
HAL Id: hal-03908463
https://hal.science/hal-03908463v1

Submitted on 20 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware-Aware Quantization for Multiplierless Neural
Network Controllers

Tobias Habermann, Jonas Kühle, Martin Kumm, Anastasia Volkova

To cite this version:
Tobias Habermann, Jonas Kühle, Martin Kumm, Anastasia Volkova. Hardware-Aware Quantization
for Multiplierless Neural Network Controllers. The IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), Nov 2022, Shenzhen, China. �10.1109/APCCAS55924.2022.10090271�. �hal-
03908463�

https://hal.science/hal-03908463v1
https://hal.archives-ouvertes.fr

Hardware-Aware Quantization for Multiplierless
Neural Network Controllers

Tobias Habermann†, Jonas Kühle†, Martin Kumm†, Anastasia Volkova∗
†Fulda University of Applied Science, Fulda, Germany

∗Nantes Université, CNRS, LS2N, 44000 Nantes, France
{tobias.habermann, jonas.kuehle, martin.kumm}@cs.hs-fulda.de, anastasia.volkova@univ-nantes.fr

Abstract—Deep neural networks (DNNs) have been success-
fully applied to the approximation of non-linear control systems.
These DNNs, deployed in safety-critical embedded systems, are
relatively small but require a high throughput. Our goal is
to perform a coefficient quantization to reduce the arithmetic
complexity while maintaining an inference with high numerical
accuracy. The key idea is to target multiplierless parallel architec-
tures, where constant multiplications are replaced by bit-shifts
and additions. We propose an adder-aware training that finds
the quantized fixed-point coefficients minimizing the number of
adders and thus improving the area, latency and power. With
this approach, we demonstrate that an automatic cruise control
floating-point DNN can be retrained to have only power-of-two
coefficients, while maintaining a similar mean squared error
(MSE) and formally satisfying a safety check. We provide a push-
button training and implementation framework, automatically
generating the VHDL code.

Index Terms—neural network controllers, machine learning,
hardware-aware quantization, quantization-aware training

I. INTRODUCTION

Deep Neural Networks (DNNs) are now applied in prac-
tically every domain of human activity. Their size varies
depending on applications, from small models having several
hundreds or thousands of parameters for regression tasks and
control, up to huge compositions of models with billions of
parameters for natural language processing. While energy-
efficiency and acceleration is of interest for any DNN, in
this paper we will focus on inference for small feed-forward
neural networks with applications in control. Indeed, Neural
Network Controllers (NNCs) are typically implemented with
just a few hidden layers and their goal is to serve as a
cheaper, faster and more robust substitute to classic numerical
control algorithms [1]–[3]. A typical approach is to use High
Level Synthesis (HLS) to generate Field-Programmable Gate
Array (FPGA) implementations, which do not necessarily take
advantage of the structured nature of DNNs or satisfy the
high-throughput and low-power needs of embedded controllers
in safety-critical applications. With this work, our goal is to
remedy for that and propose a new push-button tool for an
automatic generation of FPGA-based inference circuits for
small but efficient and fast DNNs.

The most costly operations in the realization of feed-forward
DNN are the multiplications. In this work we leverage the
fact that DNN weights are constants, known a priori, hence
generic multiplications can be replaced by additions, subtrac-
tions and bit-shifts. These multiplierless implementations yield

smaller, faster and less power-hungry implementations. How-
ever, simply deducing a multiplierless implementation upon
straightforwardly-quantized weights/biases is not satisfactory:
constants that are close to each other, in absolute value, can
have a significantly different hardware implementation cost.
Take for example, integers 31 and 32: multiplying by 31 costs
one addition (31x = 25x − x) while multiplication by 32 is
a simple bit-shift (32x = 25x), which can be hardwired at
negligible cost. As a consequence, in [4] Gustafsson et al.
proposed an Addition Aware Quantization approach, in which
floating-point numbers are quantized s.t. their multiplierless
implementation cost is small.

It has now become a common approach to re-train the
floating-point (FP) DNNs after a quantization to low word
length fixed-point (FxP) representation, in order to improve
the network’s accuracy [5]. During a typical re-training, the
weights and biases are kept in the chosen, and often uniform,
low word length and can take any value, which is not necessar-
ily hardware-friendly. In the previous work [6], a quantization-
aware training was proposed, in which FP neural networks
are retrained for FxP coefficients that are selected from a
restricted set of numbers that are well-suited for reconfigurable
multipliers.

Building up on this idea, we propose a novel hardware-
oriented training scheme, in which FxP weights and biases
are selected from the sets of hardware-friendly numbers well-
suited for multiplierless implementations with very few adders
per quantity. This adder-aware strategy yields significantly
faster architectures, as the computations are done fully in
parallel.

II. NEURAL NETWORK CONTROLLERS

The application of DNNs to control systems is an emerg-
ing domain showing excellent results. Neural networks have
demonstrated two main advantages over classic methods:
speed and robustness. As shown in case of autonomous driv-
ing [2], [7], NNCs can learn how to optimize all decision steps
simultaneously, instead of multi-step linking of a classic object
detection and control algorithms. Most importantly, NNCs
often allow to compress the numerical schemes classically
used for control. For instance, in case of aircraft collision
avoidance systems, [1] showed that teaching a small DNN
to approximate the result of a Markov decision processing
reduces the memory footprint for the implemented system by

-

Fig. 1: Shift-and-add based MCM circuit for multiplication
with constants 19 and 43

a factor of 1000, compared to classic approaches, and even
surpasses the original in robustness.

One crucial property of the NNCs is the inference speed,
as these control tasks would be implemented in real-time
embedded systems. For instance, [3] focuses on providing
small DNN models for fast object-detection, reducing the
typical size of DNNs to several, up to 10, dense/convolutional
layers with ReLU or tanh activation functions.

Although utilizing DNNs in safety-critical applications can
demonstrate considerable performance benefits, assuring the
safety and robustness of these systems is indispensable. More-
over, it has been demonstrated that their behavior can be unpre-
dictable due to adversarial perturbations in their inputs. Hence,
a formal set-based verification tool, such as Neural Network
Verification (NNV) [8], should be employed to guarantee the
safety of the implemented neural controller.

III. MULTIPLE CONSTANT MULTIPLICATION

One efficient way for realizing MCM circuits is to transform
the required multiplications into several additions, subtractions
and bit-shifts (shift-and-add, for short). Fig. 1 shows an
example of an MCM operation with the two constants 19 and
43. Arrows denote bit-shifts, and each adder can be assigned
to a constant factor. For example, the first adder computes 5x
by adding x to x bit-shifted by two, leading to x+22x = 5x.
Similar, 19x is computed as 22(5x) − x = 19x. Instead of
two multipliers, this MCM implementation only requires the
hardware equivalent of three adders.

Determining the circuit with the least amount of adders
for a given set of constants is known as the MCM problem.
Several heuristics [9]–[12] and optimal approaches [13]–[15]
have been presented to solve it.

To reduce the hardware complexity of our NN controller,
we can simply apply these algorithms to the quantized weights
of our NN controller. However, the complexity (in terms of
adder count) strongly depends on the coefficient value. For
example, the multiplication with the factor 43 is known to
require three adders. The multiplication with 42 (or 44) would
require only two adders. Quantizing a real number to those
cheaper numbers was previously proposed as addition-aware
quantization [4].

We go one step further and make use of the robustness
of the neural network: we quantize the weights of the NN
controller to a set of cost-n numbers, for which the adder count

Fig. 2: The proposed training flow. Function Q is a quantiza-
tion strategy algorithm.

does not exceed n adders. However, such quantization induces
potentially large errors, perturbing the algorithm’s output. We
remedy for that by re-training the system with a new process
called adder-aware training (AAT).

IV. ADDER-AWARE TRAINING

The quantization of DNNs is an active research area, where
various different techniques were explored in recent years [5].
The subject can be split into two main streams. First, the
post training quantization (PTQ) where the trained FP DNN is
quantized to FxP formats. And second, the quantization-aware
training (QAT) where the FP DNN is quantized and then is re-
trained. In most cases, PTQ is faster and its advantage is that it
does not require a training dataset, which is often unavailable.
However, the results are not as good as with QAT methods.

In this work, our goal is to leverage the power of MCM
and implement hardware inference using the optimized mul-
tiplierless circuits. Based on the general observation of the
exceptional robustness of DNNs w.r.t. quantization, we postu-
late that weights and biases can be quantized to very simple
low-precision numbers, that can be implemented with only a
few adders. By fixing the hardware cost of each weight to be 0,
1 or 2 adders, we restrict the set of possible values that can be
taken and, hence, the QAT should be adapted accordingly. We
integrated our work in the open-source Modular Quantization
Aware Training (MQUAT) framework, which is based on the
ideas proposed in [6]. It provides a framework for QAT on
limited sets of possible numbers for weights and biases.

The general proposed training flow is roughly illustrated
in Fig. 2. Our framework takes the following information as
inputs: the FP32 DNN model, the training and validation sets,
the hyperparameters, e.g., learning rate and number of epochs,
and the description of the hardware-cost restriction for all
weights, layer- or channel-wise. The pre-trained FP32 DNN
is re-trained by first finding a proper integer and fractional
bit distribution for each unit to quantize. Then, the training
process is started, where all weight updates are applied to the
full precision weights but calculated based on the quantized
DNN. After each backward pass, where weights and biases
are updated in FP32, the DNN’s coefficients are quantized.
When the quantization function Q is a simple rounding, this
process is a classic QAT. In the proposed AAT, we transform
this function into a more complex algorithm, in which FP32
weights are rounded to the closest numbers that are realizable
with the restricted adder cost.

http://uni-kassel.de/go/mquat

First, we set up two types of quantization: a channel-wise
quantization, in which each channel in a layer has its own FxP
format, and a layer-wise quantization, in which all channels
in the layer share the same format and, in consequence, the
same shift-and-add graph. Channel-wise quantization allows
tailoring the quantized channels better to the original ones
and utilizes the whole potential of a much faster fully-parallel
implementation of the DNN. Layer-wise quantization is in-
teresting for resource-saving strategy but is typically slower,
since it requires a sequential sharing of adders.

Due to the highly discrete nature of the target sets, from,
which each coefficient value is selected, the convergence of
the adder-aware training is not guaranteed. As the numerical
experiments shall demonstrate, when the training reaches the
user-given number of re-training epochs, the mean squared
error (MSE) loss of the quantized DNN can be too high. In
this case, a higher hardware cost, which increases the size of
the coefficient set K, should be considered.

The quantization function Q(v) itself becomes a selection
procedure, in which for each FP constant v, we search for an
element k in the coefficient set K such that mink∈K |k − v|.
It might happen, that the coefficient set K has to be shifted
to provide a lower quantization error.

There are several coefficient sets K ∈ K possible that
are constructed according to the target adder-cost and the
target word length: The cost-0 set contains coefficients
that are all powers of two, i.e., implementable uniquely
with bit-shifts. For example, for 5-bit representation K5

0 =
{−32,−16, . . . , 0, . . . , 16, 32}. Formally, the set of all sets for
cost-0 l-bit numbers Kl

0 always contains just one coefficient
set and is defined as

Kl
0 = {±(2n) : ∀n = 0 . . . l} ∪ {0}

Kl
0 = {Kl

0} .

The cost-1 sets for l-bit collects all coefficient sets obtained
through a sum of two cost-0 l-bit coefficients. Similarly,
the cost-2 set of all sets for l-bit representation collects all
coefficient sets that can be represented through a shifted sum
of two individual sums of two cost-1 l-bit coefficients. We
define the set of sets Kl

1 and Kl
2 with the help of the set

of base combinations sets Bl
1, Bl

2 and a clipping function
clipl(x) = min(2l,max(−(2l), x)) in the following way:

Bl
1 = {{1, ka + kb} : ∀K ∈ Kl

0,∀ka, kb ∈ K}
Bl
2 = {{1, ka + kb} : ∀K1∈Kl

1,∀K0∈Kl
0,∀ka∈K0,∀kb∈K1}

∪ {{1, ka + kb, kc + kd} : ∀K ∈ Kl
0,∀ka, kb, kc, kd ∈ K}

Kl
1 = {{±clipl(b · 2n) : ∀n = 0..l, ∀b ∈ B} : ∀B ∈ Bl

1}
Kl

2 = {{±clipl(b · 2n) : ∀n = 0..l, ∀b ∈ B} : ∀B ∈ Bl
2}

In the quantization function Q we encode the search for the
best fitting set K ∈ Kl

n, for the target FP value v according to
the absolute error between the value v and the candidate set.
For a channel-wise quantization, each channel per layer has its
own cost-n set. For the layer-wise quantization, a target set K
is shared between each layer. The target set is selected based

on the sum of absolute differences between the coefficients
and the elements of the candidate set.

V. EXPERIMENTAL EVALUATION

A. Hardware Architecture Generator

We have integrated our VHDL code generator for the pro-
posed multiplierless fully-parallel feed-forward DNNs in the
open-source core generator framework FloPoCo1 [16]. Given a
tensor-flow model in Python and the quantized coefficients, it
generates the hardware architecture. Each channel is computed
by first using a multiplierless approach for partial products,
and then by adding all signals in a compressor tree. For partial
products of a negative weight, the product with the positive
weight is computed in a multiplierless way and the result
is subtracted in the compressor tree. All the data paths are
automatically truncated and resized to an internal FxP format.
We leave the complex task of error-analysis and impact of
the truncations upon the accuracy of the neural network out
of scope of this paper. Instead, we compute all the signals
exactly, but truncate the outputs of the activation layers to a
user-given value.

B. DNN-based Adaptive Cruise Control

We evaluate the proposed approach on an NNC that imple-
ments an adaptive cruise control (ACC) task. This example
comes from the NNV toolbox demonstration [8] for safety
verification of NNCs and has been used for the ARCH
competition [17]. An ACC is a system used in cars to keep a
save distance between itself (the ego car) and the leading car.
The ACC is provided with the current velocities and positions
of both cars and has to calculate the acceleration of the ego
car to keep a pre-defined safe distance. The ideal solution for
the control problem is computed via a differential equation,
which actually provides the training and validation data for
the DNN model that approximates the solution of the equation.
We consider the ACC3 model from the ARCH competition,
which is a simple feed-forward network with 3 hidden layers,
each having 20 neurons with ReLU activation function, and
one last additional layer having one linear neuron to match the
output format. We evaluate the MSE on the validation data set
provided by the differential equation during our adder-aware
training. However, a small MSE does not necessarily mean
that the controller is actually safe. Hence, in addition, we will
also use the safety verification provided by the NNV toolbox
to analyze the quantizations of the trained model.

C. Experimental results and discussion

The proposed adder-aware training was integrated into the
open-source tool MQUAT, which is written in Python and
based on Tensorflow. In all experiments we used the standard
Adam optimizer in Tensorflow with a learning rate of 10−6,
amsgrad=True with 35 training epochs using the standard
MSE loss. The training and validation dataset each have 210k

1available online at http://flopoco.org

http://flopoco.org

Fig. 3: MSE results for the ACC3 with PTQ and QAT for
different FxP word lengths. All results with an MSE higher
than 0.5 are marked with an arrow. All unsafe controllers have
a red border.

Fig. 4: MSE results for the adder-aware training of the ACC3
controller for different FxP word lengths and target channel-
or layer-wise costs. All results with a higher MSE than 0.5
are marked with an arrow. Unsafe controllers are marked red.

examples. The generated hardware implementations are syn-
thesized using Vivado v2018.3 for the xczu19eg-ffvb1517-1
FPGA. The run times are reported for training on a machine
with a GeForce RTX 2060 Super GPU with 8GB GDDR6
RAM, i7-4790 CPU and with 16 GB of system memory.

In our first experiment, our goal is to compare the PTQ
and the QAT approaches for the chosen ACC3 DNN. Fig. 3
illustrates the MSE of the PTQ (in blue) and the QAT (in
yellow) of the reference FP32 network to different FxP word
lengths (from 3 to 16). The red borders indicate quantized
instances that are proven unsafe by the NNV, and bars marked
with an arrow have an MSE >0.5, making the networks
unexploitable. It is easy to see that retraining the network after
the quantization is extremely important, not only permitting
to maintain the MSE for low-precision coefficients but even
improving it. The PTQ yields a comparable MSE and a safe
controller with 14 bits word length. However, if we apply
the quantization-aware training and lower gradually the word
length, we can go as low as 8 bits, which we take as a baseline
for comparison with our approach.

To obtain a state-of-the-art multiplierless reference, we
applied the MCM algorithm RPAG [12] to the baseline 8 bit
model. The upper part of Table I illustrates that 165 adders are
required in total to implement the baseline controller, which

TABLE I: MCM cost for the baseline and proposed approaches

Experiments #adders per layer total
#adders

1 2 3 4

8 bit baseline 59 46 58 2 165

5 bit proposed

cost-0 / channel 0 0 0 0 0
cost-1 / channel 14 10 12 1 37
cost-2 / channel 15 14 14 1 44
cost-1 / layer 1 1 1 1 4
cost-2 / layer 2 2 2 1 7

is high but expected, as the weights and biases were not
specifically designed for a multiplierless hardware. Simply
rounding the coefficients to the closest cost-0, cost-1, etc.
numbers (using [4]) yielded unsafe controllers with an MSE
larger than 1, confirming our intuition that re-training for
adder-aware weights and biases is crucial.

Fig. 4 illustrates the results when applying the proposed
adder-aware training for the cost-0, cost-1 and cost-2 coeffi-
cient sets. AAT was applied either per channel (p. c.) or per
layer (p. l.). The red boxes indicate low-precision instances
that, regardless of a very low MSE, are certified unsafe by the
NNV tool. Our first observation is that for a word length of
just 5 bits our tool finds coefficients of a safe cost-0 controller
with an MSE lower than the reference FP32 DNN. This
MSE improvement is probably due to a smaller over-fitting
in the low-precision DNN. Interestingly, we observed in all
our experiments that even if a lower-cost implementation is of
a good quality, a higher-cost result is not necessarily as good.
For instance, for 5 bit coefficients, only the cost-0 channel-wise
and cost-2 layer-wise results are stable, and for word length 6
bits, the MSE for cost-0 is lower than for cost-2 channel-wise.
These effects could be explained by the non-deterministic
nature of the stochastic gradient descent algorithm used for
training, and that falling into local minima is highly probable
in ultra low precisions over restricted coefficient sets.

Surprisingly, the larger word sizes (like 12 and 16 bits in
Fig. 4) perform worse than the lower precisions (like 9, 6 or 5
bits). The reason for this could be that the chosen pre-trained
QAT DNNs for AAT also had a bigger word length leading
to a worse fit of the coefficient distribution.

Our conclusion is that a thorough design-space exploration
is needed to find the lowest coefficient word length that
provides a safe implementation at the lowest adder cost. This
is without a doubt possible using the proposed tool, since the
running times are reasonable for a one-time analysis. Table II
illustrates the running times for layer-wise and channel-wise
PTQ and QAT approaches applied on the ACC3 DNN for
quantizations of 4, 8 and 16 bits. The classical FP32 to FxP is
used as the baseline and shows that the timings are comparable
to those of the proposed approach. We can note, that our
performance is stable across the word lengths and varying from
roughly 4 to 6 minutes for cost-0 coefficients up to 18 minutes
for cost-2 coefficients.

In the following, we aim at comparing the resource benefits
for different target cost settings, and therefore permit ourselves

TABLE II: Quantization time in seconds for classic FP32 to
FxP quantization, for the ACC3 DNN.

Proposed adder-aware training Baseline

layer-wise channel-wise channel-wise

Kl
1 Kl

2 Kl
0 Kl

1 Kl
2 PTQ QAT

4 bit 387 564 356 355 1133 1312 2546
8 bit 387 567 358 370 1116 52 1265

16 bit 391 578 361 373 1139 51 1265

TABLE III: Synthesis results for the baseline and proposed
parallel architectures

Design Experiment #LUT #DSP delay (ns) MSE

baseline
(8 bit)

generic mult 44328 388 12.489ns 0.0272
generic no DSP 69058 0 11.842ns 0.0272
shift-and-add [12] 42128 0 7.952ns 0.0272

proposed
(5 bit)

cost-0/channel 16236 0 6.532ns 0.0831
cost-1/channel 18726 0 6.954ns 0.0425
cost-2/channel 19546 0 7.657ns 0.0324

to ignore the unsafety of certain 5 bit instances. Before doing
any synthesis, we can observe in the lower part of Table I
the adder cost of the proposed 5 bit instances. The possibility
to re-train the network for the cost-0 coefficients, obviously,
significantly simplifies the architecture. Training for the cost-1
coefficients still divides the number of used adders by more
than 4 w.r.t. the 8 bit QAT baseline. One can also note,
that using the cost-2 coefficients does not necessarily lead to
doubling the total number of adders, as some channels will still
have lower adder cost. Finally, training for the safe cost-1 and
cost-2 controllers layer-wise, even if demonstrated possible
and pertinent w.r.t. cost, results in a non-parallel architecture,
hardware implementation of which we leave to future work.

Multiplications are the resource dominating part of an
NNC but not the only part. Hence, we performed synthe-
sis experiments for variants of full NNC implementations.
Table III collects the synthesis results for the baseline 8 bit
network, implemented in two flavors (generic multipliers with
and without DSPs, and directly applying the shift-and-add
approach [12] upon coefficients), as well as our multiplierless
architectures.

We can observe that the cost-0 architecture divides the
number of LUTs by 2.73 compared to the baseline imple-
mented with generic multipliers (without using DSPs) and by
2.59 compared to the state-of-the-art shift-and-add baseline.
The reduced complexity also translates to reduced delays: the
cost-0 solution is 1.91 and 1.22 times faster than the generic
and multiplierless baselines, respectively. As the adder cost
predicted, we do not observe a large resource increase going
to cost-1 and cost-2 instances. The MSE of our implementation
(last column of Table III) was evaluated from the VHDL
simulation and is shown to be even less than the FP reference.

VI. CONCLUSION

We proposed a novel technique for an adder-aware training
of small feed-forward DNNs aiming fast parallel inference

on FPGAs. Our key idea is that DNNs can be successfully
retrained for low-precision coefficients well-suited for a mul-
tiplierless implementation with a given target cost. We demon-
strated effectiveness of our approach on an NNC implementing
automatic cruise control, for which the resource requirements
could be divided by 2.59 w.r.t. a state-of-the-art multiplierless
hardware implementation obtained with quantization-aware
training. Future work includes a thorough analysis of errors
due to roundings and incorporation of intermediate truncations,
extension to convolutional neural networks and sequential
implementations using layer-wise results.

REFERENCES

[1] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in 2016
IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 2016,
pp. 1–10.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
2016. [Online]. Available: https://arxiv.org/abs/1604.07316

[3] B. Wu, A. Wan, F. Iandola, P. H. Jin, and K. Keutzer, “Squeezedet:
Unified, small, low power fully convolutional neural networks for real-
time object detection for autonomous driving,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
2017, pp. 446–454.

[4] O. Gustafsson and F. Qureshi, “Addition Aware Quantization for Low
Complexity and High Precision Constant Multiplication,” Signal Pro-
cessing Letters, IEEE, vol. 17, no. 2, pp. 173 – 176, 2010.

[5] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network
inference,” 2021. [Online]. Available: https://arxiv.org/abs/2103.13630

[6] J. Faraone, M. Kumm, M. Hardieck, P. Zipf, X. Liu, D. Boland,
and P. H. W. Leong, “AddNet: Deep neural networks using FPGA-
optimized multipliers,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 28, no. 1, pp. 115 – 128, 00 2020.

[7] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning
affordance for direct perception in autonomous driving,” in IEEE Inter-
national Conference on Computer Vision (ICCV), 2015, pp. 2722–2730.

[8] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang,
S. Bak, and T. T. Johnson, “Nnv: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems,”
2020. [Online]. Available: https://arxiv.org/abs/2004.05519

[9] A. Dempster and M. D. Macleod, “Constant Integer Multiplication Using
Minimum Adders,” IEE Proceedings of Circuits, Devices and Systems,
vol. 141, no. 5, pp. 407 – 413, 1994.

[10] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, pp. 1 – 38,
2007.

[11] O. Gustafsson, “A Difference Based Adder Graph Heuristic for Multiple
Constant Multiplication Problems.” IEEE International Symposium on
Circuits and Systems (ISCAS), 2007, pp. 1097 – 1100.

[12] M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined Adder Graph
Optimization for High Speed Multiple Constant Multiplication.” IEEE
International Symposium on Circuits and Systems, 2012, pp. 49 – 52.

[13] L. Aksoy, E. Günes, and P. Flores, “Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate,” Micropro-
cessors and Microsystems, vol. 34, no. 5, pp. 151 – 162, 2010.

[14] M. Kumm, “Optimal Constant Multiplication using Integer Linear
Programming,” IEEE Transactions on Circuits and Systems II: Express
Briefs, vol. 65, no. 5, pp. 567 – 571, 2018.

[15] R. Garcia, A. Volkova, and M. Kumm, “Truncated Multiple Constant
Multiplication with Minimal Number of Full Adders,” in IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), 2022.

[16] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18–27, 2011.

[17] D. M. Lopez, P. Musau, H.-D. Tran, and T. T. Johnson, “Verification
of closed-loop systems with neural network controllers,” vol. 61, pp.
201–210, 2019.

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2004.05519

	Introduction
	Neural Network Controllers
	Multiple Constant Multiplication
	Adder-Aware Training
	Experimental evaluation
	Hardware Architecture Generator
	DNN-based Adaptive Cruise Control
	Experimental results and discussion

	Conclusion
	References

