
HAL Id: hal-03908737
https://hal.science/hal-03908737v1

Submitted on 20 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new formulation of general-relativistic hydrodynamic
equations using primitive variables

Gaël Servignat, Jérôme Novak, Isabel Cordero-Carrión

To cite this version:
Gaël Servignat, Jérôme Novak, Isabel Cordero-Carrión. A new formulation of general-relativistic
hydrodynamic equations using primitive variables. Classical and Quantum Gravity, 2023, 40 (10),
pp.105002. �10.1088/1361-6382/acc828�. �hal-03908737�

https://hal.science/hal-03908737v1
https://hal.archives-ouvertes.fr


A new formulation of general-relativistic

hydrodynamic equations using primitive variables
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Abstract. We present the derivation of hydrodynamical equations for a perfect fluid

in General Relativity, within the 3+1 decomposition of spacetime framework, using

only primitive variables. Primitive variables are opposed to conserved variables, as

defined in the widely used Valencia formulation of the same hydrodynamical equations.

The equations are derived in a covariant way, so that they can be used to describe any

configuration of the perfect fluid. Once derived, the equations are tested numerically.

We implement them in an evolution code for spherically symmetric self-gravitating

compact objects. The code uses pseudospectral methods for both the metric and the

hydrodynamics. First, convergence tests are performed, then the frequencies of radial

modes of polytropes are recovered with and without the Cowling approximation, and

finally the performance of our code in the black hole collapse and migration tests

are described. The results of the tests and the comparison with a reference core-

collapse and neutron star oscillations code suggests that not only our code can handle

very strong gravitational fields, but also that this new formulation helps gaining a

significant amount of computational time in hydrodynamical simulations of smooth

flows in General Relativity.

Keywords : hydrodynamics, primitive variables, general relativity, 3+1 formalism,

pseudospectral methods, neutron stars
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1. Introduction

General-relativistic hydrodynamics is a key ingredient in many astrophysical models,

most often combined with a numerical approach to obtain a solution (see [1] and [2]

for reviews on the subject). As examples, one can think of several phenomena in the

field of high-energy astrophysics, such as binary neutron star (NS) mergers [3], NS

oscillations [4], core-collapse supernovae [5] or accretion flows around black holes [6].

These simulations have undergone tremendous progress in the last two decades,

particularly since the first three-dimensional fully-relativistic code has simulated the

merger of a binary NS system [7]. Later major improvements have been obtained in

the numerical modeling thanks to the development of so-called upwind high-resolution

shock-capturing schemes written in conservation form and based on the characteristic

fields of the system of hydrodynamics equations [8]. This type of methods possesses

the great advantage of being able to sharply and stably resolve shocks and is thus able

to model ultrarelativistic flows. However, the fact of using conservation schemes means

that time evolution is done with conserved variables, which are different from primitive

variables (velocity and thermodynamic quantities). Therefore, it is necessary, at each

time-step, to pass from conserved to primitive variables with the solution of a set of

equations and the call to the equation of state (EoS). Although some optimization is

possible [9], this step requires a non-negligible amount of computing time and may be

the source of code failure, in particular if the EoS is not given by an analytic expression.

Note that Lagrangian methods often rely on this recovery in their algorithm too [10].

In contrast to the ultrarelativistic cases mentioned above, numerical studies of

subsonic flows may not require such sophisticated approaches and, in order to speed-up

the numerical process, an interesting alternative can be to evolve directly the primitive

variables, not considering the hydrodynamic equations in a conserved form. By doing

so, the recovery step is skipped, and the potential problems associated with it are

avoided. The aim of this article is to derive such explicit hydrodynamics equations for

primitive variables, within the so-called 3+1 formalism of General Relativity, and to

test them in some simplified setting (one-dimensional fluid with analytic EoS) in the

simulation of the evolution of a self-gravitating compact star. The paper is organized

as follows: in Section 2, we introduce the fluid variable notations and thermodynamic

properties, and the general four-dimensional covariant equations; Section 3 is devoted to

the computation of hydrodynamic equations in their 3+1 form, using explicitly primitive

variables; these equations are then implemented in a numerical code, presented in

Section 4 with which several tests are performed to compare the new formulation and

code with previous ones, and are presented in Section 5. Finally, Section 6 summarizes

the results and gives some concluding remarks. In the following, we use units such

that c = 1, a 4-metric gµν with a signature (−,+,+,+), and a covariant derivative

(connection) ∇µ associated to that metric. Greek indices are running from 0 to 3,

whereas Latin lowercase ones are running from 1 to 3. Latin uppercase indices are used

to denote various thermodynamic species present in the fluid.
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2. Fluid variables and covariant conservation laws

2.1. Notations and definitions

We consider a perfect fluid, for which the energy-momentum tensor is:

T µνfluid = (e+ p)uµuν + pgµν , (1)

where uµ is the timelike unitary 4-velocity that carries all species and that satisfies

uµu
µ = −1. e is the energy density in the fluid frame, and p the pressure. The

thermodynamics of the fluid is described with the following parameters: the number

densities nX where X spans all the types of species in the fluid, with the particular

case of the subscript B that refers to the baryons, and the entropy density S which is

conjugate to the temperature θ:

θ = θ(S, nX) =
∂e(S, nX)

∂S

∣∣∣∣
nX

. (2)

We shall denote by Ŝ = S/nB the entropy per baryon and YA = nA/nB the abundancies,

where A is a subscript that refers to any species except the baryons. Finally let

µZ = µZ(S, nX) =
∂e(S, nX)

∂nZ

∣∣∣∣
S,nY 6=Z

(3)

be the chemical potential associated with the species Z.

2.2. Linking the thermodynamic variables

The differential of the e(S, nX) is:

de = θ dS +
∑
Z

µZ dnZ . (4)

The relation for the pressure p as a function of S and nX reads:

p = p(S, nX) = θS +
∑
Z

µZnZ − e. (5)

The differential of p(S, nX) is:

dp =
∂p

∂S

∣∣∣∣
nX

dS +
∑
Z

∂p

∂nZ

∣∣∣∣
S,nY 6=Z

dnZ . (6)

The definition of the squared sound velocity is given e.g. by [11] :

c2
s =

dp

de

∣∣∣∣
ds=dNB=dNA=0

, (7)

where s = S V , NX = nXV are the entropy and number of X particles, with V the

volume. Eq. (7) can be rewritten as:

c2
s =

1

e+ p

(
∂p

∂S

∣∣∣∣
nX

S +
∑
Z

∂p

∂nZ

∣∣∣∣
S,nY 6=Z

nZ

)
. (8)
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2.3. Relativistic conservation laws

The conservation of energy and momentum is written with the following Ansatz for the

stress-energy tensor:

∇µ(T µνfluid + T µνemission) = 0, (9)

where T µνfluid is defined by Eq. (1) and T µνemission encodes all possible emissions such as

electromagnetic radiation or neutrino emission via weak reactions. The latter can be

incorporated as bulk viscosity [12]. The equation is then rewritten as:

∇µT
µν
fluid = Qν , (10)

denoting Qν = −∇µT
µν
emission. The conservation of a species X flux is, with a possible

source term σX that account for possible processes such as chemical or nuclear reactions:

∇µ(nXu
µ) = σX . (11)

Projecting Eq. (9) along uν gives, also denoting Q = uνQ
ν :

θ∇µ(S uµ) = −Q−
∑
Z

µZσZ . (12)

Then, in the case θ 6= 0:

∇µ(S uµ) = −1

θ

(
Q+

∑
Z

µZσZ

)
, (13)

and in the case θ = 0 the entropy density in the fluid is also 0 as stated by the third

law of thermodynamics, and the evolution equation for S is irrelevant.

2.4. Substitution of pressure gradients with the log-enthalpy

As we shall see in Secs. 3.6 and 3.7, Eqs. (32), (33), (34) and (44) involve the ratio

between the gradient of p and e+ p, which is numerically ill-defined for applications to

self-gravitating objects, as both terms can vanish near the border of such an object. Let

H be the log-enthalpy:

H = ln

(
e+ p

mBnB

)
, (14)

with mB a baryon mass. Then:

dp

e+ p
= dH − e−H

(
θdŜ +

∑
A 6=B

µAdYA

)
, (15)

where B denotes the baryons. We thus see that the problematic terms can be replaced

with a well-behaved expression that does not involve any ratio of vanishing quantities.
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3. Hydrodynamic equations in 3+1 form

3.1. 3+1 decomposition

In this subsection, we introduce the notations that we use within the 3+1 formalism

framework. For a full introduction to 3+1 formalism and 3+1 hydrodynamics, the

reader is referred to [13] and references therein.

We consider an asymptotically flat spacetime. The spacetime metric is given in the

standard 3+1 form:

gµνdx
µdxν := −N2dt2 + γij(dx

i + βidt)(dxj + βjdt), (16)

where N is the lapse function, βi the shift 3-vector and γij the induced 3-metric on

spacelike 3-hypersurfaces, associated with its covariant derivative Di. The extrinsic

curvature tensor is defined by

Kij := −1

2
Lnγij, (17)

where Ln is the Lie derivative along the vector nµ, a unitary, future-oriented, timelike

4-vector normal to a hypersurface Σt of constant time t:

nµ := N∇µt. (18)

K := Ki
i denotes the trace of the extrinsic curvature tensor. Finally, we consider the

following hydrodynamical quantities: the Lorentz factor with respect to the Eulerian

observer will be denoted Γ, the Eulerian velocity Uµ and the coordinate velocity vi.

These quantities are related according to:

Γ := −nµuµ = (1− UiU i)−1/2, (19)

and

uα = Γ(nα + Uα) =
Γ

N
(1, vi), U i =

1

N
(vi + βi). (20)

3.2. 3+1 formulation of conservation laws

In this subsection we write the conservation laws (11) and (13) in the framework of the

3+1 formalism, and write the 3+1 relativistic equivalent of Euler’s equation. Rewriting

Eq. (13) by reformulating the divergence with γ = det(γij), the determinant of the

3-metric:

∇µ(S uµ) =
1

N
√
γ
∂µ (N

√
γ S uµ) = −1

θ

(
Q+

∑
Z

µZσZ

)
. (21)

Using Γ = Nu0 and then the 3-dimensional divergence formula, the previous equation

is written as:

∂t(S Γ
√
γ) +

√
γDi(S Γ vi) = −N

√
γ

θ

(
Q+

∑
Z

µZσZ

)
. (22)
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Expanding the time derivative we get:

∂tS = −S∂tΓ
Γ
− S∂tγ

2γ
− Di(S Γ vi)

Γ
− N

Γθ

(
Q+

∑
Z

µZσZ

)
. (23)

Then we can deduce analogously that:

∂tnX = −nX
∂tΓ

Γ
− nX

∂tγ

2γ
− Di(nXΓvi)

Γ
+
N

Γ
σX . (24)

The 3+1 Euler’s equation is [13]:

∂tUi + vjDjUi = − 1

Γ2(e+ p)

[
NDip+ Ui(∂tp− βjDjp)

]
+ UjDiβ

j −DiN + UiU
j(DjN −NKjkU

k). (25)

As we can see, the evolution of the parameters is governed by the evolution of the Lorentz

factor, the determinant of the 3-metric and the pressure. The following subsections will

be dedicated to the derivation of the evolution equations for those three quantities. At

the end, the equations will be decoupled to have evolution equations for S, nX and

Ui that only rely on spatial derivatives of the thermodynamical and hydrodynamical

primitive quantities.

3.3. Evolution equation for γ

The evolution equation for the 3-metric combined with the derivative of a determinant

yields [13]:

∂tγ

2γ
= −NK +Diβ

i. (26)

3.4. Evolution equation for p

Starting from Eq. (6) and using Eqs. (23), (24) and (8):

∂tp =
∂p

∂S

∣∣∣∣
nX

∂tS +
∑
Z

∂p

∂nZ

∣∣∣∣
S,nY 6=Z

∂tnZ

= −(e+ p)c2
s

(
∂tΓ

Γ
+
∂tγ

2γ
+
Di(Γv

i)

Γ

)
− viDip

+
N

Γ

(
− ∂p

∂S

∣∣∣∣
nX

1

θ

(
Q+

∑
Z

µZσZ

)
+
∑
Z

∂p

∂nZ

∣∣∣∣
S,nY 6=Z

σZ

)
. (27)

The last term in the equation is computed from the EoS and the microphysical reaction

rates. In the following, it will be denoted with Ξ:

Ξ =

(
− ∂p

∂S

∣∣∣∣
nX

1

θ

(
Q+

∑
Z

µZσZ

)
+
∑
Z

∂p

∂nZ

∣∣∣∣
S,nY 6=Z

σZ

)
. (28)

Note that in the special case of no emission (Q = 0) and no chemical or nuclear reactions

(σX = 0,∀X), Ξ = 0.
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3.5. Evolution equation for Γ

The evolution equation for the Lorentz factor is deduced from its relation to Ui:

∂tΓ =
1

2
Γ3∂t(γ

ijUiUj) =
1

2
Γ3(UiUj∂tγ

ij + 2U i∂tUi). (29)

Injecting Eqs. (25) and (27), as well as the evolution equation for the inverse metric [13]

in the previous equation, gives:

∂tΓ = Γ(NUkU lKkl − U jDjN)− Γ3U ivjDjUi

− ΓU i

e+ p

[
NDip+ Ui

(
− vjDjp+

N

Γ
Ξ− βjDjp

−(e+ p)c2
s

(
∂tΓ

Γ
+
∂tγ

2γ
+
Di(Γv

i)

Γ

))]
. (30)

Bringing all the ∂tΓ terms together on the left hand side finally yields:

∂tΓ

Γ
=

Γ2

Γ2 − c2
s(Γ

2 − 1)

[
NU iU jKij − U iDiN − Γ2U ivjDjUi −

Γ2 − 1

Γ2(e+ p)

N

Γ
Ξ

− 1

Γ2(e+ p)
NU jDjp+ c2

s

(
Γ2 − 1

Γ2

)(
∂tγ

2γ
+
Di(Γv

i)

Γ

)]
. (31)

3.6. Evolution equations for S, nX and Ui

Replacing Eqs. (26) and (30) in Eqs. (23) and (24) gives the evolution equations for S

and nX :

∂tS = −viDiS −
SNΓ2

Γ2 − c2
s(Γ

2 − 1)

[
U iU jKij −K −

U jDjp

Γ2(e+ p)
+DjU

j

− Γ2 − 1

Γ2(e+ p)

Ξ

Γ

]
− N

Γ

1

θ

(
Q+

∑
Z

µZσZ

)
, (32)

∂tnX = −viDinX −
nXNΓ2

Γ2 − c2
s(Γ

2 − 1)

[
U iU jKij −K −

U jDjp

Γ2(e+ p)
+DjU

j

− Γ2 − 1

Γ2(e+ p)

Ξ

Γ

]
+
N

Γ
σX . (33)

For the evolution equation for Ui, we use Eqs. (27), (26) and (30):

∂tUi = −vjDjUi + UjDiβ
j −DiN + UiU

jDjN

+
c2
sNUi

Γ2 − c2
s(Γ

2 − 1)
(DjU

j −K) + Ui
Γ2(c2

s − 1)

Γ2 − c2
s(Γ

2 − 1)
NU lU jKlj

− N

Γ2

(
Dip

e+ p
− Γ2(1− c2

s)

Γ2 − c2
s(Γ

2 − 1)
UiU

j Djp

e+ p

)
− Ui

Γ2 − c2
s(Γ

2 − 1)

NΞ

Γ(e+ p)
. (34)

Note that the causality condition is c2
s ≤ 1, and Γ2 ≥ 1 by definition, thus

Γ2 − c2
s(Γ

2 − 1) ≥ 1, and therefore the denominator Γ2 − c2
s(Γ

2 − 1) never vanishes.
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These equations can be analytically compared with some particular cases: we

checked that in the Newtonian limit, in a non reactive system (i.e. with Q = 0 and

σX = 0,∀X), Eqs. (33) and (34) yield their Newtonian counterparts, and that using the

polar slicing and radial gauge, these equations exactly correspond to that of [14].

3.7. Set of evolution equations for numerical simulations

Depending on the different equilibrium conditions, the EoS depends on a certain number

of thermodynamical variables, that we call parameters. For practical applications, the

number of parameters in the EoS is usually between one and three. The choice of

three parameters typically corresponds to the description of a hot fluid where weak

nuclear β reactions take place. The three parameters are usually (θ, nB, Ye), or any

thermodynamically equivalent quantity. Ye corresponds to the electron fraction in the

fluid. However, the density of baryons may be discontinuous across a perfect fluid,

for example in the presence of a phase transition, whereas the log-enthalpy is better-

behaved. For applications using pseudospectral methods, see Sec. 4.2, we use (Ŝ, H, Ye),

where those parameters were defined in Secs. 2.1 and 2.4. The source term for the

baryon density is σB := 0. It encodes that the baryon number is strictly conserved. The

conservation of the lepton number is:

∇µ(nlu
µ) = 0. (35)

Therefore, the associated chemical potential is that of the leptons:

µl :=
∂e

∂nl

∣∣∣∣
S,nB

. (36)

However, we assume that the fluid is transparent to neutrinos so that they escape

instantly. Under this particular assumption, with nl = ne + nνe , the energy density

does not contain the contribution from the neutrinos, and the lepton chemical potential

expression is rewritten as:

µl =
∂e

∂ne

∣∣∣∣
S,nB

, (37)

and denoting σ = σe := −∇µ(nνeu
µ) the conservation law becomes:

∇µ(neu
µ) = σ. (38)

Then, the knowledge of ∂tS, ∂tnB and ∂tne with Eqs. (32), (33), allows to compute

∂tŜ, ∂tH and ∂tYe from the differential relation between those variables. Let us start

with the electron fraction:

dYe =
1

nB
dne −

Ye
nB

dnB. (39)

Then the evolution equation for Ye is simply:

∂tYe = −viDiYe +
N

Γ

σ

nB
. (40)
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Then, for the entropy per baryon, we relate the differentials of S and Ŝ:

dŜ =
1

nB

(
dS − ŜdnB

)
. (41)

The evolution equation for Ŝ is then once again a simple advection equation:

∂tŜ = −viDiŜ −
N

ΓθnB
(Q+ µlσ) . (42)

Those two equations are the same as the ones of [15], that were also derived by [16].

The corresponding differential of H in the particular case of the parameters (Ŝ, H, Ye)

that we chose is:

dH =
dp

e+ p
+ e−H(θdŜ + µldYe), (43)

Therefore, combining Eqs. (27), (40) and (42), the evolution equation for the log-

enthalpy is:

∂tH = −viDiH − c2
s

Γ2N

Γ2 − c2
s(Γ

2 − 1)

[
KjU

iU j −K +DiU
i

− U i

Γ2

(
DiH − e−H

(
θDiŜ + µlDiYe

)) ]
+ e−H

N

Γ

Q

nB

+ e−H
N

Γ

(Γ2 − 1)c2
s

Γ2 − c2
s(Γ

2 − 1)

(
∂p

∂ne

∣∣∣∣
S,nB

σ

nB
− ∂p

∂S

∣∣∣∣
ne,nB

Q+ µlσ

nBθ

)
. (44)

The final set of variables that are evolved through partial differential equations are

(Ui, H, Ye, Ŝ), for which the corresponding equations are Eqs. (34), (44), (40) and (42),

where all the terms of the form Dip/(e+ p) have been replaced thanks to Eq. (15). The

system must be closed by providing an EoS, which links the pressure, energy density,

sound speed, chemical potential and temperature to the parameters (H, Ye, Ŝ). In order

to check the validity of the set of equations, we will perform numerical tests that will

be described in the following sections.

4. Description of the code

4.1. Conformal decomposition and choice of coordinates

In order to fix the coordinates, we must choose a gauge and a foliation. Following [17],

we use the conformal decomposition of spacelike hypersurfaces. Let fij be a flat metric,

D̄i its associated covariant derivative, f = det(fij). We require that γij is fij at spatial

infinity. By introducing the so-called conformal factor

Ψ =

(
γ

f

)1/12

, (45)

the conformal metric is defined as

γ̃ij = Ψ−4γij. (46)

We choose the maximal slicing as a foliation, mathematically expressed as:

K = 0. (47)
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This choice has the effect of simplifying some of the equations and it numerically avoids

possible black hole singularities, for example during a gravitational collapse, see Sec. 5.3.

We also choose the Dirac gauge:

D̄iγ̃
ij = 0. (48)

In spherical symmetry, it corresponds to the isotropic gauge and γ̃ij = f ij. The

Dirac gauge is straightforward to use in three dimensions and allows to compute quasi-

stationary initial data [17].

4.2. Numerical implementation in spherical symmetry

We will perform various numerical tests on a one-species, spherically symmetric, cold,

catalysed (i.e. where β reactions are at equilibrium) NS, which is described by a one-

parameter EoS. We choose the parameter to be the log-enthalpy H. In this case, the

EoS only enters through the sound speed squared c2
s(H). In particular, Ξ = Q = σ = 0

in Eqs. (34) and (44). The evolution equations are that of Ur (the first component of Ui
in a spherical triad) (34) and H (44). We implement them along with the spherically

symmetric version of the Einstein system of [18] (Eqs. (30) to (33) therein), which is a

fully constrained formulation of Einstein equations, formulated as a set of four coupled

Poisson-like partial differential equations. The algorithm to perform the time evolution

is the following:

• At a given time t, H and Ur are known thanks to their evolution equations (44)

and (34). Γ can be computed from Ur, and along with the EoS, H allows to compute

p and e. Ψ is temporarily known thanks to the following evolution equation, which

can be obtained from Eq. (26):

∂t ln Ψ = βiD̄i ln Ψ +
1

6
D̄iβ

i. (49)

It is then possible to compute the following quantities,

E∗ = Ψ6(Γ2(e+ p)− p), (50)

S∗ = Ψ6(3p+ (Γ2 − 1)(e+ p)), (51)

p∗r = Ψ6Γ2(e+ p)Ur, (52)

and solve the Einstein equations. The output is the value of Ψ consistent with the

Hamiltonian constraint, which replaces the value of Ψ computed with Eq. (49) as

soon as it is available, as well as the lapse N and the radial component of the shift

vector βr.

• We use the knowledge of the radius of the star R, as well as H, Ur,Ψ, N and βr

together with the EoS to compute the sources of Eqs. (34), (44), (56) and (49).

An explicit finite-difference time scheme allows to compute Ψ, R, H and Ur at the

next time step.

The implementation is based upon LORENE [19], a dedicated C++ library that

comes with built-in Poisson solvers, based on pseudospectral methods [20, 21, 22, 23].
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We use the relaxation iterative method to solve the non-linear elliptic partial differential

equations. Pseudospectral methods are also used to compute the spatial derivatives in

the source of the evolution equations. The time evolution is done thanks to an explicit

finite differences Adams-Bashforth scheme of order 3. The numerical grid comprises

two domains: a nucleus centered on the star, with the domain boundary corresponding

to the surface of the star, and a compactified external domain (CED) from the surface

of the star to infinity, allowing to solve Poisson-like equations and imposing boundary

conditions at spatial infinity. As the star is evolved, the boundary between the nucleus

and the CED will move with it. This semi-Lagrangian approach was used in [14]. In

order to do so, we perform a change of variables in the nucleus defined as follows:{
t′ = t,

ξ = r/R(t).
(53)

The radial coordinate is mapped from [0, R(t)] to the numerical coordinate ξ ∈ [0, 1].

This changes the differential operators with respect to r and t:

∂

∂r
=

1

R

∂

∂ξ
, (54)

∂

∂t
= −Ṙ

R
ξ
∂

∂ξ
+

∂

∂t′
, (55)

where Ṙ is the time derivative of the radius. The term −Ṙ ξ can be interpreted as a

grid advection velocity inside the star. The radius is an additional parameter, therefore

we have to introduce a new equation:

Ṙ(t′) :=
dR

dt′
= vr(R(t′), t′). (56)

It corresponds to the impermeable boundary condition, which requires that no matter

crosses the external border of the domain. In the CED, a similar change of variables is

performed: {
t′ = t,

ξ = 1− 2R(t)/r.
(57)

The radial coordinate is mapped from [R(t),+∞] to the numerical coordinate ξ ∈
[−1, 1]. The differential operators are then also changed accordingly:

∂

∂r
=

(ξ − 1)2

2R

∂

∂ξ
, (58)

∂

∂t
=
Ṙ

R
(ξ − 1)

∂

∂ξ
+

∂

∂t′
. (59)

In what follows, we make no distinction between t and t′ as they are identical.

The boundary conditions between the domains for the Poisson-like equations are

imposed by the Poisson solvers of LORENE: the continuity of the metric and its radial

derivative is required. At infinity, we impose that Ψ→ 1, N → 1, βr → 0, as the metric

should be asymptotically flat. For the evolution equations, the boundary conditions are

the following:
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• At the center of the star, i.e. ξ = 0 in the nucleus, we impose the regularity of the

fields.

• Eqs. (44) and (34), within the assumption of subsonic flow, need one boundary

condition at the border of the star, i.e. ξ = 1 in the nucleus. The impermeable

boundary condition is naturally imposed by choosing a comoving grid. It also helps

with the stability of the code to enforce that H is constant at the surface of the

star.

• The communication between the nucleus and the CED for Eq. (49) is done in an

upwind fashion. We refer to Appendix A for the details of the characteristic speed

computation. No boundary condition needs to be imposed at ξ = 1 in the CED as

the characteristic speed there is βr(r = +∞, t) = 0.

All initial data are computed with LORENE, using the solver described in [24] in

spherical symmetry.

5. Numerical tests

5.1. Convergence

Here we describe the convergence tests that we performed. We use a polytropic EoS

with parameters γ = 2, κ = 100 (in geometrized units where G = c = 1, supplemented

with M� = 1) that was used by [25] to perform tests, with a central log-enthalpy of

Hc = 0.2279. The convergence is measured on the conservation of the ADM and baryon

masses. First, we fix the timestep ∆t = 3.34×10−4 ms and vary Nr the number of radial

grid points between 5 and 65. We let the star at equilibrium (meaning that it oscillates

only because of numerical noise) for a 1ms simulation. We find exponential convergence

on the maximum of the relative error on the ADM mass with respect to the equilibrium

value, as expected with pseudospectral methods. The error reaches a plateau around

10−10 at 25 grid points. To check the convergence of the time scheme, we use the same

star, but this time the simulations were run up to 10 ms, we set Nr = 17, the Cowling

approximation was used, and a Gaussian enthalpy profile was added to the equilibrium,

initial enthalpy profile as a perturbation. The timestep was varied between 10−4 and

3.34× 10−3 ms. We find an order 3 power-law convergence on the relative error of the

baryon mass with respect to the initial equilibrium baryon mass, which is expected as

the error for a finite difference scheme of order n must behave as O(∆tn).

5.2. Frequency extraction

We seek to recover the frequencies presented elsewhere in the literature. We use the

same star than in Sec. 5.1 and the γ = 5/3, κ = 7.308 km4/3 EoS described in [26]. The

method to extract the frequencies is the following:

(i) A simulation is run up to some tmax, set to 1s in this test.
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Figure 1. Fourier spectrum of the radius over a 1 s simulation of a γ = 2 polytropic NS

with full spacetime evolution (left) and Cowling approximation (right). The frequencies

of the three first modes are reported in Tables 1 (full spacetime evolution) and 2

(Cowling approximation). The spectrum is given in arbitrary units.
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Figure 2. Mass-frequency diagrams for four different polytropes. The κ coefficients

are 6.23 × 106 (γ = 1.8), 4.79 × 108 (γ = 2), 1.97 × 1013 (γ = 2.5) and 6.78 × 1017

(γ = 3), in units of m2(γ−1) (in geometrized units i.e. with G = c = 1).
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Table 1. Comparing polytropic frequencies (fundamental mode, first and second

overtone) of the code with the ones found in the literature. The frequencies were

extracted from a 1 s simulation. For the first polytrope [25], κ is expressed in units

of G3M�
2/c4, and for the second [26], κ is expressed in km4/3, i.e. in geometrized

units where G = c = 1. The central energy density of the polytrope from [26] is

ec = 3.16× 1014g · cm−3. The corresponding spectrum for the star of [25] is given on

the left panel of Fig. 1.

κ γ Hc [c2] M [M�] R [km] Fund. [kHz] 1st ov. [kHz] 2nd ov. [kHz]

Font et al. [25] 100 2 0.2279 1.4 14.15 1.450 3.958 5.935

This work 100 2 0.2279 1.401 14.16 1.442 3.954 5.915

Relative difference 0.6% 0.1% 0.3%

Hartle & Friedman [26] 7.308 5/3 6.720× 10−2 × × 0.824 1.94 2.86

This work 7.308 5/3 6.720× 10−2 0.4866 16.49 0.823 1.95 2.86

Relative difference 0.1% 0.5% 0.0%

Table 2. Comparing polytropic frequencies (fundamental mode, first and second

overtone) of the code with the ones found in the literature using the Cowling

approximation. The frequencies were extracted from a 1 s simulation. κ is expressed in

units of G3M�
2/c4. The corresponding spectrum is given on the right panel of Fig. 1.

κ γ Hc [c2] M [M�] R [km] Fund. [kHz] 1st ov. [kHz] 2nd ov. [kHz]

Font et al. [25] 100 2 0.2279 1.4 14.15 2.696 4.534 6.346

This work 100 2 0.2279 1.401 14.16 2.685 4.548 6.339

Relative difference 0.4% 0.3% 0.1%

(ii) A Fast Fourier Transform algorithm is performed on the R(t) signal to compute its

spectrum R̂(f).

(iii) A local maximum research is performed on R̂(f). When a peak (i.e. a maximum) is

detected, the point where the maximum is reached, along with its two neighbours,

are interpolated with a quadratic Lagrange polynomial.

(iv) The maximum of the polynomial can be analytically extracted; it is an

approximation of the frequency of the peak.

The precision on the frequency extraction is less than 1/tmax. Note that we compute

coordinate frequencies, as the time considered for oscillations is the coordinate time,

not the proper time. For the frequencies computed here, we used Nr = 17 and ∆t =

3.34×10−4 ms. The results are reported in Table 1. The code used in [25] is a full GR 3D

code with Eulerian high resolution shock capturing methods. The frequencies were also

recovered by [27] with discontinuous Galerkin methods and [10] with Lagrangian Smooth

Particles Hydrodynamics methods. We recover all the frequencies with a precision of

less than 1%. We also look at the frequencies of the [25] polytrope in the Cowling

approximation. The results are reported in Table 2. Here we once again recover the

tabulated frequencies with an accuracy of less than 1%. Fig. 1 shows the spectra for

our simulation both in full metric evolution and using the Cowling approximation. On
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Figure 3. BH collapse: lapse function at the center of the star. The collapse of the

lapse is characteristic of the formation of a black hole.

Fig. 2 are plotted mass-frequency diagrams for four different polytropes of which the κ

parameter has been adjusted to yield the same maximum mass, of 2.43M�. To produce

such a diagram, we extract frequencies on several stars described by the same EoS, from

close to zero mass to maximum mass, by varying the central enthalpy. We see that, as

expected [28], the frequency of the fundamental mode of the stars drops down to zero

close to the maximum mass.

We use the occasion to compare our code with the reference core-collapse and

NS oscillation code CoCoNuT [29] which uses pseudospectral methods for the metric

equations but which is based upon finite volume methods and a conserved scheme for the

hydrodynamics. For the same γ = 2, κ = 100 EoS we used to produce frequencies, a run

of the same star, with comparable to worse precision (as measured on the conservation

of the ADM mass), is typically five times longer with CoCoNuT than with our code.

5.3. Collapse to a black hole

The next test we perform is the collapse of a NS to a black hole. The test is rather

demanding but often performed [25, 18, 10, 30, 31, 32]. We use the γ = 2, κ = 100 EoS

that we used in Secs. 5.1 and 5.2, and set Hc = 0.61, on the unstable branch, and perturb

it with an enthalpy profile so that it exceeds the maximum mass. The star then collapses

into a black hole. We use Nr = 129 and ∆t = 3.34× 10−6 ms. We see on Fig. 3 that we

indeed find a black hole: the value of the central lapse goes as low as a few 10−6. We find
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Figure 4. Comparing our code with CoCoNuT for a migration test. Please see main

text for details.

that the hydrodynamical quantities such as the central pressure, baryon density, log-

enthalpy, sound speed squared and the circumferential radius seem to freeze; this is due

to the maximal slicing condition, which avoids black hole singularities singularities [13].

The last evidence is the existence of an apparent horizon, which we found using the

Apparent Horizon Finder described in [33]. It appears around t = 0.18 ms at the

corresponding Schwarzschild radius of the star: MADM = 2M�, RAH = 6 km. This

demonstrates the ability of the code to handle very strong gravitational fields.

5.4. Migration test

The migration test is the final standard test for numerical isolated NS evolution codes

that we perform. We try to reproduce the test originally presented by [25] which has

also been done by [18, 10, 30, 31, 32]. Unfortunately, as can be seen in the simulation

run with CoCoNuT, a shock is formed and we are able to compute the migration only up

to the shock formation, as one would expect from using pseudospectral methods. This

is illustrated in Fig.4 where we compare our simulation with a migration test performed

with CoCoNuT [29]. The simulation is run with Nr = 17 and ∆t = 3.34 × 10−4. The

migration being triggered by numerical truncation error, it has no reason to start at

the same time, so we have to shift the time of the one performed with CoCoNuT to
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align the curves. We see that because our simulation develops Gibbs phenomenon, the

star is not able to oscillate. It is worth noting that, when run on a laptop, our codes

reaches the point where it crashes in approximately ten seconds, while CoCoNuT takes

six minutes to reach that same point.

6. Summary and conclusions

We have presented a new formulation of the hydrodynamical equations in General

Relativity, using the 3+1 formalism, aimed for numerical simulations. Those equations

only rely on the primitive variables, meaning that, as opposed to the widely used

conservative form of the Valencia hydrodynamics formalism [8], no recovery procedure is

needed to compute the sources for the metric equations. The derivation of the equation

relies on a procedure that shows the evolution of the variables nX , S, Ui, Γ, γ and p is

actually degenerate and decouples them to end up with equations for nX , S and Ui only.

This formulation allows for the simulation of any relativistic perfect fluid, not only self-

gravitating objects, and is expressed in a 3+1 covariant form. Then, we have summarized

the equations for a fluid with an EoS that uses at most three parameters. The extension

to more parameters, for example accounting for the presence of muons, is straightforward

as the new equations needed are already encoded in the general derivation. We then

applied them to the simulation of NS oscillations. The code used for numerical tests

implements a fully constrained formalism for the computation of the metric. It uses an

Adams-Bashforth finite-differences scheme for the time evolution, and pseudospectral

methods for the spatial coordinates. Pseudospectral methods are well-suited for smooth

flows and help to save even more computational resources. A notable feature is that,

like in the Lagrangian approach of [10], the surface of the star does not need any specific

treatment; we use the fact that it is well-defined at equilibrium, and then evolve the

grid according to the star evolution. The code is still at an early stage of development,

hence only spherically symmetric configurations have been implemented. Nonetheless,

the frequencies of polytropic NS are recovered with excellent precision, and the code is

also able to perform a black hole collapse. Only the migration test was not fully run

because of a shock formation, which also highlights the limitations of our numerical

approach. Future work includes the extension of the code to three spatial dimensions,

as well as two or three parameters in the EoS.
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Appendix A. Characteristic speed for the conformal factor evolution

Eq. (49) is an advection equation, therefore taking the moving grid into account, the

characteristic speed is

−(βr(R(t), t) + Ṙ(t)ξ) (A.1)

in the nucleus and

(ξ − 1)Ṙ(t)− (ξ − 1)2

2
βr(R(t), t) (A.2)

in the CED. At the exterior boundary of the nucleus, the characteristic speed reads

−βr(R(t), t)− Ṙ(t) = −NU r(R(t), t), (A.3)

and at the interior boundary of the CED, the characteristic speed is

−2(Ṙ(t) + βr(R(t), t)) = −2NU r(R(t), t). (A.4)

Therefore, the lapse function being positive, when U r(R(t), t) < 0, the value of ln Ψ

at the last grid point of the nucleus is copied to the first grid point of the CED, and

vice-versa for U r(R(t), t) > 0.
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