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Abstract

Classification (supervised-learning) of multivariate func-
tional data is considered when the elements of the random
functional vector of interest are defined on different domains.
In this setting, PLS classification and tree PLS-based methods for mul-
tivariate functional data are presented. From a computational point
of view, we show that the PLS components of the regression with
multivariate functional data can be obtained using only the PLS
methodology with univariate functional data. This offers an alternative
way to present the PLS algorithm for multivariate functional data.
Numerical simulation and real data applications
highlight the performance of the proposed methods.

Keywords: multivariate functional data analysis, supervised learning,
classification, partial least squares regression (PLS)

1 Introduction

In many areas, high-frequency data are monitored in time and space. For
example, (i) in medicine, a patient’s state can be diagnosed by time-related
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recordings (e.g. electroencephalogram, electrocardiogram) or/and images (e.g.
fMRI) and (ii) in finance, the stocks markets are naturally recorded in time
and space. Analyzing such data requires adapted techniques, mainly because
of the high dimension and their complex time and space correlation structure.
Since the pioneer works of Ramsey and Silverman (2005), this data is well-
known in statistics as functional data and, nowadays, it is a well-established
statistical research domain. Viewed as a sample of a random variable with
values in some infinite dimensional space, functional data is mostly associated
with a random variable indexed by a continuous parameter such as the time,
wavelengths, or percentage of some cycle.

Dimension reduction techniques are used in order to tackle the issue of
high dimension and correlation. Among these, the most basic and elementary
one is the selection of privileged features of data by expert’s knowledge (see
e.g Saikhu, Arifin, and Fatichah (2019), Javed, Rahim, Saba, and Rehman
(2020)). Some other works focused on deep learning models, in particular, long
short-term memory models have been proposed for time series (Hochreiter
and Schmidhuber (1997), Karim, Majumdar, Darabi, and Chen (2017), Karim,
Majumdar, Darabi, and Harford (2019)). They have the advantage of being
less dependent on prior knowledge but are usually not interpretable. Maybe
the most used methodologies for dealing with functional data are based on
building latent models such as principal component analysis/regression (PCA,
PCR) (Ramsey and Silverman (2005) Jacques and Preda (2014)), Escabias,
Aguilera, and Valderrama (2004) and partial least squares (PLS) Aguilera,
Escabias, Preda, and Saporta (2010) Preda, Saporta, and Lévéder (2007).

In this paper we are focused on supervised classification with binary
response Y and multivariate functional data predictor X = (X(1), . . . , X(d))⊤,
where for j = 1, . . . , d, X(j) are univariate functional random variables,
X(j) = {X(j)(t), t ∈ Ij}, and Ij is some compact continuous index set.

The supervised classification of univariate functional data (d = 1) has
been the source of various contributions. James and Hastie (2001) extended
multivariate linear discriminant analysis (LDA) to irregularly sampled curves.
As maximizing the between-class variance with respect to the total variance
leads to an ill-posed problem, Preda et al. (2007) proposed a partial least
square-based classification approach for univariate functional data. Using the
concept of depth, López-Pintado and Romo (2006) introduced robust proce-
dures to classify functional data. Non-parametric approaches have also been
investigated, using distances and similarities measures, see e.g Ferraty and
Vieu (2003), and Galeano, Joseph, and Lillo (2015) for an overview of the
use of Mahalanobis distance. Tree-based techniques applied to functional data
classification are quite recent: Maturo and Verde (2022) introduced tree mod-
els using functional principal component scores as features, and Möller and
Gertheiss (2018) presented a tree based on curve distances.

In the multivariate functional data setting, the supervised classification
is mainly investigated when all domains Ij are identical, Ij = [0, T ] for
j = 1, . . . , d and T > 0, that is, all the d-components of X are defined on the
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same domain. Under this assumption, Blanquero, Carrizosa, Jiménez-Cordero,
and Mart́ın-Barragán (2019b) proposed a methodology that allows for opti-
mal selection of the most informative time instants in the data. In Górecki,
Krzyśko, and Wo lyński (2015), regression models are used to classify mul-
tivariate functional data by reduction dimension techniques based on basis
projection. Recently, Gardner-Lubbe (2021) proposed a linear discriminant
analysis. To avoid the ill-posed problem of the maximization of the between
variance in the functional case, the authors use discretization techniques, by
pooling data at specific time points.

The classification of multivariate functional data with different domains
(the domains Ij are different) is rarely explored. This framework is more flex-
ible and makes possible the use of different types of data simultaneously (e.g.
time series, images) (Happ & Greven, 2018). To the best of our knowledge,
only Golovkine, Klutchnikoff, and Patilea (2022) proposed a supervised clas-
sification method in this setting. They introduced a tree-based method for
unsupervised clustering and demonstrated the applicability of their method
to supervised classification. Their method is based on principal component
analysis for multivariate functional defined on different domains (MFPCA),
presented in (Happ & Greven, 2018).

The use of MFPCA as ordinary principal component analysis (PCA) for
supervised learning leads to some non-trivial issues, such as the number and the
selection of the principal components to be retained in the model. Therefore,
the partial least square (PLS) approach has been an interesting alternative, as
the obtained PLS components are based on the relationship between predic-
tors and the response. Since the introduction of PLS regression on univariate
functional data predictors in Preda and Saporta (2002), many contributions
have been proposed, particularly in the univariate functional framework. As
already mentioned above, Preda et al. (2007) demonstrated the ability to use
PLS for linear discriminant analysis. In Aguilera et al. (2010) the authors show
the relationship between the PLS of univariate functional and ordinary PLS
on the coefficients obtained from basis expansion approximation. An alterna-
tive non-iterative functional partial least square for regression is developed
in Delaigle and Hall (2012), and they demonstrate consistency and establish
convergence rates. For interpretability purposes, Guan, Lin, Groves, and Cao
(2022) has recently introduced a modified partial least squares approach to
obtaining the sparsity of the coefficient function.
To the best of our knowledge, PLS regression for multivariate functional data
has been explored only in one domain setting. In Dembowska, Liu, Houwing-
Duistermaat, and Frangi (2021), the authors proposed a two-step approach
for dealing with multivariate functional covariates. The first step consists of
computing independently the PLS components for each (univariate) dimen-
sion X(j), j = 1, . . . , d. Then, they extract new uncorrelated features based on
linear combinations of the obtained PLS components. In Beyaztas and Shang
(2022) the aim is to provide a robust version of PLS for multivariate func-
tional data. They have extended Aguilera et al. (2010) basis expansion results
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on multivariate functional data and proposed a partial robust M-regression in
this framework.

We extend the recent contribution in Beyaztas and Shang (2022) by
investigating more exhaustively PLS procedures, in particular, we derive
the relationship between the PLS regression with univariate functional data
(FPLS) and the PLS regression with multivariate functional data (MFPLS).
From a computational point of view, this relationship provides an alternative
way to estimate the PLS components for multivariate functional data from the
corresponding univariate ones.

The different dimension framework makes it possible to mix functional
data of heterogeneous types (e.g. images and time series). Inspired by the
Tree Penalized Linear Discriminant Analysis (TPLDA) introduced in Poterie,
Dupuy, Monbet, and Rouviere (2019), we propose a tree classifier based on PLS
regression scores. Similarly to the TPLDA, our tree model uses a predefined
structure group of dimensions.

The paper is organized as follows. Section 2 presents the PLS methodology
for binary classification. It introduces the PLS regression with multivariate
functional data defined on different domains and establishes the relationship
with the univariate functional PLS approach. The presentation of the TMF-
PLS methodology ends this section. Section 3 presents simulation studies for
regression and classification purposes and compares the performances of our
approaches with existing methods. We also apply the MFPLS and TMFPLS
methods to benchmark data for multivariate time series classification in Section
4. A discussion is given in Section 5. The appendix contains detailed proofs
of some theoretical results. The supplementary material includes additional
figures related to the numerical experiments.

2 Methods

2.1 Basic principles and notations

We are dealing with multivariate functional data defined on different domains
in a similar framework as Happ and Greven (2018). As a general model for mul-
tivariate functional data analysis, let X be a stochastic process represented by
a d-dimensional vector of functional random variables X = (X(1), . . . , X(d))⊤,
defined on the probability space (Ω,A,P).

In the classical setting (Ramsey and Silverman (2005), Jacques and Preda
(2014), Górecki et al. (2015)), the components X(j), j = 1, . . . , d, are assumed
real-valued stochastic processes defined on some finite continuous interval
[0, T ]. In our setting, we consider the general framework where each compo-
nent X(j) is defined on some specific continuous compact domain Ij of Rdj ,
with dj ∈ N−{0}. Thus, for dj = 1 we deal in general with time or wavelength
domains whereas for dj = 2, the domain Ij indexes images or more complex
shapes. It is also assumed that X(j) is a L2-continuous process, and it has
squared integrable paths, i.e. each trajectory of X(j) belongs to the Hilbert
space of the square-integrable functions defined on Ij , L2(Ij). These general
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hypotheses ensure that integrals involving the variables X(j) are well-defined.
Let define H = L2(I1) × ...× L2(Id) be the Hilbert space of vector functions

H = {f = (f (1), . . . , f (d))⊤, f (j) ∈ L2(Ij) , j = 1, . . . , d}
endowed with the inner product

⟨⟨f, g⟩⟩H =

d∑
j=1

⟨f (j), g(j)⟩L2(Ij) =

d∑
j=1

∫
Ij

f (j)(t)g(j)(t)dt.

where dt is the Lebesgue measure on Ij . In the following, if there’s no confusion,
the index H will be omitted and |||, ||| will denote the norm induced by ⟨⟨, ⟩⟩.

2.2 The Linear Functional Regression Model

When the aim is the prediction (the supervised context), the stochastic process
X is associated to a response variable of interest Y through the conditional
expectation E(Y |X).
Let consider the real-valued response variable Y be defined on the same
probability space as X,

Y : Ω → R.
Without loss of generality, we assume that Y and X are zero-mean,

E(Y ) = 0, E(X(j)(t)) = 0 , j = 1, . . . , d t ∈ Ij (1)

and Y has a finite variance.
The functional linear regression model assumes that E(Y |X) exists and is

a linear operator as a function of X. Thus, we have:

Y = ⟨⟨X,β⟩⟩ + ϵ, (2)

where

- β ∈ H denotes the regression parameter (coefficient) function,

β =
(
β(1), . . . , β(d)

)⊤
,

- ϵ denotes the residual term which is assumed to be of finite variance E(ϵ2) =
σ2 and uncorrelated to X.

In the integral form, the model in (2) is written as :

Y =

d∑
j=1

∫
Ij

X(j)(t)β(j)(t)dt+ ϵ. (3)

Under the least squares criterion, the estimation of the coefficient function
β is, in general, an ill-posed inverse problem (Aguilera et al. (2010), Preda
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and Saporta (2002), Preda et al. (2007)). From a theoretical point of view,
this is due to the infinite dimension of the predictor X, which makes that its
covariance operator is not invertible (Cardot, Ferraty, & Sarda, 1999). Hence,
dimension reduction methods such as principal component analysis (Happ and
Greven (2018)) and expansion of X into a basis of functions (Aguilera et al.
(2010)) can be used in order to obtain an approximation of linear form in (3).

2.2.1 Expansion (of the predictor) into a basis of functions

For each dimension j of H, j = 1, . . . , d, let consider in L2(Ij) the set

Ψ(j) = {ψ(j)
1 , . . . , ψ

(j)
Mj

} of Mj linearly independent functions. Denote with

M =
∑d

j=1Mj .
Assuming that the functional predictor X and the regression coefficient

function β admit the expansions

X(j)(t) =

Mj∑
k=1

a
(j)
k ψ

(j)
k (t), β(j)(t) =

Mj∑
k=1

b
(j)
k ψ

(j)
k (t), (4)

∀t ∈ Ij , j = 1, . . . , d, the functional regression model in (3) is equivalent to
the multiple linear regression model:

Y = (Fa)⊤b+ ϵ (5)

where

- a is the vector of size M obtained by concatenation of vectors a(j) =

(a
(j)
1 , a

(j)
2 , . . . , a

(j)
Mj

)⊤, j = 1, . . . , d,
- b is the coefficient vector of size M obtained by concatenation of vectors

b(j) = (b
(j)
1 , b

(j)
2 , . . . , b

(j)
Mj

)⊤, j = 1, . . . , d, and

- F is the block matrix of size M ×M with diagonal blocks F(j), j = 1, . . . , d,

F =


F(1) 0 . . . 0

0 F(2) . . . 0
...

...
0 0 . . . F(d)

 . (6)

For each j = 1, . . . , d, F(j) is the matrix of inner products between the basis

functions, with elements F
(j)
k,l = ⟨ψ(j)

k , ψ
(j)
l ⟩L2(Ij), 1 ≤ k, l ≤Mj .

Hence, under the assumption of basis expansion hypothesis (4), the estimation
of the coefficient function, β, is equivalent to the estimation of the coefficient
vector b in a classical multiple linear regression model with a design matrix
involving the basis expansion coefficients of the predictor (the vector a) and
the metric provided by the choice of the base’s functions (the matrix F ).
The least-square criterion for the estimation of b yields in some settings (e.g.
large number of basis functions) to multicollinearity and high dimension issues,
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similar to the univariate setting (see Aguilera et al. (2010) for more details).
Two well-established methods of estimation, principal component regression
(PCR) and partial least squares regression (PLS) are reputed for the efficiency
of their estimation algorithm and the interpretability of the results. As men-
tioned in Jong (1993) in the finite-dimensional setting and in Aguilera et al.
(2010) for the functional one, for a fixed number of components, the PLS
regression fits closer than the PCR. Thus, the PLS regression provides a more
efficient solution (sum of square errors criterion). Numerical experiments con-
firm these results for the regression with univariate functional data (see for
more details Delaigle and Hall (2012), Guan et al. (2022)).
In the next section, we present the proposed PLS regression of multivariate
functional data.

2.3 PLS regression with multivariate functional data:
MFPLS

PLS regression penalizes the least squares criterion by maximizing the covari-
ance between linear combinations of the predictor variables X (the PLS
components) and the response Y . It is based on an iterative algorithm building
at each step PLS components as predictors for the final regression model. In
the multivariate setting, analogously to the univariate case (Preda and Saporta
(2002)), the weights for the linear combinations are obtained as the solution
to the Tucker criterion:

max
w∈H

Cov2(⟨⟨w,X⟩⟩, Y ), (7)

with w = (w(1), . . . , w(d))⊤ such that |||w|||H = 1.
The following proposition establishes the solution to the above maximiza-

tion problem.

Proposition 1 The solution of (7) is given by

w(j)(t) =
E(X(j)(t)Y )√∑d

k=1

∫
Ik

E2(X(k)(s)Y )ds
, ∀t ∈ Ij , j = 1, . . . , d. (8)

□

Let denote by ξ the PLS component defined as the linear combination of
variables X given by the weights w, i.e.,

ξ = ⟨⟨X,w⟩⟩ =

d∑
k=1

∫
Ik

X(k)(t)w(k)(t)dt.

The iterative PLS algorithm works as follows:

• Step 0: Let X0 = X and Y0 = Y .
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• Step h, h ≥ 1: Define wh as in Proposition 1 with X = Xh−1 and Y = Yh−1.
Then, define the h-th PLS component as

ξh = ⟨⟨Xh−1, wh⟩⟩,
Compute the residuals Xh and Yh of the linear regression of Xh−1 and Yh−1

on ξh,

Xh = Xh−1 − ρhξh,
Yh = Yh−1 − chξh,

where ρh =
E(Xh−1ξh)

E(ξ2h)
∈ H and ch =

E(Yh−1ξh)

E(ξ2h)
∈ R.

• Go to the next step (h = h+ 1).

Moreover, the following proprieties, stated in the univariate setting (Proposi-
tion 3 in Preda and Saporta (2002)), are still valid in the multivariate case.
Let L(X) denotes the linear space spanned by X.

Proposition 2 For any h ≥ 1, {ξk}hk=1 forms an orthogonal system of L(X) and
the following expansion formula hold:

Y = c1ξ1 + c2ξ2 + ...+ chξh + Yh,

X(j)(t) = ρ
(j)
1 (t)ξ1 + ρ

(j)
2 (t)ξ2 + ...+ ρ

(j)
h (t)ξh +X

(j)
h (t),

∀t ∈ Ij , j = 1, . . . , d.

□

The right-hand side term of the expansion of Y provides the PLS
approximation of order h of (2),

⟨⟨X,β⟩⟩ ≈ c1ξ1 + c2ξ2 + ...+ chξh (9)

and the residual part,
ε ≈ Yh.

Nevertheless, the above properties don’t furnish the direct relationhip between
Y and X as in (2). In order to do that, let’s write the components ξh as a
linear function of X, i.e., as a dot product in H.

Lemma 1 Let {vk}hk=1, vk ∈ span{w1, . . . , wh}, be defined by :

v
(j)
h (t) = w

(j)
h (t)−

h−1∑
k=1

⟨⟨ρk, wh⟩⟩v
(j)
k (t), t ∈ Ij j = 1, . . . , d. (10)

Then, {vk}hk=1 forms a linearly independent system in H and

ξh = ⟨⟨vh, X⟩⟩ =
d∑

j=1

∫
Ij

X(j)(t)v
(j)
h (t)dt.
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□

Thus, as for the principal component analysis X (Happ & Greven, 2018),
the PLS regression computes the components as the dot product of X and
the functions {vk}hk=1. These components are suitable for regression, as they
capture the maximum amount of information between X and Y according to
Tucker’s criterion. Obviously, by Lemma 1 and (9) we can write:

c1ξ1 + c2ξ2 + ...+ chξh = ⟨⟨X,βh⟩⟩

with

βh =

h∑
i=1

civi. (11)

Thus, the PLS regression model obtained with h components is given by

Y = ⟨⟨X,βh⟩⟩ + εh,

with εh = Yh.

Remark 1 For h ≥ 1, let Vh =
(
v1 . . . vh

)
and Wh =

(
w1 . . . wh

)
be two row-

vectors of Hh. From Lemma 1, the relationship between Vh and Wh given in (10)
can be written in matrix form as

Vh = Wh − PhVh, (12)

where Ph is the h× h matrix,

Ph =


0 ⟨⟨ρ1, w2⟩⟩ ⟨⟨ρ1, w3⟩⟩ . . . ⟨⟨ρ1, wh−1⟩⟩ ⟨⟨ρ1, wh⟩⟩
0 0 ⟨⟨ρ2, w3⟩⟩ . . . ⟨⟨ρ2, wh−1⟩⟩ ⟨⟨ρ2, wh⟩⟩
... . . .

...
0 0 0 . . . 0 ⟨⟨ρh−1, wh⟩⟩
0 0 0 . . . 0 0


Let Ih×h be the identity matrix of size h × h. Since Ih×h + Ph is non-singular,

then equation (12) yields to

Vh = (Ih×h + Ph)
−1Wh. (13)

As the functions {wk}hk=1 are computed directly from Proposition 1, the equation

(13) provides a straightforward way to obtain the weights {vk}hk=1 and, therefore by
(11), we obtain the coefficient function approximation βh.

Remark 2 It is worth noting that, contrary to eigenfunctions of the PCA of X Happ
and Greven (2018), {vk}hk=1 is not an orthogonal system by the inner product ⟨⟨, ⟩⟩.
Nonetheless, it provides orthogonal PLS components, i.e. E(ξkξl) = E(ξ2k)δk,l, where
δk,l is the Kronecker symbol.
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The next part focuses on the relationship between the partial least squares
regression of univariate functional data (FPLS) and the proposed multivari-
ate version (MFPLS) given by Proposition 1. More precisely, we show that
the MFPLS regression can be solved by iterating FPLS within a two-stage
approach.

2.3.1 Relationship between MFPLS and FPLS

For each j in 1, . . . d, let w̃
(j)
1 be the weight function corresponding to the

first PLS component obtained by FPLS regression of Y on dimension X(j)

(Proposition 2 in Preda and Saporta (2002)),

w̃
(j)
1 (t) =

E(X(j)(t)Y )√∫
Ij

E2(X(j)(s)Y )ds
, t ∈ Ij .

Obviously, the functions w̃
(j)
1 and w

(j)
1 (as defined in Proposition 1) are related

by the following relationship

w
(j)
1 = u1,jw̃

(j)
1 , (14)

with u1,j =
||E(X(j)Y )||L2(Ij)

|||E(XY )|||
∈ R and || · ||L2(Ij) stands for the norm induced

by the usual inner product in L2(Ij).

Let note that the vector u1 =
(
u1,1, ..., u1,d

)⊤
is such that ||u||Rd = 1. Hence,

we can establish a relationship between the PLS components of MFPLS and

FPLS in the following way. For each j in 1, . . . , d, let denote by ξ
(j)
1 the first

PLS component obtained by the FPLS regression of Y on the j-th dimension
of X. Then, the first PLS component of the MFPLS of Y on X, ξ1, is obtained

as the first PLS component of the PLS regression of Y on {ξ(j)1 , . . . , ξ
(d)
1 }.

Based on the iterative PLS process, that relationship can be applied to the
computation of higher-order MFPLS components.

That relationship allows us to define a new methodology for the compu-
tation of MFPLS regression when the functional predictor X is approximated
into a basis of functions.

2.3.2 Using the basis expansion for the MFPLS algorithm

Under the hypothesis (4), for any j = 1, . . . d, let denote with Λ(j) the vector

Λ(j) =
(

F(j)
)1/2

a(j)

where
(
F(j)

)1/2
is the squared root of the matrix F(j) and a(j) is the vector

of (random) coefficients of the expansion of X(j) in the basis of functions

{ψ(j)
1 , . . . , ψ

(j)
Mj

}.
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Then, Proposition 2 in Aguilera et al. (2010) makes the MFPLS procedure
equivalent to the following algorithm.

MFPLS algorithm

• Step 0: Let Λ
(j)
0 = Λ(j) for all j = 1, . . . , d and Y0 = Y .

• Step h, h ≥ 1:

1. For each j = 1, . . . , d,

- define ξ
(j)
h as the first PLS component obtained by the ordinary PLS

regression of Yh−1 on Λ
(j)
h−1,

ξ
(j)
h =

Mj∑
k=1

Λ
(j)
h−1,kθ

(j)
h,k, (15)

where θ
(j)
h ∈ RMj is the associated weight vector.

2. Define the h-th MFPLS component ξh by as the first PLS component of

the regression of Yh on {ξ(1)h , . . . , ξ
(d)
h },

ξh =

d∑
k=1

ξ
(k)
h uh,k, (16)

where uh ∈ Rd is the associated weight vector.

3. – For each j = 1, . . . , d, compute the residuals Λ
(j)
h of the linear regression

of Λ
(j)
h−1 and Yh−1 on ξh,

Λ
(j)
h = Λ

(j)
h−1 − r

(j)
h ξh,

where r
(j)
h =

E(ξhΛ
(j)
h−1)

E(ξ2h)
∈ RMj .

– compute the residual Yh of the linear regression of Yh−1 on ξh,

Yh = Yh−1 − chξh,

where ch =
E(Yh−1ξh)

E(ξ2h)
∈ R.

• Go to the next step (h = h+ 1).

Remark 3

1. The number of PLS components (h) retained in the approximation of the regression
model (9) is usually chosen by cross-validation optimizing some criteria as MSE
or AUC (for binary classification).
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2. The approach of Beyaztas and Shang (2022) is an extension of the basis expansion
result from Aguilera et al. (2010). It was proposed for one domain definition. Note
that our approach is more flexible since it allows different intervals. The case of
one domain is then a special case of the proposed methodology (see Section 3.1.1
for numerical comparison).

3. Let introduce in the step h - point 3 of the algorithm the computation of functions

w
(j)
h and ρ

(j
h , j = 1, . . . , d, as

w
(j)
h = uh,jH

(j)θ
(j)
h ψ(j),

ρ
(j)
h = H(j)r

(j)
h ψ(j)

where H(j) =
(
F(j)

)−1/2
.

Then, by Lemma 1, the functions {vk}hk=1 can also be computed through the
MFPLS algorithm, allowing to compute the regression coefficient function in (11).

4. Computational details: Let consider (X1,Y1), . . . , (Xn,Yn) be an i.i.d. sample

of size n ≥ 1 of (X,Y ). Then, for each j = 1, . . . , d, the vector a(j) is represented

by the sample n×Mj matrix of coefficients A(j),

A(j) =



a
(j)
1,1 . . . a

(j)
1,l . . . a

(j)
1,Mj

...
...

...

a
(j)
k,1 . . . a

(j)
k,l . . . a

(j)
k,Mj

...
...

...

a
(j)
n,1 . . . a

(j)
n,l . . . a

(j)
n,Mj

.


and

Λ(j) = A(j)(F(j))1/2.

Let define Y = (Y1, . . . ,Yn)
⊤. Then, the matrix version of the MFPLS algorithm

(step h) can be rewritten as :

1 For each j = 1, . . . , d, define ξ
(j)
h ∈ Rn as the first PLS component

obtained by the ordinary PLS of Yh on Λ
(j)
h−1

2 The h-th MFPLS ξh is the first component obtained by the ordinary

PLS of Yh on
(
ξ
(1)
h , . . . , ξ

(d)
h

)
.

3 For j = 1, . . . , d, the residuals Λ
(j)
h are computed by

Λ
(j)
h = Λ

(j)
h−1 − ξhr

(j)
h

with r
(j)
h =

1

ξ⊤h ξh
ξ⊤hΛ

(j)
h−1 is the projection coefficient.

And the residual Yh is

Yh = Yh−1 − ξhch

with ch =
1

ξ⊤h ξh
ξ⊤hYh−1.
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Although the proposed methodology is for regression problems with scalar
response, it can be used for binary classification by using the relation-
ship between linear discriminant analysis and linear regression (Aguilera et
al. (2010), Preda et al. (2007)). The next section addresses a classification
application based on PLS regression.

2.3.3 From PLS regression to PLS binary-classification

Using the previous notations, let X be the predictor variable (not necessarily
zero-mean) and Y be the response. The binary classification setting assumes
that Y is a Bernoulli variable, Y ∈ {0, 1}, Y ∼ B(π1) with π1 = P(Y = 1).
The PLS regression can be extended to binary classification after a convenient
encoding of the response.
Let define the variable Y ∗ as

Y ∗ =


√

π1

π0
, if Y = 0

−
√

π0

π1
, if Y = 1,

(17)

with π0 = 1 − π1.
Then, the coefficient function β of the regression of Y ∗ on X corresponds (up
to a constant) to that defining the the Fisher discriminant score denoted by
Γ(X):

Γ(X) = α+ ⟨⟨X,β⟩⟩,
with α= -⟨⟨µ, β⟩⟩, and µ = E(X) ∈ H.
Finally, the predicted class Ŷ0 of a new curve X0 is given by

Ŷ0 =

{
0 if Γ(X0) > 0
1 otherwise.

See for more details Preda et al. (2007).
In this paper we estimate the coefficient function β by the MFPLS approach.

2.4 MFPLS tree-based methods

Alternatives to linear models such SVM (see e.g Rossi and Villa (2006)
Blanquero, Carrizosa, Jiménez-Cordero, and Mart́ın-Barragán (2019a)), clus-
terwise regression (see e.g Preda and Saporta (2005), Yao, Fu, and Lee (2011),
Li, Song, Zhang, Zhu, and Zhu (2021)) could be extended to multivariate
functional data. In this section, we present a tree-based methodology (TMF-
PLS) combined with MFPLS models. The variable selection feature of tree
methods is particularly adapted in the framework of multivariate functional
data and allows predicting the response throughout more complex but still
interpretable relationships. It represents in some way a generalization of the
finite-dimensional setting presented in Poterie et al. (2019) to the case of mul-
tivariate functional data. The procedure consists in split a node of the tree by
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successively selecting an optimal discriminant score (according to some impu-
rity measure) among discriminant scores obtained from MFPLS regression
models with different subsets of predictors. In the presented methodology, we
limit our attention to the case of binary classification (Y ∈ {0, 1} ).

2.4.1 The algorithm

Let consider (X1,Y1), . . . , (Xn,Yn) be an i.i.d. sample of size n ≥ 1 of (X,Y ),
where Y is a binary response variable and X = (X(1), . . . , X(d)) a multivariate
functional one. Moreover, we assume that there exists a well-defined group
structure (potentially overlapping) of the dimensions of X, i.e. there exists K
subgroups, K ≥ 1, G1, . . . ,GK of variables {X(1), . . . , X(d)}. Notice that groups
are not necessarily disjoint. These groups of variables define the candidates to
be used to split the node of the tree (the score will be calculated with the only
variables in the candidate group).

Inspired by Poterie et al. (2019)’s methodology, our algorithm is composed
of two main steps. In a nutshell, with the help of MFPLS methodology, the
first step provides the results of the splitting according to candidates groups
G1, . . . ,GK whereas the second one selects the best splitting candidate using
an impurity criterion. These two steps are applied to all current nodes (start
with the root node containing all the sample – n observations) until the
minimum purity threshold is reached.

Consider the current node of the tree to be split:

• Step 1: The MFPLS candidate scores.
For each candidate group of variable Gi, i = 1, . . . ,K, perform MFPLS of Y
on Gi and denote with Γi the estimated MFPLS score (prediction) obtained
with the group Gi. Then, the result of the split with Γi is represented by
two new sub-nodes obtained according to the predictions of the observations
(Xj ,Yj) in the current node: {Γi(X ) > 0} and {Γi(X ) ≤ 0}.

• Step 2: Optimal splitting.
Select the optimal splitting according to group G∗ which maximizes the
decrease of impurity function ∆Q (see Poterie et al. (2019) for more details),

G∗ = arg max
G∈{G1,...,GK}

∆QG .

Therefore, the optimal splitting for the current node is the one obtained
with the MFPLS score Γ corresponding to G∗.

A node is terminal if its impurity index is lower than a defined purity threshold.
In order to avoid overfitting, a pruning method can be employed. Here, we use
the same technique as in Poterie et al. (2019), i.e. the optimal depth of the
decision tree (m∗) is estimated using a validation set.
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3 Simulation study

This section deals with finite sample properties on simulated data to evaluate
the performances of MFPLS and TMFPLS approaches with competitor meth-
ods based on MFPCA. Two different cases are presented. In the first one, all
the components X(j) of X are defined on the same one domain I = [0, T ],
T > 0. In the second case, X is a bivariate functional vector X = (X(1), X(2))⊤

with X(1) = (X(1)(t))t∈I1
and a two-domain variable X(2) = (X(2)(t))t∈I2×I2

,
where I1, I2 ⊂ R. Thus, in this second one, a sample from the functional vari-
able X corresponds to a set of curves and 2-D images of domains I1 and I2×I2
respectively.

3.1 One domain case

3.1.1 Setting 1: scalar response

In order to compare our approach with existing ones, we use the simulation
framework described in Beyaztas and Shang (2022).

Consider the domain I = [0, 1] and the 3-dimensional functional predictor
X = (X(1), X(2), X(3))⊤:

X(j)(t) =

5∑
k=1

γkυk(t), t ∈ I, j = 1, 2, 3,

with γk ∼ N (0, 4k−3/2) and υk(t) = sin kπt− cos kπt, k = 1, . . . , 5.
The functional coefficient β is defined by

β(t) =
(
sin(2πt), sin(3πt), cos(2πt)

)⊤
.

Then, the regression model generating the data is given by

Y = ⟨⟨X,β⟩⟩ + ϵ,

where ϵ ∼ N (0, σ2).
We define the noise variance as

σ2 =
E(⟨⟨X,β⟩⟩2)

SNR
,

where SNR is the signal-to-noise ratio. We consider 5 values of SNR: SNR
∈ {0.5, 1.62, 2.75, 3.88, 5}.
The approach proposed in Beyaztas and Shang (2022) is a generalization of
the result in Aguilera et al. (2010) to the multivariate case (MFPLS D). It
exploits an equivalence between the PLS of multivariate functional covariates
and ordinary PLS of the projection scores of covariates in basis functions.
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Our method has a different procedure, as we compute multivariate PLS com-
ponents using the univariate PLS components (see Section 2.3.2).

As in Beyaztas and Shang (2022) we use 200 equidistant discrete times
points on I where raw data of X are observed, and 400 independent copies
of X are simulated. Among these copies, 50% are used for learning and the
remaining for validation.
We also compare our method to principal component regression1(MFPCR). A
number of 200 replications of the three different inference procedures are done.
The number of components in all approaches is chosen by 10-fold cross-
validation procedures. To transform the raw data into functions, smoothing is
used with 20 quadratic splines basis functions.
Performances of the three approaches are measured by the mean squared
prediction error (MSPE):

MSPE =
1

200

∑
i∈Vset

(Yi − Ŷi)
2

with Ŷi is the predicted response for the i − th observation in the validation
sample (Vset), Yi the true value.

Figure 1 depicts the MSPE boxplots of MFPLS, MFPLS D and MFPCR
approaches.

Fig. 1: Boxplots of MSPE obtained by each approach in Setting 1.

All methods provide comparable results. In other words, our approach and
the direct one give equivalent results. So in the following finite sample studies,
we will use MFPLS.

1From Beyaztas and Shang (2022) scripts: https://github.com/UfukBeyaztas/RFPLS

https://github.com/UfukBeyaztas/RFPLS
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3.1.2 Setting 2: binary response

In the following experiment, we focus on a classification problem with one-
dimensional domain I = [0, 50].
Here, we build two different classes (Class 1 and Class 2) of functional data,
visualized in Figure 3. They are related to some pattern (a shape with peaks)
appearing at some locations of the curves. This simulation setting is a kind of
visual pattern-recognition problem (Fukushima, 1988). The pattern of interest
is identifiable by eyes but challenging to detect with algorithms. An example
may be epileptic spikes detection in electroencephalogram recordings (see for
instance Abd El-Samie, Alotaiby, Khalid, Alshebeili, and Aldosari (2018) for
more details).
The performances of MFPLS, TMFPLS, and linear discriminant analysis on
principal component scores (MFPCA-LDA) are compared in this simulation
study.

Consider the domain I = [0, 50], and the 2-dimensional functional predictor
X = (X(1), X(2))⊤ :

X(1)(t) =

4∑
s=1

ashs(t) + ϵ(1)(t) , X(2)(t) =

4∑
s=1

(1 − as)hs(t) + ϵ(2)(t)

where {as}4s=1 are discrete variables with values in {−1, 0, 1}, {hs}4s=1 are
the set of triangle function hs(t) = (1 − 0.25|t− 10s|)+ s = 1, . . . , 4 and ϵ =

(ϵ(1), ϵ(2))⊤ is a bivariate error function.
The error term is generated similarly as Happ and Greven (2018)

framework. It consists in simulating a bivariate functional variable e(.) =∑100
k=1 θkϕk(.) where {ϕk}100k=1 are based on shifts of the first 100 Fourier basis

functions, θk are independent centered variables with variance σ2
θ,k = 101−k

100
(for more details, see Happ and Greven (2018)). Then, the residual function is
given by

ϵ(.) =

√
2

101
e(.).

This leads to have
∑100

k=1⟨⟨ϵ, ϕk⟩⟩ ∼ N (0, 1).
The discrete random variables {aj}4j=1 are generated such as the proba-

bility of aj+1 depends only on the value of aj , j = 1, . . . , 3. In addition, the
probability of two consecutive variables is given by

P(aj+1 = k|aj = k, Z = z) = pj+1,z

and P(aj+1 = k|aj ̸= k, Z = z) =
1

2
(1 − pj+1,z)
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where j = 1, 2, 3, k = −1, 0, 1, and Z ∼ B(p), with p = P(Z = 1).
Let p+1,z, p

+
1,z ∈ [0, 1] be

p+1,z = P(a1 = 1|Z = z), and p−1,z = P(a1 = −1|Z = z).

Finally, Y is defined as

Y =

{
1 if a1a2 − (|a3| + |a4|) = 1 or a2a3 − (|a1| + |a4|) = 1
0 otherwise.

If as ̸= 0, s = 1, . . . , 4, this means we observe a peak on X(1) at the position
t = 10s, which could be positive (as = 1) or negative (as = −1). Then, Y = 1,
if strictly two consecutive peaks (both negatives or positives) occur at the
beginning of X(1), namely the peaks of interest, are observed at t = 10, 20 or
t = 20, 30. The four cases where Y = 1 are illustrated in Figure 2.
Using the definition of the variables {as}4s=1, a direct calculation provides the
probability P(Y = 1) (see Appendix A for details).

(1): a1= a2=1, and a3 = a4 = 0 (2): a1= a2=-1, and a3 = a4 = 0

(3): a2= a3=1, and a1 = a4 = 0 (4): a2= a3=-1, and a1 = a4 = 0

Fig. 2: Example of Y = 1 (Setting 2)

.

Two scenarios are studied, and parameters used for numerical simulation
are presented in Table 1. For each one, N = 500 copies of X are considered,
and for each dimension, 50 equidistant discrete times points on I of X are
observed.

Remark 4

• In scenario 1, the X curves are mainly related to the Z = 0 regime, and
class 1 (Y = 1) is almost entirely composed of curves with shapes related
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Parameters Scenario 1 Scenario 2
p 0.01 0.5
Z 0 1 0 1

p+1,z 0.890 0.450 0.450 0.005

p−1,z 0.010 0.450 0.450 0.005

p2,z 0.900 0.010 0.900 0.010
p3,z 0.010 0.900 0.010 0.900
p4,z 0.900 0.010 0.900 0.010

P̂(Y = 1) 0.344 0.424

Table 1: Parameters used to simulate scenarios 1 and 2.

Scenario 1 Scenario 2

Y = 0

Y = 1

Fig. 3: Example of curves X in Setting 2, under both scenarios. Class 1 curves
are in red and class 0 curves are in blue. The second scenario (right) shows more
heterogeneity in class 1 compared to the first scenario (left).

to the (1) case of Figure 2, then we have two consecutive positive peaks at
t = 10, 20 in X(1) (See Figure 3).

• Scenario 2 is more complex, both regimes of Z have the same probability to
occur.

The regime Z = 0 is related to case (1) (two consecutive positive peaks
at t = 10, 20 in X(1)) and case (2) (two consecutive negative peaks at
t = 10, 20 in X(1) ).

The regime Z = 1 is related to case (3) (two consecutive positive peaks
at t = 20, 30 in X(1)) and case (4) (two consecutive negative peaks at
t = 20, 30 in X(1)).

The functional form of X is reconstructed using 20 quadratic spline func-
tions with equidistant knots (see Figure 3). For a given scenario, we did 200
experiments. At each, 75 % of the data are used for learning and 25 % for vali-
dation. The number of components for the MFPLS (in both models) is chosen
by 10-fold cross-validation. Moreover, MFPCA-LDA is performed for compar-
ison. It consists, firstly in the estimation of principal components (using Happ
(2017) package) and then applying linear discriminant analysis to them. As
in the previous model, the number of components is chosen by 10-fold cross-
validation. By defining the set of groups as G1 = 1,G2 = 2,G3 = {1, 2}, the
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decision tree looks for the best splits among those obtained using separately
univariate functions and the ones obtained using both dimensions. In order, to
have an estimation of the optimal depth m∗, we randomly take 75% of learn-
ing data to train an intermediate TMFPLS, and 25% for pruning (by AUC
metric). This procedure is repeated 10 times and m̂∗ is the frequent value
among the 10 repetitions. The final tree is then trained on the whole learning
data, with the maximum tree depth fixed to m̂∗, and the minimum criterion
of impurity at 1%.

Results

AUC Sensibility Specificity

S
c
e
n

1 MFPLS 83.39 96.4 65.62
TMFPLS 93.90 97.14 88.78
MFPCA-LDA 92.60 100 80.34

S
c
e
n

2 MFPLS 50.79 60.61 41.13
TMFPLS 81.99 87.67 76.27
MFPCA-LDA 50.00 60.17 40.00

Table 2: Metrics are the medians of the 200 replications on each validation set. The
highest AUC by scenario is underlined.

In the first scenario, Table 2 shows AUC differences are about 10% between
MFPLS and TMFPLS. Furthermore, MFPCA-LDA is competitive with TMF-
PLS. The second scenario shows more differences between the two methods,
MFPLS and MFPCA-LDA are non-effective compared to TMFPLS. Hence,
TMFPLS outperforms these methods in a complex task classification such as
scenario 2.

In the supplementary materials, we analyze examples of trees (randomly
selected among the 200 estimated) obtained from the two scenarios.

3.2 Different domains case

3.2.1 Setting 3: Image and Time series classification

Our approach allows the use of images and time series simultaneously. In this
part, we highlight the use of various domains instead of focusing only on one
dimension domain.

Framework

Consider the domains I1 = [0, 50], I2 = [0, 1] × [0, 1], and X = (X(1), X(2))⊤:

X(1)(t) = Z1h(t) + ϵ(1)(t), t ∈ I1
X(2)(t) = Z2q(t) + ϵ(2)(t), t ∈ I2.
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The noise term ϵ = (ϵ(1), ϵ(2))⊤ is composed of two independent dimensions:
the first one ϵ(1) is a white noise of variances σ2, while the second one ϵ(2) is a
gaussian random field. ϵ(2) is associated with a Matern covariance model, with
sill, range, and nugget parameters equal to 0.25, 0.75, and σ, respectively (see
Ribeiro Jr, Diggle, et al. (2001) for more details). The variables Z1 and Z2 are
Bernoulli variables with values in {0, 1}. The (deterministic) functions h and
q are given by:

h(t) = 3.14

(
1 − |t− 10|

4

)
+

q(s) = −2 log

(√
(s(1) − 0.5)2 + (s(2) − 0.5)2

)
where (.)+ denotes the positive part, t ∈ I1, s = (s(1), s(2)) ∈ I2.
The response variable Y is constructed as follows :

Y =

{
1 if Z1Z2 = 1
0 otherwise.

In other words, Y = 1 if and only if both variables Z1, Z2 are simultaneously
1 (see Figure 4).

X(1)(t) + =

X(2)(t) + =

Fig. 4: Construction of class 1 (Y = 1), curve X(t) in Setting 3, under
SNR=0.5

If Y=0, X is random noise ϵ (left figures).

50 equidistant discrete points and 50 × 50 pixels are observed respectively
for the first and the second dimension. To get the functional form of X, the first
and second components are projected respectively into the space spanned by
20 quadratic spline functions, and the 4 two-dimensional splines (Happ, 2017).
The variances of the functions q and h along their domain are approximately
1. The signal-to-noise ratio (SNR) is then (approximately) the same on both
dimensions and depends only on σ

SNR =
1

σ2
.

By controlling the parameter σ, we consider several values of SNR: 0.5, 0.7,
1.2, 2.1 and 4.9 .
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We set P(Z1 = 1) = P(Z2 = 1) = 3/4, then P(Y = 1) = 9/16 ≃ 0.56. A set
of 500 curves are simulated: 75% are used for learning, while the remaining
25% is for the validation set.

For each value of SNR, three MFPLS models are computed. The two
first use exclusively one dimension of the predictor: MFPLS(1) uses X(1) and
MFPLS(2) X(2). The third one uses both functional components (MFPLS).
The purpose is to assess the amount of performance using one-dimensional
domain and multiple-dimensional domain. We also compute MFPCA-LDA for
comparison purposes, the principal component analysis is performed by Happ
(2017) package.
The number of components in the two approaches: MFPLS and MFPCA-LDA
are chosen by 10-fold cross-validation using AUC. We did 200 simulations:
models are assessed by AUC on the validation set.

Fig. 5: Boxplots of obtained AUC on the validation set.

Figure 5 shows that MFPLS gives better results than MFPCA-LDA for
the lowest value of SNR, and the difference between the methods disappears
with the increase of SNR. Using partially the data (models MFPLS(1) and
MFPLS(2)) to predict the class variable is less efficient than using both dimen-
sions. Namely, Figure 5 clearly shows the advantage of using both of the
components of the functional variables.

This simulation demonstrates the ability of our method to classify different
domain data. In addition, as it’s specially designed for supervised learning,
it can be more effective than principal component analysis-based techniques
such as MFPCA-LDA in a noisy context.
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4 Real data application: Multivariate time
series classification

In this section, we compare the proposed methods with black box models
(LSTM, Random Forest, etc...) on benchmark data (Table 3, from Table 1
of (Karim et al., 2019)), ranging from online character recognition to activ-
ity recognition. These data, suitable for multivariate functional time series
data and binary classification, have been used by various works to assess new
methodologies (see e.g Pei, Dibeklioğlu, Tax, and van der Maaten (2017),
Schäfer and Leser (2017)).

Dataset d T Task Ratio Sources
CMUsubject16 62 534 Action Recognition 50-50 split Carnegie (0)
ECG 2 147 ECG Classification 50-50 split Oleszewski (2012)
EEG 13 117 EEG Classification 50-50 split Lichman (2013)
EEG2 64 256 EEG Classification 20-80 split (Lichman, 2013)
KickvsPunch 62 761 Action Recognition 62-38 split Carnegie (0)
Movement AAL 4 119 Movement Classification 50-50 split Lichman (2013)
NetFlow 4 994 Action Recognition 60-40 split Sübakan, Kurt, Cemgil, and Sankur (2014)
Occupancy 5 3758 Occupancy Classification 35-65 split Lichman (2013)
Ozone 72 291 Weather Classification 50-50 split Lichman (2013)
Wafer 6 198 Manufacturing Classification 25-75 split Oleszewski (2012)
WalkVsRun 62 1918 Action Recognition 64-36 split Carnegie (0)

Table 3: Datasets summary. T denotes the number of sampling time points,
d: the data dimensions, and Ratio of the train-test split. All datasets are
available in https://github.com/titu1994/MLSTM-FCN/releases/tag/v1.0

The proposed models (MFPLS, TMFPLS) are compared with discrimi-
nant analysis (MFPCA-LDA) on scores obtained by Multivariate functional
principal component analysis (Happ, 2017), and non-functional models; the
Long Short-Term Memory Fully Convolutional Network (LSTM-FCN) and
Attention LSTM-FCN (ALSTM-FCN), proposed by Karim et al. (2019). We
also present the benchmark of these last models named SOTA, which gives
the best performances among Dynamic time warping (DTW), Random Forest
(RF), SVM with a linear kernel, SVM with a 3rd-degree polynomial kernel
(SVM-Poly), and other state-of-the-art methods (see Karim et al. (2019) for
more details).
The challenge is to show that our models based on regression can be com-
petitive. The splitting of the data into training and test samples (see Table
3) is that of Karim et al. (2019). The different models mentioned above are
compared by the accuracy metric, the rate of well-predicted classes obtained
on the test datasets.

4.1 Choice of hyperparameters

As for some datasets (CMUsubject, KickVsPunch, etc...), the sample size is
small (less than 50 observations, see Table 4) the number of components in
MFPLS and MFPCA is chosen by 20-fold cross-validation (contrary to 10-fold

https://github.com/titu1994/MLSTM-FCN/releases/tag/v1.0
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in previous parts). The maximum tree depth m∗ is an important hyperpa-
rameter. It may significantly affect the performance of our tree-based model,
as it helps to prevent the overfitting of TMFPLS. We estimate m∗ by cross-
validation alike procedure. More precisely, we randomly take 75% of learning
data to train an intermediate TMFPLS and 25% for pruning. This procedure
is repeated 10 times and let m̂∗ be the most occurred number from these
10. The final tree is then trained on the whole learning data, with the maxi-
mum tree depth fixed to m̂∗. As in the previous section, group are defined as
G1 = 1, . . . ,Gd = d,Gd+1 = {1, ..., d}, to see whether FPLS gives better split-
ting than MFPLS. Testing several combinations of dimensions takes time, the
ideal choice of groups would be guided by some prior knowledge of the data
structure.
Two strategies are used for the number of components in the decision tree:
TMFPLS H-1 denotes the decision tree where only one component in MFPLS
is used, and TMFPLS H-CV is the decision tree where the number of com-
ponents is estimated by 20-fold cross-validation as in MFPLS. The first tree
is faster to train than the second one, and it’s less likely to overfit the data.
However, the second one is expected to be a more efficient model, since it is
able to estimate more complex coefficient functions β.

For all functional data methods, we use 30 B-Splines basis functions by
dimension to have a functional representation (Ramsey & Silverman, 2005) of
each dataset (see Figure 5 in the supplementary materials for the smoothed
functions). This number of basis functions is chosen arbitrarily small com-
pared to the minimum number of discrete time points (117) of the original raw
datasets.

4.2 Results

Table 4 shows that, in most cases, our models (MFPLS, TMFPLS) and
MFPCA-LDA are competitive with that of Karim et al. (2019) and SOTA. In
about half of the cases, TMFPLS or MFPLS reach the highest or the second-
highest accuracy. TMFPLS is generally more performant than MFPLS. Note
also that MFPCA-LDA is competitive with the proposed methodologies. The
main difference between MFPCA-LDA and MFPLS is that for the first one
components are searched with no regard to the response variable Y .
For the KickVsPunch dataset, the performance of TMFPLS H-1 is better than
the one by TMFPLS H-CV. This is because TMFPLS H-CV could easily overfit
when the training sample is small (NTrain < 20). This is one of the well-known
drawbacks of the decision tree. Tuning hyperparameters is then crucial and
may have a huge impact on performances.
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Datasets

N
T
r
a
in

N
T
e
s
t

MFPLS TMFPLS H-1 TMFPLS H-CV MFPCA-LDA Karim et al. SOTA

M
e
th

o
d
s

CMUsubject16 29 29 86.21 89.66 100 89.66 100 100 [1]
ECG 100 100 85 83 87 88 86 93 [2]
EEG 64 64 48.44 54.69 53.12 46.88 65.63 62.5 [3]
EEG2 600 600 81.83 68.67 82.67 72.17 91.33 77.5 [3]
KickVsPunch 16 10 90 90 60 80 100 100 [2]
MovementAAL 157 157 67.52 56.69 53.50 61.78 79.63 65.61 [4]
NetFlow 803 534 84.64 86.52 85.77 80.90 95 98 [2]
Occupancy 41 76 71.05 61.84 59.21 80.26 76 67.11 [4]
Ozone 173 173 73.99 73.41 73.41 79.19 81.5 75.14 [5]
Wafer 298 896 85.04 87.39 97.99 97.32 99 99 [2]
WalkVsRun 28 16 100 100 100 100 100 100 [2]

Table 4: Comparison of MFPLS, TMFPLS, and other non-FDA
classification methods by their accuracies (%) in the test set.

[1]: Tuncel and Baydogan (2018), [2]:Schäfer and Leser (2017), [3]:RF , [4]:
SVM-Poly, [5]: DTW

5 Conclusion and discussion

Statistical learning of multivariate functional data evolving in complex spaces
leads to challenging questions that need the development of new methods and
techniques. In this paper, we are interested in some of these methods in the
case of different functional domain settings. Namely, we propose least squares
regression and classification models for multivariate functional predictors. The
first classification model relies on the partial least square (PLS) regression
(MFPLS) while the second one (TMFPLS) combines PLS with a decision tree.
Technical arguments on the PLS methods are given. The finite sample perfor-
mance of the regression and classification models are assessed by simulations
and real data (EEG, Ozone, wafer,...) applications where we compare the pro-
posed methods with some benchmarks, in particular a PLS regression model
of the literature (Beyaztas and Shang (2022)) and well known principal com-
ponents regression and some machine learning models.
A main specificity of our proposed models is that the multivariate functional
data considered are defined on different domains compared to the literature.
This allows dealing with heterogeneous types of data (e.g. images, time series,
etc.) with a potentially large number of applications as shown by the given
classification case study on images and functional time series. We also give a
relationship between the partial least square of multivariate functional data
with its univariate counterparts. To the best of our knowledge, the proposed
tree classification model is new.

The finite sample properties show our models’ competitiveness with regard
to some existing methods. The multivariate time series classification case study
highlights the competitive performance of MFPLS and TMFPLS with black-
box models (LSTM, RF,...) on benchmark data. These performances may be
improved by using prior knowledge of the benchmark data (groups of variables,
suitable preprocessing, ...).
In this paper we focus on continuous functional predictors, a possible extension
of the proposed models would be including additional type (e.g, qualitative)
of covariates.



26 Classification of multivariate functional data with PLS approaches

The EEG and ozone data considered in the finite sample study may have
spatial dependence. The classification approaches seem not affected by these
data dependencies, but this deserves future investigation.
As in a number of functional data analysis, a tuning parameter related to the
number of basis functions used to smooth the raw data or reduce the dimension
of the functional space, has to be selected. In this paper, we fix or use a cross-
validation approach for the choice of this parameter. Other alternatives may
be based on bootstrap methods or criteria like AIC, BIC.

This work highlights the good behavior of TMFPLS and a way to deal
with non-linearity in classification problems of multivariate functional data.
However, with heterogeneous high-dimensional data, tree-based methods may
be challenging. An alternative method could be cluster-wise regression tech-
niques by extending the univariate case studied by Preda and Saporta (2005)
to our context. Some other methods as lasso classification techniques can also
be explored (see e.g Godwin (2013)).

Supplementary information. The supplementary material includes addi-
tional figures related to the numerical experiments.

Appendix A Technical arguments

Proof of Proposition 1 Here C-S (1) and C-S (2) stand respectively for Cauchy-
Schwartz inequality on integrals and sums.

Cov2(⟨⟨X,w⟩⟩, Y ) = E2 (⟨⟨X,w⟩⟩Y )

=

 d∑
j=1

[∫
Ij

E
(
X(j)(t)Y

)
w(j)(t)dt

]2

C-S(1) =⇒ Cov2(⟨⟨X,w⟩⟩, Y )≤

 d∑
j=1

(∫
Ij

E2(X(j)(t)Y )dt

)1/2

(∫
Ij

[w(j)(t)]2dt

)1/2
2

C-S (2) =⇒ Cov2(⟨⟨X,w⟩⟩, Y ) ≤

 d∑
j=1

∫
Ij

E2(X(j)(t)Y )dt

 d∑
j=1

∫
Ij

[w(j)(t)]2dt


︸ ︷︷ ︸

|||w|||2=1

Cov2(⟨⟨X,w⟩⟩, Y ) ≤
d∑

j=1

∫
Ij

E2(X(j)(t)Y )dt

The C-S inequalities become equalities, meaning the maximums are reached, if for
j = 1, . . . , d there exist non-null scalars a and a′ such as:

• w(j)(t) = aE(X(j)(t)Y ), t ∈ Ij
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•

(∫
Ij

[w(j)(t)]2dt

)1/2

= a′
(∫

Ij
E2(X(j)(t)Y )dt

)1/2
.

The first condition implies the second one, indeed if w(j)(t) = aE(X(j)(t)Y ) then(∫
Ij

[w(j)(t)]2dt

)1/2

= |a|

(∫
Ij

E2(X(j)(t)Y )dt

)1/2

, hence a′ = |a|.

To have |||w||| = 1, we take a =

 p∑
j=1

∫
Ij

E2(X(j)(t)Y )dt

−1/2

.

Thus, the solution of (7) is

w(j)(t) =
E(X(i)(t)Y )(∑p

j=1

∫
Ij

E2(X(j)(t)Y )dt
)1/2 , t ∈ Ij . (A1)

□

Proof of Proposition 2 X first order residual definition is X = ξ1ρ1 +X1, where X1

holds
E(ξ1X1) = 0Rd ⇐⇒ E(ξ1X

(j)
1 (t)) = 0 t ∈ Ij , 1 ≤ j ≤ d. (A2)

Analogously higher-order residuals also verify

E(ξhXh) = 0Rd ∀h ∈ N∗. (A3)

To show that {ξk}hk=1 forms an orthogonal system, we use a proof by induction,
similarly to Tenenhaus, Gauchi, and Ménardo (1995).

The base case verifies. Indeed, (A2) implies that

E(ξ1ξ2) =
d∑

j=1

∫
Ij

E
(
ξ1X

(j)
1 (t)

)
w
(j)
2 (t)dt = 0.

Assume the induction hypothesisH0,H0: {ξk}hk=1 forms an orthogonal system h ≥ 1

E(ξhξh+1) =

d∑
j=1

∫
Ij

E
(
ξhX

(j)
h (t)

)
w
(j)
h+1(t)dt

(A3) =⇒ E(ξhξh+1) = 0

E(ξh−1ξh+1) =

d∑
j=1

∫
Ij

E
(
ξh−1X

(j)
h (t)

)
w
(j)
h+1(t)dt

Since Xh−1 = ρhξh +Xh

=⇒ E(ξh−1ξh+1) =

d∑
j=1

∫
Ij

E
(
ξh−1X

(j)
h−1(t)

)
︸ ︷︷ ︸

=0 by (A3)

dt

− ρ
(j)
h (t)

∫
Ij

E (ξh−1ξh)︸ ︷︷ ︸
=0 by H0

d∑
j=1

w
(j)
h+1(t)dt,
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then E(ξh−1ξh+1) = 0

The same procedure can be used to show that E(ξjξh+1) = 0 ∀j ≤ h − 2. Hence,

{ξk}hk=1 forms an orthogonal system ∀h ≥ 1.
The expansion formulas are implications of this point. □

Proof of Lemma 1 For h = 1, we have v1 = w1, as ξ1 = ⟨⟨X,w1⟩⟩, the base case
verifies.
Assume that ⟨⟨X, vj⟩⟩ = ξj is true up to order h (∀j ≤ h).
Recall that,

ξh+1 = ⟨⟨Xh, wh+1⟩⟩. (A4)

The second equation of Proposition 2, gives that

Xh = X −
h∑

i=1

ρi⟨⟨vi, X⟩⟩

.
Then

ξh+1 = ⟨⟨X,wh+1⟩⟩ −
h∑

i=1

⟨⟨vi, X⟩⟩⟨⟨ρi, wh+1⟩⟩ = ⟨⟨X,wh+1 −
h∑

i=1

⟨⟨ρi, wh+1⟩⟩vi︸ ︷︷ ︸
vh+1

⟩⟩

This concludes the proof.
□

Calculus of P(Y ) in details From the definition of Y P(Y = 1) = P(S1) + P(S2),
since P(S1 ∩ S2) = 0 where

S+
1 = {a1 = 1, a2 = 1, a3 = 0, a4 = 0} S−

1 = {a1 = −1, a2 = −1, a3 = 0, a4 = 0}

S+
2 = {a1 = 0, a2 = 1, a3 = 1, a4 = 0} S−

2 = {a1 = 0, a2 = −1, a3 = −1, a4 = 0},

S1 = S+
1 ∪ S−

1 , and S2 = S+
2 ∪ S−

2 .

P(S+
1 ) = P(a4 = 0|a3 = 0, a2 = 1, a1 = 1)

P(a3 = 0|a2 = 1, a1 = 1)P(a2 = 1|a1 = 1)P(a1 = 1)

P(S+
1 ) = P(a4 = 0|a3 = 0)

P(a3 = 0|a2 = 1)P(a2 = 1|a1 = 1)P(a1 = 1).

The same procedure gives P(S−
1 ), P(S+

2 ), and P(S−
2 ). Using conditional probability

to Z, we obtain

P(S1|Z = z) = P(S+
1 |Z = z) + P(S−

1 |Z = z) =
1

2
p4,zp2,z(1− p3,z)p1,z

P(S2|Z = z) = P(S+
2 |Z = z) + P(S−

2 |Z = z) =
1

2
(1− p4,z)p3,z(1− p2,z)(1− ρ1,z).

Finally, the law of total probability yields to

P(Y = 1) = (1− p)

[
1

2
p4,0p2,0(1− p3,0)p1,0 +

1

2
(1− p4,0)p3,0(1− p2,0)(1− p1,0)

]
+p

[
1

2
p4,1p2,1(1− p3,1)p1,1 +

1

2
(1− p4,1)p3,1(1− p2,1)(1− p1,1)

]
□
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