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Abstract

Classification of multivariate functional data is explored in this paper,
particularly for functional data defined on different domains. Using the
partial least squares (PLS) regression, we propose two classification
methods. The first one uses the equivalence between linear discriminant
analysis and linear regression. The second is a decision tree based on
the first technique. Moreover, we prove that multivariate PLS compo-
nents can be estimated using univariate PLS components. This offers
an alternative way to calculate PLS for multivariate functional data.
Finite sample studies on simulated data and real data applica-
tions show that our algorithms are competitive with linear dis-
criminant on principal components scores and black-boxes models.
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Partial least squares regression (PLS), different domains

1



2 Classification of multivariate functional data with PLS approaches

1 Introduction

In many areas, high-frequency data are monitored in time and space. For
instance, (i) in medicine, a patient’s state can be diagnosed by time-related
(e.g. electroencephalogram, electrocardiogram) or images (e.g. fMRI) record-
ing(s), (ii) in finance, stocks market are naturally recorded in time and space.
Nowadays, in these areas and many others, space-time recordings result in
massive high-frequency data. Analyzing such data requires adapted techniques.

For supervised classification purposes, umpteen works used several data
reduction techniques such as feature selection to deal with this high dimen-
sion of data. Among these methods, the privileged features are driven by
experts’ knowledge, which could be non-applicable to another problem (see
e.g Saikhu, Arifin, and Fatichah (2019), Javed, Rahim, Saba, and Rehman
(2020)). Some other works focused on deep learning models, in particular, long
short-term memory models have been proposed for time series (Hochreiter
and Schmidhuber (1997), Karim, Majumdar, Darabi, and Chen (2017), Karim,
Majumdar, Darabi, and Harford (2019)). They have the advantage of being
less dependent on prior knowledge but are usually not interpretable. This can
be a non-negligible issue when dealing with sensible application areas such as
medicine.

Alternatively, functional data analysis, the statistical field of curves,
images, shapes or more complex data, has been gaining interest in the field
of time or space-time data. Since the pioneer works of Ramsey and Silver-
man (2005), functional data analysis is nowadays a well-established statistical
research domain. Viewed as a sample of a random variable with values in some
infinite dimensional space, functional data is mostly associated with a random
variable indexed by a continuous parameter such as the time, wavelengths, or
percentage of some cycle.

The supervised classification framework of univariate functional data –
meaning that the predictor is a random variable with values in some space
of real valued functions (e.g a time series) and the response is a categori-
cal random variable – has been the source of diverse contributions. James
and Hastie (2001) extended multivariate linear discriminant analysis (LDA)
to irregularly sampled curves. As maximizing the between-class variance with
respect to the total variance leads to an ill-posed problem, Preda, Saporta, and
Lévéder (2007) proposed a partial least square-based classification approach
for univariate functional data. Using the concept of depth, López-Pintado
and Romo (2006) introduced robust procedures to classify functional data.
Non-parametric approaches have also been investigated, using distances and
similarities measures, see e.g Ferraty and Vieu (2003), and Galeano, Joseph,
and Lillo (2015) for a overview of the use of Mahalanobis distance. Tree-based
techniques applied to functional data classification are quite recent: Maturo
and Verde (2022) introduced tree models using functional principal component
scores as features, and Möller and Gertheiss (2018) presented a tree based on
curve distances.
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The multivariate functional data classification problem, i.e. the predictor
is a multivariate functional variable (e.g. multivariate time series or images),
was mainly investigated through the one domain dimension setting. This sup-
poses that all univariate functional data have the same definition domain.
Blanquero, Carrizosa, Jiménez-Cordero, and Mart́ın-Barragán (2019b) pro-
posed a methodology which allows optimal selection of the most informative
time instants in multivariate functional data. Górecki, Krzyśko, and Wo lyński
(2015) used regression models to classify multivariate functional data by an
orthonormal basis projection. Recently, Gardner-Lubbe (2021) proposed a lin-
ear discriminant analysis for multivariate functional data. To maximize the
between and intra-class variance ratio, this author used discretization tech-
niques, by pooling at a specific time or ignoring time dependence using time
average.

Classification of multivariate functional data observed in different domains
is rarely explored, despite its evident interest. Indeed, this framework makes
possible the use of different types of data simultaneously (e.g. time series,
images) (Happ & Greven, 2018). To the best of our knowledge, only Golovkine,
Klutchnikoff, and Patilea (2022) proposed a supervised classification method in
this setting. They introduced a tree-based method for unsupervised clustering,
and demonstrated the applicability of their method to supervised classifica-
tion. Nevertheless, as the clustering doesn’t take into account the response
variable, this can be problematic when clusters are not related to the target’s
distribution. Their method is based on principal component analysis for multi-
variate functional defined on different domains (MFPCA), presented in (Happ
& Greven, 2018). The use of MFPCA as ordinary principal component anal-
ysis (PCA) for supervised learning leads to a non-trivial issue, which is the
number of components to retain in the model since PCA is performed only
with regard to the predictors.

Therefore, the partial least square (PLS) approach has been an interest-
ing solution, as obtained components are based on the relationship between
predictors and the response. Since the introduction of PLS regression on uni-
variate functional data predictors by Preda and Saporta (2002), diverse works
have been done, particularly in the univariate functional data setting. As
already mentioned above, Preda et al. (2007) demonstrated the ability to use
PLS for linear discriminant analysis. Aguilera, Escabias, Preda, and Saporta
(2010) showed the relation between the PLS of univariate functional and ordi-
nary PLS on the coefficient obtained by basis expansions. Delaigle and Hall
(2012) developed an alternative non-iterative functional partial least square
for regression, which helps to demonstrate consistency and establish conver-
gence rates. For interpretability purpose, recently Guan, Lin, Groves, and Cao
(2022) introduced a modified partial least square approach, which gives sparse
coefficient function. To the best of our knowledge, PLS regression for multi-
variate functions has been explored only in Beyaztas and Shang (2022), in the
one domain setting. They proposed a robust version of PLS for multivariate
functional data by extending Aguilera et al. (2010) basis expansion results on
multivariate functional data.
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In this paper, we are interested in the classification of multivariate data
defined in different domains. We go beyond Beyaztas and Shang (2022)’s recent
contribution by investigating more exhaustively PLS procedure on multivari-
ate functional data defined on different domains. We derive a clear relation
between partial least squares regression on univariate functional data (FPLS)
and partial least squares regression on multivariate functional data (MFPLS).
In a practical case, this relation furnishes an alternative way to estimate PLS
components for multivariate functional data using univariate components. The
different dimension framework makes possible to use this PLS approach on
data composed of heterogeneous types (e.g. images and time series). As our
main goal is the classification problem, we then apply the proposed PLS
methodology to the classification of multivariate functional data. In addition,
we propose a more flexible classifier, namely a tree classifier based on PLS
regression for binary classification of multivariate functional data. Our decision
tree is inspired by the Tree Penalized Linear Discriminant Analysis (TPLDA)
introduced by Poterie, Dupuy, Monbet, and Rouviere (2019). The main dif-
ference is due to the substitution of the penalized linear discriminant analysis
with the partial least squares approach for multivariate functional data. Sim-
ilarly to the TPLDA, our proposed tree allows using groups of dimensions.
The groups are defined as a subset of dimensions which are not necessary dis-
joint. This method can capture more complex structures in functional data
than MFPLS. Since multiple MFPLS/FPLSs are performed, it gives inter-
pretable results. This can be an advantage in real data applications, where
most algorithms used are black box.

The paper is organized as follows. Section 2 presents the partial least square
methods for classification. In fact, after introducing the context, it presents the
PLS regression on multivariate functional data defined on different domains.
The relation with the Partial least Square for univariate functional data is
given, and the based PLS linear discriminant analysis is described. The section
finishes with the presentation of TMFPLS, the proposed decision tree, in the
case of curves with variations inside classes. Section 3 presents simulation
studies from regression to classification to compare the performances of our
approaches with existing methods. To evaluate our classification procedure
on real datasets, we apply our methods to benchmark data for multivariate
time series classification in Section 4. A discussion is given in Section 5. The
appendix contains the detailed proofs of all theoretical results. The supplemen-
tary material includes additional figures related to the numerical experiments.

2 Methods

2.1 Basic principles and notations

We are dealing with multivariate functional data defined on different domains
in a similar framework as Happ and Greven (2018). As a general model for mul-
tivariate functional data analysis, let X be a stochastic process represented by
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a d-dimensional vector of functional random variables X = (X(1), . . . , X(d))⊤,
defined on the probability space (Ω,A,P).

In the classical setting (Ramsey and Silverman (2005), Jacques and Preda
(2014), Górecki et al. (2015)), the components X(j), j = 1, . . . , d, are assumed
real-valued stochastic processes defined on some finite continuous interval
[0, T ]. In our setting, we consider the general framework where each compo-
nent X(j) is defined on some specific continuous compact domain Ij of Rdj ,
with dj ∈ N − {0}. Thus, for dj = 1 we deal in general with time or wave-
lengths domains whereas for dj = 2, the domain Ij indexes images or more
complex shapes. It is also assumed that X(j) is a L2-continuous process, and it
has squared integrable paths, i.e. each trajectory of X(j) belongs to the Hilbert
space of the square-integrable functions defined on Ij , L2(Ij). These general
hypotheses ensure that integrals involving the variables X(j) are well-defined.
Let define H = L2(I1) × ...× L2(Id) be the Hilbert space of vector functions

H = {f = (f (1), . . . , f (d)), f (j) ∈ L2(Ij) , j = 1, . . . , d}
endowed with the inner product

⟨⟨f, g⟩⟩ =

d∑
j=1

⟨f (j), g(j)⟩L2(Ij) =

d∑
j=1

∫
Ij

f (j)(t)g(j)(t)dt.

where dt is the Lebesgue measure on Ij . In the following, if there’s no confusion,
index H will be omitted and |||, ||| will denote the norm induced by ⟨⟨, ⟩⟩.

2.2 The Linear Functional Regression Model

When the aim is the prediction (the supervised context), the stochastic process
X is associated to a response variable of interest Y through the conditional
expectation E(Y |X).
Let consider the real-valued response variable Y be defined on the same
probability space as X,

Y : Ω → R.
Without loss of generality, we assume that Y and X are zero-mean,

E(Y ) = 0, E(X(j)(t)) = 0 ,∀j ∈ {1, ..., d},∀t ∈ Ij (1)

and Y has finite variance.
The functional linear regression model assumes that E(Y |X) exists and is

a linear operator as a function of X. Thus, we have:

Y = ⟨⟨X,β⟩⟩H + ϵ, (2)

where
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- β ∈ H denotes the regression parameter (coefficient) function,

β =
(
β(1), . . . , β(d)

)⊤
,

- ϵ denotes the residual term which is assumed to be of finite variance E(ϵ2) =
σ2 and uncorrelated to X.

In the integral form, the model in (2) is written as :

Y =

d∑
j=1

∫
Ij

X(j)(t)β(j)(t)dt+ ϵ. (3)

Under the least squares criterion, the estimation of the coefficient function
β is, in general, an ill-posed inverse problem (Aguilera et al. (2010), Preda
and Saporta (2002), Preda et al. (2007)). From a theoretical point of view,
this is due to the infinite dimension of the predictor X, which makes that its
covariance operator is not invertible (Cardot, Ferraty, & Sarda, 1999). Hence,
dimension reduction methods such as principal component analysis (Happ and
Greven (2018)) and expansion of X into a basis of functions (Aguilera et al.
(2010)) can be used in order to obtain an approximation of linear form in (3).

2.2.1 Expansion (of the predictor) into a basis of functions

For each dimension j of H, j = 1, . . . , d, let consider in L2(Ij) the set

Ψ(j) = {ψ(j)
1 , . . . , ψ

(j)
Mj

} of Mj linearly independent functions. Denote with

M =
∑

j=1 dMj .
Assuming that the functional predictor X and the regression coefficient

function β admit the expansions

X(j)(t) =

Mj∑
k=1

a
(j)
k ψ

(j)
k (t), β(j)(t) =

Mj∑
k=1

b
(j)
k ψ

(j)
k (t), (4)

∀t ∈ Ij , j = 1, . . . , d, the functional regression model in (3) is equivalent to
the multiple linear regression model:

Y = (Fa)⊤b+ ϵ (5)

where

- a is the vector of size M obtained by concatenation of vectors a(j) =

(a
(j)
1 , a

(j)
2 , . . . , a

(j)
Mj

), j = 1, . . . , d,
- b is the coefficient vector of size M obtained by concatenation of vectors

b(j) = (b
(j)
1 , b

(j)
2 , . . . , b

(j)
Mj

), j = 1, . . . , d, and

- F is the block matrix of size M ×M with diagonal blocks F (j), j = 1, . . . , d,
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F =

F (1) 0 ... 0
0 F (2) .... 0
0 0 ... F (d)

 .

For each j = 1, . . . , d, F (j) is the matrix of inner products between the basis

functions, F
(j)
k,l = ⟨ψ(j)

k , ψ
(j)
l ⟩L2(Ij), 1 ≤ k, l ≤Mj .

Hence, under the assumption of basis expansion hypothesis (4), the estimation
of the coefficient function, β, is equivalent to the estimation of the coefficient
vector b in a classical multiple linear regression model with a design matrix
involving the basis expansion coefficients of the predictor (the vector a) and
the metric provided by the choice of the bases functions (the matrix F ).

The least square criterion for the estimation of b yields in some settings (e.g.
large number of basis functions) to multicollinearity and high dimension issues,
similar to the univariate setting (see (Aguilera et al., 2010) for more details).
Two well established methods of estimation, principal component regression
(PCR) and partial least squares regression (PLS), are reputed for the efficiency
of their estimation algorithm and interpretability of the results. As mentioned
in Jong (1993) in the finite dimensional setting and in Aguilera et al. (2010)
for the functional one, for a fixed number of components, the PLS regression
fits closer than the PCR. Thus, the PLS regression provides a more efficient
solution (sum of square errors’criterion). Numerical experiments confirm these
results for the regression with univariate functional data (see for mode details
Delaigle and Hall (2012), Guan et al. (2022)).
In the next section, we present the proposed PLS regression of multivariate
functional data.

2.3 PLS regression with multivariate functional data:
MFPLS

PLS regression penalizes the least squares criterion by maximizing the covari-
ance between linear combinations of the predictor variables X (the PLS
components) and the response Y . It is based on an iterative algorithm building
at each step PLS components as predictors for the final regression model. In
the multivariate setting, analogously to the univariate case (Preda and Saporta
(2002)), the weights for the linear combinations are obtained as solution to the
Tucker criterion:

max
w∈H

Cov2(⟨⟨w,X⟩⟩, Y ), (6)

with w = (w(1), . . . , w(d))⊤ such that |||w|||H = 1.
The following proposition establishes the solution of (6).

Proposition 1 The solution (w(t))t∈I of (6) is given by
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w(j)(t) =
E(X(j)(t)Y )√∑d

k=1

∫
Ik

E2(X(k)(s)Y )ds
, ∀j, 1 ≤ j ≤ d, and ∀t ∈ Ij . (7)

□

Let denote by ξ the PLS component defined as the linear combination of
variables X given by the weights w, i.e.,

ξ = ⟨⟨X,w⟩⟩ =

d∑
k=1

∫
Ik

X(k)(t)w(k)(t)dt.

The iterative PLS algorithm works as follows:

• Step 0: Let X0 = X and Y0 = Y .
• Step h, h ≥ 1: Define wh as in Proposition 1 with X = Xh−1 and Y = Yh−1.

Then, define the h-th PLS component as

ξh = ⟨⟨Xh−1, wh⟩⟩,
Compute the residuals Xh and Yh of the linear regression of Xh−1 and Yh−1

on ξh,

Xh = Xh−1 − ρhξh,
Yh = Yh−1 − chξh,

where ρh =
E(Xh−1ξh)

E(ξ2)
∈ H and ch =

E(Yh−1ξh)

E(ξ2)
∈ R.

• Go to the next step (h = h+ 1).

Moreover, the following proprieties, stated in the univariate setting (Proposi-
tion 3 in Preda and Saporta (2002)), are still valid in the multivariate case.
Let L(X) denotes the linear space spanned by X.

Proposition 2 Under the assumptions of Proposition 1, for any h ≥ 1

• {ξh}h forms an orthogonal system of L(X)
• Y = c1ξ1 + c2ξ2 + ...+ chξh + Yh
• X(t) = ρ1(t)ξ1 + ρ2(t)ξ2 + ...+ ρh(t)ξh +Xh(t)
• E(Yhξk) = 0, k = 1, . . . , h

• E(X
(j)
h (t)ξk) = 0, t ∈ Ij j = 1, . . . , d k = 1, . . . , h.

□

Nevertheless, the above properties don’t furnish the direct relation between
Y and X as in (2). The second and third points can be used to derive such
relationship. The key idea is to determine the set of functions which allow
calculating components ξh using only X. The following lemma gives the general
form of these functions, here denoted by {vh}h.
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Lemma 1 Let {vh}h, vh ∈ span{w1, . . . , wh} be defined by :

vh(t) = wh(t)−
h−1∑
j=1

⟨⟨ρj , wh⟩⟩vj(t) , t ∈ I. (8)

We have, each vh verifies

ξh = ⟨⟨vh, X⟩⟩.
□

This lemma shows that PLS regression defines a new set of functions such
as X can be decomposed by

∀t ∈ I , X(t) =

h∑
i=1

⟨⟨vi, X⟩⟩vi(t) +X[h](t),

where ξi = ⟨⟨vi, X⟩⟩ is the score of X on {vh}h. The functions vj are then
suitable bases for regression, as they capture the maximum amount of infor-
mation between X and Y according to Tucker’s criterion. Moreover, this helps
to derive a direct relation between X and Y .

Y = ⟨⟨X,β[h]⟩⟩ + Y[h],

with β[h](t) =
∑h

i=1 civi(t) is order h approximation of the coefficient-function.
Using Lemma 1, scores of the functions {vj} on {wj} are determined using

the following operations.
Let Vh, and Wh be the concatenation of functions {vk}k and {wk}k, such as

Vh(t) =


v⊤1 (t)
v⊤2 (t)
...

v⊤h (t)

 ∈ Rh×d, Wh(t) =


w⊤

1 (t)
w⊤

2 (t)
...

w⊤
h (t)

 ∈ Rh×d. (9)

Then equation (8) is equivalent to the following expression

Vh(t) = Wh(t) − PW
[h]Vh(t), (10)

where

PW
[h] =


0 0 0 0 ... 0 0

⟨⟨ρ1, w1⟩⟩ 0 0 0 ... 0 0
⟨⟨ρ1, w2⟩⟩ ⟨⟨ρ2, w2⟩⟩ 0 0 ... 0 0
⟨⟨ρ1, w3⟩⟩ ⟨⟨ρ2, w3⟩⟩ ⟨⟨ρ3, w3⟩⟩ 0 ... 0 0

... ... ... ...
⟨⟨ρ1, wh⟩⟩ ⟨⟨ρ2, wh⟩⟩ ⟨⟨ρ3, wh⟩⟩ ⟨⟨ρ4, wh⟩⟩ ... ⟨⟨ρh−1, wh⟩⟩ 0

 ∈ Rh×h.
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Let Ih×h be the identity matrix of size h×h. Since Ih×h+PW
[h] is non-singular1,

then equation(10) yields to

Vh(t) = (Ih×h + PW
[h] )

−1Wh(t). (11)

This finally gives the score of function {vk}k on {wk}k.

Remark 1 It is worth noting that contrary to eigen-functions, {vj}j is not orthogonal
by the inner product ⟨⟨, ⟩⟩. Nonetheless, as they provide orthogonal components,
they verify E(ξkξl) = E(ξ2k)δk,l, here δk,l is the Kronecker symbol. This implies that
{vj}j is an orthogonal basis function with respect to ⟨⟨, ⟩⟩∗, where

⟨⟨f, g⟩⟩∗ =

d∑
i=1

d∑
j=1

∫
Ii×Ij

f (i)(s)E(X(i)(s)X(j)(t))g(j)(t)dsdt f ∈ H, g ∈ H.

The next part focuses on the relationship between the partial least squares
regression of univariate functional data (FPLS) and the proposed multivariate
version (MFPLS) using Proposition 1.

2.3.1 Relationship between MFPLS and FPLS

Let w̃
(j)
1 be the first weight function obtained by FPLS on dimension j

(Proposition 2 in Preda and Saporta (2002)):

w̃
(j)
1 (t) =

E(X(j)(t)Y )√∫
Ij

E2(X(j)(s)Y )ds
, t ∈ Ij , 1 ≤ j ≤ d.

Notice that functions w̃
(j)
1 and w

(j)
1 (as defined in Proposition 1) hold

w
(j)
1 (t) = ujw̃

(j)
1 (t), uj =

√∫
Ij

E2(X(j)(s)Y )ds√∑d
j=1

∫
Ij

E2(X(j)(s)Y )ds
, and t ∈ Ij . (12)

Moreover, u =
(
u1, ..., ud

)⊤
verifies ||u||Rd = 1, where ||, ||Rd denotes the

Euclidean norm on Rd. Thus, let consider ξj,1, the j-th associated compo-

nent given by ξj,1 = ⟨w̃(j)
1 , X(j)⟩, 1 ≤ j ≤ d, since w1 is solution of (6) then

Cov2(
∑d

i=1 uiξi,1, Y ) is maximal. In other words, the two problems are equiv-
alent: obtaining the first component ξ1 is same as doing a classical PLS on
relative components {ξj,1}j .

In the next subsection, we use this relation to introduce a new method-
ology for the estimation of PLS on multivariate functional data using basis
expansion.

1Since, it is a triangular matrix with 1 as diagonal terms
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2.3.2 Partial least square estimation of multivariate
functional data

Let the centered samples X1, ..., Xn of X, and Y1, ..., Yn of Y . For each dimen-

sion j ∈ {1, . . . , p}, we consider a univariate basis function {ψ(j)
k }k∈{1,...,Mj}

of Mj functions, and the matrix Aj denotes the sample scores associated :

Aj =


a
(j)
1,1 a

(j)
1,2 ... a

(j)
1,Mj

a
(j)
2,1 a

(j)
2,2 ... a

(j)
2,Mj

... ...

a
(j)
n,1 a

(j)
n,2 ... a

(j)
n,Mj

 ∈ Rn×Mj , 1 ≤ j ≤ d, (13)

where X
(j)
i (t) =

∑Mj

k=1 a
(j)
i,kψ

(j)
k (t), t ∈ Ij .

Define Ỹ = (Y1, Y2, ..., Yn)⊤ the Y observations, and Fj the matrix of the two-

by-two inner products of basis {ψ(j)
i }i=1,...,Mj

.

Let F
1/2
j denotes the root matrix of Fj such as Fj = (F

1/2
j )⊤F

1/2
j , then Propo-

sition 2 in (Aguilera et al., 2010) makes partial least squares regression of
multivariate functional data equivalent to the following steps:

1. For each dimension j, PLS of Ỹ on Aj(F
1/2
j )T gives ξ̂j,1 ∈ Rn, the d rela-

tive first components.

The relative weight functions are denoted by w̃
(j)
1 (tj): w̃

(j)
1 (t) =

(F
−1/2
j ṽj)⊤ψ(j)(t), t ∈ Ij , where ṽj denotes the projection vector obtained

by PLS on dimension j.
2. Define the matrix, Ξ̂1 =

(
ξ̂1,1 ξ̂2,1 ... ξ̂d,1

)
∈ Rn×d which is the concatena-

tion of components {ξ̂j,1}1≤j≤d. Perform PLS of Ỹ on Ξ̂1 and define u ∈ Rd,
the first component weight vector.

The final weight function is then given by 1 ≤ j ≤ d, t ∈ Ij , w(j)
1 (t) =

u[j]w̃
(j)
1 (t), where u[j] is the j-th element of the vector u.

3. Then the first multivariate component is given by ξ̂1 = Ξ̂1u, ξ̂1 ∈ Rn.
Define2 σ̂2

1 = ξ̂⊤1 ξ̂1 its estimated variance, and ρ1 the PLS coefficient
function of X:

ρ
(j)
1 (t) = (ζj1)⊤ψ(j)(t), t ∈ Ij , 1 ≤ j ≤ d,

where ζj1 = 1
σ2
1
A⊤

j ξ̂1, and ψ(j)(t) =
(
ψ
(j)
1 (t), ..., ψ

(j)
Mj

(t)
)⊤

. The PLS

coefficient c1 ∈ R of Y is given by c1 = 1
σ2
1
Ỹ ⊤ξ̂1

4. Residuals are given by (Aj)[1] = Aj − ξ1(ζj1)⊤ ∀j, and Ỹ[1] = Ỹ − c1ξ1
denotes the residual of Y .

2The (n − 1)−1 term is omitted since it is also used in the calculation of ρ1, which leads to
dividing (n − 1) by (n − 1).
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5. Replacing Aj by (Aj)[1] and Ỹ by Ỹ[1] in steps 1 to 4 gives the second
component and associated residuals. This procedure is repeated to have
the h components, and associated functions ({wk}k, {vk}k, {ρk}k).

6. The final step is the reconstruction of the set of functions {vk}1≤k≤h, this
is done using scores of {wk}1≤k≤h and {ρk}1≤k≤h.
Recall the matrix PW

[h] and Vh as defined in equations (9, 10), and let Ωk

and ζl the vectors such as

wk(t) = Ψ(t)Ωk, and ρl(t) = Ψ(t)ζl,

where Ψ is the concatenation of the basis functions by dimensions

Ψ(t) =


ψ
(1)
1 (t1) ... ψ

(1)
M1

(t1) 0 ... 0 ... 0

0 ... 0 ψ
(2)
1 (t2) ... ψ

(2)
M2

(t2) 0 ... 0
... ...

0 ... 0 ... 0 ψ
(d)
1 (td) ... ψ

(d)
Md

(td)

 ∈ Rd×M ,

such as tj ∈ Ij , 1 ≤ j ≤ d.
We define the matrix ζ and Ω as ζ =

(
ζ1 ζ2 ... ζh−1 0RM

)
, Ω =(

Ω1 Ω2 ... Ωh−1 Ωh

)
.

Since {⟨⟨ρl, wk⟩⟩}k,l = {ζ⊤l FΩk}k,l, then

PW
[h] = Lower(Ω⊤FP ),

where Lower is the operator matrix which sets terms on the upper trian-
gular matrix and diagonal to 0.
Finally, we have

Vh(t) = (Ih×h + PW
[h])

−1


Ω⊤

1

Ω⊤
2

...
Ω⊤

h

Diag(Ψ⊤(t), . . . ,Ψ⊤(t)), (14)

where Diag is the block diagonal matrix operator.

Remark 2 The approach proposed by Beyaztas and Shang (2022) is an extension
of the basis expansion result from Aguilera et al. (2010). It was proposed for one
domain definition. Note that our approach is more flexible since it allows different
intervals. The case of one domain is then a special case of the proposed methodology
(see Section 3.1.1 for numerical comparison).

Although the proposed methodology is for regression problems, it can be
extended to classification by using the relation between linear discriminant
analysis and linear regression (Aguilera et al. (2010), Preda et al. (2007). The
next section addresses a classification application based on PLS regression.
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2.3.3 From PLS regression to PLS binary-classification

Using previous notations, (X(t))t∈I is the predictor function (not necessarily
zero mean) and Y is the target, in this part we assume binary: Y ∈ {0, 1}.
The PLS regression can be extended to binary classification with the help of
the following trick.
Firstly, we define the variable Y ∗

Y ∗ =


√

π1

π0
Y = 0

−
√

π0

π1
Y = 1,

(15)

with π1 = P(Y = 1) and π0 = P(Y = 0).
A direct application of the law of total expectation3 shows that E(Y ∗) = 0
and V(Y ∗) = 1, V denotes the variance.
Then, we fit a PLS model regression on (X(t), Y ∗) denoted by Γ(X):

Γ(X) = α̂+ ⟨⟨X, β̂[h]⟩⟩,
with α̂= -⟨⟨µ, β̂[h]⟩⟩, and µ(t) = E(X(t)).
Finally, the predicted class Ŷ0 of a new curve X0(t) is given by

Ŷ0 =

{
0 if Γ(X0) > 0
1 otherwise.

In practical case, π1 is estimated by π̂1 = 1/n
∑n

i=1 I(Yi = 1), where I is the
indicator function, and n the sample size. The number of components h is
chosen by cross-validation to maximize the AUC criterion.

2.4 Tree based on PLS regression of multivariate
functional data

The linear relationship hypothesis between predictors and targets assumed in
the previous sections is not always fulfilled. In this case, the partial least square
model can be ineffective for regression and classification purposes. Linear mod-
els don’t take into account the possibility of having several subclasses and so
different coefficient functions. In this case, more flexible methods are usually
preferred, which have more or less interpretability, such as non-linear SVM
(see e.g Rossi and Villa (2006) Blanquero, Carrizosa, Jiménez-Cordero, and
Mart́ın-Barragán (2019a)), or clusterwise regression (see e.g Preda and Saporta
(2005), Yao, Fu, and Lee (2011), Li, Song, Zhang, Zhu, and Zhu (2021)). In
this part, we propose to use the tree structure to extend the linear discriminant
analysis PLS to the case of semi-linear relationship. By doing so, the result-
ing discriminant analysis gains in adaptability and, for a reasonable number

3Indeed

• E(Y ∗) = π1E(Y ∗|Y = 1) + π0E(Y ∗|Y = 0) = 0
• V(Y ∗) = E((Y ∗)2) = π1E((Y ∗)2|Y = 1) + π0E((Y ∗)2|Y = 0) = 1
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of ramifications, gives easy interpretable results. The decision tree (TMFPLS)
presented in this part is, by construction, less dependent to the linear rela-
tionship than the linear discriminant analysis presented in the previous part.
TMFPLS or Tree Multivariate Functional Partial Least Square is designed for
multivariate functional data predictors, but can be used for univariate func-
tional data as a special case. It is, in a way, a generalization of Poterie et al.
(2019)’s work to the case of multivariate functional data: the construction of
a decision tree based on classification rules on some dimensions of predictors
(groups). The procedure consists in decomposing a node by successively select-
ing a group of discriminating dimensions, and then applying MFPLS/FPLS
to this group. This is repeated until the minimum purity criterion is reached.
In the presented methodology, we limit our attention to the case of binary
classification (Y ∈ {0, 1} ).

2.4.1 Method

Let ((Xi(t))t∈I , Yi)1≤i≤n be the n observations of (X,Y ), meaning that
({Xi(t)}t∈I , Yi) represents the i-th individual. Moreover, we suppose that X is
composed of G groups of variables (not necessarily disjoint). This group struc-
ture is not restrictive, if this assumption does not hold, one can consider each
dimension as a group, or consider one group of all dimensions.

For convenience, we introduce the following notations.

• Ap is a decision tree of depth p ∈ N, see examples in Figure 1.
• Cp

j is the j-th node in depth p.

C0
1 := (Xi)1≤i≤n is the root node, and each node Cp

j := XCp
j

can be seen as

a partition of observations of X. Note that for depth p : 1 ≤ j ≤ 2p.
• card Cp

j denotes the cardinal of Cp
j : card C0

1 = n.
• π1,Cp

j
, π0,Cp

j
are resp. the distribution of class 1 and 0 in Cp

j : πk,Cp
j

= P(Y =

k|X ∈ Cp
j ), k ∈ {0, 1}.

Hence, π1 = P(Y = 1) is equivalent to π1 = π1,C0
1
.

These proportions can be estimated by

π̂1,Cp
j

=
1

card Cp
j

∑
i∈{1,...,n}|Xi∈Cp

j

I(yi = 1),

where I is the indicator function. Moreover π0,Cp
j

= 1 − π1,Cp
j
.

• G is the set of group variables, and G = cardG ∈ N∗ is the number of groups.

Inspired by Poterie et al. (2019)’s methodology, our algorithm is composed of
two main steps. In a nutshell, with the help of partial least squares, the first
step gives potential splitting according to groups, and the second one selects
the best splitting candidate using the Gini criterion. They are applied on
nodes until the minimum purity threshold is reached, details are given below.

Consider node j at depth p: Cp
j .
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• Step 1: PLS of functional data.
G FPLS/MFPLS are performed on Cp

j , Γg denotes the estimated PLS model
for group g ∈ G.

Γg(X) = α̂g + ⟨⟨Xg, β̂g⟩⟩, 1 ≤ g ≤ G

where Xg = (X(d1), ..., X(dng ))⊤ and g = {d1, ..., dng
}, meaning that ng

dimensions {Ii}1≤i≤ng
belong to group g.

Thus, for each g, two sub-nodes of Cp
j are proposed.

Cp+1
2j [g] = {x ∈ Cp

j , x|Γ
g(x) > 0}

Cp+1
2j−1[g] = {x ∈ Cp

j , x|Γ
g(x) ≤ 0}

• Step 2: Splitting.
Select the optimal splitting according to group g∗ which minimizes the
empirical Gini criterion.

Q(Cp
j ) = π1,Cp

j
(1 − π1,Cp

j
)

Taking into account nodes cardinal, group g∗ should maximize the decrease
of impurity function ∆Q.

∆Qg(Cp
j ) = Q(Cp

j ) card Cd
j −Q(Cp+1

2j−1[g]) card Cp+1
2j−1[g]

−Q(Cp+1
2j [g]) card Cp+1

2j [g]

g∗ = arg max
g∈G

∆Qg(Cp
j )

Hence, the optimal splitting is the one obtained by Γg∗
.

A node C̃ is terminal if its impurity index is lower than a defined purity
threshold η ≥ 0: Q(C̃) ≤ η.
Let T be the set of terminal nodes, if Cp

j is a terminal node, (i.e Cp
j ∈ T ) then

Cp+1
2j = Cp+1

2j−1 = ∅, and if Cp′

j′ = ∅ then Cp′+1
2j′ = Cp′+1

2j′−1 = ∅.

2.4.2 Classify new curves

Consider (X0(t))t∈I a new function to classify, and define Y0 its class we need
to predict. Recall T the set of terminal nodes and A our decision tree. Let
suppose that A has nt terminal nodes: T = {C̃1, ..., C̃nt

}. The law of total
probability yields the equation

P(Y0 = y) =

nt∑
j=1

πy

1,C̃j
π1−y

0,C̃j
I
(
X0 ∈ C̃j

)
∀y ∈ {0, 1}.

The predicted class is then given by
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T (a): {C2
1 ; C2

2 ; C2
3 ; C2

4} (b): {C1
1 ; C3

5 ; C3
6 ; C3

7 ; C3
8}

Fig. 1: Tree examples, and their terminal nodes.

ŷ0 = arg max
y∈{0,1}

P(Y0 = y).

In other terms, our decision tree A gives the class of X0 as the most present
label in the terminal node C̃ it belongs. The predicted class Ŷ0 of (X0(t))t∈I
is given by Ŷ0 = arg maxy∈{0,1} πy,C̃ .

2.4.3 Prevent over-fitting: Pruning

The strategy used to prevent over-fitting is the same as in (Poterie et al.,
2019). The motivation is to find the optimal depth of our model. Considering
that the tree Ap can be decomposed into several nested trees Am, each with
a different set of terminal nodes Tm (0 ≤ m ≤ p). The pruning goal is to find
the nested tree Am∗ such as

m∗ = arg max
m∈{1,...,p}

r(Yv, Ŷv[m]),

where r is a performance metric (ex: AUC, accuracy, ...), and ((Xv(t))t∈I , Yv)

a validation set, Ŷv[m] denotes the prediction of Yv obtained by the tree Am.
For instance, the Table 1 gives the nested trees and terminal nodes of Figure
1 (b) tree.

m Am Tm
0 {C0

1} {C0
1}

1 {C0
1 , C1

1 , C1
2} {C1

1 , C1
2}

2 {C0
1 , C1

1 , C1
2 , C2

3 , C2
4 , ∅} {C1

1 , C2
3 , C2

4}
3 {C0

1 , C1
1 , C1

2 , C2
3 , C2

4 , C3
5 , C3

6 , C3
7 , C3

8 , ∅} {C1
1 , C3

5 , C3
6 , C3

7 , C3
8}

Table 1: Fig 1 (b): Nested trees
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3 Simulations

This section focuses, with the help of synthetic data, on the comparison of our
methods (MFPLS and TMFPLS) with each other and competitor method(s).
Two main parts are presented, corresponding to the definition of domain set-
tings: one domain and different domains. For ease of notation and seek of
readability, we use X as predictor functions and Y as the variable of interest
(scalar or binary response). In each simulation, their definitions are different,
the same for ϵ which denotes the residual term (either function or scalar).

3.1 One domain

3.1.1 Sim 1.1: Scalar response

To show that our approach is competitive with the Beyaztas and Shang (2022)
direct approach, we use their simulation framework for methods comparison.

Framework

Consider the domain I = [0, 1], and 3-dimensional functional predictors X =
(X(1), X(2), X(3))⊤ defined on I.

X(j)(t) =

5∑
j=1

γkυk(t) ∀j, 1 ≤ j ≤ 3,

with γk ∼ N (0, 4k−3/2) and υk(t) = sin kπt− cos kπt.
The coefficient function β is defined by

β(t) =
(
sin(2πt), sin(3πt), cos(2πt)

)⊤
,

then
Y = ⟨⟨X,β⟩⟩SIM + ϵ.

⟨⟨, ⟩⟩SIM denotes the inner product, here integrals are approximated by Simp-
son’s rule, and ϵ ∼ N (0, σ2).
This is the first difference, as our approach is computed with the help of
Happ (2017) package, which approximates integral by the trapezoidal method.
The second variation, which is the main difference, is methodological. Indeed,
Beyaztas and Shang’s approach uses an equivalence of PLS of multivariate
functional data and ordinary PLS of the scores obtained in the projection of
an arbitrary multivariate basis functions. They proposed a multivariate exten-
sion of Proposition 2 of Aguilera et al. (2010). Our approach is different, as we
compute multivariate components using two-stage PLS. The first one is per-
formed on univariate functional data, and the second one is done on partial
components obtained (see section 2.3.2).

The Beyaztas and Shang’s methodology and simulation are computed
thanks to R scripts 4 shared by the authors: 200 times points are observed, and
400 replication of X are simulated. Among them, 200 replications are used for

4Avalaible on https://github.com/UfukBeyaztas/RFPLS

https://github.com/UfukBeyaztas/RFPLS


18 Classification of multivariate functional data with PLS approaches

training and the left 200 are used for validation. For comparison, the princi-
pal component regression is also computed (by Beyaztas and Shang’s scripts).
Furthermore, we test values σ2 = 1 and σ2 = 0, meaning that Y is observed
with and without noise. For each value of σ2, we did 200 simulations.
The number of components in all approaches is chosen by 10-Fold cross-
validation procedures, and data are projected in 20 basis spline functions.
Performances of approaches are measured by metrics5:

MSPE =
1

200

∑
i∈Vset

(Yi − Ŷi)
2 , RISEEj =

||β(j) − β̂(j)||2

||β(j)||2
, 1 ≤ j ≤ 3 (16)

with Ŷi is the predicted response for the i − th individual in the validation
set (Vset) and Yi the actual value. RISEE is the relative integrated squared
estimation error, for each method, it assesses the estimation error of the func-
tional coefficient. ||.|| denotes the L2([0,1], R) norm, it is approximated by the
Riemann sum as in Beyaztas and Shang (2022).

Figure 2 depicts the MSPE boxplots of our approach (MFPLS), the direct
approach (MFPLS D) proposed by Beyaztas and Shang (2022), and the princi-
pal component regression (FPCA). Despite the differences in methods, MSPEs
obtained are closed. Our method gives a relatively low error, particularly in
the non-noise case. Since the Table 2 shows that coefficient function approxi-
mations are close, differences along the MSPE may then be due to the different
integral approximations. This means that our approach and direct approach
give equivalent results. Moreover, results show that our approach is competitive
with principal component analysis regression.

Fig. 2: Boxplots of MSPE obtained by each approach in Sim 1.1.

5MSPE stands for mean squared prediction error.
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σ2 (1) (2) (3)
MFPLS 0.084 0.084 0.082
MFPLS D 0 0.095 0.097 0.099
FPCA 0.084 0.085 0.083
MFPLS 0.158 0.177 0.159
MFPLS D 1 0.162 0.165 0.157
FPCA 0.164 0.171 0.160

Table 2: Table of RISEE medians obtained (Sim 1.1). For each value of σ2,
the lowest value by dimensions: (1), (2), and (3) is underlined.

3.1.2 Sim 1.2: Binary response

In the following experiment, for ease of interpretation, we limit our simulation
to a one-dimensional domain: t ∈ I := [0, 50].
In a practical case, for example in pattern recognition, the same class curves
can have more or fewer variations and the rule to belong to one class be more
visual than linear. Here, we allow intra-class curves to have positive and neg-
ative amplitudes and test the flexibility of both models (MFPLS, TMFPLS).
For comparison purposes, as our approach gives similar results to the (non-
robust) approach of (Beyaztas & Shang, 2022) in one domain (see Sim 1.1),
we only compute linear discriminant analysis on principal component scores.

Simulation model:

The residual function is generated using Happ and Greven (2018) simulation
framework. We consider N observed curves, the first step consists in simulating
a bi-variate function (d = 2) {ei(t)}1≤i≤N given by ei(t) =

∑M
m=1 θi,mϕm(t)

with {ϕm}1≤i≤M are the M first eigenfunctions associated to the covariance
operator of {ei(t)}1≤i≤N . The scores on base ϕm of ei : θm are independent,
and follow a gaussian law N (0, σ2

θ,m) where σ2
θ,m = M+1−m

M . Finally, ϵi which
denotes the residual function for an individual i is defined using ei by the
following expression:

t ∈ I, ϵi(t) = kϵei(t) with kϵ =

√
2

M + 1
,

in order to have
∑

m⟨⟨ϵi, ϕm⟩⟩ ∼ N (0, 1).
Define the family of triangle functions {hs(t)}s∈{1,2,3,4} :

hs(t) =

(
1 − |t− ts|

4

)
+

t ∈ I,

where (.)+ denotes the positive part function.
Curves X(t) are given by

X(1)(t) =

4∑
s=1

ashs(t) + ϵ(1)(t) , X(2)(t) =

4∑
s=1

(1 − as)hs(t) + ϵ(2)(t)
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with {as}s are discrete variables in {−1, 0, 1}, and Z ∈ {1, 2} a binary variable.
The distribution of {as}s is generated to be dependent on the latent variable
Z. Indeed, we have

P(a1 = 1|Z = z) = p+1 [z], and P(a1 = −1|Z = z) = p−1 [z].

In addition, variables {aj}j are dependent to each other in the following way

P(aj+1 = k|aj = k, Z = z) = pj+1[z], 1 ≤ j ≤ 3

and P(aj+1 = kj+1|aj ̸= kj+1, Z = z) =
1

2
(1 − pj+1[z]), 1 ≤ j ≤ 3

with kj+1 ∈ {−1, 0, 1}.
And for the sake of simplicity, we make {aj}j holds the Markov chain
hypothesis

P(aj+1 = kj+1|a1 = k1, ..., aj = kj) = P(aj+1 = kj+1|aj = kj). (17)

Finally, the distribution of Z is controlled by the parameter p

p = P(Z = 2).

For given X, its class Y equals 1 if there are strictly two consecutive peaks at
the beginning of its first dimension (X(1)), where beginning means that peaks
of interest can only be at t = 10, 20 or t = 20, 30. S1 and S2 denote those cases
respectively. Moreover, for testing our model’s flexibility, we allow peaks to
have positive and negative amplitudes and add the constraint that consecutive
peaks of interest should have the same amplitude sign.
This is summarized in the following equation

Y =

 1 if
S1 : |a1| = 1, a2 = a1, a3 = a4 = 0}
S2 : {a1 = 0, |a2| = 1, a3 = a2, a4 = 0}

0 otherwise.

Under the above conditions and definitions, P(Y = 1) can be calculated (see
appendix for details), and it is given by

P(Y = 1) = (1 − p)

[
1

2
p4[1]p2[1](1 − p3[1])p1[1]

+
1

2
(1 − p4[1])p3[1](1 − p2[1])(1 − p1[1])

]
+ p

[
1

2
p4[2]p2[2](1 − p3[2])p1[2]

+
1

2
(1 − p4[2])p3[2](1 − p2[2])(1 − p1[2])

]
(18)
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with p1[z] = p+1 [z] + p−1 [z].
One can notice that S1 and S2 are composed of two sub-events. For the

first one, they correspond respectively to the case a1 = 1, and a1 = −1. In
other words, the cases of positive consecutive peaks and negative consecutive
peaks are at the first position (10, 20). Analogously, if S2 is true (consecutive
peaks are at t = 20, 30), two cases can be distinguished a2 = 1, or a2 = −1.
Examples are presented in Figure 3.

S1 (a1= 1) S1 (a1=-1)

S2 (a2 = 1) S2 (a2 = −1)

Fig. 3: Example of S1, S2 (Sim 1.2)

.

Numerical experiments

Two scenarios are studied, and parameters used for numerical simulation are
presented in Table 3. The other parameters are fixed, the number of curves
N = 500 and the number of eigenfunctions M = 100.

Parameters Scenario 1 Scenario 2
p 0.01 0.5
Z 1 2 1 2

p+1 0.890 0.450 0.450 0.005

p−1 0.010 0.450 0.450 0.005
p2 0.900 0.010 0.900 0.010
p3 0.010 0.900 0.010 0.900
p4 0.900 0.010 0.900 0.010

Table 3: Settings

Parameters used to simulate scenarios 1 and 2 (Sim 1.2).

Remark 3 Since p = 0.01 for the first scenario, curves are mainly in the Z = 1 regime.
Moreover, as p+[1] equals 0.89 and p2[1] is set to 0.90 in most cases consecutive peaks
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Fig. 4: Example of X(t) in Sim 1.2 , under both scenarios(κ = 1)

Class 1 curves are in red and class 0 curves are in blue.
The second scenario (right) shows more heterogeneity in class 1 compared to

the first scenario (left).

are S1 with the majority of positive peaks. This is the simplest scenario. MFPLS
is expected to give good results. Indeed, it can estimate the coefficient function to
have maximal weight on t = 10, 20. Since only two consecutive can belong to the first
case, this will probably lead to miss-classify some curves, particularly those which
have more than two consecutive peaks.
For the second scenario, we design a more difficult classification task. It highlights
the limits of MFPLS and shows how TMFPLS can, in this case, be an interesting
alternative. We set both Z regimes with the same probability to occur. The regime
Z = 1, contrary to the previous scenario, allows consecutive peaks to have either
positive or negative amplitude at t = 10, 20 (since p+1 [1] = p−1 [1] = 0.45). Regime
Z = 2 is set as consecutive peaks occur at t = 20, 30. They also can be positive or
negative.

The functional form of X(t) is reconstructed using a cubic B-spline basis
smoothing with 20 basis functions (see Figure 4). For the estimation, we set
the minimum criterion η at 1% and the maximum tree depth at 10. For a given
scenario, we did 200 experiments. At each, 75 % of the data are used for learn-
ing and 25 % for validation. By defining the set of groups as G = {1, 2, {1, 2}},
we allow more flexibility in TMFPLS. Indeed, the decision tree tests whether
the FPLS gives the best splitting or MFPLS does. The number of components
for the MFPLS (in both models) or FPLS is chosen in the training set by
10-Fold cross-validation. Moreover, MFPCA-LDA is computed for compari-
son. It consists, firstly in the estimation of principal components (using Happ
(2017) package), and then applying linear discriminant analysis to them.
As in the previous models, the number of components is chosen by 10-Fold
cross-validation. In addition, to have an estimation of the optimal depth m∗,
we randomly take 75% of learning data to train an intermediate TMFPLS,
and 25% for pruning (by AUC metric). This procedure is repeated 10 times.
m̂∗ is the most occurred number from the 10 obtained. The final tree is then
trained on the whole learning data, with the maximum tree fixed to m̂∗.

Results

In the first scenario (Scen 1), Table 4 shows that AUC differences along
the scenario are about 10% between MFPLS and TMFPLS. Furthermore,
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AUC Sensibility Specificity

S
c
e
n

1 MFPLS 83.39 96.4 65.62
TMFPLS 93.90 97.14 88.78
MFPCA-LDA 92.60 100 80.34

S
c
e
n

2 MFPLS 50.79 60.61 41.13
TMFPLS 81.99 87.67 76.27
MFPCA-LDA 50.00 60.17 40.00

Table 4: Metrics in % obtained on the two scenarios (Sim 1.2).

At each step, 500 curves are simulated, 375 are used for learning and 125 for testing.
Metrics are the medians of the 200 obtained on each validation set.

The highest AUC by scenario is underlined.

MFPCA-LDA is very competitive with TMFPLS.
The second scenario shows more differences between the two methods, MFPLS
and MFPCA-LDA are non-effective. In the following paragraphs, we analyze
examples of trees obtained from the two scenarios to understand why there is
such a discrepancy.

Scenario 1: Figure 5 depicts an estimated TMFPLS tree trained in the first
scenario (after the pruning procedure). The associated discriminant coefficient
functions are given in the supplementary materials. The first split is performed
along the second dimension (see Figure 1 (a) in supplementary materials).
MFPLS are then used on greater depths to obtain homogeneous classes. One
can note that splitting is mainly performed to recognize class 0 curves, as
it’s the most heterogeneous class. The fact that its depth is greater than one
explains why TMFPLS outperforms classical MFPLS.



24 Classification of multivariate functional data with PLS approaches

Fig. 5: Example of post pruned tree in scenario 1( Sim 1.2).

375 curves are used for training (75% of simulated data in each step).
For flexibility, groups considered are G={1, 2, {1,2}}.

Scenario 2 In this scenario, the goal is to estimate a more complex rule of
classification, as the amplitudes can be either positive or negative. Compared
to the precedent scenario, the tree6 in Figure 6 has more ramifications. This
highlights how our method can be flexible, but also warns us of how it can
easily over-fit our data. However, the results (in Table 6) demonstrate how
this modelling can lead to very interesting improvements of simple MFPLS (or
MFPCA-LDA) for the complex classification task.

6It’s a tree obtained in one experiment among the 200 experiments we did.
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Fig. 6: Example of post pruned tree in scenario 2 of Sim 1.2.

375 curves are used for training (75% of simulated data at each step).
For flexibility, groups considered are G={1, 2, {1,2}}.

For each estimated tree, several coefficient functions are computed, and
as they are used for the split rule they can be useful for insight and inter-
pretation. Associated coefficient functions for the presented trees are given in
supplementary materials.

3.2 Different domains

3.2.1 Sim 2.1: Image and Time series classification

Our approach allows the use of images and time series simultaneously. In this
part, we show the advantage, if they are available, to use both information
instead of focusing on only one dimension domain. This simulation aims to be
easily understandable, so we don’t allow a lot of heterogeneity inside classes,
then the use of TMFPLS is not necessary. In addition, since it is multi-domain
data only MFPLS and MFPCA-LDA7 ( the principal component analysis is
computed thanks to Happ (2017) package) are presented in this part.

Framework

Define X(t) =
(
X(1)(t1), X(2)(t2)

)⊤
, where the first dimension is a time series

(TS) and the second represents an image (IM) of 50 × 50. The dimensions
contain random noise ϵ and may contain a deterministic pattern h and q
respectively for the first and second dimensions.

7Linear Discriminant Analysis computed on principal component scores
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X(1)(t) = hZ1(t) + ϵ(1)(t), t ∈ [0, 20]

X(2)(t) = qZ2(t) + ϵ(2)(t), t ∈ [0, 1] × [0, 1]

The noise term ϵ has two dimensions, the first one ϵ(1) is a white noise of
variances σ2, and the second one ϵ(2) is a gaussian random field. ϵ(2) is sim-
ulated as a Matern covariance model, with parameters pairs: 0.25, 0.75, and
nuggets parameter equal to σ, see Ribeiro Jr, Diggle, et al. (2001) for details.
The deterministic patterns h and q (signals) depend on unobserved Bernoulli
variables Z1, Z2 ∈ {1, 2}, such as:

hZ1
(t) =

{
3.14

(
1 − |t−10|

4

)
+

0

if Z1 = 1
if Z1 = 2

t ∈ [0, 20],

qZ2(t) =

{
−2 log

(√
(t(1) − 0.5)2 + (t(2) − 0.5)2

)
0

if Z2 = 1
if Z2 = 2

t ∈ [0, 1] × [0, 1].

with (.)+ denotes the positive part, and (Z1, Z2) are independent.
The variable of interest Y is constructed with the help of (Z1, Z2), indeed
Y=1, if both {Zk}k are simultaneously 1. This means that X belongs to class
1 if on both dimensions we observe a pattern.

Y =

{
1 if Z1 = 1 and Z2 = 1
0 otherwise.

To get the functional form of X, the first dimension and second dimension

X(1)(t) + =

X(2)(t) + =

Fig. 7: Construction of class 1 (Y = 1), curve X(t) in Sim 2.1, under SNR=0.5

If Y=0, X is random noise ϵ (left figures).

are projected respectively in 20 univariate quadratic spline functions, and 4
two-dimensional splines (one order).
The signal-to-noise ratios are given by :
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SNRTS =
Vh1

σ2
, and SNRIM =

Vq1

σ2
,

where Vh1
and Vq1 are the variance along t1 and t2 of h1 (which denotes hZ1

if Z1 = 1 ) and q1 (which denotes qZ2
if Z2 = 1 ).

The sampling rates, for the first dimension and second dimension, are
respectively 1 and 0.02, the estimated variance is Vh1

≃ 1 and Vq1 ≃ 1, which
means that SNRTS ≃ SNRIM, then the SNR on both dimension is practically
the same, and depends only on σ.
Several values of σ are tested from 0.45 to

√
2 which leads to SNR varying

from 0.5 to 4.9. The number of components in both approaches is chosen by
10-Fold cross-validation using AUC.

We set P(Z1 = 1) = P(Z2 = 1) = 3/4, then P(Y = 1) = 9/16 ≃ 0.56. In
addition, 500 curves are simulated: 375 are used for learning and 175 are used
as a validation set. We did 200 simulations, and each approach is assessed by
AUC on the validation set.

For each value of SNR, we compute the MFPCA-LDA and MFPLS on both
dimensions (IM TS), the first dimension(TS), and the second dimension(IM).
Figure 8 (a) shows the boxplot for the two approaches computed on both
dimensions, and Figure 8 (b) depicts the detailed performance of PLS along
the three cases: IM, TS, and IM-TS. See the supplementary materials for the
figure of MFPCA-LDA performances for the three cases.

Figure 8 shows that MFPLS gives better results than MFPCA-LDA for
the lowest value of SNR, and the difference between methods disappears with
the increase of SNR. Since information on classes is partially observed on
dimensions, one domain classifications are not ineffective (AUCs are greater
than 0.56). Nonetheless, Figure 8 (b) shows the clear advantage of using both
dimensions.
This simulation demonstrates the ability of our method to classify different
domain data. In addition, as it’s specially designed for supervised learning,
it can be more effective than principal component analysis-based techniques
such as MFPCA-LDA in a noisy context.

4 Real data application: Time series
classification

In this part, we compare our methods with black box models on benchmark
data. The application is in the case of one domain definition, mainly because
finding free-of-use datasets on different domain definitions is not easy. They
are usually from medicine (neuroimaging, etc...), and so are often protected by
medical secret. And as the majority of work on the classification of multivariate
functional data is on one domain, it is convenient for the comparison of our
methods with existing approaches.
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(a)

(b)

Fig. 8: Boxplots of Sim 2.1 results for different values of signal-to-noise ratio
(SNR). (a) Comparison of MFPLS and MFPCA-LDA (computed on both
dimension, image and time series), (b) Comparison of MFPLS on data of
different domains (IM TS: Image and Time series) and one domain MFPLS
(IM: Image, TS: Time series).

4.1 Data presentation

Similarly to Karim et al. (2019), we use benchmark data (for time series clas-
sification) to obtain a more exhaustive performance of our methods (MFPLS
and TMFPLS) on real data applications. The benchmark data are ranging
from online character recognition to activity recognition. Some of them have
already been used in Pei, Dibeklioğlu, Tax, and van der Maaten (2017), and
Schäfer and Leser (2017). Since our methods can take only two-class problems,
for now, we consider exclusively binary classification, which leads to taking
into account 11 out of 35 available datasets. The following table summarizes
the data used, it is part of Table 1 in Karim et al. (2019).
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Dataset d T Task Ratio Sources
CMUsubject16 62 534 Action Recognition 50-50 split Carnegie (0)
ECG 2 147 ECG Classification 50-50 split Oleszewski (2012)
EEG 13 117 EEG Classification 50-50 split Lichman (2013)
EEG2 64 256 EEG Classification 20-80 split (Lichman, 2013)
KickvsPunch 62 761 Action Recognition 62-38 split Carnegie (0)
Movement AAL 4 119 Movement Classification 50-50 split Lichman (2013)
NetFlow 4 994 Action Recognition 60-40 split Sübakan, Kurt, Cemgil, and Sankur (2014)
Occupancy 5 3758 Occupancy Classification 35-65 split Lichman (2013)
Ozone 72 291 Weather Classification 50-50 split Lichman (2013)
Wafer 6 198 Manufacturing Classification 25-75 split Oleszewski (2012)
WalkVsRun 62 1918 Action Recognition 64-36 split Carnegie (0)

Table 5: Datasets summary. T denotes the number of sampling time points,
d: the data dimensions, and Ratio of the train-test split. All datasets are
available in https://github.com/titu1994/MLSTM-FCN/releases/tag/v1.0

We compare our models with the Long Short-Term Memory Fully Convo-
lutional Network (LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN)
proposed by Karim et al. (2019), and the state-of-the-art models. The objec-
tive is to show that our models can be competitive with black-box approaches.
Since they are based on regression models, they have the advantage to be
more interpretable. Data are split into training and test datasets (see Table
5). Models are compared by the accuracy metric, which is the rate of well-
predicted classes obtained on the test datasets.

4.2 Results

The number of components in MFPLS is chosen by 20-fold cross-validation
on training data. For comparison, we also compute linear discriminant analy-
sis (LDA) on scores obtained by Multivariate functional principal component
analysis (Happ, 2017). The number of principal components retained for LDA
is also chosen by 20-fold cross-validation.

The maximum tree depth m∗ is an important hyperparameter. It may
significantly affect the performance of our model, as it helps to prevent the
overfitting of TMFPLS. We estimate m∗ by cross-validation alike procedure.
More precisely, we randomly split 10 times the training data. At each split,
75% of the learning data have been used to train an intermediate TMFPLS and
the remaining 25% is used for pruning by AUC. This operation yields 10 m∗.
m̂∗ is the most frequently occurring element in those. Then the final TMFPLS
is trained on the whole training data with the constraint that the maximum
depth tree cannot exceed m̂∗. As in the previous section, group are defined as
G = {1, 2, ..., d, {1, ..., d}}. We test whether FPLS gives better splitting than
MFPLS. This choice is motivated by the fact that testing more combinations
of dimensions is time-consuming. The ideal choice of groups should be driven
by some prior knowledge of the data structure.
Two strategies are used for the number of components in the decision tree:
TMFPLS H-1 denotes the decision tree where only one component in
FPLS/MFPLS is used, and TMFPLS H-CV is the decision tree where the
H components are estimated by 20-fold cross-validation as in MFPLS. The

https://github.com/titu1994/MLSTM-FCN/releases/tag/v1.0
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first tree is faster to train than the second one, and it’s less likely to overfit
the data. However, the second is often a more efficient tree, since it estimates
more complex coefficient functions β than the second one.

For all functional data methods, we use 30 B-Splines basis functions by
dimension to have a curve representation of each dataset. This number is
arbitrary, the use of more or fewer functions can yield to different results. The
first justification for this number of basis functions is for most cases it seems
enough for having a good curve representation (see supplementary materials
for figures of the smoothed functions). In addition, as it is relatively a few basis
functions, this shows how our methods can reach acceptable performances with
less complexity than black box models.

Our models are compared with non-FDA classification methods. The table
6 shows the state-of-the-art method (SOTA) and the best results obtained by
Karim et al. (2019) (among LSTM-FCN and ALSTM-FCN). The SOTA col-
umn presents as well obtained baselines by Karim et al. (2019). Those baselines
are acquired on these datasets by using techniques like Dynamic time warp-
ing (DTW), Random Forest (RF), SVM with a linear kernel, and SVM with
a 3rd degree polynomial kernel (SVM-Poly) and choosing the highest score as
the baseline.

Datasets

N
O

b
s

N
T
e
s
t

MFPLS TMFPLS TMFPLS MFPCA Karim et al. SOTA

M
e
th

o
d
s

H-1 H-CV LDA
CMUsubject16 29 29 86.21 89.66 100 89.66 100 100 [1]
ECG 100 100 85 83 87 88 86 93 [2]
EEG 64 64 48.44 54.69 53.12 46.88 65.63 62.5 [3]
EEG2 600 600 81.83 68.67 82.67 72.17 91.33 77.5 [3]
KickVsPunch 16 10 90 90 60 80 100 100 [2]
MovementAAL 157 157 67.52 56.69 53.50 61.78 79.63 65.61 [4]
NetFlow 803 534 84.64 86.52 85.77 80.90 95 98 [2]
Occupancy 41 76 71.05 61.84 59.21 80.26 76 67.11 [4]
Ozone 173 173 73.99 73.41 73.41 79.19 81.5 75.14 [5]
Wafer 298 896 85.04 87.39 97.99 97.32 99 99 [2]
WalkVsRun 28 16 100 100 100 100 100 100 [2]

Table 6: Comparison of MFPLS, TMFPLS, and other non-FDA
classification methods by their accuracies (in %).

xx : highest accuracy, xx : second-highest accuracy.
[1]: Tuncel and Baydogan (2018), [2]:Schäfer and Leser (2017), [3]:RF , [4]:

SVM-Poly, [5]: DTW
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Table 6 shows that, in general, our models are less efficient than Karim et
al. (2019) algorithms, but in most cases, they are in the same range of values.
Linear discriminant analysis on MFPCA’s scores is also competitive. The main
difference between the two approaches (MFPCA and MFPLS) as mentioned
before is the fact that components are searched with no regard to Y . In 5 out
of 11 cases, our proposed models (TMFPLS and MFPLS) reach the highest
or the second-highest accuracy. TMFPLS has generally greater accuracy than
MFPLS.
TMFPLS H-1 obtains good performances than TMFPLS H-CV for Kick-
VsPunch. This is because TMFPLS H-CV seems to overfit the data when
NObs is small (< 20). This is one of the well-known drawbacks of the deci-
sion tree. Tuning hyperparameters is then crucial and can have a huge impact
on performances. Moreover, preprocessing and groups’ choices driven by prior
information on classes should increase our models’ performance.
Additional figures and details on estimated models are presented in the
supplementary materials.

5 Conclusion and discussion

In this paper, after extending the partial least squares regression to multiple
functional predictors, we proposed two classification models of multivariate
functional data. The first one relies on the partial least square regression
(MFPLS). The second one (TMFPLS) combines the first method with a deci-
sion tree. Our models give interpretable results, although a lot of ramifications
in the decision tree make insight development difficult. Real applications and
simulation studies have been showing our models’ competitiveness with exist-
ing methods. Especially in multivariate time series classification, where our
methods (MFPLS and TMFPLS) have been demonstrating close results on
benchmark data with black-box models, in particular with the long short-term
memory (LSTM). In addition, as our models are developed for multivariate
functional data defined on different domains, it is possible to deal with het-
erogeneous types of data (e.g. images, time series, etc.). Simulation study has
been showing that using images and time series simultaneously for classifi-
cation increase model performance. It also appeared that in a noisy context,
MFPLS outperforms the principal component scores linear discrimination
method (MFPCA-LDA). It is worth emphasizing the fact that functional data
analysis (FDA) models here use basis expansion techniques. We chose mainly
the B-splines basis functions, but another basis can also lead to good results.

This work highlighted one way to deal with non-linearity in classification
problems, using a partial least square tree (TMFPLS). In the same idea, clus-
terwise regression techniques can also be extended for the classification of
multivariate functional data, using (Preda & Saporta, 2005) framework and
the relationship between linear discriminant analysis with regression.

The relationship between the partial least square of multivariate func-
tional data with its univariate counterparts could offer interesting perspectives.
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Indeed, it can be used to introduce sparsity conditions in the partial least
square regression of multivariate functional data. The high dimension in func-
tional data analyses is mainly considered through the fact that the predictor
(and so the coefficient function) is continuous, hence of infinite dimension.
Then, if the purpose is to have a multivariate functional coefficient with sparse
univariate function. It may suffice to replace the first PLS by Guan et al.
(2022) procedure. This seems feasible as the SFPLS (Sparse FPLS) of Guan
et al. (2022) is iterative, and has similar steps with FPLS. The other way to
introduce sparsity is by the number of dimensions. In the context where the
predictor functions have a high number of dimensions, we can replace the sec-
ond PLS by ordinary sparse PLS (see e.g Lê Cao, Rossouw, Robert-Granié,
and Besse (2008)). This would lead to consider only a few dimensions in the
component contribution construction. However, special attention should be
on forcing PLS components to be orthogonal, as sparse PLS doesn’t always
fulfil it. Future work should focus on sparse methods, for classification and
regression.

Supplementary information. The supplementary material includes addi-
tional figures related to the numerical experiments.

Appendix A Technical arguments

Proof of Proposition 1 Here C-S (1) and C-S (2) stand respectively for Cauchy-
Schwartz inequality on integrals and sums.

Cov2(⟨⟨X,w⟩⟩, Y ) = E2 (⟨⟨X,w⟩⟩Y )

=

 d∑
j=1

[∫
Ij

E
(
X(j)(t)Y

)
w(j)(t)dt

]2

C-S(1) =⇒ Cov2(⟨⟨X,w⟩⟩, Y )≤

 d∑
j=1

(∫
Ij

E2(X(j)(t)Y )dt

)1/2

(∫
Ij

[w(j)(t)]2dt

)1/2
2

C-S (2) =⇒ Cov2(⟨⟨X,w⟩⟩, Y ) ≤

 d∑
j=1

∫
Ij

E2(X(j)(t)Y )dt

 d∑
j=1

∫
Ij

[w(j)(t)]2dt


︸ ︷︷ ︸

|||w|||2=1

Cov2(⟨⟨X,w⟩⟩, Y ) ≤
d∑

j=1

∫
Ij

E2(X(j)(t)Y )dt

Inequalities are equalities if for each i there exists real constants a and

a′ such as w(j)(t) = aE(X(i)(t)Y ), t ∈ Ij and
(∫

Ij
[w(j)(t)]2dt

)1/2
=

a′
(∫

Ij
E2(X(j)(t)Y )dt

)1/2
.
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Notice that the first condition implies the second one. If w(j)(t) = aE(X(j)(t)Y )

then
(∫

Ij
[w(j)(t)]2dt

)1/2
= |a|

(∫
Ij

E2(X(j)(t)Y )dt
)1/2

, hence a′ equals |a|.

For having |||w||| = 1, we take a = 1
k , where k =

√∑p
j=1

∫
Ij

E2(X(j)(t)Y )dt.

Thus, the solution of (6) is

w(j)(t) =
E(X(i)(t)Y )

k
, t ∈ Ij . (A1)

□

Proof of Proposition 2 X(t) first order residual definition is X(t) = ξ1ρ1(t)+X[1](t),
where X[1] satisfy the following proprieties

E(X[1](t)ξ1) = 0Rd ⇐⇒ E(X(j)
[1]

(t)ξ1) = 0 t ∈ Ij , 1 ≤ j ≤ d. (A2)

Analogously higher-order residuals verify

E(X[h](t)ξh) = 0Rd ∀h ∈ N. (A3)

Proof of 1. is by induction, similarly to Tenenhaus, Gauchi, and Ménardo (1995).

The base case verifies, as (A2) is true for each j implies that∑d
j=1

∫
Ij

E
(
ξ1X

(j)
[1]

(t)
)
w
(j)
2 (t)dt= 0, which is equivalent to E(ξ1ξ2) = 0.

We show that for any natural integer h, if {ξ1, ξ2, ..., ξh} are orthogonal implies
{ξ1, ξ2, ..., ξh+1} are also orthogonal.
Assume the induction hypothesis H0, H0: {ξ1, ξ2, ..., ξh} forms an orthogonal system.

E(ξhξh+1) =

d∑
j=1

∫
Ij

E
(
ξhX

(j)
h (t)

)
w
(j)
h+1(t)dt

(A3) =⇒ E(ξhξh+1) = 0

E(ξh−1ξh+1) =

d∑
j=1

∫
Ij

E
(
ξh−1X

(j)
h (t)

)
w
(j)
h+1(t)dt

Since X[h−1](t) = ρh(t)ξh +Xh

=⇒ E(ξh−1ξh+1) =
d∑

j=1

∫
Ij

E
(
ξh−1X

(j)
[h−1]

(t)
)

︸ ︷︷ ︸
=0 by (A3)

dt

− ρ
(j)
h (t)

∫
Ij

E (ξh−1ξh)︸ ︷︷ ︸
=0 by H0

d∑
j=1

w
(j)
h+1(t)dt,

then E(ξh−1ξh+1) = 0

The same procedure can be used to show that E(ξjξh+1) = 0 ∀j ≤ h−2. Thus {ξj}j
forms an orthogonal system.
Remain points (from 2 to 5) are implications of 1. □
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Proof of Lemma 1 For h =1, the lemma gives v1(t) = w1(t), as ξ1 = ⟨⟨X,w1⟩⟩, base
case verifies.
Assume that ⟨⟨X, vj⟩⟩ = ξj is true up to order h (∀j ≤ h). We show that it holds for
h+ 1.
Recall that,

ξh+1 = ⟨⟨X[h], wh+1⟩⟩. (A4)

Using the third propriety of Proposition 1, we obtain that X[h](t) = X(t) −∑h
i=1 ρi(t)⟨⟨vi, X⟩⟩.

Then

ξh+1 = ⟨⟨X,wh+1⟩⟩ −
h∑

i=1

⟨⟨vi, X⟩⟩⟨⟨ρi, wh+1⟩⟩

ξh+1 = ⟨⟨X,wh+1⟩⟩ −
h∑

i=1

⟨⟨ρi, wh+1⟩⟩⟨⟨X, vi⟩⟩

= ⟨⟨X,wh+1 −
h∑

i=1

⟨⟨ρi, wh+1⟩⟩vi⟩⟩

Since vh+1(t) = wh+1(t)−
h∑

i=1

⟨⟨ρi, wh+1⟩⟩vi(t) =⇒ ξh+1 = ⟨⟨X, vh+1⟩⟩

□

(18) in details From the definition of Y P(Y = 1) = P(S1) + P(S2), since P(S1 ∩
S2) = 0.
Define,

S+
1 = {a1 = 1, a2 = 1, a3 = 0, a4 = 0} S−

1 = {a1 = −1, a2 = −1, a3 = 0, a4 = 0}

S+
2 = {a1 = 0, a2 = 1, a3 = 1, a4 = 0} S−

2 = {a1 = 0, a2 = −1, a3 = −1, a4 = 0},

then S1 = S+
1 ∪ S−

1 , and S2 = S+
2 ∪ S−

2 .

P(S+
1 ) = P(a4 = 0|a3 = 0, a2 = 1, a1 = 1)

P(a3 = 0|a2 = 1, a1 = 1)P(a2 = 1|a1 = 1)P(a1 = 1)

P(S+
1 ) =by(17) P(a4 = 0|a3 = 0)

P(a3 = 0|a2 = 1)P(a2 = 1|a1 = 1)P(a1 = 1).

The same procedure gives P(S−
1 ), P(S+

2 ), and P(S−
2 ). Using conditional probability

to Z, we obtain

P(S1|Z = z) = P(S+
1 |Z = z) + P(S−

1 |Z = z) =
1

2
p4[z]p2[z](1− p3[z])p1[z]

P(S2|Z = z) = P(S+
2 |Z = z) + P(S−

2 |Z = z) =
1

2
(1− p4[z])p3[z](1− p2[z])(1− ρ1[z]).

Finally, the law of total probability yields to

P(Y = 1) = (1− p)

[
1

2
p4[1]p2[1](1− p3[1])p1[1] +

1

2
(1− p4[1])p3[1](1− p2[1])(1− p1[1])

]
+p

[
1

2
p4[2]p2[2](1− p3[2])p1[2] +

1

2
(1− p4[2])p3[2](1− p2[2])(1− p1[2])

]
□



Classification of multivariate functional data with PLS approaches 35

References

Aguilera, A.M., Escabias, M., Preda, C., Saporta, G. (2010). Using basis
expansions for estimating functional pls regression: applications with
chemometric data. Chemometrics and Intelligent Laboratory Systems,
104 (2), 289–305.

Beyaztas, U., & Shang, H.L. (2022). A robust functional partial least squares
for scalar-on-multiple-function regression. Journal of Chemometrics,
e3394.
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