .
Indeed, we first need to find a partner for D = 7, which is colored in pink. Since T α (D) = 1, before we find a partner of D, we assign a content to all the single boxes which correspond to µ 1 . This is what is happening in the first step of the algorithm: M = 1, D = 6, and the distance between D and D in α = (3, 3, 3) is equal to 0, so

T α (D) + δ α (D , D) = 1 ≮ M .
In our case µ 1 = 0, therefore nothing is happening except that we increase M and now since T α (D) + δ α (D , D) = 1 < M we assign D to be the partner of D, and we update D = 8, D = 5. These boxes will also be partners Remark 4.8. We see that the tableau T k is determined by: -The composition shape α obtained by shifting k times. This data is inherited from type A, as explained in Section 2.5. -The tableau T (which determines T α), which can be understood as the type C "initial data".

4.2.

Local shifting. In order to prove Theorem 4.12, we need to refine the construction of T k into tableaux of augmented shapes, that will be denoted T k,s . From now on, we will systematically identify a box with its label (obtained from the natural order).

Take p, µ and k as before and let α = simp wshift k (p), µ 1

. Let r = α j+1 , where j = min{i : α i = max k α k } and for any 1 ≤ s ≤ r, set α s = locshift s (α), so that α s is an augmented composition. Let c, c + 1 ∈ [1, |α|] denote the labels (in the natural order) of the augmented boxes in α s . We define pos α,s :

[1, |α|] → [1, |α|] as pos α,s (x) = x + 1 if x ∈ [c + 1 -s, c), x otherwise.
Lemma 4.9. The following properties hold true.

(1) T k and T k,s are natural tableaux, that is for all 1 ≤ t < u ≤ |α| one has T k (t) ≤ T k (u) and T k,s (t) ≤ T k,s (u) (see ??).

(2) For all 1 ≤ i ≤ n and for all 0 ≤ j < |I i |we have that max I i -j = partner(min I i + j).

(3) For all 1 ≤ i ≤ n, the functions δ α , δ α s are constant on the product of intervals I i ×I i .

Proof. We will prove the statements for T k , since the arguments for T k,s are identical. Let 1 ≤ t < u ≤ |α|. If either t or u is a single then Algorithm 2 gives directly the desired inequality T k (t) ≤ T k (u). Assume that 1 ≤ t < u ≤ |α| are such that T α (t) and T α (u) are unbarred and let t = partner(t), u = partner(u). Note that δ α is bi-increasing, that is for every 1 ≤ x < y < z ≤ |α| we have δ α (x, y) ≤ δ α (x, z) and δ α (y, z) ≤ δ α (x, z). Therefore

T k (t) = T α (t) + δ α (t , t) ≤ T α (u) + δ α (u , u) = T k (u)
since the function T α is increasing by definition. This finishes the proof of (1) since for any 1 ≤ d ≤ |α| which is not a single we have

T k (partner(d)) = T k (D). Fix i ∈ C.
For ∈ {i, i}, let min = min I and max = max I . By monotonicity of δ α , (3) is equivalent to the following statement:

δ α (i min , i max) = δ α (i max , i min).
Notice first that i max = partner(i min), and more generally (2) holds true, which is simply a reformulation of the if part of Algorithm 2 for a fixed value of X = i. Therefore, it follows from Algorithm 2 that i -T α (i max) = δ α (i min , i max) ≥ δ α (i max , i min) ≥ i -T α (i min)

and by (1) all the inequalities above are equalities. This finishes the proof of (3).

Corollary 4.10.

Let i ∈ C ≥0 , ∈ Z ≥0 and s 1 ≤ s 2 ≤ s 3 ≤ s 4 ∈ [1, |α|] such that T k (s 1) = T k (s 2) + = T k (s 3) + = T k (s 4) =i + , T k,s (s 1) = T k,s (s 2) + = T k,s (s 3) + = T k,s (s 4) =i + , respectively.
Then

δ α (s 1 , s 4) -δ α (s 2 , s 3) ≤ , δ α s (s 1 , s 4) -δ α s (s 2 , s 3) ≤ , respectively.
Proof. Lemma 4.9 (3) implies that

δ α (s 1 , s 4) -δ α (s 2 , s 3) = δ α s (s 1 , s 4) -δ α s (s 2 , s 3) = -(T α (I i+) -T α (I i)) ≤ ,
since T α is increasing.

4.3. Insertion and shifting. In this section, we state Theorem 4.12, which is crucial for the proof of Theorem 1.4.The proof of this result being quite technical, we delay it to Section 5 Lemma 4.11. Let µ = (µ n , µ n-1 , . . . , µ 1) be a partition, k, k 1 , . . . , k n ∈ Z ≥0 , p = i (2k i + µ i) and let α = wshift k (µ, (p)). Then T k,1 = locshift red(T k). (4.4) Proof. First, note that shape(locshift red(T k)) = shape(T k,1), which is a direct consequence of Remark 3.6. Let α = wshift k (p), µ 1 . In order to finish the proof it is enough to show that performing Algorithm 2 with simp(α, µ) 1 , simp(α, µ) 2 , nred = (µ) -(simp(α, µ) 2) in place of α, µ, nred gives us a tableau T which is equal to red(T k). If red T k = T k , there is nothing to prove. Otherwise T k ∈ SympTab n (β, ν), where ν = (µ n-nred , . . . , µ 1 , 0, . . . , 0 and for any ∈ I >n we have

T () = δ simp(α,µ) 1 partner(), + T simp(α,µ) 1 () = δ α partner(), + T α () = T k ().
Thus indeed T = red(T k), and we conclude the proof.

We are ready to present our main theorem.

Theorem 4.12. Let µ = (µ n , µ n-1 , . . . , µ 1) be a partition, k, k 1 , . . . , k n ∈ Z ≥0 and p = i (2k i + µ i). Let α = wshift k (µ, (p)) and let r ∈ Z >0 be such that locshift r (α) = shift(α). Then, for each 1 ≤ s < r we have

locins s (T k,1) = T k,s+1 . (4.5)
The proof of Theorem 4.12 is technically quite involved. Therefore, in order to motivate the reader, we will first present all the consequences of this result, especially Theorem 1.4, and we present the proof of Theorem 4.12 in a separate Section 5 Corollary 4.13. Let n, p ≥ 0 be integers and µ = (µ n , µ n-1 , . . . , µ 1) a partition. For any T ∈ SympTab n ((p), µ) we have

CoCyc k C (T) = red T k . (4.6)
Proof. We proceed by induction on k. Proposition-Definition 3.5 implies that T is authorized unless µ n = p, that is, unless µ = (p). If this is the case, then CoCyc C (T) = red(T) = ∅. From the other hand, applying Algorithm 2 we first compute α = wshift((p), µ) 1 = ∅, therefore T 1 = ∅ = CoCyc C (T), as desired. If T is authorized, then Lemma 3.9 implies that CoCyc C (T) = red(locshift(T)) = red(shift(T)) = red(T 1), where the last equalities comes from the fact that the shape of T is simply one row and the last entry of T is strictly bigger then the first one. We assume now that CoCyc k C (T) = red T k . Therefore

CoCyc k+1 C (T) = CoCyc C red T k = red locins r-1 locshift red T k
by Lemma 3.9, where r ∈ Z >0 is such that locshift r shape red(T k) = shift shape red(T k) . Applying Theorem 4.12 and Lemma 4.11 to the right hand side of the above equalities we have that

CoCyc k+1

C (T) = red T k,r which, by the definition and our choice of r, is equal to red T k+1 . This finishes the proof. 4.4. Lecouvey's conjecture. In this section we are going to apply Equation (4.6) to prove Conjecture 1.3 in the case of a one-row λ = (p). We need a following proposition due to Lecouvey, which is an easy consequence of the Morris recurrence formula described in [START_REF]Kostka-Foulkes polynomials cyclage graphs and charge statistic for the root system C n[END_REF]: Proposition 4.14. [Lec05, Proposition 3.2.3.] Let µ = (µ n , µ n-1 , . . . , µ 1) be a partition and p ≥ |µ| be a positive integer. Then

K Cn (p),µ (q) = q Tn(µ) • T ∈SympTab n ((p),µ) q θn(T)
where

T n (µ) = n i=1 (n -i)µ i and θ n (T) = n i=1 (2(n -i) + 1)k i , where T ∈ SSYTab Cn ((p), (k n + µ n , k n-1 + µ n-1 , . . . , k 1 + µ 1 , k 1 , . . . , k n)).
We are ready to prove Theorem 1.4.

(T) = i (n -i)µ i + (p -|µ|)(p -|µ| + 2 (µ) -1) 2 = i (n -i)µ i + (i k i)(2 i k i + 2 (µ) -1).
Let us compute E C(T) . Notice that C(T) is a column of weight 0 and length i k i . Therefore, for any , + 1 ∈ I >0 we have

C(T)(+ 1) -C(T)() = δ shape(C(T)) partner(+ 1), + 1 - -δ shape(C(T)) partner(), = 2.
Therefore E C(T) consists of all positive entries of C(T) and due to the construction given by Algorithm 2 we know that nred = (µ), thus

E C(T) = {i + (µ) + 2j : 1 ≤ i ≤ n, l≤i-1 k l ≤ j < l≤i k l }. Finally ch n (T) = m(T) + 2 i∈E C(T) (n -i) = i (n-i)µ i +(i k i)(2 i k i +2 (µ)-1) +2 1≤i≤n l≤i-1 k l ≤j< l≤i k l (n-(i+2j+ (µ))) = i (n-i)µ i +(i k i)(2 i k i +2 (µ)-1) +2 i (n-i)k i - i k i i k i + (µ)-1 = i (n -i)(2k i + µ i) + i k i = T n (µ) + θ n (T)
and comparing this with Proposition 4.14 finishes the proof.

Remark 4.15. Combining Remark 4.8 and Corollary 4.13, we see that the type C cocyclage is controlled by the type A cocyclage. Observations suggest that this phenomenon holds in a more general setting, and it would be interesting to investigate this further.

PROOF OF THEOREM 4.12

Our proof is by induction on 1 ≤ s < r. Before we start we need to introduce some notation. Let , + 1 denote the labels of the augmented boxes of α s , and let e = T k,s () and f = T k,s (+ 1) ≥ e. Therefore, the augmented boxes of α s+1 are labeled by + 1, + 2. Let C m denote the m-th column of T k,s . For an entry x lying in the column C we denote by C(x) ∈ [1, |α|] \ { } the corresponding label, that is x ∈ C and T k,s (C(x)) = x. We will proceed by going through the cases described in Proposition 3.3. The entry e = T k,s () will play the role of the entry * and from now on we set C = C S which is the column containing the augmented boxes labeled by , + 1.

Case 1. We know that e = i for some i ∈ C >0 . First, notice that + 1 = C(y), which is a direct consequence of Lemma 4.9 (1). Indeed, we have that x < T k,s () ≤ y, therefore the only possibilities for the position of an augmented box is either in C(y) or in the box strictly below C(y) necessarily with y = i. However, in the latter case we have that Case 2.1. We know that e = i for some i ∈ C >0 . Lemma 4.9 (1) implies that + 1 = C(i -b + 1). Since T k,s () = i and T k,s (+ 1) = i -b + 1 we have by Lemma 4.9 (1) that ≤ partner(C(i -b + 1)) < + 1, which is possible only when b = 1. Note that performing Algorithm 2 to obtain T k,s+1 corresponds precisely to performing Algorithm 2 to obtain T k,s . Indeed, in both cases we start from D = + 1, D = and δ α s (I i × I i) = δ α s+1 (I i × I i) = 0.

Therefore T k,s+1 (x) = T k,s (x) for all x ∈ [1, |α|], thus T k,s+1 coincides with locins(T k,s), which is obtained form T k,s by shifting the augmented box as shown in Case 2.1 of Proposition 3.3. This observation concludes the proof in this case.

Case 2.2 We know that e = i for some i ∈ C >0 . First note that necessarily b = 1. Otherwise δ α s C(i -b + 2), C(i -b + 2) -δ α s C(i -b + 1), C(i -b + 1)) > 1, which is a contradiction with Corollary 4.10. Therefore Lemma 4.9 (1) implies that either + 1 = C(i) or + 1 = C(i). Assuming that + 1 = C(i) we have that both , + 1 ∈ I i but δ α s (C(i),) = δ α s (C(i), + 1) + 1, (5.1) which contradicts Corollary 4.10. Therefore T k,s () = i, T k,s (+ 1) = i. We also note that for every 0 ≤ x ≤ -c one has δ α s C(i + x), C(i)+1 -δ α s C(i), C(i) > x thus T k,s (C(i)+ 1) = T k,s (+ 2) > i -c by Corollary 4.10. In particular all the boxes in the interval C(i -c) -µ i-c+1-nred , C(i) are singles filled by {i + 1 µ i+1-nred , . . . , i -c + 1 µ i-c+1-nred }.

Since i is unbarred, and C(i) = + 1 we have that Case 2.3. We know that e = i for some i ∈ C >0 . We will show that in this case we necessarily have b = 1. Suppose that b > 1 and notice that necessarily y ≤ i. Otherwise partner(C(i)) < y, and partner(i -1) > y thus δ α s partner(C(i)), C(i) -δ α s partner(C(i -1)), C(i -1) > 1, which contradicts Corollary 4.10. Therefore Lemma 4.9 (1) implies that either + 1 = C(y) (which can happen only if y = i) or + 1 = C(x). If + 1 = C(y) = C(i) then both , + 1 ∈ I i but δ α s), C(i) = δ α s + 1, C(i) + 1, which is impossible by Corollary 4.10. Therefore + 1 = C(x) so T k,s () = i and T k,s (+ 1) = x ≥ i -b + 1. Lemma 4.9 (1) implies that partner(C(i)) ≤ and partner(C(i-1)) > , thus δ α s partner(C(i)), C(i) -δ α s partner(C(i -1)), C(i -1) > 1, which contradicts Corollary 4.10. This finishes the proof of our claim that b = 1. In particular Corollary 4.10 implies that

x > i and T k,s (C(i) -1) < i (5.2) since δ α s C(x), C(i) = δ α s , C(i) -1 = δ α s , C(i) -1, and ∈ I i . It clear from the definition of Algorithm 2 that until D > + 1 the steps of constructing T k,s and T k,s+1 coincide. In particular when D = C(i) -1 we know by (5.2) that D = + 1 and since T k,s () = i < T k,s (D) Lemma 4.9 (2) implies that partner(C(i) -1) = + 1 and x = T k,s (C(i) -1) = δ α s (+ 1, C(i) -1) + T α (C(i) -1) < M + nred or M ≥ R. Since δ α s (+ 1, C(i) -1) = δ α s+1 (+ 1, C(i) -1) we have that T k,s () = T k,s+1 () for all ∈ [+ 1, C(i) -1]. Therefore at this point we are applying Algorithm 2 with D = C(i), D = . We know that T k,s (C(i)) = i = T α (C(i)) + δ α s partner(C(i)), C(i) = T α (C(i)) + δ α s (, C(i))

where the last equality comes from Lemma 4.9 (3). This means that M + nred ≥ i and T α (C(i)) + δ α s+1 , C(i) = T α (C(i)) + δ α s (, C(i)) -1 = i -1 < M + nred .

Thus T k,s+1 (C(i)) = T k,s () = i -1 and at this step we update D = C(i) + 1, D = -1, therefore T k,s+1 () = T k,s () for all 1 ≤ < and C(i) < ≤ |α|. Comparing the resulting T k,s+1 with Case 2.3 of Proposition 3.3 we conclude the proof in this case.

Case 3.1 We know that e = i for some i ∈ C >0 . Lemma 4.9 (1) implies that + 1 = C(x). Indeed, y < i ≤ x, thus either + 1 = C(x) or + 1 = , where is a box lying directly under C(x) and necessarily x = i. Suppose that + 1 = . If s = 1 then either there exists ∈ I i or µ i-nred = max j α j . The first case contradicts Lemma 4.9 (3) since δ α s (C(x),) > δ α s (,)

and the second case contradicts Lemma 4.11. Suppose that s > 1 and that + 1 = .

Notice that Lemma 4.9 (1) implies that T k,s () = i for all ∈ [C(x), -1]. If there exists ∈ I i then again δ α s (C(x),) > δ α s (,) which contradicts Lemma 4.9 (3). If I i = ∅ then by the inductive hypothesis T k,s was obtained as locins(T k,s-1), which corresponds to Case 3.1 of Proposition 3.3. In this case T k,s-1 = locshift -1 T k,s . Repeating this argument s -1 times we get that T k,1 = locshift 1-s T k,s thus T k,1 is not authorized, which is a contradiction with Lemma 4.11. This finishes the proof of our claim that + 1 = C(x). We are going to show that (5.3) T k,s () = T k,s+1 ()

for every ∈ [1, |α|].
Comparing this with Case 3.1 of Proposition 3.3 we will conclude the proof in this case. First, note that x is barred. Otherwise < partner(C(x)) = partner(+ 1) < + 1 At this step of the algorithm D = + 2, D = C(n + b -1) -µ n+b+1-i -1 and M + nred = n + b + 1, therefore we have the same parameters of Algorithm 2 as at a certain point of Algorithm 2 performed to construct T k,s . Thus, all the other contents of T k,s+1 are the same as in T k,s . Comparing resulting T k,s+1 with Case 3.2 of Proposition 3.3 we conclude the proof in this case.

 Example 2.3. Let A = {a, b, c} with the linear order given by a ≺ b ≺ c, let α = (3, 1, 2) and T = a a b b c c

2. 2 .

 2 Augmented tableaux. An augmented composition is the data of a composition α and a box b = (i, j) in the diagram of α, called the augmented box. In this case, the augmented composition (α, b) is also called an augmentation of α. The diagram of (α, b) is defined as D (α,b) = D α \ {b} {b -, b + } where b -= (i -1/2, j) and b + = (i + 1/2, j), and is represented by the diagram of α in which box b is split into two boxes b -and b + . In particular, (α, b) has |α| + 1 boxes, which are again totally ordered by the natural order, and we have b -= c and b + = c+1 for some label c ∈ [1, |α| + 1]. We will call b -and b + the augmented boxes of α. Example 2.4. The augmented composition ((1, 3), (2, -2)) has diagram

 CoCyc A (grav(T)) = CoCyc A (T) since α is a partition = CoCyc A (red(T)) since cocyclage is not authorized for T = grav(shift(red(T))) by the previous case = grav(wshift(T)) by Remark 2.18.

 a b consists of two boxes. Then we consider the following four cases: (I1) If a < * ≤ b and b = a, then * → If * ≤ a < b and b = * , then * → a b := grav * a b . (I3) If a = b and b ≤ * ≤ b, then * → If * = b and b < a < b, then * →

Figure 1 .

 1 Figure 1. All the possible cases in the symplectic insertion * → C described by Proposition 3.3.

Figure 2 case.

 2 Figure2

.

 Here we apply the local insertion rule (I3), which gives grav i-c+1 i-c i-c+1 . Suppose b -c = 1. By induction hypothesis, i → C corresponds to Case 2.1 with c = 0. Therefore after performing i → C , we have to insert i -b + 1 into the column

.

 Example 3.4. Let * = 3 and T = The insertion * → T can be computed by successive applications of Proposition 3.3. We have

Definition 3. 7 .,.

 7 Let T ∈ SympTab n be a symplectic tableau. If T is a column, we set CoCyc C (T) = red T . Otherwise let w = xu = w(red(T)), where x ∈ C and let U be the symplectic tableau with w(U) = u. Then we define CoCyc C (T) = red x → U . Example 3.8. Let T = which has already been computed in Example 3.4. We get CoCyc C (T) = Let T ∈ SympTab n be a symplectic tableau. Then there exists a non-negative integer m such that CoCyc m C (T) is a column C(T) of weight zero [Lec05, Proposition 4.2.2]. We denote by m(T) the smallest non-negative integer with this property. For a symplectic column C of weight zero we set

4. 1 .

 1 Main algorithm. For a composition α and a box b = (i, -j) of D α , we denote i = col α (b) ∈ Z >0 and j = row α (b) ∈ Z >0 . Definition 4.1. Let α be a composition and b and b be two boxes of α such that b < b in the natural order. The distance between b and b in α is the nonnegative integer δ α (b, b) = row α (b)-row α (b)-ε α (b, b), where ε α (b, b) = 1 if col α (b) ≥ col α (b), 0 otherwise. Example 4.2. Let α = (2, 3, 1) and let b = (1, -1) be the first box of D α in the natural order. Let us compute the distance between b and b for every other box b ∈ D α . We have 0

 [1, 2q]. Fix a nonnegative integer k and let α = wshift k ((2q), 0) 1 = shift k ((2q)). Note that in this case, we always have |α| = 2q. The boxes of α are then labeled by [1, 2q] = [1, |α|] by enumerating them in the natural order and we will write D for a box b = D ∈ D α . Its partner is the box D = 2q -D + 1. Now, we define the tableau T k by assigning a content to the boxes of α as follows. For a box D of α (4.1)

 (and they are colored in blue) since T α (D) = 1, and their distance is still equal to 0. Updating D = 9, D = 4, we see that T α (D) = 2, therefore our algorithm is assigning a content to all the single boxes which correspond to µ 2 . Indeed,T α (D) + δ α (D , D) = 3, since δ α (D , D) = 1 and this is not less than M = 2, therefore T k (S) = 2 for all S ∈ [D -µ 2 + 1, D] = [2,4], and we update D = 1 and M = 3. Finally, M is bigger then the number of distinct positive contents R -1 in T α , therefore D and D are automatically partners with contents T α (D) + δ α (D , D) = 3 and 3, respectively.

 nred) and µ n-nred ≥ • • • ≥ µ n-nred +1 > 0. Strictly from the definition of reduction we know that I ≥n-(nred -nred) ∩ I ≤n = ∅ thusI >0 = I >0 ∩ I <n-(nred -nred) ∪ I >n .In particular for any ∈ I >0 ∩ I <n-(nred -nred) we haveδ simp(α,µ) 1 (partner(),) = δ α (partner(),),but for any ∈ I >n we haveδ simp(α,µ) 1 (partner(),) = δ α (partner(), -(nred -nred)),since labeling in simp(α, µ) 1 corresponds to removing boxes in T k with contents {n -(nred -nred) + 1 µ n-nred +1 , . . . , n µ n-nred }. Note that with this identification we do not label the boxes of simp(α, µ) 1 by [1, | simp(α, µ) 1 |], but by 1, partner() -(µ n-nred + • • • + µ n-nred +1) ∪ i k i + j≤n-nred µ j , |α| , where = max I n-(nred -nred) . Therefore, for any ∈ I >0 ∩ I <n-(nred -nred) we have T () = δ simp(α,µ) 1 partner(), + T simp(α,µ) 1 () = δ α partner(), + T α () + (nred -nred) = T k () + (nred -nred)

δ

 α s partner(), -δ α s partner(C(y)), C(y) > 0, which gives a contradiction with Corollary 4.10 because C(y), ∈ I i . Since + 1 = C(y), which means that T k,s (+ 1) = y, Corollary 4.10 implies that C(y) = max I y and C(y) = min I y . This is a consequence of the fact thatδ α s C(y), b > δ α s C(y), C(y)for every b > C(y) and similarlyδ α s b , C(y) > δ α s C(y), C(y)for every b < C(y). Moreover, C(y) = partner(C(y)) by Lemma 4.9 (2). We also note that for every 0 < j < b one has δ α s C(y + j), C(y)+1 -δ α s C(y), C(y) > j thus T k,s (C(y)+ 1) ≥ y + b by Corollary 4.10. In particular all the boxes in the interval C(y + b -1)µ y+b-nred , C(y) are singles filled by {y + 1 µ y+1-nred , . . . , y + b µ y+b-nred }. Since i is unbarred, and C(y) = + 1 we have thatδ α s+1 (, + 1) = δ α s+1 (, + 1) for ∈ [C(y + b -1) -µ y+b-nred , C(y)] \ C and δ α s+1 (, + 1) = δ α s+1 (, + 1) + 1 for ∈ [C(y + b -1) -µ y+b-nred , C(y)] ∩ C. This implies that performing Algorithm 2 to obtain T k,s+1 gives us the same result as in T k,s until D = C(y) = + 1. At this moment D = C(y), M + nred = y + 1, so we have X = y + 1 ≮ M + nred and we notice that the interval C(y + b -1) -µ y+b-nred , C(y) in T k,s+1 consists of single boxes filled by {y + 1 µ y+1-nred , . . . , y + b µ y+b-nred }. After performing these steps we have that D = C(y + b -1) -µ y+b-nred , M + nred = y + b + 1. Since D < C(z) we have that X = δ α s+1 (D , D)+T α (D) = y+b < M +nred and T k,s+1 (+1) = y + b, T k,s+1 (C(y + b -1)) = y + b. At this step of the algorithm D = + 2, D = C(y + b -1) -µ y+b-nred -1 and M + nred = y + b + 1, therefore we have the same parameters of Algorithm 2 as at a certain point of Algorithm 2 performed to construct T k,s . Thus, all the other contents of T k,s+1 are the same as in T k,s . Comparing the resulting T k,s+1 with Case 1 of Proposition 3.3 we conclude the proof in this case.

δ

 α s+1 (, + 1) = δ α s+1 (, + 1) for ∈ C(i -c) -µ i-c+1-nred , C(i) \ C andδ α s+1 (, + 1) = δ α s+1 (, + 1) + 1 for ∈ C(i -c) -µ i-c+1-nred , C(i) ∩ C.This implies that performing Algorithm 2 to obtain T k,s+1 gives us the same result as inT k,s until D = C(i) = + 1. At this moment D = C(i), M + nred = i + 1, so we have X = i + 1 ≮ M + nred and we notice that the interval C(i -c) -µ i-c+1-nred , C(i) in T k,s+1 consists of single boxes filled by {i + 1 µ i+1-nred , . . . , i -c + 1 µ i-c+1-nred }.After performing these steps we have thatD = C(i -c) -µ i-c+1-nred , M + nred = i -c + 2. Since D < C(m) we have that X = δ α s+1 (D , D) + T α (D) = i -c + 1 < M + nred therefore T k,s+1 (+ 1) = i -c + 1, T k,s+1 (C(i -c)) = i -c + 1. At this step of the algorithm D = + 2, D = C(i -c) -µ i-c+1-nred -1 and M + nred = i -c + 2, thereforewe have the same parameters of Algorithm 2 as at a certain point of Algorithm 2 performed to construct T k,s . Thus, all the other contents of T k,s+1 are the same as in T k,s . Comparing the resulting T k,s+1 with Case 2.2 of Proposition 3.3 we conclude the proof in this case.

 Proof of Theorem 1.4. Let T ∈ SympTab n ((p), µ), where µ = (µ n , . . . , µ 1). By Proposition-Definition 3.1 there exists unique nonnegative integers k 1 , . . . , k n such that T ∈ SSYTab Cn (λ, (k n + µ n , k n-1 + µ n-1 , . . . , k 1 + µ 1 , k 1 , . . . , k n)). Corollary 4.13 implies that m(T) = min{k : T k = T k+1 }, which is simply equal to m µ ((p)) defined by (2.1).

	Corollary 2.13 gives us
	m

ACKNOWLEDGMENTS

We thank Cédric Lecouvey for many interesting conversations and an anonymous reviewer for suggesting possible extensions of our work. The SageMath computer algebra system [The16] has been used for experimentation leading up to many of the results presented in the paper.

MD is supported by Narodowe Centrum Nauki, grant UMO-2017/26/D/ST1/00186. TG is supported by the Ambizione project of the Swiss National Science Foundation. JT was supported by the Deutsche Forscungsgemeinschaft project TO 1135-1 and partially supported by Narodowe Centrum Nauki, grant number 2017/26/A/ST1/00189 and the Max Planck Institute for Mathematics in the Sciences in Leipzig.

1

We warn the reader that we will work solely with north-eastern column words in the remaining sections of this text. However, to be consistent with the definition of the charge statistic on words [LS78, But94], and to avoid reading words backwards,

For instance, take q = 2 and T = T 0 = 1 1 1 1 1 1 , where we have identified partners by shading them in with the same color. We check that m 0 ((4)) = 6 (using Corollary 2.13), and we can compute all the T k for k = 1, . . . , 6. . Now, we will explain the general case when a weight µ is arbitrary. We already noticed that when µ = 0 the first part of the algorithm, namely finding partners, is trivial. However, for arbitrary weights this part of the algorithm is the most complex one. The procedure of finding partners is achieved recursively and is somehow dependent on assigning contents, that is on the second step of the algorithm. Therefore we are performing both steps simultaneously as follows. All boxes S ∈ D α such that T α (S) is unbarred will have a partner, and to assign such a partner, we start with the minimal such S and we will recursively increase it. In order to do this we introduce a variable

Then, we will check the barred letters of T α one by one, starting from D = max{S ∈ [1, |α|] | T α (S) is barred}, until we find the right partner for D. To decide this we first set M = 1 and compute the quantity

then we declare the boxes D and D to be partners and set their contents to be T k (D) = X and T k (D) = X. Then we iterate and compute the quantity (4.2) for D + 1 and D -1, respectively, that is, we go on to find a partner for D + 1 by checking first D -1. If these conditions are not satisfied, we will declare D as well as all S such that S ∈ [D -µ M +1, D] to be single, and we define T k (S) = M + nred. We then continue to look for a partner for D by computing (4.2) for D and D -µ M and checking inequalities (4.3) for M := M + 1.

Example 4.7. Let us see what this means for

We have colored in partners with the same color and left singles in white. It is easy to check that when we construct T k for k ≤ 4 we are assigning partners one by one, so that the algorithm works similarly as in the weight zero case:

However, for k = 5 and k = 6 the partners are reassigned by the algorithm. Note that at this stage, if we decided to keep partners as they were so far and to compute their content by (4.1), we would still get the correct tableau:

Algorithm 2 Defining the tableau T k .

Input: Nonnegative integers k, k 1 , . . . , k n and a partition µ = (µ n , . . . , µ 1).

Output: The tableau

the boxes D and D are said to be partners)

Finally, we define a tableau T k,s of shape α s by applying the following modification of Algorithm 2: instead of α, δ α , nred we use α s , δ α s and nred = (µ) -wshift k+1 (p), µ 2 respectively.

The tableaux T k (respectively T k,s) have some very useful properties, the most important of which we encompass in the following crucial lemma. For x ∈ C, denote

by Lemma 4.9 (1), and this is clearly impossible. Note that

for all ∈ I >0 and δ α s (,) = δ α s+1 (,) for all ∈ I >0 \ C. Up to the step inAlgorithm 2 when D ≤ the construction of T k,s and T k,s+1 coincides. Since m < i < n it is clear that the transition from D > into D ≤ necessarily happens for m < D < n. In particular D ∈ I >0 \ C and

In particular the construction of T k,s and T k,s+1 coincides at this step of Algorithm 2, and trivially coincides after achieving this step. This finishes the proof.

Case 3.2 We know that e = i for some i ∈ C >0 . Lemma 4.9 (1) implies that + 1 = C(n) since m < i < n. Therefore T k,s (+ 1) = y and Corollary 4.10 implies that C(n) = max I n and C(n) = min I n . This is a consequence of the fact that

for every b > C(n) and similarly

for every b < C(n). Moreover, C(n) = partner(C(n)) by Lemma 4.9 (2). We also note that for every 0 < j < b one has δ