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in semi‑synthetic RNA‑seq data simulations 
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Main text
Li et al. [1] recently raised significant concerns regarding popular RNA-seq differential 
expression methods edgeR [2] and DESeq2 [3] in the context of large human popu-
lation sample sizes. We share those concerns, having ourselves come to similar con-
clusions [4] before, as have others [5, 6]. However, their findings that other methods 
(namely dearseq, limma-voom [7], and NOISeq [8]) also have increased false posi-
tive rates does not appear to be correct, and the evidence does not support their claim 
that the Wilcoxon rank-sum test should be preferred to these alternatives. We used the 
same semi-synthetic datasets that were used in Li et al. to show that no methods (includ-
ing Wilcoxon test) are able to maintain the nominal level of “false discoveries” according 
to their definition because the data used for analysis are not truly generated under H0 . 
We demonstrate how their permutation scheme should be amended to support analysis 
of false positive rates under H0 . Using this amended scheme, we show that dearseq 
appears to outperform other methods under these specific settings of large human pop-
ulation samples and otherwise offers competitive performance on par with the other 
methods.

Abstract 

A recent study reported exaggerated false positives by popular differential expression 
methods when analyzing large population samples. We reproduce the differential 
expression analysis simulation results and identify a caveat in the data generation pro-
cess. Data not truly generated under the null hypothesis led to incorrect comparisons 
of benchmark methods. We provide corrected simulation results that demonstrate 
the good performance of dearseq and argue against the superiority of the Wilcoxon 
rank-sum test as suggested in the previous study.
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First, we demonstrate that Wilcoxon test has the same properties as the compet-
ing methods when given the same data. We recreated Fig. 2A from Li et al. where the 
empirical (“actual”) false discovery rate (FDR) is plotted against the nominal (“claimed”) 
FDR using semi-synthetic data generated from the full GTEx Heart atrial appendage 
(n = 372) VS Heart left ventricle (n = 386) simulation [1] in our Fig. 1A. We recomputed 
those results using code and data shared by the authors [9]. The key difference is that we 
applied the Wilcoxon test on the same normalized data (following the edgeR pipeline 

Fig. 1  Empirical FDR control against nominal FDR level. Average over 50 semi-synthetic dataset generated 
from the GTEx Heart atrial appendage VS Heart left ventricle data. Fifty percent of the true differentially 
expressed (DE) genes are randomly sampled in each semi-synthetic dataset (i.e., 2889 genes remain 
unpermuted as true positives) and considered as gold-standard DE genes. Panel A reproduces the results 
from Li et al. [1] Fig. 2A when all methods are applied to the same data (first permuted to generate null gene 
expression and then normalized) on the full sample size (372 and 386 samples in each group respectively). 
Panel B studies the impact of both the sample size as well as the respective order between the data 
normalization and the random permutations to generate non-differentially expressed genes on the FDR 
control of the Wilcoxon test and on both asymptotic and permutation tests from dearseq. Of note, when 
applied to non-normalized data, the heteroskedasticity weights estimated by dearseq are subject to 
caution because observed values are then not comparable across samples
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for filtering out genes with low counts and using log2-counts per million transforma-
tion) used by all other methods, contrary to Li et al. who conducted the Wilcoxon test on 
non-normalized data while conducting all other tests on normalized data. When given 
the same data as all other methods, the Wilcoxon test also appeared to exaggerate the 
FDR, as did all other methods.

This apparent increase in FDR was not due to the methods themselves, but rather to 
an inappropriate data-generation scheme. In Fig.  1B, we compare the performance of 
both dearseq asymptotic and permutation tests with the Wilcoxon test across various 
sample sizes (in their discussion, Li et al. [1] advocate for permutation analysis, fortu-
nately dearseq already features such a permutation approach which we added to the 
comparison). In these semi-synthetic datasets, gene expression under H0 was generated 
by randomly swapping expression values between samples. However, Li et  al. did not 
analyze these data directly but instead normalized them before analysis. The top panel of 
Fig. 1B shows how the Li et al. permutation scheme leads to an apparent increase in FDR 
because the expression is no longer generated from H0 after normalization (e.g., due to a 
high count being swapped into a sample with a much lower library size, artificially creat-
ing a large expression post-normalization). When the data are analyzed without normal-
ization — an approach that would never be used in practice — we show in the middle 
panel of Fig. 1B that both dearseq and the Wilcoxon test attained the nominal FDR as 
sample size increased.

We also show in Fig. 1B bottom panel an alternative permutation scheme which fixes 
the issues with the scheme in Li et  al.: when counts are first normalized before being 
permuted under H0 , we demonstrate that all three tests adequately controlled the FDR 
for the full dataset. Figure 2 shows that once convergence was reached, the dearseq 
asymptotic test achieved slightly higher statistical power than Wilcoxon test, while the 
Wilcoxon test had superior power to dearseq permutation test (this lower power of 
the permutation test is largely related to the difficulty of obtaining precise estimation for 
the lowest p-values through permutations, a point of critical importance when applying 
a multiple-testing correction). See Additional file 1: Supplementary Fig. S3 for statistical 
power against empirical FDR. This amended permutation scheme should be preferred 
to the Li et al. permutation scheme. It is fundamental to perform differential expression 
analysis on samples that are normalized to ensure that expression values for a given gene 
are comparable across samples and in particular to remove the potential effect of library 
size on the analysis. The null hypothesis of interest is that there is no mean difference 
between conditions on the data to be analyzed, i.e., the normalized data. Thus, these are 
the data that should be permuted, not the raw expression, and the Li et al. permutation 
scheme is not informative for the desired analysis on the normalized data. Our results 
indicates that the apparent false positives of dearseq using the Li et  al. scheme are 
actually detecting differences in library size. Of note, dearseq and Wilcoxon tests both 
display similarly good performance in Li et al.’s Fig. 1 where their permutation scheme 
is less problematic as all genes get permuted in that case, whereas for their Fig. 2, they 
introduced a confounding bias from the library size by keeping the top significant genes 
unpermuted (as true positive controls). See Additional file 1: Supplementary informa-
tion for a detailed demonstration of the issues with library size in these data.
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Both limma-voom [7] and NOISeq [8] also controlled FDR adequately using our 
amended permutation scheme (see Additional file 1: Supplementary Fig. S1) — note 
that this procedure is harder for voom-limma, edgeR [2], and DESeq2 [3] because 
normalization is baked into their analysis methodology. Additional file 1: Supplemen-
tary Fig. S2 shows that dearseq asymptotic test achieved higher power compared to 
both limma-voom and NOISeq (when n > 20 per group).

Fig. 2  Empirical statistical power for the Wilcoxon test and dearseq asymptotic and permutation tests. 
Average over 50 semi-synthetic dataset generated from the GTEx Heart atrial appendage VS Heart left 
ventricle data. Fifty percent of the true differentially expressed (DE) genes are randomly sampled in each 
semi-synthetic dataset (i.e., 2889 genes remain unpermuted as true positives) and considered as gold 
standard DE genes used as true positives. Panel A reproduces the results from Li et al. [1] Fig. 2B as a function 
of sample size for both 1% and 10% nominal FDR levels, when all three methods are applied to the same data 
(either without any normalization or when the data are first normalized before randomly swapping values to 
generate expressions under H0 — i.e., the two cases for which the FDR is controlled and thus the empirical 
power is interpretable). Panel B studies the impact of the nominal FDR level in both cases for the full sample 
size (372 and 386 samples in each group respectively)
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Furthermore, dearseq is capable of handling many experimental designs beyond the 
simple two conditions comparison setting of the Wilcoxon test and thus constitutes a 
valid and versatile option for differential expression analysis of large human population 
samples.
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