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Abstract. Vascular network analysis is crucial to define the tumoral
architecture and then diagnose the cancer subtype. However, automatic
vascular network segmentation from Hematoxylin and Eosin (H&E) stain-
ing histopathological images is still a challenge due to the background
complexity. Moreover, there is a lack of large manually annotated vascu-
lar network databases. In this paper, we propose a method that reduces
reliance on labeled data through semi-supervised learning (SSL). Ad-
ditionally, considering the correlation between tumor classification and
vascular segmentation, we propose a multi-task learning (MTL) model
that can simultaneously segment the vascular network using SSL and
predict the tumor class in a supervised context. This multi-task learning
procedure offers an end-to-end machine learning solution to joint vas-
cular network segmentation and tumor classification. Experiments were
carried out on a database of histopathological images of renal cell carci-
noma (RCC) and then tested on both own RCC and open-source TCGA
datasets. The results show that the proposed MTL-SSL model outper-
forms the conventional supervised-learning segmentation approach.

Keywords: Vascular Network Segmentation · Semi-Supervised Learn-
ing · Multi-Task Learning · Renal Cell Carcinoma

1 Introduction

85% to 90% of kidney cancer are RCC, with the main subtypes being clear cell
RCC (ccRCC) with 75%, papillary RCC (pRCC) with 10% and Chromophobe
with 5% [11]. Currently, subtyping is essentially based upon pathological analy-
sis, consisting of cell morphology and tumor architecture [8]. [24] proved vascular
network analysis is important and relevant in RCC subtyping, however this clas-
sification work only used a few manually segmented vascular networks, which
limits its application potential. In this paper, we propose to build an automatic
vascular network segmentation model paired with a tumor classification scheme.

Data labeling is often the most challenging task. Labeling large-scale images
are laborious, time-consuming and exhibit low repeatability. This encouraged to
improve the vascular network segmentation performance using unlabeled data.
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This is indeed the paradigm of SSL models. Compared with the difficulty of ob-
taining manually a vascular network mask for the segmentation task, the labeling
for the classification task is easy to obtain. We conjectured that joint supervised
classification and SSL for vascular network segmentation, both embedded in a
MTL model, may improve the performance of vascular network segmentation in
RCC histopathological images.

We conducted benchmark experiments of supervised learning, SSL, both sin-
gle and multi-tasks, on RCC histopathological images. Then test on RCC and
other types of tumors. The proposed MTL-SSL model performs best, outper-
forming and more robust than the fully supervised learning model. Moreover,
compared with the single-task SSL, our model indeed improves the segmentation
efficiency of the vascular network while also performing tumor classification.

Our contributions can be summarized as follows:

– We propose an MTL-SSL model performing joint SSL segmentation and
classification tasks to segment the vascular network using both labeled and
unlabeled data.

– We apply the first automatic, end-to-end vascular network segmentation
method in H&E staining histopathological images, which is robust and out-
performs the fully supervised model on both RCC new subtype and other
cancer datasets.

– The proposed MTL-SSL model forms a foundation for future developments
in multi-task learning dealing with vascular segmentation and classification
from H&E staining histopathological images.

2 Related works

SSL [6] plays a key role in segmentation tasks since it allows to reduce the re-
liance on large annotated datasets. It can provide an effective way of leveraging
unlabeled data to improve model performance. Several approaches have been
proposed for SSL, such as Deep Adversarial Networks [26], Cross Pseudo Su-
pervision [7], Cross Consistency Training [15] and Mean Teacher [21]. However,
only a few studies have investigated if SSL can be applied to achieve satisfactory
results in H&E staining histopathological images, such as NAS-SGAN [9] for
atypia scoring of breast cancer, OSE-SSL [18] for content-based image retrieval
of prostate cancer, and breast cancer classification with Self-Paced Learning
together [2]. In this paper, we apply SSL to RCC histopathological images to
provide the benchmarks for vascular network segmentation.

MTL [4] aims at improving the performance of multiple related learning tasks
by leveraging comprehensive information among them. MTL achieves better gen-
eralization properties than single-task learning. Classification and segmentation
are both key tasks in medical image processing. Joint segmentation and classifi-
cation of tumors in 3D automated breast ultrasound images shows that learning
these two tasks simultaneously improves the outcomes of both tasks [27]. Other
joint tasks using MTL in cell detection and segmentation on PMS2 stained colon
rectal cancer and tonsil tissue images [5], MitosisNet for mitosis detection from
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pathological images which consist of segmentation, detection and classification
models [1], etc. In this paper, we combine the classification task for which labels
are easy to obtain and the vascular network segmentation task for which images
have complex backgrounds and manual delineation is cumbersome. Our MTL
aims to improve the performance of the segmentation task on RCC histopatho-
logical images compared to the fully supervised learning task.

Vasculature from histological images plays a key role in cancer development
subtyping and radiotherapy assessment [13]. However, the current automatic
vascular segmentation for histopathological images is limited to Immunohis-
tochemistry (IHC) stained histology images. [3] segments and quantify blood
vessels from hematoxylin and diaminobenzidine (H&DAB) stained histopatho-
logical images of Alzheimer’s disease. [12] obtained vascular hotspot probability
maps of WSI by scanning whole CD34 immunostained histological images of
colon cancer samples. Using H& DAB staining for special coloration of blood
vessels, the background is clean and easy to segment, but the background of the
H&E image is more complex and has some similar linear structures, such as cell
membranes and fibers, etc., which makes the task of vascular segmentation from
H&E images more challenging. In this paper, we propose an MTL-SSL model
which can segment vascular networks from H&E staining histopathological im-
ages automatically while predicting the tumor class.

3 Dataset and Methods

3.1 Dataset Building

We followed the method of [24] to annotate vascular. This weak label is faster
and embeds the topological information of the vascular, which has been shown
sufficient for the classify subtypes of RCC. Although the width of vascular vessels
is lost as we consider to represent the vascular by that way, shown in Figure 1.

For our own RCC dataset, We collected 167 original H&E staining WSI
and labeled the tumor and non-tumor areas using the software ASAP to obtain
patches of 2000×2000 Pixels. The pipeline is shown in Figure 1. We obtain 42130
tumor patches (27287 of ccRCC, 13637 of pRCC, 1206 of Chromophobe), and
manually labeled 424 vascular masks (129 of ccRCC, 129 of pRCC, 166 of Chro-
mophobe) for train and test and then labeled 12 masks of Oncocytoma, which
is another subtype of RCC, only for test the robustness of the segmentation.

For the TCGA dataset, we downloaded 100 WSIs of RCC (only have ccRCC
and pRCC), breast cancer, lung cancer, liver cancer, and esophagus cancer. Then
got 1029 tumor patches (433 of RCC, 60 of breast cancer, 246 of liver cancer, 120
of lung cancer, and 170 of esophagus cancer). We manually labeled 90 vascular
network masks (20 of RCC, 15 of breast cancer, 20 of liver cancer, 20 of lung
cancer, and 15 of esophagus cancer) only for test.

3.2 Multi-Task Learning Pipeline

Our proposed MTL-SSL model has a shared backbone encoder with task-specific
heads. It consists of a classification task in supervised learning context and a seg-
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Fig. 1. RCC histopathological images dataset.

mentation task using SSL, as shown in Figure 2. We chose HRNet [19] as the
backbone after comparison with other models. HRNet backbone [19] can out-
put high-resolution feature maps. It starts with a high-resolution subnetwork as
the first stage, and gradually adds high-to-low resolution subnetworks, forming
more stages, and connecting the multi-resolution subnetworks in parallel. HRNet
segmentation heads (student and teacher heads) aggregate the output represen-
tations at four different resolutions, and then use a 1x1 convolutions to fuse
these representations. HRNet classification head fed the four-resolution feature
maps into a bottleneck and the number of output channels are increased to 128,
256, 512, and 1024, respectively, and transform 1024 channels to 2048 channels
through a 1x1 convolution finally. The codes of Multi-task and HRNet backbone
were developed according to the shared repositories [22] and [19]. The main hy-
perparameters used in our paper are the same as in [22] and [19]. Ensuring fair
comparison, all the models were trained using the same hyperparameters.

We chose the Mean Teacher [21] for SSL, which has two neural networks of
student and teacher modules sharing the same architecture. Both the student and
the teacher module evaluate the input slightly perturbed with Gaussian noise
(ξ and ξ’) within their computation. The weights of the student module are
updated using the Adam optimizer, whereas the weights of the teacher module
are the Exponential Moving Average (EMA) of the student weights. We use the
cross-entropy (CE) and Dice loss functions between the student’s predictions
and the ground-truth on the labeled dataset to get loss2. The consistency cost,
called loss3 here, is computed from the student’s prediction and the teacher’s
prediction by Mean Square Error (MSE) on the unlabeled dataset. The semi-
supervised loss4 is the sum of the supervised loss2 and the consistency cost
loss3 by consistency weights, which were taken from [21]. Classification loss1 is
computed by the CE function on the class labeled dataset. Final loss5 of our
MTL-SSL model is the weighted sum of semi-supervised loss4 and classification
loss1, we define the weight ratio of SSL and classification as 2:1.

3.3 Evaluation

The weakly label of the vascular network has been made with constant width
bands[24]. Shown as Figure 3, the generated vascular segmentation is even closer
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Fig. 2. Proposed MTL-SSL model architecture.

to the real vascular mask than the weakly labeled ground truth. The classical
evaluation indexes such as Dice or Jaccard are not relevant here due to false
positive and negative pixels appear at the border of a vessel. To overcome this
imprecise ground truth we proposed the following post-processing to evaluate
the results in terms of vessel detection, basically to consider length but not the
width of vessels. We dilated (with a disk of radius 3, according to Table 1) the
segmentation result S to obtain DS and the ground truth GT to obtain DGT .
We computed the ratio of miss-detected vessels as:

MV =
|{(i, j) : GT (i, j) = 1, DS(i, j) = 0}|

|{(i, j) : GT (i, j) = 1}|
(1)

and the ratio of falsely detected vessels as:

FV =
|{(i, j) : S(i, j) = 1, DGT (i, j) = 0}|

|{(i, j) : S(i, j) = 1}|
. (2)

Finally, we defined the following global performance index:

IV = 1− (MV + V F )/2 (3)

4 Experiments and Results

In this section, we launch the benchmark experiments for vascular network seg-
mentation with different models and also do the statistical analysis of the dif-
ferences in the results between our proposed model and other models using the
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Table 1. Evaluate with different Strel Radius.

Radius MV(↓) FV(↓) IV(↑)
1 0.1353(0.02) 0.3514(0.06) 0.7566(0.02)*
2 0.1208(0.02) 0.3361(0.06) 0.7716(0.02)*
3 (Our) 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)
4 0.1040(0.02) 0.3205(0.06) 0.7878(0.02)
5 0.0835(0.02) 0.3426(0.04) 0.7870(0.01)

Fig. 3. Calculate the missing part and the false part between the generated segmenta-
tions, weakly labels, and real vascular masks by comparing them.

student’s t-test. The statistical software SPSS, version 20.0, was used for all the
statistical analyses. The level for statistical significance was set α = 0.05. *:
significantly worse than HRNet backbone or our proposed model (P <0.05).

4.1 Backbone and MTL-SSL method choice

We conducted experiments on different supervised classification models (GoogLeNet
[20], ShuffleNet [25], VggNet [17], ResNet [10] and HRNet [19]) and competitive
SSL models (Cross Pseudo Supervision (CPS) [7], Cross Consistency Training
(CCT) [15], Entropy Minimization (EM) [23] Deep Co-Training (DCT) [16] and
Mean Teacher (MT) [21]) to select the more efficient backbone. For the classi-
fication, we split our database into train input with 18624 tumor patch images
(8913 of ccRCC, 9079 of pRCC and 632 of Chromophobe), validation with 4843
tumor patch images (2049 of ccRCC, 2523 of pRCC and 271 of Chromophobe),
and test with 6973 tumor patch images (4420 of ccRCC, 2250 of pRCC and 303
of Chromophobe). For train input of SSL segmentation, we used both the labeled
vascular masks of our dataset with 335 tumor patch images (112 of ccRCC, 111
of pRCC and 112 of Chromophobe) and the 1005 unlabeled data from the RCC
dataset randomly, which is 3 times the labeled data. Meanwhile the validation
of SSL with 32 tumor patch images (8 of ccRCC, 9 of pRCC and 15 of Chro-
mophobe) and test with 69 tumor patch images (9 of ccRCC, 9 of pRCC, 39 of
Chromophobe and 12 of Oncocytoma) selected randomly. All the experiments
have been repeated 5 times. The mean and standard deviation of the different
model results are shown in Table 2. HRNet backbone performed best in both
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classification and SSL segmentation tasks. And MTL-SSL based on mean teacher
reaches the best performance among all the segmentation methods. All the code
and parameters are from the open repository SSL4MIS [14].

Table 2. Performence of different backbones.

Methods Backbone Accuracy

GoogLeNet 0.9348(0.01)
ShuffleNet 0.7753(0.07)*

Classification VggNet 0.9114(0.01)
ResNet 0.8863(0.03)
DenseNet 0.762(0.001)*
HRNet 0.9369(0.03)

Method Backbone MV(↓) FV(↓) IV(↑)
DCT (ECCV 2018) UNet 0.3770(0.02) 0.7453(0.05) 0.4388(0.02)*
EM (CVPR 2019) UNet 0.3340(0.04) 0.7686(0.01) 0.4487(0.02)*
CCT (CVPR2020) Single UNet 0.3644(0.03) 0.7474(0.03) 0.4417(0.004)*
CPS (CVPR 2021) Task UNet 0.3459(0.01) 0.7467(0.01) 0.4537(0.01)
MT (NIPS 2017) UNet 0.3622(0.002) 0.7827(0.002) 0.4275(0.001)*
DCT (ECCV 2018) HRNet 0.2926(0.02) 0.7846(0.01) 0.4614(0.004)
EM (CVPR 2019) HRNet 0.3049(0.01) 0.7844(0.01) 0.4554(0.01)

SSL CCT (CVPR2020) Single HRNet 0.2842(0.02) 0.7951(0.01) 0.4604(0.01)
Segmentation CPS (CVPR 2021) Task HRNet 0.3190(0.02) 0.7733(0.01) 0.4539(0.01)

MT (NIPS 2017) HRNet 0.2934(0.02) 0.7932(0.01) 0.4567(0.01)
DCT (ECCV 2018) HRNet 0.3032(0.01) 0.1073(0.02) 0.7948(0.01)
EM (CVPR 2019) HRNet 0.1307(0.04) 0.2893(0.06) 0.7900(0.01)
CCT (CVPR2020) Multi HRNet 0.1562(0.05) 0.4189(0.05) 0.7209(0.05)*
CPS (CVPR 2021) Task HRNet 0.2142(0.03) 0.8455(0.01) 0.4702(0.02)*
MT (NIPS 2017) Our HRNet 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)

4.2 Segmentation Benchmarks of Vascular Network

We conducted benchmark experiments on supervised learning, SSL, single seg-
mentation task and MTL. For SSL, the data split ratios were the same as in
the backbone choice experiment. For supervised learning, we only used the 335
labeled data for train input, 32 for validation and 69 for test. All the data were
selected randomly. For the common parameter setup, the input size was 512×512
pixels, the optimizer was Adam. We used batches of size 8, epoch of 200 and a
poly learning rate decay scheme. The initial learning rate was 0.002 and weight
decay was 1×10−6. For the parameter setup specific to SSL, the ema decay was
0.99, the consistency type was ”mse”, the consistency was 0.1, and the consis-
tency rampup was 50. In addition, we also compare the segmentation results of
our MTL-SSL and fully supervised models under different scales of labeled data.

Figure 4 shows the segmentation results of MTL-SSL and Table 3 gives a
quantitative evaluation. The proposed MTL-SSL model reaches the best perfor-
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Fig. 4. Segmentation results of the proposed MTL-SSL model.

Table 3. Performance of different models.

Supervised MV(↓) FV(↓) IV(↑)
single-task 0.2551(0.02)0.1600(0.03) 0.7924(0.01)
multi-task 0.3119(0.05) 0.1032(0.01)0.7925(0.02)

Semi-SupervisedMV(↓) FV(↓) IV(↑)
single-task 0.2934(0.02) 0.7932(0.01) 0.4567(0.01)*
multi-task (Our) 0.2798(0.02) 0.1243(0.03) 0.7979(0.01)

mance among all the experiments. And Table 4 shows the smaller the scale of
the labeled data, the more advantages of our MTL-SSL model.

4.3 Test on new subtype of RCC and other cancers dataset.

Figure 5 shows the segmentation results of MTL-SSL on TCGA dataset. And
Table 5 shows MTL-SSL model is more robust than fully supervised segmen-
tation when considering new subtype and other cancers test. Our MTL-SSL
model appears to be versatile with respect to vascular segmentation tasks, it has
the potential to segment vascular from other subtypes of RCC and even other

Table 4. Performance of different labeled data in training.

Labeled=200 Labeled=300 Labeled=all (335)

Supervised MV(↓) 0.091(0.01) 0.1067(0.02) 0.2551(0.02)
Task FV(↓) 0.4120(0.02) 0.3670(0.03) 0.1600(0.03)

IV(↑) 0.7483(0.01)* 0.7631(0.01) 0.7924(0.01)

Semi-Supervised MV(↓) 0.1100(0.02) 0.1046(0.004) 0.2798(0.02)
Multi-task FV(↓) 0.3580(0.04) 0.3302(0.03) 0.1243(0.03)
(Our) IV(↑) 0.7660(0.01) 0.7826(0.02) 0.7979(0.01)
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Table 5. Performance of new subtype of RCC and other cancers.

Task Dataset MV(↓) FV(↓) IV(↑)
Our-RCC (new subtype) 0.1366(0.03) 0.4501(0.04) 0.7067(0.01)*
TCGA-RCC (2 subtypes) 0.087(0.01) 0.1746(0.03) 0.8691(0.01)

Supervised TCGA-BRCA (breast) 0.2179(0.05) 0.3892(0.21) 0.6965(0.10)*
Task TCGA-LIHC (liver) 0.1720(0.02) 0.3177(0.03) 0.7551(0.02)*

TCGA-LUSC (lung) 0.1865(0.02) 0.2847(0.04) 0.7644(0.02)*
TCGA-ESCA (esophagus) 0.1734(0.02) 0.2792(0.03) 0.7737(0.01)*

Our-RCC (new subtype) 0.1631(0.02) 0.2635(0.04) 0.7867(0.01)
TCGA-RCC (2 subtypes) 0.068(0.01) 0.1746(0.02) 0.8786(0.01)

Semi-Supervised TCGA-BRCA (breast) 0.1863(0.03) 0.3301(0.1) 0.7418(0.03)
Multi-Task TCGA-LIHC (liver) 0.1483(0.03) 0.2262(0.08) 0.8127(0.03)
(Our) TCGA-LUSC (lung) 0.1930(0.02) 0.1910(0.07) 0.8080(0.03)

TCGA-ESCA (esophagus) 0.1663(0.02) 0.2419(0.08) 0.7959(0.03)
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MV (blue part):
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Vessels

FV (red part):
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Fig. 5. Segmentation results of the proposed MTL-SSL model on TCGA dataset.

cancers without adding manual vascular masks for training. This provides foun-
dation for the study of the vascular networks in H&E staining histopathological
images, which is not limited to immunostaining and manual labeling.

Furthermore, segmentation of vascular networks in H&E histopathology im-
ages is very challenging, in this context, our MTL-SSL model has improved state
of the art by HRNet backbone, loss strategy, and MTL with classification.

5 Conclusion

The proposed MTL-SSL model, trained with both labeled and unlabeled data,
reduces the reliance on manually vascular network masks and achieves automatic
segmentation. In our experiments, this model can outperform the fully supervised
learning model and is versatile in other types of tumors. That clarified applying
the HRNet backbone-based multitask model (jointly with an SSL principle) to
vascular segmentation of histopathological images is valuable.



10 Xiao.R et al.

References

1. Alom, M.Z., Aspiras, T., Taha, T.M., Bowen, T., Asari, V.K.: Mitosisnet: end-
to-end mitotic cell detection by multi-task learning. IEEE Access 8, 68695–68710
(2020)

2. Asare, S.K., You, F., Nartey, O.T.: A semisupervised learning scheme with self-
paced learning for classifying breast cancer histopathological images. Computa-
tional Intelligence and Neuroscience 2020 (2020)

3. Bukenya, F., Nerissa, C., Serres, S., Pardon, M.C., Bai, L.: An automated method
for segmentation and quantification of blood vessels in histology images. Microvas-
cular Research 128, 103928 (2020)

4. Caruana, R.: Multitask learning. Machine learning 28(1), 41–75 (1997)

5. Chamanzar, A., Nie, Y.: Weakly supervised multi-task learning for cell detection
and segmentation. In: ISBI. pp. 513–516. IEEE (2020)

6. Chapelle, O., Scholkopf, B., Zien, A.: Semi-supervised learning. IEEE Transactions
on Neural Networks 20(3), 542–542 (2009)

7. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation
with cross pseudo supervision. In: CVPR. pp. 2613–2622 (2021)

8. Cheville, J.C., Lohse, C.M., Zincke, H., Weaver, A.L., Blute, M.L.: Comparisons of
outcome and prognostic features among histologic subtypes of renal cell carcinoma.
The American journal of surgical pathology 27(5), 612–624 (2003)

9. Das, A., Devarampati, V.K., Nair, M.S.: Nas-sgan: A semi-supervised generative
adversarial network model for atypia scoring of breast cancer histopathological
images. IEEE Journal of Biomedical and Health Informatics (2021)

10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

11. Hsieh, J.J., Purdue, M.P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M.,
Heng, D.Y., Larkin, J., Ficarra, V.: Renal cell carcinoma. Nature reviews Disease
primers 3(1), 1–19 (2017)

12. Kather, J.N., Marx, A., Reyes-Aldasoro, C.C., Schad, L.R., Zöllner, F.G., Weis,
C.A.: Continuous representation of tumor microvessel density and detection of
angiogenic hotspots in histological whole-slide images. Oncotarget 6(22), 19163
(2015)

13. Loukas, C.G., Linney, A.: A survey on histological image analysis-based assessment
of three major biological factors influencing radiotherapy: proliferation, hypoxia
and vasculature. Computer Methods and Programs in Biomedicine 74(3), 183–199
(2004)

14. Luo, X.: SSL4MIS. https://github.com/HiLab-git/SSL4MIS (2020)

15. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with
cross-consistency training. In: CVPR. pp. 12674–12684 (2020)

16. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-
supervised image recognition. In: ECCV. pp. 135–152 (2018)

17. Simonyan, K., Zisserman, Andrew: Very deep convolutional networks for large-scale
image recognition. arXiv (2014)

18. Sparks, R., Madabhushi, A.: Out-of-sample extrapolation utilizing semi-supervised
manifold learning (ose-ssl): Content based image retrieval for histopathology im-
ages. Scientific reports 6(1), 1–15 (2016)

19. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning
for human pose estimation. In: CVPR. pp. 5693–5703 (2019)



Semi-Supervised Multi-Task Learning for Vascular Segmentation 11

20. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR. pp. 1–
9 (2015)

21. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. arXiv (2017)

22. Vandenhende, S., Georgoulis, S., Gool, L.V.: Mti-net: Multi-scale task interaction
networks for multi-task learning. In: ECCV. pp. 527–543. Springer (2020)

23. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy
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