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Abstract

We study the multiclass classification problem where the features come from a mixture of time-
homogeneous diffusion. Specifically, the classes are discriminated by their drift functions while the
diffusion coefficient is common to all classes and unknown. In this framework, we build a plug-in
classifier which relies on nonparamateric estimators of the drift and diffusion functions. We first
establish the consistency of our classification procedure under mild assumptions and then provide
rates of convergence under different set of assumptions. Finally, a numerical study supports our
theoretical findings.
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1 Introduction

The massive collection of functional data has found many applications in recent years for the modeling
of the joint (time)-evolution of agents – individuals, species, particles – that are represented by some
sets of features – time-varying variables such as geographical positions, population sizes, portfolio
values etc. Examples can be found in mathematical finance (see e.g. El Karoui et al., 1997), biology
(see e.g. Erban & Chapman, 2009), or physics (see e.g. Domingo et al., 2020). This gave rise to an
abundant literature on statistical methods for functional data, (see e.g. Ramsay & Silverman, 2005;
Wang et al., 2016, for a review). Within this context, the study of efficient supervised classification
procedures that are designed to handle temporal data is a major challenge. Indeed, usual learning
algorithms such as random forests, kernel methods or neural networks are not directly tailored to take
into account the temporal dependency of the data. Recently, this question has drawn a lot of attention,
see Rossi & Villa (2008); Baíllo et al. (2011); Wang et al. (2020); De Micheaux et al. (2021); Kidger
et al. (2021) any references therein.

In the present paper, we tackle the multiclass classification problem where the features belong to
a particular family of functional data, namely trajectories, whose temporal dynamic is modelled by
stochastic differential equation. In this framework, we propose a nonparametric plug-in type procedure
for such data generated by diffusion processes observed at discrete time. Hence, our work takes place
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in the high frequency setup. Let us denote by (X,Y ) a random couple built on a probability space
(Ω,F ,P). The feature X = (Xt)t∈[0,1] is a real-valued diffusion process whose drift and diffusion
coefficient depend on its associated label Y taking values in Y = {1, · · · ,K}, with K ≥ 2. More
precisely, for each i ∈ Y, X is a solution of a stochastic differential equation whose drift function,
denoted by b∗i , depends on the class i. The marginal distribution of X is hence a mixture of distributions
of time-homogeneous diffusion processes. We assume that a learning sample DN = {((Xi

t)t∈[0,1], Yi), i =
1, . . . , N} is provided, composed of N i.i.d. random couple with distribution P(X,Y ). Additionally, in
this paper, the diffusions Xi are observed on a subdivision {0, 1/n, · · · , 1} of the time interval [0, 1],
for a positive integer n. Since we deal with multiclass classification setting, the statistical goal is then
to build, based on DN , a classifier ĝ, such that ĝ(X) is a prediction of the associated label Y of a
new path X. Besides, we expect that the empirical classifier mimics the optimal Bayes classifier g∗

characterized as
g∗(X) ∈ argmax

k∈Y
P (g∗(X) ̸= Y ) .

Specifically, we propose a classification procedure based on the plug-in principle. In particular, the
construction of our empirical classifier relies on estimators of both drift and diffusion coefficients. The
performance of a predictor ĝ is assessed through its excess risk E [P(ĝ(X) ̸= Y )− P (g∗(X) ̸= Y )]. In
the finite dimensional classification setup (e.g. X ∈ Rd), rates of convergence for plug-in rules are
usually obtained under the strong density assumption (X admits a density which is lower bounded)
as in Audibert et al. (2007); Gadat et al. (2016). However, theoretical properties of plug-in rules in
supervised classification of trajectories are much less studied.

Related works. Up to our knowledge, the work of Cadre (2013) is the first one that tackles the
problem of supervised classification in the stochastic differential equation framework. More precisely,
the authors consider the model where X = (Xt)t∈[0,1] is a mixture of two diffusion processes and
provide a classifier based on the empirical risk minimization strategy for which they establish rates of
convergence. However, the proposed method is not implementable since it involves the minimization
of a non-convex criterion. More recently, Gadat et al. (2020), and Denis et al. (2020) study plug-in
classifiers for classification of diffusion paths. In Gadat et al. (2020) the authors propose a plug-in
rule for the binary classification problem where the trajectories are generated by Gaussian processes,
solutions of the white noise model. In this model, the drift function depends on time and on the
label Y , also, the diffusion coefficient is supposed to be constant and known. Within this framework,
Gadat et al. (2020) establish the optimality of their estimation procedure which reaches the minimax
rate of convergence of order N−s/(2s+1), where the drift function is assumed to belong to a Sobolev
space of regularity s ≥ 1. Under an additional margin type assumption, they also derive faster rates
of convergence. Closest to our framework, Denis et al. (2020) also consider the challenging multiclass
problem where the drift functions are space-dependent. However, the authors consider drift functions
modeled under parametric assumptions, keeping the diffusion coefficient known and constant. They
propose a plug-in classifier for which only consistency is established.

In the present work, we consider plug-in classifier that relies on nonparametric estimators of the
drift and diffusion coefficients. The literature on this topic is extensive. Usually, the construction
of estimators of drift and diffusion functions relies on the observation of a single path. For instance,
Hoffmann (1999b) study minimax rate of convergence for the estimation of the diffusion coefficient
on a compact interval. For the inference of the drift coefficient, the main references using penalized
contrasts can be found for long time observation with high frequency data in Hoffmann (1999a); Comte
et al. (2007); Comte & Genon-Catalot (2021). However, since we deal with the multiclass classification
framework, the construction of estimators of both drift and diffusion coefficients is based on the learning
sample DN which is composed of repeated observations of the process on the fixed time-interval [0, 1].
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Recently, Comte & Genon-Catalot (2020a); Marie & Rosier (2021); Della-Maestra & Hoffmann (2022)
consider nonparametric procedures for the estimation of the drift function for continuous observations in
the context of i.i.d. observations when the horizon time is fixed. Furthermore, towards high-frequency
data, Denis et al. (2021) study minimum contrast estimator under a l2 constraint.

Main contributions. In this paper, we extend the results of Denis et al. (2020) and Gadat et al.
(2020) in several directions. In particular, one of the major contribution is to provide, up to our
knowledge, the first study of rates of convergence for plug-in classifier in the mixture model of time-
homogeneous diffusion. Importantly, we highlight that extending the results of Gadat et al. (2020) to
diffusion models in which the drift functions are space-dependent and the diffusion coefficient is either
unknown or non-constant add many difficulties. Besides, contrary to Denis et al. (2020), we consider
the nonparametric mixture model where both drift and diffusion functions are unknown as well as the
weights of the mixture. Specifically, we build a plug-in classifier that relies on the Girsanov’s theorem
and involves nonparametric estimators of the drift functions b∗i , i ∈ Y, and the diffusion coefficient. The
construction of our estimators is inspired of the ridge estimators provided in Denis et al. (2021), and
consists in the minimization of a least-squares type contrast over a finite dimensional subspace under
a l2-constraint. The considered space of approximation is then spanned by the B-spline basis De Boor
(1978).

One of the main difficulty of the study of statistical properties of the plug-in classifiers in our context
is that it requires deriving rates of convergence for the drift and diffusion coefficients on a non-compact
interval. It hence implies that the strong density assumption does not hold, although, we consider
assumptions that ensure existence of transition density. Notably, our results embed generalization
of the results provided in Denis et al. (2021) for the estimation of non-compactly supported drift
functions for B-spline based estimators, but also exhibit the first result for the estimation of the
diffusion coefficient in the i.i.d. framework. A salient point of our theoretical findings is obtained
when the diffusion coefficient is constant and known. In this case, by leveraging the results of Comte
& Genon-Catalot (2020a), we show that optimal rates for drift estimation can only be achieved on
intervals included in [−C

√
log(N), C

√
log(N)], with C > 0.

To sum up our results, a first part is dedicated to the consistency of our plug-in classifier which
is obtained under very mild assumptions. In a second part, convergence rates are established in three
particular cases.

(i) When the drift functions are bounded and Lipschitz, and the diffusion coefficient is unknown and
possibly non-constant, we obtain a rate of convergence of order N−1/5 for the plug-in classifier
(up to a factor of order exp(

√
c log(N)), c > 0).

(ii) When the diffusion coefficient is known and constant, and when the drift functions are bounded
and belongs to some Hölder space with regularity β, using some arguments developed in Comte &
Genon-Catalot (2020b) and Comte & Genon-Catalot (2021) for the estimation of non-compactly
supported drift functions, together with approximations of the transition density of X (as they
are intractable), we then prove that the plug-in classifier reaches rate of order N−β/(2β+1) (up to
a factor of order exp(

√
c log(N)), c > 0).

(iii) When the drifts are unbounded but re-entrant and Hölder continuous with regularity β, we obtain
a rate of convergence of order N−3β/(4(2β+1)). Notice that when β = 1 and d = 1, it corresponds
to the rate found in Gadat et al. (2016).

Outline of the paper. Section 2 is dedicated to presentation of the mathematical framework for
the classification task. Then, the construction of the plug-in classifier is described in Section 3 and
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its consistency is established in Section 3.3. In Section 4 we provide rates of convergence of our
plug-in procedure under different assumptions. We perform a numerical experiment that supports our
theoretical results in Section 5. Finally, We provide a discussion in Section 6 and the proofs of our
results are postponed to Section 7.

2 Statistical setting

We consider the multiclass classification problem, where the feature X comes from a mixture of Brow-
nian diffusions with drift. More precisely, the generic data-structure is a couple (X,Y ) where the
label Y takes its values in the set Y := {1, . . . ,K} with distribution denoted by p∗ = (p∗1, · · · , p∗K),
and where the process X = (Xt)t∈[0,1] is defined as the solution of the following stochastic differential
equation

dXt = b∗Y (Xt)dt+ σ∗(Xt)dWt, X0 = 0, (1)

where (Wt)t≥0 is a standard Brownian motion independent of Y . In the following, we denote by
b∗ = (b∗1, . . . , b

∗
K) the vector of drift functions. The real-valued functions b∗i (.), i ∈ Y, and the diffusion

coefficient σ∗(.) are assumed to be unknown. We also assume that 0 < p∗0 = mini∈Y p∗i .
In this framework, the objective is to build a classifier g, i.e. a measurable function such that the

value g(X) is a prediction of the associated label Y of X. The accuracy of such classifier g is then
assessed through its misclassification risk, denoted by

R(g) := P (g(X) ̸= Y ) .

In the following, the set of all classifiers is denoted by G.
The main assumptions considered throughout the paper are presented in Section 2.1. The defini-

tion and characterization of the optimal classifier w.r.t. the misclassification risk, namely the Bayes
classifier, is provided in Section 2.2

2.1 Assumptions

The following assumptions ensure that Equation (1) admits a unique strong solution (see Karatzas &
Shreve, 2014, Theorem 2.9), and that the diffusion process X admits a transition density p : (t, x) ∈
([0, 1]× R) 7→ p(t, x) (see for example Gobet, 2002).

Assumption 2.1. (Ellipticity and regularity)

(i) There exists L0 > 0 such that the functions b∗i , i = 1, . . . ,K and σ∗ are L0-Lipschitz:

sup
i∈Y

|b∗i (x)− b∗i (y)|+ |σ∗(x)− σ∗(y)| ≤ L0|x− y|, ∀(x, y) ∈ R2.

(ii) There exist real constants σ∗
0, σ

∗
1 such that

0 < σ∗
0 ≤ σ∗(x) ≤ σ∗

1, ∀x ∈ R.

(iii) σ∗ ∈ C2 (R) and there exists γ ≥ 0 such that : |σ∗′(x)|+ |σ∗′′(x)| ≤ γ (1 + |x|γ) , ∀x ∈ R.

Assumption 2.1 insures that for any integer q ≥ 1, there exists Cq > 0 such that

E

[
sup
t∈[0,1]

|Xt|q
]
≤ Cq.

We also assume that the following Novikov’s criterion is fulfilled (Revuz & Yor, 1999, Prop. (1.15) p.
308) .
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Assumption 2.2. (Novikov’s condition) For all i ∈ Y, we have

E
[
exp

(
1

2

∫ 1

0

b∗2i
σ∗2 (Xs)ds

)]
< +∞.

In particular, this assumption allows to apply Girsanov’s theorem that is a key ingredient to derive
a characterization of the Bayes classifier in the next section.

2.2 Bayes Classifier

The Bayes classifier g∗ is a minimizer of the misclassification risk over G

g∗ ∈ argmin
g∈G

R(g),

and is expressed as
g∗(X) ∈ argmax

i∈Y
π∗
i (X), with π∗

i (X) := P (Y = i|X) .

The following result of Denis et al. (2020) provides a closed form of the conditional probabilities π∗
i ,

i ∈ Y.

Proposition 2.3. (Denis et al., 2020) Under Assumptions 2.1, 2.2, for all i ∈ Y, we define

F ∗
i (X) :=

∫ 1

0

b∗i
σ∗2 (Xs)dXs −

1

2

∫ 1

0

b∗2i
σ∗2 (Xs)ds.

Under Assumptions 2.1,2.2, for each i ∈ Y, the conditional probability π∗
i is given as follows:

π∗
i (X) = ϕi (F

∗(X)) ,

where F∗ = (F ∗
1 , . . . , F

∗
k ), and ϕ∗

i : (x1, · · · , xK) 7→ p∗i e
xi∑K

k=1 p
∗
ke

xk
are the softmax functions.

The above proposition provides an explicit dependency of the Bayes classifier on the unknown
parameters b∗, σ∗, and p∗. Hence, it naturally suggests to build plug-in type estimators ĝ of the Bayes
classifier g∗, relying on estimators of the unknown parameters. In this way, we aim at building an
empirical classifier whose misclassification risk is closed to the minimum risk which is reached by the
Bayes classifier. The following section is devoted to the presentation of the classification procedure.

3 Classification procedure: a plug-in approach

Let n ≥ 1 be an integer, and ∆n = 1/n the time step which defines the regular grid of the observation
time interval [0, 1]. Let us assume now that an observation is a couple (X̄, Y ), with X̄ := (Xk∆n)0≤k≤n

a high frequency sample path coming from (Xt)t∈[0,1] a solution of Equation (1), and Y its associated
label. We also introduce, for N ≥ 1, a learning dataset DN = {(X̄j , Yj), j ∈ {1, . . . N}} which consist
of N independent copies of (X̄, Y ). The asymptotic framework is such that N and n tend to infinity.

Based on DN we build a classification procedure that relies on the result of Proposition 2.3. Our
classifier uses the knowledge of the class Yj for the path Xj , placing our work in the frame of supervised
learning. The procedure is formally described in Section 3.1 and Section 3.2 while its statistical
properties are provided in Section 3.3.
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3.1 Classifier and excess risk

As suggested by Proposition 2.3, based on DN , we first build estimators b̂ = (̂b1, . . . , b̂K), and σ̂ of b∗

and σ∗ respectively. Besides, we consider the empirical estimators of p∗i , i = 1, . . . ,K

p̂i =
1

N

N∑
j=1

1{Yj=i}. (2)

Then, in a second step, we introduce the discretized estimator of F∗

F̂ = (F̂1, . . . , F̂K), with F̂i(X) =

n−1∑
k=0

(
b̂i
σ̂2

(Xk∆)
(
X(k+1)∆ −Xk∆

)
− ∆

2

b̂2i
σ̂2

(Xk∆)

)
. (3)

Finally, considering the functions ϕ̂i : (x1, · · · , xK) 7→ p̂ie
xi∑K

k=1 p̂ke
xk

, we naturally define the resulting
plug-in classifier ĝ as

ĝ(X) ∈ argmax
i∈Y

π̂i(X), with π̂i(X) = ϕ̂i(F̂ (X)). (4)

Hereafter, we establish that the consistency of the plug-in classifier ĝ can be obtained through an
empirical distance between estimators b̂, and σ̂ and the true functions b∗, and σ∗ respectively. This
distance relies on the empirical norm ∥.∥n,i defined for h : R → R as.

∥h∥2n,i := EX|Y=i

[
1

n

n−1∑
k=0

h2(Xk∆)

]
.

We also introduce the general empirical norm ∥.∥n which for any function h is

∥h∥2n := EX

[
1

n

n−1∑
k=0

h2(Xk∆)

]
.

Let us now announce the main result on the excess risk of a plug-in type classifier.

Theorem 3.1. Assume N and n fixed (and large). Grant Assumptions 2.1, 2.2. Assume that there
exists bmax, σ

2
0 > 0 such that for all x ∈ R

max
i∈Y

|̂bi(x)| ≤ bmax and σ̂2(x) ≥ σ2
0. (5)

Then the classifier ĝ defined in Equation (4) satisfies

E [R(ĝ)−R(g∗)] ≤ C

(√
∆n +

1

p∗0
√
N

+ E

[
bmaxσ

−2
0

K∑
i=1

∥b̂i − b∗i ∥n

]
+ E

[
σ−2
0 ∥σ̂2 − σ2∗∥n

])
,

where C > 0 is a constant which depends on b∗, σ∗, and K.

Theorem 3.1 highlights that the excess risk of the plug-in classifier depends on the discretization
error which is of order ∆

−1/2
n , the L2 error of p̂ which is of order N−1/2, and the estimation error

of b̂ and σ̂2 assessed through the empirical norm ∥.∥n. Therefore, a straightforward consequence of
Theorem 3.1 is that consistent estimators of b∗, and σ∗2 yield the consistency of plug-in classifier ĝ.
Notice that the additional assumption (5) does not require that the true functions b∗i ’s are bounded,
only their estimators should be. For the difference between b∗i and b̂i to remain controlled in the norm
∥ ·∥n, it is necessary that the process X rests with high probability in a compact region of R. The next
section is devoted to the construction of consistent estimators of both drift and diffusion coefficient.
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3.2 Estimators of drift and diffusion coefficients

In this section, we provide consistent estimators b̂, and σ̂2, implying the consistency of the associated
plug-in classifier. These estimators are defined as minimum contrast estimators under an l2-constraint
on a finite dimensional vector space spanned by the B-spline basis, but other families of nonparametric
estimators could have been chosen as well. In particular, to ensure statistical guarantees on R, the
considered estimators are built on a large interval (− log(N), log(N)), parameterized by the number
N of sample paths, and that tends to the whole real line as N goes to infinity.

3.2.1 Spaces of approximation

Let KN > 0, and M ≥ 1. Let u = (u−M , . . . , uKN+M ), a sequence of knots of the compact interval
[− log(N), log(N)] such that

u−M = · · · = u−1 = u0 = − log(N), and uK = uKN+1 = · · · = uKN+M = log(N).

∀ℓ ∈ [[0,KN ]], uℓ = − log(N) +
2ℓ logN

KN
.

Let us consider the B-spline basis (B−M , . . . , BKN+M ) of order M defined by the knots sequence
u. For the construction of the B-spline and its properties, we refer for instance to (Györfi et al.,
2006). Let us mention that the considered B-spline functions are M -1 continuously differentiable on
(− log(N), log(N)) and are zero outside [− log(N), log(N)]. Besides, for all x ∈ (− log(N), log(N)), we
have that

∑KN+M
i=−M Bi(x) = 1. Now, we introduce the space of approximation SKN ,M defined as

SKN ,M :=

{
KN+M∑
ℓ=−M

aℓBℓ, ∥a∥2 ≤ (KN +M) log3(N)

}
, (6)

where ∥a∥2 =
∑KN+M

ℓ=−M a2ℓ is the usual ℓ2-norm. The introduction of the constraint space SKN ,M is
motivated by two facts. The first one is the following important property of spline approximations,
inspired by the related properties for the Hölder functions (see Györfi et al. (2006)):

Proposition 3.2. Let h be a L-lipschitz function. Then there exists h̃ ∈ SKN ,M , such that

|h̃(x)− h(x)| ≤ C
log(N)

KN
, ∀x ∈ (− log(N), log(N)),

where C > 0 depends on L, and M .

The second one is that the set of functions SKN ,M is a totally bounded class, in the following sense
(Devroye et al., 2013, Chapter 28). According to Denis et al. (2021), for each ε > 0, there exists an
ε-net S̃ε of SKN ,M w.r.t. to the supremum norm ∥.∥∞ such that

log
(
card(S̃ε)

)
≤ CM


√
KN log3(N)

ε

KN

.

It shows that the complexity of SKN ,M given in Equation (6) is parametric which is particularly
appealing in order to apply concentration inequalities.

3.2.2 Minimum contrast estimators

In this section, we propose two estimators of b∗, and σ∗2 which lead to a plug-in classifier that exhibits
appealing properties. The construction of the estimators b̂, and σ̂2 relies on the minimization of a least
squares contrast function over the space SKN ,M . They are both based on the observed increments of
the process X.
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Estimator of the drift functions. Let i ∈ Y and Ni :=
∑N

j=1 1{Yj=i} a random variable of
Binomial distribution with parameters (N, p∗i ). We define the random set Ii := {j, Yj = i} and
consider the dataset

{
X̄j , j ∈ Ii

}
composed of the observations of the class i. The first estimator b̃i

of b∗i is defined as

b̃i ∈ argmin
h∈SKN,M

1

nNi

∑
j∈Ii

n−1∑
k=0

(
Zj
k∆n

− h(X̄j
k∆n

)
)2
1Ni>0, with Zj

k∆n
:=

(X̄j
(k+1)∆n

− X̄j
k∆n

)

∆n
. (7)

Then, to fit the assumption of Theorem 3.1, rather than b̃i, we consider its thresholded counterpart

b̂i(x) := b̃i(x)1{|b̃i(x)|≤log3/2(N)} + sgn(b̃i(x)) log
3/2(N)1{|b̃i(x)|>log3/2(N)}. (8)

Note that the value of the threshold log3/2(N) corresponds to the bound bmax in (5). Although this
bound depends on N , Theorem 3.1 can be applied, but to ensure the consistency of the classifier, we
now have to prove that the estimation rate for b̂i decreases sufficiently fast.

Estimator of the diffusion coefficient. The construction of the estimator of σ∗ follows the same
lines. However, since the diffusion coefficient is the same for all classes, we can use the whole dataset
DN to build its estimator. More precisely, we define

σ̃2 ∈ argmin
h∈SKN,M

1

nN

N∑
j=1

n−1∑
k=0

(
U j
k∆n

− h(X̄j
k∆n

)
)2

, with U j
k∆n

=
(X̄j

(k+1)∆n
− X̄j

k∆n
)2

∆n
(9)

Finally, as for the drift estimator we consider the truncated version σ̂2 as

σ̂2(x) := σ̃2(x)1{ 1
log(N)

≤σ̃2(x)≤log3/2(N)} + log3/2(N)1{σ̃2(x)>log3/2(N)} +
1

log(N)
1{σ̃2(x)≤ 1

log(N)
}. (10)

Although this constraint does not appear in Theorem 3.1, it remains natural in view of Assumption 2.1
(ii). We will impose that σ̂2 is bounded by log3/2(N) to derive its consistency.

3.3 A general consistency result

In this section, we establish the consistency of the empirical classifier based on the estimators presented
in the previous section. We first provide rates of convergence for the estimator of both drift and diffusion
coefficient diffusion.

Theorem 3.3. Let i ∈ Y. Assume that Assumptions 2.1, 2.2 are satisfied. Considering the estimator b̂i
of b∗i (8) and the estimator σ̂2 of σ∗2 (10), we have, for N then n large enough, such that ∆n = O(1/N)
and KN = (N log(N))1/5,

E
[
∥b̂i − b∗i ∥n,i

]
≤ C1

(
log4(N)

N

)1/5

, and E
[
∥σ̂2 − σ∗2∥n

]
≤ C2

(
log4(N)

N

)1/5

,

where C1, C2 > 0 are constants which depend on L0, p0, and K.

Several comments can be made. First, we obtain a general rate of convergence for the estimation
on R for both drift and diffusion coefficient functions under mild assumptions. This rate is, up to a
logarithmic factor, of order N−1/5. Hence, it extends the result of Theorem 3.3 in Denis et al. (2021),
where only consistency of drift estimators is obtained. In particular, a difficulty in establishing the
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convergence rate on R is to control the exit probabilities from (− log(N), log(N)), which is provided
here by careful estimates for the transition densities following Gobet (2002).

This result together with Theorem 3.1 yields the consistency of the plug-in classifier

ĝ := ĝ
p̂,b̂,σ̂2 (11)

where the unknown parameters are replaced by their estimators in Equation (4). However, application
of Theorem 3.1 requires the consistency of the estimator b̂i in terms of empirical norm ∥.∥n and not
in terms of norm ∥.∥n,i. To circumvent this issue, we can use a change of probability to get rid of the
conditioning on Y = i. For this purpose, we take advantage of Lemma 7.3 and 7.4 to derive precise
control of the transition density of the process X conditioned on Y = i, and then to establish the
consistency of the plug-in classifier.

Theorem 3.4. Grant Assumptions 2.1, 2.2. For N large enough such that ∆n = O(1/N) and KN =
(N log(N))1/5, the classifier ĝ satisfies

E [R(ĝ)−R(g∗)] −→
N→∞

0.

The consistency of our classification procedure is obtained under very mild assumptions. The study
of the rates of convergence requires more structural assumptions. In the following section, we obtain
rates of convergence of the plug-in classifier under different kind of assumptions.

4 Rates of convergence

In this section, we study the rates of convergence of the proposed method described in Section 3.1. A
general rate of convergence is first provided in Section 4.1 under the additional assumption that the
drift functions of the considered mixture model are bounded, no additional assumptions being made
on the diffusion coefficient. In Section 4.2, we consider the case where the diffusion coefficient is known
and assumed to be constant. In this case, the procedure achieves faster rates of convergence.

4.1 General rate of convergence for bounded drift function

Let us consider the following assumption.

Assumption 4.1. There exists Cb∗ such that

max
i∈Y

∥b∗i ∥∞ ≤ Cb∗ .

Let i, j ∈ Y2 with i ̸= j, The following property allows to upper bound the expectation conditional
on {Y = i} by the expectation conditional on {Y = j}. This happens to be the cornerstone to derive
rates of convergence for our procedure.

Proposition 4.2. Let N > 1, α > 0, and 0 ≤ Z ≤ logα(N) a random variable measurable w.r.t.
{σ(Xs, s ≤ 1)}. Under Assumptions 2.1, 2.2, and 4.1, we have for all i, j ∈ Y2 such that i ̸= j, and
N large enough

EX|Y=i[Z] ≤ C exp
(√

c log(N)
)
EX|Y=j [Z] + C

logα(N)

N
,

where C, c > 0 depend on Cb∗ , σ1, and σ0.
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A crucial consequence of this result is that in particular the empirical norms ∥.∥n,i, i ∈ Y, are now

equivalent up to a factor of order exp
(√

c log(N)
)
. Notice that for all r1, r2 > 0,

logr1(N) = o
(
exp

(√
c log(N)

) )
, and exp

(√
c log(N)

)
= o
(
N r2

)
. (12)

In particular, the factor exp
(√

c log(N)
)

is negligible with respect to any power of N . Therefore,
combining Theorem 3.1, 3.3, and Proposition 4.2, we are able to give the rate of convergence for our
procedure (when the drift coefficients are globally Lipschitz and bounded).

Theorem 4.3. Grant Assumptions 2.1, 2.2, and 4.1. the plug-in classifier ĝ given in Equation (11),
provided that ∆n = O

(
N−1

)
, KN = (N log(N))1/5 and N large enough, satisfies

E [R(ĝ)−R(g∗)] ≤ C exp
(√

c log(N)
)
N−1/5,

where C > 0 depends on Cb∗ , σ1, and σ0.

Leveraging the result of Theorem 3.3 and Proposition 4.2, we obtain a rate of convergence which
is of order N−1/5 up to the extra factor exp

(√
c log(N)

)
. Note that the optimal rate of convergence

obtained when the estimation of drift function is done over on a compact set is of order N−1/3 w.r.t.
∥.∥n rather than N−1/5 (see Denis et al., 2021; Comte & Genon-Catalot, 2021). Here, this slower rate
is mainly due to the fact that our procedure requires a control of the drift estimators over R.

In the next section, we show that when σ∗ is constant and assumed to be known, we derive faster
rates of convergence. In particular, under Assumption 4.1, we show that our plug-in procedure achieves
a rate of convergence of order N−1/3. Lastly, note that Theorem 4.3 can be easily extended to higher
order of regularity for the drift functions (e.g. Hölder with regularity β > 1). In this case, the obtained
rate of convergence is of order N−β/(2β+3).

4.2 Classifier’s rate of convergence with known diffusion coefficient

In this section, we consider that the diffusion coefficient is known and constant. For sake of simplicity,
we choose σ∗ = 1. In this case, our plug-in procedure only involves the estimation of the drift function
b̂. Hence, the plug-in classifier now writes as ĝ = ĝ

p,b̂,1
.

In order to derive a general rate of convergence as a function of the drift regularity, we consider
the following smoothness assumption (Tsybakov, 2008), which is a subset of Lipschitz functions.

Assumption 4.4. For all i ∈ Y, b∗i is Hölder with regularity parameter β ≥ 1.

4.2.1 Construction of the drift estimators

Let i ∈ Y, the construction of the drift estimators b̂i is slightly different as the one provided in
Section 3.2. We recall that the number of paths in each class Ni =

∑N
j=1 1{Yj=i}, and Ii = {j, Yj =

i} = {i1, · · · , iNi}. Hereafter, we work conditional on (1{Y1=i}, . . . ,1{YN=i}), on the event {Ni > 1}.
Hence, Ni is viewed as a deterministic variable such that Ni > 1. Let ANi > 0, and KNi > 0, we
consider a drift estimator b̂i built over the symmetric interval [−ANi , ANi ].

Precisely, we consider the B-spline basis of order M defined by the knots sequence u

u−M = · · · = u−1 = u0 = −ANi , and uK = uKN+1 = · · · = uKNi
+M = ANi .

∀ℓ ∈ [[0,KNi ]], uℓ = −ANi +
2ℓANi

KNi

.
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and the set of functions

SKNi
,M :=


KNi

+M∑
ℓ=−M

aℓBℓ, ∥a∥2 ≤ (KNi +M) log(Ni)A
2
Ni

 .

Note that this space SKNi
,M is globally the same as the one given in Equation (6) except that it

depends on the label i and on the interval through ANi . Finally, the estimator b̂i is defined for all x

b̂i(x) := b̃i(x)1{|b̃i(x)|≤ANi
log(Ni)1/2} + sgn(b̃i(x))ANi log

1/2(Ni)1{|b̃i(x)|>ANi
log1/2(Ni)}, (13)

where b̃i is defined as in Equation (7). In a first step, we focus on the properties of the estimators b̂i.

4.2.2 Rates of convergence for drift estimators

Let i ∈ Y. The study of the rates of convergence of the estimator b̂i relies on the properties of the
matrix ΨKNi

∈ R(KNi
+M)2 defined by

ΨKNi
:=

(
1

n

n−1∑
k=0

EX|Y=i

[
Bℓ(X

i
k∆)Bℓ′(X

i
k∆)
])

ℓ,ℓ′∈[−M,KNi
−1]

. (14)

Note that for t ∈ SKNi
,M , t =

∑KNi
−1

i=−M aiBi,M,u, we have the relation

∥t∥2n,i = a′ΨKNi
a, with a =

(
a−M , · · · , aKNi

−1

)′
.

Let us remind the reader that for a matrix A, the operator norm ∥A∥op is defined as the square root
of the largest eigenvalue of the matrix A′A. Besides, if A is symmetric, its norm is equal to its largest
eigenvalue. The matrix ΨKNi

satisfies the following property.

Lemma 4.5. Conditional on (1{Y1=i}, . . . ,1{YN=i}), on the event {Ni > 1}, the matrix ΨKNi
given in

Equation (14) satisfies

(i) if KNi ≥ 1, ΨKNi
is invertible,

(ii) under Assumption 2.1, for N large enough, if KNi ≤
√
Ni, there exists two constants C, c > 0

such that

c
KNi

ANi

exp

(
A2

Ni

6

)
≤ ∥Ψ−1

KNi
∥op ≤ C

KNi log(Ni)

ANi

exp

(
2

3
A2

Ni

)
.

A major consequence of Lemma 4.5 is to give the order of ANi w.r.t. Ni to obtain optimal rates of
convergence for the estimation of the drift function b∗i . Indeed, Comte & Genon-Catalot (2021) show
that the rates of convergence for b̂i and σ̂ in Theorem 3.3 can be established if the following constraint
is satisfied

∥Ψ−1
KNi

∥op ≤ C
Ni

log2(Ni)
, (15)

with a constant C > 0 depending on β. Notably, conditional on (1{Y1=i}, . . . ,1{YN=i}), if KNi is of
order N

1/(2β+1)
i (up to some extra logarithmic factors), and ANi is chosen such that Equation (15)

is satisfied, then the drift estimator converges as N
−2β/(2β+1)
i w.r.t. ∥.∥2n,i. Interestingly, this is the
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same rate of convergence obtained in (Denis et al., 2021) when the estimation of the drift function is
performed over a fixed compact interval.

From this remark, Lemma 4.5 teaches us that if KNi is of order log−5/2(Ni)N
1/(2β+1)
i , Equation (15)

is satisfied for ANi ≤
√

3β
2β+1 log(N). Furthermore, the lemma shows that the order of ANi is tight.

Indeed, for another choice of ANi such that

ANi√
log(Ni)

−→ +∞ as N → +∞,

then the condition (15) is no longer satisfied. Based on this observation, the next result establishes
the rates of convergence for our proposed drift estimator on the event {Ni > 1}.

Theorem 4.6. Let Assumptions 2.1, 2.2 and 4.4 be satisfied. Let b∗ANi
,i = b∗i1[−ANi

,ANi
] defined on

the event {Ni > 1}. If ANi ≤
√

3β
2β+1 log(Ni), KNi ∝

(
log−5/2(Ni)N

1/(2β+1)
i

)
, and ∆n = O

(
N−1

)
.

Then for all i ∈ Y

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n,i
1Ni>1

]
≤ C log6β(N)N−2β/(2β+1),

where C is a constant which depends on b∗.

The above result shows that for a proper choice of ANi the drift estimators b̂i achieves, up to a
logarithmic factor, the minimax rates of convergence w.r.t. ∥.∥n,i (see Theorem 4.7 in (Denis et al.,
2021)). Notably, Theorem 4.6 extends results obtained in (Denis et al., 2021) to the estimation of the
drift function on a interval which depends on N .

In Section 4.2.3 and Section 4.2.4, we exploit this result to derive rates of convergence for the
plug-in classifier ĝ defined as follows. On the event {mini∈Y Ni > 1}, we consider the estimators b̂
presented in Section 4.2.1, and define the plug-in classifier ĝ = ĝ

p̂,b̂,1
. On the complementary event

{mini∈Y Ni ≤ 1}, we simply set ĝ = 1.

4.2.3 Rates of convergence: bounded drift functions

In this section, we assume that additionally to σ∗ = 1, Assumption 4.1 is fulfilled (the drift function is
bounded). Hence, we can use Proposition 4.2, and apply Theorem 4.6 to derive rates of convergence
for plug-in estimator ĝ.

Theorem 4.7. Grant Assumptions 2.1, 2.2, 4.1, 4.4. Assume that for all i ∈ Y, on the event
{Ni > 1}, ANi =

√
3β

2β+1 log(Ni) and KNi ∝
(
log−5/2(Ni)N

1/(2β+1)
i

)
, and ∆n = O

(
N−1

)
. Then the

plug-in classifier ĝ = ĝ
b̂,1

satisfies

E [R(ĝ)−R(g∗)] ≤ C exp
(√

c log(N)
)
N−β/(2β+1)

where C, c > 0 are constants depending on b∗, β,K and p0.

The above theorem shows that the plug-in classifier ĝ achieves faster rates of convergence than in
the case where σ∗ is unknown (see Theorem 4.3). Notably, the obtained rate is of the same order, up to
a factor of order exp

(√
c log(N)

)
, than the rates of convergence provided in Gadat et al. (2020) in the

framework of binary classification of functional data where the observation are assumed to come from
a white noise model. In their setting, σ∗ = 1 and the drift functions depend only on the observation
time interval, which is also assumed to be [0, 1]. Therefore, our specific setup is more challenging
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since the drift functions are space-dependent which involves to deal with estimation of function on a
non-compact interval. Finally, it is worth noting that, up to the exp

(√
c log(N)

)
factor, the rate of

convergence provided in Theorem 4.7 is the same as the minimax rates in the classical classification
framework where the feature vector X belongs to R and that X admits a lower bounded density (Yang,
1999; Audibert et al., 2007).

4.2.4 Rates of convergence: when the drift functions are re-entrant

In this section, we study performance of the plug-in classifier when the drift functions are not necessarily
bounded. In this context, rates of convergence are obtained under the following assumption.

Assumption 4.8. (re-entrant drift function) For each label i ∈ Y, there exists c0 > 4 and K0 ∈ R
such that

∀x ∈ R, b∗i (x)x ≤ −c0x
2 +K0.

An important consequence of this assumption is that there exists C > 0 (see Proposition 1.1
in (Gobet, 2002)) such that

E
[
exp(4|Xt|2)

]
≤ C, (16)

which yields a better bound on the tail probability P (|Xt| ≥ A) for A > 0. It worth noting that
under Assumption 4.8, the drift functions are not bounded. Hence, we can not take advantage of
Proposition 4.2 to derive rates of convergence. Nonetheless, we obtain the following result.

Theorem 4.9. Grant Assumptions 2.1, 2.2, 4.4, 4.8. Assume that for all i ∈ Y, on the event
{Ni > 1}, ANi =

√
3β

2β+1 log(Ni) and KNi ∝
(
log−5/2(Ni)N

1/(2β+1)
i

)
, and ∆n = O

(
N−1

)
. Then, the

plug-in classifier ĝ satisfies

E [R(ĝ)−R(g∗)] ≤ C log3β+1(N)N−3β/4(2β+1).

The above theorem shows that the rate of convergence of the plug-in classifier is, up to a logarithmic
factor, of order N−3β/4(2β+1). Therefore, this rate of convergence is slightly slower than the one provided
in Theorem 4.7. It is mainly due to the fact that under Assumption 4.8, Proposition 4.2 does not apply
and then, in view of considered assumptions in Theorem 4.9, we only manage to obtain the following
bound,

∀i, j ∈ Y : i ̸= j, EX|Y=i[Z] ≤ CNβ/4(2β+1)EX|Y=j [Z],

which is clearly worst than the one obtain in Proposition 4.2. Interestingly, for β = 1, we can note
that the rates obtained in Theorem 4.9 are of the same order than the rates of convergence established
in Gadat et al. (2016) in the classification setup where the input vector lies in R under the assumption
that X does not fulfil the strong density assumption (e.g. the density of X is not lower bounded).

5 Simulation study

This section is devoted to numerical experiments that support our theoretical findings. A first part
is dedicated to the study of the performance of the plug-in classifier in a setting which meets the
assumptions of Section 4.1. The considered model is presented in Section 5.1. The implementation
of the proposed procedure is discussed in Section 5.2 while the performances of the plug-in classifier
are given in Section 5.3. Finally, several features of the problem are investigated in Section 5.4. In
particular, we consider the classical Ornstein-Uhlenbeck model, for which assumptions of Section 4.1
are not fulfilled.
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5.1 Models and simulation setting

We fix K = 3 classes in the following. Note that, we do not consider larger value of K since the
evaluation of the impact of K on the procedure is beyond the scope of this paper. To illustrate the
accuracy of the presented plug-in classifier, we investigate the model described in Table 1. This toy

b∗1(x) 1/4 + (3/4) cos2 x

b∗2(x) θ[1/4 + (3/4) cos2 x]

b∗3(x) −θ[1/4 + (3/4) cos2 x]

σ∗(x) 0.1 + 0.9/
√
1 + x2

Table 1: Drift and diffusion coefficients, depending on θ ∈ Θ = {1/2, 3/4, (4 + α)/4, α ∈ [[1, 12]].

model, described in Table 1, fulfills the assumptions of Section 4.1. Interestingly, this model allows
evaluating the influence of the distance between the drift functions of each of the three classes, on the
classification problem, through the parameter θ. Indeed,

min
i,j=1,2,3

∥b∗i − b∗j∥∞ = θ, where θ ∈ Θ = {1/2, 3/4, (4 + α)/4, α ∈ [[1, 12]]}.

We investigate the consistency of the empirical classifier using learning samples of size N ∈ {100, 1000}
with n ∈ {100, 500} (and thus with ∆n = 1/n). We use the R-package sde (see Iacus, 2009) to simulate
the solution of the stochastic differential equation corresponding to the chosen model.

Figure 1 displays simulated trajectories from the proposed model. On the left panel (right panel
respectively) the observed learning sample comes from the model with parameter θ = 1/2 (θ = 4
respectively) and each class is represented by one color. We can see from Figure 1 that the distance
between the drift functions strongly impacts the dispersion of the trajectories and leads to a more
difficult classification task.

Figure 1: Dispersion of diffusion paths from model given in Tabel 1. Left: θ = 1/2, right: θ = 4 (blue lines
K = 1, purple lines K = 2, green lines K = 3); with N = 100 and n = 100.

Performance of the Bayes classifier. We evaluate the performance of the Bayes classifier g∗ with
respect to four values of parameter θ (θ ∈ {1/2, 3/2, 5/2, 4}). To this end, we compute its average
error rate over 100 repetitions of the following steps

(i) simulate DM of size M = 4000 with n = 500;
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(ii) based on DM compute the misclassification error rate of the discrete counterpart of g∗.

Table 2 provides the mean and standard deviation of the misclassification risk. The obtained results
highlight the significant impact of the minimum distance θ, between the drift functions of each class,
on the performance of g∗. Indeed, as expected, the Bayes classifier is more accurate on our model when
parameter θ is large, especially in the case of separable data (θ = 4). On the contrary, the worst case
corresponds to θ = 0.5. In this model, the data are highly ambiguous.

θ = 1/2 θ = 3/2 θ = 5/2 θ = 4

R̂(g∗) 0.49 (0.01) 0.36 (0.01) 0.22 (0.01) 0.11 (0.01)

Table 2: Classification risks of the Bayes classifier g∗ w.r.t parameter θ from learning samples of size N = 4000

with n = 500.

5.2 Implementation of the plug-in classifier

Hereafter, we briefly describe the implementation of the proposed plug-in classifier. We first estimate
the drift functions b∗i , i = 1, 2, 3. For each i ∈ {1, 2, 3}, the estimator b̂i is built on the interval
[−ANi , ANi ]. Since the drifts (and the diffusion) coefficients are bounded, we can use the construction
considered in Section 3. Therefore, we fix ANi = log(N), M = 3, and divide the learning sample DN

into sub-samples Di
N of size Ni that contains all diffusion paths belonging to the class i. From the

sub-sample Di
N , we build estimators b̂i, i = 1, 2, 3.

For the construction of the estimator b̂i, we have to choose the dimension parameter KNi . We
follow Denis et al. (2021), and consider an adaptive choice denoted by K̂Ni .

Let us remind the reader that in Denis et al. (2021), the adaptive dimension K̂Ni is selected such
that K̂Ni is the minimizer of the following penalized contrast

K̂Ni := argmin
K∈K

 1

Nn

N∑
j=1

n−1∑
k=0

(̂bi,K − Zj
k∆n

)2 + penb(K)

, (17)

where K ∈ {2q, q ∈ [[0, 5]]}, and b̂i,K is the drift estimator built on the approximation subspace SK,M .
Besides, penb(K) = κ(K +M) log3(N)/N is the penalty function with κ > 0. We fix the parameter
κ = 0.1 as recommended in Denis et al. (2021).

For the estimation of σ2, we consider the whole sample DN and apply the methodology described
in Section 3 with M = 3. We follow the same lines to build an adaptive estimator of σ2∗, and choose
K̂N as the minimizer over K of the following penalized contrast

K̂N := argmin
K∈K

 1

Nn

N∑
j=1

n−1∑
k=0

(σ̂2
K − U j

k∆n
)2 + penσ(K)

, (18)

where σ̂2
K is the estimator built on SK,M , and penσ(K) := κ(K + M) log3(N)/Nn is the penalty

function, with κ > 0. The value of the tuning parameter κ is calibrated through an intensive simulation
study and chosen equal to κ = 5.

5.3 Simulation results

The performance of the plug-in classifier ĝ is evaluated by repeating 100 times the following steps

1. Simulate learning samples DN and DN ′ with N ∈ {100, 1000}, N ′ = 1000, and n ∈ {100, 500};
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2. for each i ∈ {1, 2, 3}, from the sub-sample Di
N = {X̄j , j ∈ Ii}, select K̂N minimizing (17) and

compute the estimator b̂
i,K̂N

of b∗i given in Equation (8);

3. from DN select K̂N using Equation (18) and compute the estimator σ̂2
K̂N

of σ∗2 given in (10);

4. based on DN compute p̂ =
(

1
N

∑N
j=1 1Yj=1,

1
N

∑N
j=1 1Yj=2,

1
N

∑N
j=1 1Yj=3

)
;

5. based on DN ′ , compute the error rate of the plug-in classifier ĝ where b̂ =
(
b̂
1,K̂N

, b̂
2,K̂N

, b̂
3,K̂N

)
and σ̂2 = σ̂2

K̂N
, and p̂.

From these repetitions, we compute the empirical mean and standard deviation of the error rate of ĝ.
The results are given in Table 3 and Figure 2. As expected, from Table 3 and Table 2, we can see that
the error rate of the plug-in classifier ĝ is closed to the error rate of the Bayes classifier. In particular,
for N = 1000, it performs as well as the Bayes classifier. Note that the length of the paths n does not
significantly impact the performance of ĝ. Moreover, from Figure 2, we can make similar comments as
for the Bayes classifier (see Table 2), in particular, the accuracy of ĝ decreases as parameter θ increases.

R̂(ĝ)
n = 100 n = 500

N = 100 N = 1000 N = 100 N = 1000

θ = 1/2 0.53 (0.05) 0.50 (0.05) 0.53 (0.05) 0.49 (0.05)

θ = 3/2 0.39 (0.06) 0.37 (0.05) 0.39 (0.05) 0.36 (0.05)

θ = 5/2 0.24 (0.05) 0.22 (0.04) 0.25 (0.04) 0.22 (0.04)

θ = 4 0.12 (0.03) 0.10 (0.03) 0.11 (0.03) 0.10 (0.03)

Table 3: Risks of the plug-in classifier ĝ w.r.t. values of parameter θ
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Figure 2: Risks of the plug-in classifier w.r.t values of the minimum gap θ between the drift functions
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5.4 Ornstein-Uhlenbeck model

In this section, we focus on the influence of the diffusion coefficient σ∗ on the performance of our
plug-in procedure. To this end, we consider the Ornstein-Uhlenbeck diffusion model given in Table 5.4
where the diffusion coefficient σ∗ is constant. Let us notice also that in this model the drift functions
are unbounded. We investigate the performance of the plug-in classifier ĝ w.r.t. the level of noise σ∗.

b∗1(x) 1− x

b∗2(x) −1− x

b∗3(x) −x

σ∗(x) σ

Table 4: Ornstein-Uhlenbeck mixture model with K = 3

This study is motivated by the fact that, inherently, the diffusion coefficient impacts the dispersion of
the trajectories. Therefore, it can lead to separable data when σ∗ is close to zero, and ambiguous data
for large values of σ∗. Thus, we evaluate the performance of ĝ for σ∗ = 1/2 which is close enough to
zero, and for larger value σ∗ ∈ {1, 3/2}. We first consider the case where σ∗ is unknown. The results
are given in Table 5 and confirm our intuition. The error rate of the plug-in classifiers decreases as σ∗

decreases.
In a second step, we investigate the influence of estimating the coefficient σ∗ in the procedure. To

evaluate this point, we assess the error rate of the plug-in classifier when σ∗ = 1 is known. In this case,
we only estimate the drift functions and the weights of mixture pp∗ to build our predictor. The results
are given in Table 6. First, we can notice that by comparison with results provided in Table 5, there is
almost no impact on the performance of the plug-in classifier when we assume the diffusion coefficient
σ∗ in the Ornstein-Uhlenbeck model to be known or not.

Finally, we also study the influence of parameter AN on the estimation procedure. Indeed, our
theoretical results indicates that AN should be of order

√
log(N) when σ∗ is constant and known,

while AN = log(N) is recommended when σ∗ is unknown. To this end, we evaluate the error rate of
our procedure for these choices. The results are also provided in Table 6 and show that the performance
are almost the same in the two cases.

R̂(ĝ) R̂(g∗)

σ∗ = 1/2 0.23 (0.04) 0.21 (0.01)

σ∗ = 1 0.44 (0.05) 0.41 (0.01)

σ∗ = 3/2 0.52 (0.05) 0.49 (0.01)

Table 5: Evolution of the performance of the plug-in classifier ĝ and of g∗ w.r.t values of the constant diffusion
coefficient σ∗ for N = 100 and n = 100.

6 Conclusion and discussion

In this paper, we propose a plug-in classifier for the multiclass classification of trajectories generated by
a mixture of diffusion processes whose drift functions b∗i , i ∈ Y and diffusion coefficient σ∗ are assumed
to be unknown. In the considered model, each class i is characterized by a drift function, b∗i whereas
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N = 100 N = 1000

AN =
√
log(N) 0.44 (0.05) 0.41 (0.05)

AN = log(N) 0.43 (0.05) 0.43 (0.05)

Table 6: Risk classification of ĝ when the diffusion σ∗ = 1 is known, and n = 100.

the diffusion coefficient σ∗ is common for all classes. This work extends to the nonparametric case, the
multiclass classification procedure provided in Denis et al. (2020) where σ∗ = 1 and the drift functions
depend on an unknown parameter θ ∈ Rd. Our proposed procedure relies on consistent projection
estimators b̂i, i ∈ Y and σ̂2 of the drift and diffusion coefficients on a constrained approximation
subspace spanned by the spline basis. We establish the consistency, w.r.t. the excess risk, of our
procedure and then studied its rate of convergence under different kind of assumptions. In particular,
we show that the proposed plug-in classifier reaches a rate of convergence of order N−1/5 (up to a factor
of order exp(

√
c log(N))) when b∗, σ∗, and p∗ are unknown. Besides, a numerical study illustrates

the performance of our classification procedure.
In the case where σ∗ = 1, we manage to derive faster rates of convergence. In particular, when the

drift functions are bounded and Hölder with regularity β ≥ 1, we obtained a rate of order N−β/(2β+1)

(up to a factor of order exp(
√

c log(N))). Interestingly, this result can be viewed as an extension of
the one obtained in Gadat et al. (2020) to the multiclass mixture model, where the drift functions
are time-dependent. Furthermore, up to exp(

√
c log(N)) factor, our rate of convergence matches the

optimal rates of convergence obtained in the univariate setting (e.g. X ∈ R), in Audibert et al. (2007).
Finally, for the case of unbounded drift functions, we assume that the drift functions are the re-entrant.
Taking advantage of this property, we establish that our plug-in classifier achieves a rate of convergence
of order N−3β/4(2β+1). For β = 1, this rate of convergence is of the same order as the one obtained
in Gadat et al. (2016) for plug-in classifier in the univariate classification setting, when the feature X
does not satisfy the strong density assumption.

A question that can be tackled for future research is the study of the optimality in the minimax
sense of our plug-in procedure. In particular, the adaptivity of estimators of the drift and diffusion
coefficients should be investigated. Furthermore, it might be interesting to consider the margin type
assumption as in Gadat et al. (2020) to derive faster rates of convergence. Also, following Denis et al.
(2020), it is natural to derive theoretical properties for empirical risk minimization procedure based
on convex losses. Finally, the extension to the high-dimensional setting would require further work. In
particular, the control of the transition densities is different in this setting.

7 Proofs

The section is devoted to the proofs of our main results. In order to simplify the notation, we write
∆n = ∆. Besides, C > 0 is a constant which may change from one line to another. When the
dependency on a parameter θ needs to be highlighted, we write Cθ.

7.1 Technical results on the process X

Lemma 7.1. For all integer q ≥ 1, there exists C∗ > 0 depending on q such that for all 0 ≤ s < t ≤ 1,

E |Xt −Xs|2q ≤ C∗(t− s)q.

For each t ∈ [0, 1] and x ∈ R, we denote by p(t, x) the transition density of the underlying process Xt

given the starting point X0 = 0. We also denote by pi(t, ·) the transition density of the process driven
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by the drift function b∗i . Note that Assumption 2.1 ensures the existence of the transition densities.
The rest of this section is dedicated to some results on the transition densities pi for i = 1, . . . ,K.
Nonetheless, since the transition p of the process X writes as

p =

K∑
i=1

p∗i pi,

all these results apply also for p. The following proposition is provided in (Gobet, 2002) (Proposition
1.2).

Proposition 7.2. Under Assumptions 2.1 and 2.2, there exist constants c > 1, K > 1 such that for
all t ∈ (0, 1], x ∈ R, and i = 1, . . . ,K

1

K
√
t
exp

(
−c

x2

t

)
≤ pi(t, x) ≤

K√
t
exp

(
−x2

ct

)
.

From this result, we can deduce an evaluation of the probability of the process to exit a compact
set. This is the purpose of the next result.

Lemma 7.3. Under Assumption 2.1 and 2.2, there exist C1, C2 > 0 such that for all A > 0

sup
t∈[0,1]

P (|Xt| ≥ A) ≤ C1

A
exp(−C2A

2).

Proof. Let A > 0, we have for t ∈ (0, 1],

P (|Xt| ≥ A) = 2

∫ +∞

A
p(t, x)dx.

From Proposition 7.2, we then deduce that

P (|Xt| ≥ A) ≤ C

√
t

A

∫ +∞

A

2c

t
exp

(
−c

x2

t

)
dx ≤ C

√
t

A
exp

(
−cA2

t

)
.

From the above inequality, and using that t ∈ (0, 1], we deduce the result.

Lemma 7.4. There exist C0, C1, and C2, such that for i = 1, . . . ,K, for x ∈ [−A,A], we have

C1 exp
(
−C2x

2
)
≤ 1

n

n−1∑
k=1

pi(k∆, x) ≤ C0.

Proof of Lemma 7.4. For i ∈ {1, . . . ,K}, for all x ∈ R, we have from Proposition 7.2,

1

n

n∑
k=1

pi(k∆, x) ≤ C

n

n∑
k=1

1√
k∆

=
C√
n

n∑
k=1

1√
k
≤ 2C√

n

n∑
k=1

1√
k + 1

. (19)

Since the function x 7→ 1√
x

is decreasing over [1,+∞[, we deduce from Equation (19) that

1

n

n∑
k=1

pi(k∆, x) ≤ 4C
√
n+ 1√
n

≤ C0,
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which gives the upper bound. For the lower bound, we observe from Proposition 7.2 that for k ∈
[[1, n− 1]], and x ∈ R,

C exp

(
−cx2

k∆

)
≤ C√

k∆
exp

(
−cx2

k∆

)
≤ pi(k∆, x). (20)

Since g : (s, x) 7→ exp
(
− cx2

s

)
is strictly increasing in s over (0, 1], we obtain for k ∈ [[1, n− 1]],

∫ n−1
n

1
n

g(s, x)ds ≤
n−1∑
k=2

∫ k∆

(k−1)∆
(g(k∆, x) + g(s, x)− g(k∆, x)) ds ≤ 1

n

n−1∑
k=1

exp

(
−cx2

k∆

)
.

Hence, we deduce that for n ≥ 3, and x ∈ [−A,A]

1

6
exp(−2cA2) ≤

∫ n− 1

n
1
2

g(s, x)ds ≤ 1

n

n−1∑
k=1

exp

(
−cx2

k∆

)
.

For the first lower bound, we use that g(s, x) ≥ e−2cA2 for x ∈ [−A,A] and s ≥ 1/2, and that the
length of [1/2, (n−1)/n] is larger than 1/6 for n ≥ 3. Finally, gathering this bound with Equation (20),
leads to

1

6
exp(−2cA2) ≤ 1

n

n−1∑
k=1

exp

(
−cx2

k∆

)
≤ 1

n

n−1∑
k=1

pi(k∆, x).

Lemma 7.5. Suppose that σ∗ is a constant. For all q > 1, there exists Kq > 1 such that for all
(t, x) ∈ (0, 1]× [−A,A],

1

Kq

√
t
exp

(
−2q − 1

2qσ∗2t
x2
)

≤ p(t, x) ≤ Kq√
t
exp

(
− x2

2qσ∗2t

)
.

Proof of Lemma 7.5. The transition density p0 of the process (0 + σ∗Wt)t∈]0,1] (with a constant
diffusion coefficient σ∗) is given by

p0(t, x) :=
1√

2πσ∗2t
exp

(
− 1

2σ∗2t
|0− x|2

)
. (21)

We are going to demonstrate the inequality for pi, which is the transition density of X in class number
i. Indeed, then it will be true for all i ∈ Y and thus for p = pY . We follow here the arguments given
in the proof of (1.6) in Gobet (2002). Let us denote,

Zi,t = exp

(∫ t

0

b∗i (Xs)

σ∗ dWs −
∫ t

0

b∗2i (Xs)

σ∗2 ds

)
.

We have ∀(t, x) ∈]0, 1]× R,

pi(t, x) = p0(t, x)E0 [Zi,t|Xt = x] ,

and
1

pi(t, x)
≤ 1

p0(t, x)
E0
[
Z−1
i,t |Xt = x

]
. (22)
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Then,

E0 [Zi,t|Xt = x] = 1 +
1

p0(t, x)

∫ t

0
E0

[
Zi,tb

∗
i (Xs)

Xs − x

σ∗2(t− s)
p0(t− s, x)

]
ds

and

E0
[
Z−1
i,t |Xt = x

]
= 1 +

1

p0(t, x)

∫ t

0
E0

[
Z−1
i,s b

∗
i (Xs)

Xs − x

σ∗2(t− s)
p0(t− s, x)

]
ds.

For all (t, x) ∈]0, 1]× R, one has :

E0 [Zi,t|Xt = x] = 1 +
1

p0(t, x)

∫ t

0
E0

[
Zi,sb

∗
i (Xs)

Xs − x

σ∗2(t− s)
p0(t− s, x)

]
ds

≤ 1 +
C

p0(t, x)

∫ t

0
E0

[
Zi,s |b∗i (Xs)|

|Xs − x|
(t− s)3/2

exp

(
− (Xs − x)2

2σ∗2(t− s)

)]
ds

≤ 1 +
C

p0(t, x)

∫ t

0
E0

[
Zi,s |b∗i (Xs)|

1

ε(t− s)
exp

(
−(1− ε)(Xs − x)2

2σ∗2(t− s)

)]
ds

using that yε exp(−εy2/2) ≤ 1 for 0 < ε < 1. Let q, q′ > 1 be two real numbers such that 1
q + 1

q′ = 1.
Using Hölder’s inequality, and the Lipschitz property of b∗, one has:

E0 [Zi,t|Xt = x] ≤ 1 +
Cε−1

p0(t, x)

∫ t

0

(
E0

[
Zi,sq (1 + |Xs|)q

(t− s)q

]) 1
q

(
E0

[
exp

(
− (Xs − x)2

2σ∗2(t− s)

)]) 1
q′

ds (23)

with ε = 1− 1/q′. According to Lemma A.1 in Gobet (2002), one has:

∀q > 1, E0
[
Zq
i,s (1 + |Xs|)q

]
+ E0

[
Z−q
i,s (1 + |Xs|)q

]
≤ C1

where C1 > 0 is a constant. Thus, it remains to upper bound E0
[
exp

(
− (Xs−x)2

2σ∗2(t−s)

)]
and then deduce

an upper bound of E0 [Zi,t|Xt = x]. For all s < t, we have:

√
2πσ∗2sE0

[
exp

(
− (Xs − x)2

2σ∗2(t− s)

)]
=

∫
R
exp

(
− 1

2σ∗2(t− s)
(z − x)2

)
exp

(
− 1

2σ∗2s
z2
)
dz

It follows that,

E0

[
exp

(
− (Xs − x)2

2σ∗2(t− s)

)]
=

√
t− s

t
exp

(
− x2

2σ∗2t

)
.

Thus, from Equation (23), we obtain:

E0 [Zi,t|Xt = x] ≤ 1 +
Cε−1

p0(t, x)

∫ t

0

(t− s)
1

2q′−1

t
1

2q′
exp

(
− x2

2q′σ∗2t

)
ds

≤ 1 +
Cε−1

p0(t, x)
√
t
exp

(
− x2

2q′σ∗2t

)
,

by noticing that the integral of (t−s)
1

2q′−1 is smaller than 1 (since 0 < s < t ≤ 1) and that t−
1

2q′ ≥ 1/
√
t.

From the definition of function p0 given in Equation (21) together with relation (22), we obtain that

pi(t, x) ≤ p0(t, x)

(
1 +

Cε−1

p0(t, x)
√
t
exp

(
− x2

2q′σ∗2t

))
.
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Thus, there exists a constant Kq > 1 (as ε = 1− 1/q′ and 1/q + 1/q′ = 1) such that,

∀(t, x) ∈]0, 1]× R, pi(t, x) ≤
Kq√
t
exp

(
− x2

2q′σ∗2t

)
, ∀q′ > 1. (24)

Following the same lines, one has

E0
[
Z−1
i,t |Xt = x

]
≤ 1 +

Cte

p0(t, x)
√
t
exp

(
− x2

2q′σ∗2t

)
.

Also, there exists a constant Kq > 1, such that,

∀(t, x) ∈]0, 1]× R pi(t, x) ≥
1

Kq

√
t
exp

(
−2q′ − 1

2q′σ∗2t
x2
)
, ∀q′ > 1. (25)

The final result is deduced from (24) and (25).

7.2 Proofs of Section 3

Let us begin this section with a proposition which establishes a closed formula of the excess risk in
multiclass classification.

Proposition 7.6. Let g a classifier. The following holds

R(g)−R(g∗) = E

 K∑
i=1

∑
j ̸=i

∣∣π∗
i (X)− π∗

j (X)
∣∣1{g(X)=j,g∗(X)=i}


The proof of this result is omitted and can be found instance in Denis et al. (2020). Now we provide

the proof of Theorem 3.1 that relies in part on Proposition 7.6.

Proof of Theorem 3.1. From Proposition 7.6, we have the following inequality

E [R(ĝ)−R(g∗)] ≤ 2
K∑
i=1

E [|π̂i(X)− π∗
i (X)|] . (26)

We define F̄ the discretized version of F∗,

F̄ = (F̄1, . . . , F̄K), with F̄i(X) =
n−1∑
k=0

(
b∗i
σ∗2 (Xk∆)

(
X(k+1)∆ −Xk∆

)
− ∆

2

b∗2i
σ∗2 (Xk∆)

)
,

and for each i ∈ Y, π̄∗
i = ϕi

(
F̄
)

the discretized version of π∗
i , and π̄i = ϕi(F̂ ). From Equation (26),

we deduce

E [R(ĝ)−R(g∗)] ≤ 2

(
K∑
i=1

E [|π̂i(X)− π̄i(X)|] + E [|π̄i(X)− π̄∗
i (X)|]

+

K∑
i=1

E [|π̄∗
i (X)− π∗

i (X)|]

)

≤ 2
K∑
i=1

E
[∣∣∣ϕ̂i(F̂ (X))− ϕi(F̂ (X))

∣∣∣]+ 2
K∑
i=1

E
[∣∣∣ϕi(F̂ (X))− ϕi(F̄(X))

∣∣∣]
+2

K∑
i=1

E
[∣∣ϕi(F̄(X))− ϕi(F

∗(X))
∣∣] . (27)
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For the first term of the r.h.s. of the above inequality, we observe that for (x1, . . . , xK) ∈ RK , and
(i, j) ∈ Y2 we have ∣∣∣∣∣ ∂∂p∗j p∗i exp(xi)∑K

k=1 p
∗
k exp(xk)

∣∣∣∣∣ ≤ 1

p∗0
.

Therefore,
K∑
i=1

E
[∣∣∣ϕ̂i(F̂ (X))− ϕi(F̂ (X))

∣∣∣] ≤ CK,p∗0

K∑
k=1

E
[∣∣p̂k − pk

∣∣] ≤ CK,p∗0√
N

. (28)

For the second term of Equation (27), since the softmax function is 1-Lipschitz, we have for j ∈ Y

E
∣∣∣ϕj(F̂ (X))− ϕj(F̄(X))

∣∣∣ ≤ K∑
i=1

E
[∣∣∣F̂i(X)− F̄i(X)

∣∣∣] .
We set ξ(s) := k∆, if s ∈ [k∆, (k + 1)∆), for k ∈ [[0, n− 1]]. We then deduce that∣∣∣F̂i(X)− F̄i(X)

∣∣∣ ≤ ∫ 1

0

∣∣∣∣∣
(

b̂i
σ̂2

− b∗i
σ∗2

)(
Xξ(s)

)
b∗Y (Xs)

∣∣∣∣∣ ds+ 1

2

∫ 1

0

∣∣∣∣∣
(
b̂2i
σ̂2

− b∗2i
σ∗2

)(
Xξ(s)

)∣∣∣∣∣ ds
+

∣∣∣∣∣
∫ 1

0

(
b̂i
σ̂2

− b∗i
σ∗2

)(
Xξ(s)

)
σ∗(Xs)dWs

∣∣∣∣∣ ,
which implies

E
[∣∣∣F̂i(X)− F̄i(X)

∣∣∣] ≤ E

[∫ 1

0

∣∣∣∣∣
(

b̂i
σ̂2

− b∗i
σ∗2

)(
Xξ(s)

)
b∗Y (Xs)

∣∣∣∣∣ ds
]
+

1

2
E

[∫ 1

0

∣∣∣∣∣
(
b̂2i
σ̂2

− b∗2i
σ∗2

)(
Xξ(s)

)∣∣∣∣∣ ds
]

+E

∫ 1

0

(
b̂i
σ̂2

− b∗i
σ∗2

)2 (
Xξ(s)

)
σ∗2(Xs)ds

 .

Since for all x, σ∗(x) ≥ σ∗
0, and σ̂ ≥ σ0, we get

∣∣∣ b̂iσ̂2 (x)−
b∗i
σ∗2 (x)

∣∣∣ ≤ σ−2
0

∣∣∣̂bi(x)− b∗i (x)
∣∣∣+ σ−2

0 σ∗−2
0 |b∗i (x)|

∣∣σ̂2(x)− σ∗2(x)
∣∣ ,∣∣∣∣ b̂2iσ̂2 (x)−

b∗2i
σ∗2 (x)

∣∣∣∣ ≤ σ−2
0

∣∣∣̂bi(x) + b∗i (x)
∣∣∣ ∣∣∣̂bi(x)− b∗i (x)

∣∣∣+ σ−2
0 σ∗−2

0 |b∗i (x)|
2
∣∣σ̂2(x)− σ∗2(x)

∣∣ . (29)

Hence, as b̂i(x) ≤ bmax, and E
[
supt∈[0,1] |b∗i (Xt)|

]
≤ C1, the above inequalities and the Cauchy-Schwarz

inequality yield

E
∣∣∣F̂i(X)− F̄i(X)

∣∣∣ ≤ Cσ∗
0
σ−2
0

(
bmaxE

∥∥∥b̂i − b∗i

∥∥∥
n
+ E

∥∥σ̂2 − σ2
∥∥
n

)
.

Therefore, we have,
K∑
i=1

E
[∣∣∣ϕi(F̂ (X))− ϕi(F̄(X))

∣∣∣] ≤ CK,σ∗
0
σ−2
0

K∑
i=1

(
bmaxE

∥∥∥b̂i − b∗i

∥∥∥
n
+ E

∥∥σ̂2 − σ2
∥∥
n

)
. (30)

Finally, the last term is bounded as follows. We first observe that for all i ∈ Y

E
[∣∣F̄i(X)− F ∗

i (X)
∣∣2] ≤ 3E

∫ 1

0

(
b∗i
(
Xξ(s)

)
σ∗2

(
Xξ(s)

) − b∗i (Xs)

σ∗2(Xs)

)2

b∗2Y (Xs)ds

+ 3E
∫ 1

0

(
b∗2i
(
Xξ(s)

)
σ∗2

(
Xξ(s)

) − b∗2i (Xs)

σ∗2(Xs)

)2

ds+ 3E
∫ 1

0

(
b∗i
(
Xξ(s)

)
σ∗2

(
Xξ(s)

) − b∗i (Xs)

σ∗2(Xs)

)2

σ∗2(Xs)ds.
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Using again that σ∗(·) ≥ σ∗
0, and E

[
supt∈[0,1] |b∗i (Xt) |q

]
≤ C for q ≥ 1 (by Assumption 2.1), the

Cauchy-Schwarz inequality implies

E
[∣∣F̄i(X)− F ∗

i (X)
∣∣2] ≤ Cσ∗

0

(∫ 1

0
E
[∣∣b∗i (Xξ(s)

)
− b∗i (Xs)

∣∣2] ds
+

∫ 1

0

√
E
[∣∣b∗i (Xξ(s)

)
− b∗i (Xs)

∣∣4]ds+ ∫ 1

0

√
E
[∣∣σ∗2

(
Xξ(s)

)
− σ∗2(Xs)

∣∣4]ds) .

Finally, since the functions b∗i , and σ∗ are Lipschitz, we deduce from Lemma 7.1 that

E
[∣∣F̄i(X)− F ∗

i (X)
∣∣2] ≤ Cσ∗

0
∆,

which implies together with the fact that the sofmax function is 1-Lipschitz and the Jensen inequality
that

K∑
i=1

E
[∣∣ϕi(F̄(X))− ϕi(F

∗(X))
∣∣] ≤ CK,σ∗

0

√
∆. (31)

In view of Equation 27, the combination of Equations (28), and (30), and (31) yields the desired
result.

Proof of Proposition 3.2. We consider h a L-Lipschitz function. We define the spline-approximation
h̃ of h by

h̃(x) :=

KN−1∑
ℓ=−M

h(uℓ)Bℓ(x), ∀x ∈ R.

First, we note that h̃ ∈ SKN ,M . Indeed, since h is L-Lipschitz, there exists CL > 0 such that

|h(x)| ≤ CL|x| ≤ C log(N), ∀x ∈ (− log(N), log(N)).

Therefore, for N large enough, we have

|h(x)| ≤ log(N)3/2.

Then, we deduce
KN−1∑
ℓ=−M

h2(uℓ) ≤ (KN +M) log3(N).

For x ∈ (− log(N), log(N)), there exists 0 ≤ ℓ0 ≤ KN − 1 such that x ∈ [uℓ0 , uℓ0+1). We use the
following property of the B-spline basis

Bℓ(x) = 0, if x /∈ [uℓ, uℓ+M+1), ℓ = −M, . . . ,KN +M.

Hence, for x ∈ [uℓ0 , uℓ0+1), we have Bℓ(x) = 0 for ℓ ≤ ℓ0 −M − 1, and ℓ ≥ ℓ0 +M . Thus,∣∣∣h̃(x)− h(x)
∣∣∣ ≤

KN−1∑
ℓ=−M

|h(uℓ)− h(x)|Bℓ(x)

=

ℓ0∑
ℓ=ℓ0−M

|h(uℓ)− h(x)|Bl(x)

≤ max
ℓ=ℓ0−M,...,ℓ0

|h(uℓ)− h(x)|

≤ L(uℓ0+1 − uℓ0−M ) ≤ 2L(M + 1) log(N)

KN
,

which concludes the proof.
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Proof of Theorem 3.3. The proof is divided in two parts. The first part establishes the rates of con-
vergence of the drift estimators, and the second part is devoted to the study of the rates of convergence
of the diffusion coefficient estimator.

Rates of convergence for drift estimator. Let i ∈ {1, . . . ,K}. We introduce the function,

b̄i := b∗i1(− log(N),log(N)).

We recall that the random number of paths in the class number i is Ni =
∑N

j=1 1{Yj=i}. For a function
h, we introduce the empirical norm of class i for Ni > 0 as

∥h∥2n,Ni
:=

1

nNi

∑
j∈Ij

n−1∑
k=0

h2(Xj
k∆)

We first observe that

E
[∥∥∥b̂i − b∗i

∥∥∥
n

]
= E

[∥∥∥b̂i − b∗i

∥∥∥
n
1{Ni>0}

]
+ E

[∥∥∥b̂i − b∗i

∥∥∥
n
1{Ni=0}

]
.

Let us work at first on the event {Ni > 0}. For all i ∈ Y, we define the following conditional expectation

Ei[.] = E[.|1{Y1=i}, . . . ,1{YN=i}].

We apply Proposition 3.2, and Proposition 3.2 of Denis et al. (2021) on the event {Ni > 0} and deduce
that

Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,Ni

]
≤ C

 log2(N)

K2
N

+

√
KN log3(N)

Ni
+∆

 . (32)

Now, for all i ∈ Y, let us write

Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,i

]
= Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,i

]
− 2Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,Ni

]
+ 2Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,Ni

]
. (33)

For h ∈ SKN ,M , we denote by h̄ its thresholded counterpart

h̄(·) := h(·)1{|h(·)|≤log3/2(N)} + sgn(h(·)) log3/2(N)1{|h(·)|>log3/2(N)}.

We also denote HKN ,M := {h̄, h ∈ SKN ,M}. Then, we have that

Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,i

]
− 2Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,Ni

]
≤ Ei

[
sup

h̄∈HKN,M

∥∥h̄− b̄i
∥∥2
n,i

− 2
∥∥h̄− b̄i

∥∥2
n,Ni

]

≤ Ei

[
sup

g∈GKN,M

EX|Y=i

[
g(X̄)− 2

Ni

∑
i∈I

g(X̄i)

]]
,

with GKN ,M = {(x1, . . . , xn) 7→ 1
n

∑n
k=1

∣∣h̄(xk)− b̄i(xk)
∣∣2 , h̄ ∈ HKN ,M}. For each g ∈ GKN ,M and

x ∈ R, we have
0 ≤ g(x) ≤ 4 log3(N).

Furthermore, we have that (see Denis et al., 2021)

N∞ (ε,GKN ,M ) ≤
(
12(KN +M) log3(N)

ε

)KN+M

.
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Therefore, we deduce from Lemma A.2 in Denis et al. (2021) with ε =
12(KN +M) log3(N)

Ni
, Equa-

tion (32), and Equation (33), that on the event {Ni > 0}

Ei

[∥∥∥b̂i − b̄i

∥∥∥2
n,i

]
≤ C

 log2(N)

K2
N

+

√
KN log3(N)

Ni
+

log4(N)KN

Ni
+∆

 . (34)

Using Jensen’s inequality, we have

E
[∥∥∥b̂i − b∗i

∥∥∥
n,i
1{Ni>0}

]
≤

√
E
[∥∥∥b̂i − b̄i

∥∥∥2
n,i
1{Ni>0}

]
+ E

[∥∥b̄i − b∗i
∥∥2
n,i
1{Ni>0}

]
.

Finally, let us study then the error
∥∥b̄i − b∗i

∥∥2
n,i

. We observe with the Cauchy-Schwarz inequality

∥∥b̄i − b∗i
∥∥2
n,i

= EX|Y=i

[
1

n

n∑
k=1

(b∗i (Xk∆))
2
1{|Xk∆|>log(N)}

]
≤ C

√
sup
t∈[0,1]

PX|Y=i (|Xt| ≥ log(N)),

since supt∈[0,1] E
[
b∗i (Xt)

4
]
≤ C. From Lemma 7.3, we obtain

∥∥b̄i − b∗i
∥∥2
n,i

≤ C exp

(
−C2

2
log2(N)

)
,

which for N large enough yields ∥∥b̄i − b∗i
∥∥
n,i

≤ CN−1/2.

This result leads us to obtain, from Equation (34), that

E
[∥∥∥b̂i − b∗i

∥∥∥
n,i
1{Ni>0}

]
≤ C

(
log(N)

KN
+

√
1

N
+
√
∆

)

+ C

E

(KN log3(N)

Ni

)1/4

+

√
KN log4(N)

Ni

1{Ni>0}

 .

Using Jensen’s inequality, we obtain

E
[∥∥∥b̂i − b∗i

∥∥∥
n,i
1{Ni>0}

]
≤ C

(
log(N)

KN
+

√
1

N
+
√
∆

)

C

((
KN log3(N)E

[
1Ni>0

Ni

])1/4

+

√
KN log4(N)

√
E
[
1Ni>0

Ni

])
.

To finish the proof, since for all i ∈ Y, Ni ∼ B(N, p∗i ) we use Lemma 4.1 in (Györfi et al., 2006) to
deduce that

E
[
1Ni>0

Ni

]
≤ 2

p∗iN
≤ 2

p∗0N
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and finally, there exists a constant C > 0 such that

E
[∥∥∥b̂i − b∗i

∥∥∥
n,i
1{Ni>0}

]
≤ C

(
log(N)

KN
+

(
KN log3(N)

Np∗0

)1/4

+
√
∆

)
. (35)

To conclude the proof for the rates of convergence of the drift coefficient, we observe that since b̂i is
bounded by log3/2(N) and supt∈[0,1] E

[
b∗i (Xt)

2
]
< +∞, we have

E
[∥∥∥b̂i − b∗i

∥∥∥
n,i
1{Ni=0}

]
≤ log3/2(N)P (Ni = 0) + CP (Ni = 0) . (36)

Since Ni is distributed according to a Binomial distribution with parameters (N, p∗i ). We deduce that

P (Ni = 0) = exp (N log(1− p∗i )) .

Hence, gathering Equation (35) and Equation (36), and choosing ∆ = O(1/N) and KN = (N log(N))1/5,
we get the desired result.

Diffusion coefficient: rates of convergence. We estimate the square σ∗2 of the diffusion coeffi-
cient as solution of the following regression model

(Xj
(k+1)∆ −Xj

k∆)
2

∆
= σ∗2(Xj

k∆) + ζjk∆ +Rj
k∆ (37)

where ζjk∆ := ζj,1k∆ + ζj,2k∆ + ζj,3k∆ with

ζj,1k∆ :=
1

∆

(∫ (k+1)∆

k∆
σ∗ (Xj

s

)
dW j

s

)2

−
∫ (k+1)∆

k∆
σ∗2 (Xj

s

)
ds


ζj,2k∆ :=

2

∆

∫ (k+1)∆

k∆
((k + 1)∆− s)σ∗′ (Xj

s

)
σ∗2 (Xj

s

)
dW j

s

ζj,3k∆ := 2b∗Y

(
Xj

k∆

)∫ (k+1)∆

k∆
σ∗ (Xj

s

)
dW j

s ,

and Rj
k∆ := Rj,1

k∆ +Rj,2
k∆ +Rj,3

k∆ with,

Rj,1
k∆ :=

1

∆

(∫ (k+1)∆

k∆
b∗Y
(
Xj

s

)
ds

)2

, Rj,2
k∆ :=

1

∆

∫ (k+1)∆

k∆
((k + 1)∆− s)ϕY

(
Xj

s

)
ds (38)

Rj,3
k∆ :=

2

∆

(∫ (k+1)∆

k∆

(
b∗Y
(
Xj

s

)
− b∗Y (Xk∆)

)
ds

)(∫ (k+1)∆

k∆
σ∗ (Xj

s

)
dW j

s

)
(39)

where ϕY := b∗Y σ
∗′σ∗+

[
σ∗′′σ∗ + (σ∗′)2

]
σ∗2. We prove in the sequel that ζj,1k∆ is the error term, and all

the other terms are negligible residuals. We remind the reader that the estimator σ̂2 of σ∗2 is given in
(10). We rely on the following result:

Lemma 7.7. Under Assumption 2.1, the following holds

E
∥∥σ̂2 − σ∗2∥∥2

n,N
≤ 3 inf

h∈SKN,M

∥h− σ∗2∥2n + C

√KN log3(N)

Nn
+∆2

n
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where C > 0 is a constant depending on σ1, and where

∥h∥2n,N =
1

nN

N∑
j=1

n−1∑
k=0

h2(Xj
k∆).

The empirical error of the estimator σ̂2 is given by

E
∥∥σ̂2 − σ∗2∥∥2

n
= 2E

∥∥σ̂2 − σ∗2∥∥2
n,N

+
[
E
∥∥σ̂2 − σ∗2∥∥2

n
− 2E

∥∥σ̂2 − σ∗2∥∥2
n,N

]
Let us define Hσ as the set of functions h̄ such that there exists a function h ∈ SKN ,M satisfying

h̄ = h(x)1{ 1
log(N)

≤h(x)≤log3/2(N)} + log3/2(N)1h(x)>log3/2(N)} +
1

log(N)
1{h(x)≤ 1

log(N)
}.

Using then an ε−net Hσ,ε of Hσ with ε = 12(KN+M) log3(N)
N , we finally obtain (see Denis et al. (2021),

Lemma A.2)

E
∥∥σ̂2 − σ∗2∥∥2

n
− 2E

∥∥σ̂2 − σ∗2∥∥2
n,N

≤ E

[
sup
h̄∈Hσ

{
E
∥∥h̄− σ∗2∥∥2

n
− 2E

∥∥h̄− σ∗2∥∥2
n,N

}]

≤ C
KN log4(N)

N
.

Thus, as ∆n = O(1/N),

E
∥∥σ̂2 − σ∗2∥∥2

n
≤ 3 inf

h∈SKN,M

∥h− σ∗2∥2n + C


√

KN log3(N)

N
+

KN log4(N)

N
+

1

N2


≤ 3 inf

h∈SKN,M

∥h− σ∗2∥2n + C
KN log4(N)

N
,

for N large enough. According to Proposition 3.2, the bias term satisfies

inf
h∈SKN,M

∥h− σ∗2∥2n ≤ C
log2(N)

K2
N

.

Taking KN = (N log(N))1/5 leads to

E
∥∥σ̂2 − σ∗2∥∥

n
≤ C2

(
log4(N)

N

)1/5

.

This concludes the proof of Theorem 3.3.

Proof of Lemma 7.7 . Denote by

γN,n(h) =
1

nN

N∑
j=1

n−1∑
k=0

(
U j
k∆ − h(Xj

k∆)
)2

,

the least square contrast appearing in (9). For all h ∈ SKN ,M , we deduce that

γn,N (σ̂2)− γn,N (σ∗2) ≤ γn,N (h)− γn,N (σ∗2). (40)
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Using (37), we have for all h ∈ SKN ,M ,

γn,N (h)− γn,N (σ∗2) =
∥∥h− σ∗2∥∥2

n,N
+2ν1(σ

∗2 − h) + 2ν2(σ
∗2 − h) + 2ν3(σ

∗2 − h) + 2µ(σ∗2 − h) (41)

where

νi(h) =
1

nN

N∑
j=1

n−1∑
k=0

h(Xj
k∆)ζ

j,i
k∆, i ∈ {1, 2, 3}, µ(h) =

1

nN

N∑
j=1

n−1∑
k=0

h(Xj
k∆)R

j
k∆, (42)

we derive from Equations (40) and (41) that for all h ∈ SKN ,M ,

E
∥∥σ̂2 − σ∗2∥∥2

n,N
≤ inf

h∈SKN,M

∥h− σ∗2∥2n + 2
3∑

i=1

E
[
νi(σ̂

2 − h)
]
+ 2E

[
µ(σ̂2 − h)

]
. (43)

For all i ∈ {1, 2, 3} and for all h ∈ SKN ,M , taking the constraints (6) into account, one has

E
[
νi
(
σ̂2 − h

)]
≤
√

2(KN +M) log3(N)

√√√√KN−1∑
ℓ=−M

E
[
ν2i (Bℓ,M,u)

]
. (44)

1. Upper bound of
∑KN−1

ℓ=−M E
[
ν21(Bℓ,M,u)

]
. According to Equation (42), we have

∀ℓ ∈ [[−M,KN − 1]], ν1(Bℓ,M,u) =
1

nN

N∑
j=1

n−1∑
k=0

Bℓ,M,u(X
j
k∆)ζ

j,1
k∆

where ζj,1k∆ = 1
∆

[(∫ (k+1)∆
k∆ σ∗(Xj

s )dW
j
s

)2
−
∫ (k+1)∆
k∆ σ∗2(Xj

s )ds

]
is a martingale satisfying

E
[
ζ1,1k∆|F

1
k∆

]
= 0 and E

[(
ζ1,1k∆

)2
|F1

k∆

]
≤ 1

∆2
E

(∫ (k+1)∆

k∆
σ∗2(X1

s )ds

)2
 ≤ Cσ∗4

1

with (F1
t )t≥0 the natural filtration associated with the Brownian motion W 1. We derive that

KN−1∑
ℓ=−M

E
[
ν21(Bℓ,M,u)

]
=

1

Nn2

KN−1∑
ℓ=−M

E

(n−1∑
k=0

Bℓ,M,u(X
j
k∆)ζ

1,1
k∆

)2


=
1

Nn2
E

[
n−1∑
k=0

KN−1∑
ℓ=−M

B2
ℓ,M,u(X

1
k∆)

(
ζ1,1k∆

)2]

≤ C

Nn

where C is a constant depending on σ∗, for each k ∈ [[0, n − 1]],
∑KN−1

ℓ=−M B2
ℓ,M,u(X

1
k∆) ≤ 1 since∑KN−1

ℓ=−M Bℓ,M,u(X
1
k∆) = 1 and Bℓ,M,u(X

1
k∆) ≤ 1 for all ℓ = −M, · · · ,KN − 1.

2. Upper bound of
∑KN−1

ℓ=−M E
[
ν22(Bℓ,M,u)

]
. For all k ∈ [[0, n−1]] and for all s ∈ [0, 1], set ξ(s) = k∆
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if s ∈ [k∆, (k + 1)∆). We have:

KN−1∑
ℓ=−M

E
[
ν22(Bℓ,M,u)

]
=

4

Nn2

KN−1∑
ℓ=−M

E

(n−1∑
k=0

∫ (k+1)∆

k∆
Bℓ,M,u(X

1
k∆)((k + 1)∆− s)σ∗′(X1

s )σ
∗2(X1

s )dWs

)2


=
4

Nn2

KN−1∑
ℓ=−M

E

[(∫ 1

0
Bℓ,M,u(X

1
ξ(s))(ξ(s) + ∆− s)σ∗′(X1

s )σ
∗2(X1

s )dWs

)2
]

≤ C

Nn2

where the constant C > 0 depends on the diffusion coefficient.

3. Upper bound of
∑KN−1

ℓ=−M E
[
ν23(Bℓ,M,u)

]
. We have:

KN−1∑
ℓ=−M

E
[
ν23(Bℓ,M,u)

]
=

4

Nn2

KN−1∑
ℓ=−M

E

(n−1∑
k=0

∫ (k+1)∆

k∆
Bℓ,M,u(X

1
k∆)b

∗
Y (X

1
k∆)σ

∗(X1
s )dWs

)2


=
4

Nn2

KN−1∑
ℓ=−M

E

[(∫ 1

0
Bℓ,M,u(X

1
η(s))b

∗
Y (X

1
η(s))σ

∗(X1
s )dWs

)2
]

≤ 4

Nn2
E

[∫ 1

0

KN−1∑
ℓ=−M

B2
ℓ,M,u(X

1
η(s))b

∗2
Y (X1

η(s))σ
∗2(X1

s )ds

]
.

Since for all x ∈ R, b∗2Y (x) ≤ C0(1 + x2), σ∗2(x) ≤ σ∗2
1 and supt∈[0,1] E

(
|Xt|2

)
< ∞, there exists

a constant C > 0 depending on the upper bound σ∗
1 of the diffusion coefficient such that

KN−1∑
ℓ=−M

E
[
ν23(Bℓ,M,u)

]
≤ C

Nn2
.

We finally deduce from Equations (43) and (44) that for all h ∈ SKN ,M ,

E
∥∥σ̂2 − σ∗2∥∥2

n,N
≤ inf

h∈SKN,M

∥h− σ∗2∥2n + C

√
(KN +M) log3(N)

Nn
+ 2E

[
µ(σ̂2 − h)

]
. (45)

It remains to obtain an upper bound of the term µ(σ̂2 − h). Notice that for a > 0, x and y ∈ R,

2xy = 2
x√
a
×
√
ay ≤ x2

a
+ ay2.

Then, for all h ∈ SKN ,M and a > 0,

2µ
(
σ̂2 − h

)
≤ 2

a

∥∥σ̂2 − σ∗2∥∥2
n,N

+
2

a

∥∥h− σ∗2∥∥2
n,N

+
a

Nn

N∑
j=1

n−1∑
k=0

(
Rj

k∆

)2
.
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We set a = 4 and from Equation (45) we deduce that,

E
∥∥σ̂2 − σ∗2∥∥2

n,N
≤ 3 inf

h∈SKN,M

∥h− σ∗2∥2n + C

√
(KN +M) log3(N)

Nn
+

4

Nn

N∑
j=1

n−1∑
k=0

E
[(

Rj
k∆

)2]
. (46)

We have

E
[(

Rj
k∆

)2]
≤ 3

(
E
[(

Rj,1
k∆

)2]
+ E

[(
Rj,2

k∆

)2]
+ E

[(
Rj,3

k∆

)2])
where for all j ∈ [[1, N ]] and k ∈ [[0, n − 1]], Rj,1

k∆, R
j,2
k∆ and Rj,3

k∆ are given in Equations (38) and (39).
There exist constants C1, C2, C3 > 0 such that

E
[(

Rj,1
k∆

)2]
≤ E

(∫ (k+1)∆

k∆
b∗2Y

(
Xj

k∆

)
ds

)2
 ≤ ∆E

[∫ (k+1)∆

k∆
b∗4Y

(
Xj

k∆

)
ds

]
≤ C1∆

2

E
[(

Rj,2
k∆

)2]
≤ 1

∆2

∫ (k+1)∆

k∆
((k + 1)∆− s)2ds

∫ (k+1)∆

k∆
E
[
ϕ2
Y

(
Xj

s

)]
ds ≤ C2∆

2

E
[(

Rj,3
k∆

)2]
≤ 4

∆2
E

∆ ∫ (k+1)∆

k∆
L2
0

∣∣∣Xj
s −Xj

k∆

∣∣∣2 ds(∫ (k+1)∆

k∆
σ∗(Xj

s )dWs

)2
 ≤ C3∆

2.

We deduce from Equation (46) that there exists a constant C > 0 depending on σ∗
1 and M such that,

E
∥∥σ̂2 − σ∗2∥∥2

n,N
≤ 3 inf

h∈SKN,M

∥h− σ∗2∥2n + C

√KN log3(N)

Nn
+∆2

n

 .

This is the announced result.

Proof of Theorem 3.4. Let A > 0 and i ∈ Y, we have that

E
[∥∥∥b̂i − b∗i

∥∥∥2
n

]
= E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2]

= E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|≤A}

]

+E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|>A}

]
. (47)

We bound each term of the r.h.s. of the above inequality. From Lemma 7.3, and Cauchy-Schwarz
Inequality, under Assumption 2.1, we have for the second term of (47),

E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|>A}

]
≤ C

√
exp (−CA2). (48)

For the first term of (47), we observe that

E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|≤A}|DN

]
=

∫ A

−A

(
b̂i(x)− b∗i (x)

)2( 1

n

n−1∑
k=1

p(k∆, x)

)
dx

+
1

n

(
b̂i(0)− b∗i (0)

)2
.
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From Lemma 7.4, we then deduce that

E

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|≤A}|DN

]

≤ C1e
C2A2

EX|Y=i

[
1

n

n−1∑
k=0

(
b̂i(Xk∆)− b∗i (Xk∆)

)2
1{|Xk∆|≤A}|DN

]

≤ C1e
C2A2

∥∥∥b̂i − b∗i

∥∥∥2
n,i

.

From the above key equation, Equation (47), Equation (48), and Theorem 3.3, we deduce, for A > 0

E
[∥∥∥b̂i − b∗i

∥∥∥2
n

]
≤ C

(
exp

(
C2A

2
)( log(N)4

N

)1/5

+ exp(−C2A
2)

)
.

Besides from Theorem 3.3, we also have

E
[∥∥σ̂2 − σ2∗∥∥

n

]
≤
(
log(N)4

N

)1/5

.

Therefore, applying Theorem 3.1 with bmax = log(N)3/2, σ−2
0 = log(N), and A = (log(N))1/4, we get

the desired result.

7.3 Proofs of Section 4

Proof of Proposition 4.2 . For all i ∈ Y, let Pi = P(.|Y = i) and denote by P0 the probability
measure under which the diffusion process X = (Xt)t≥0 is solution of dXt = dW̃t where W̃ is a
Brownian motion under P0. We deduce from the Girsanov’s Theorem (see e.g. Jacod & Shiryaev
(2013), Chapter III) that

∀i ∈ Y, ∀t ∈ [0, 1],
dPi

dP0
|FX

t
= exp

(∫ t

0
b∗i (Xs)dXs −

1

2

∫ t

0
b∗2i (Xs)ds

)
,

where (FX
t )t∈[0,1] is the natural filtration of X. Then, for all i, j ∈ Y such that i ̸= j,

∀t ∈ [0, 1],
dPi

dPj
|FX

t
= exp

(∫ t

0
(b∗i − b∗j )(Xs)dXs −

1

2

∫ t

0
(b∗2i − b∗2j )(Xs)ds

)
≤ C exp

(
M i,j

t

)
(49)

where the constant C depends on Cb∗ given in Assumption 4.1 and

∀i, j ∈ Y : i ̸= j, M i,j
t =

∫ t

0
(b∗i − b∗j )(Xs)dWs, t ∈ [0, 1].

Recall that Z ∈ [0, logα(N)] is a random variable measurable with respect to the natural filtration of
the diffusion process X = (Xt)t≤1. Then, for all i, j ∈ Y such that i ̸= j and for all a > 0, using
Equation (49) we have

EX|Y=i[Z] = EX|Y=j

[
Z
dPi

dPj
|FX

t

]
≤ CEX|Y=j

[
Z exp

(
M i,j

t

)]
= CEX|Y=j

[
Z exp

(
M i,j

t

)
1
M i,j

t ≤a

]
+ CEX|Y=j

[
Z exp

(
M i,j

t

)
1
M i,j

t >a

]
≤ C exp (a)EX|Y=j [Z] + C logα(N)EX|Y=j

[
exp

(
M i,j

t

)
1
M i,j

t >a

]
.
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Using the Cauchy-Schwarz inequality and Lemma 2.1 in Van-de Geer (1995), there exist constants
C > 0 and c > 0 depending on Cb∗ such that,

E
[
exp

(
M i,j

t

)
1
M i,j

t >a

]
≤
√
P
(
M i,j

t > a
)√

E
[
exp

(
2M i,j

t − 2 ⟨M i,j ,M i,j⟩t
)
exp (2 ⟨M i,j ,M i,j⟩t)

]
≤ C exp(−a2/c)

√
E
[
exp

(
2M i,j

t − 2 ⟨M i,j ,M i,j⟩t
)]

where P
(
M i,j

t > a
)
≤ exp(−a2/c) (Van-de Geer (1995)) and exp

(
2
〈
M i,j ,M i,j

〉
t

)
< ∞ a.s since the

drift functions are bounded. Moreover, since (M i,j
t )t≤1 is a martingale and

E
[
exp

(〈
M i,j ,M i,j

〉
1

)]
< ∞,

according to the Novikov assumption, thus E(M i,j) :=
{
exp

(
2M i,j

t − 2
〈
M i,j ,M i,j

〉
t

)}
t≤1

is a mar-

tingale with respect to the natural filtration FM of M i,j (see Le Gall (2013), Proposition 5.8 and
Theorem 5.9). We deduce that for all t ∈ [0, 1],

E
[
exp

(
2M i,j

t − 2
〈
M i,j ,M i,j

〉
t

)]
= E

[
E
(
E(M i,j)t|FM

0

)]
= E

[
exp

(
2M i,j

0 − 2
〈
M i,j ,M i,j

〉
0

)]
= 1.

Thus, for all a > 0, we obtain E
[
exp

(
M i,j

t

)
1
M i,j

t >a

]
≤ C exp(−a2/c). Finally, set a =

√
c log(N), it

follows that for all i, j ∈ Y such that i ̸= j, there exists a constant C > 0 such that

EX|Y=i[Z] ≤ C exp
(√

c log(N)
)
EX|Y=j [Z] + C

logα(N)

N
.

Proof of Theorem 4.3 . From Theorem 3.1, and its assumptions, we have

E [R(ĝ)−R(g∗)] ≤ C

(
√
∆+

1

p∗0
√
N

+ E

[
bmaxσ

−2
0

K∑
i=1

∥b̂i − b∗i ∥n

]
+ E

[
σ−2
0 ∥σ̂2 − σ2∗∥n

])
.

For all i ∈ Y we obtain from Proposition 4.2 with α = 1/2 that there exist constants C1, c > 0 such
that

E
∥∥∥b̂i − b∗i

∥∥∥
n
=

K∑
j=1

p∗jE
∥∥∥b̂i − b∗i

∥∥∥
n,j

≤ C1 exp
(√

c log(N)
)
E
∥∥∥b̂i − b∗i

∥∥∥
n,i

+ C1

√
log(N)

N
.

Then, from Theorem 3.3, for ∆n = O(N−1) and KN = (N log(N))1/5, there exist constants C2, C3 > 0
such that

∀i ∈ Y, E
∥∥∥b̂i − b∗i

∥∥∥
n,i

≤ C2

(
log4(N)

N

)1/5

, and E
∥∥σ̂2 − σ∗2∥∥

n
≤ C3

(
log4(N)

N

)1/5

.

Finally, by (12), we deduce that there exist constants C, c > 0 such that

E [R(ĝ)−R(g∗)] ≤ C exp
(√

c log(N)
)
N−1/5.
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Let us now turn to the proof of Theorem 4.6. For fixed n and Ni in N∗, let us denote

Ωn,Ni,KNi
:=

⋂
h∈SKNi

,M\{0}

{∣∣∣∣∣∥h∥2n,Ni

∥h∥2n,i
− 1

∣∣∣∣∣ ≤ 1

2

}
.

As we can see, the empirical norms ∥h∥n,Ni and ∥h∥n,i of any function h ∈ SKNi
,M \ {0} are equivalent

on Ωn,Ni,KNi
. More precisely, on the set Ωn,Ni,KNi

, for all h ∈ SKNi
,M \ {0}, we have

1

2
∥h∥2n,i ≤ ∥h∥2n,Ni

≤ 3

2
∥h∥2n,i.

We have the following lemma.

Lemma 7.8. Let β ≥ 1 be a real number and suppose that KNi = O
(
log−5/2(Ni)N

1/(2β+1)
i

)
with

Ni a.s large enough, and ANi =
√

3β
2β+1 log(Ni). Under Assumption 2.1, the following holds:

Pi

(
Ωc
n,Ni,KNi

)
≤ c

KNi

Ni

where c > 0 is a constant.

Proof of Theorem 4.6. Note that throughout the proof we work conditional on the random variables
1Y1=i, · · · ,1YN=i and on the event {Ni > 1}, so that Ni can be viewed as a deterministic variable.
Then, to alleviate the notations, let use denote

Pi := P(.|1Y1=i, · · · ,1YN=i) and Ei = E[.|1Y1=i, · · · ,1YN=i].

For each class i ∈ Y, the drift function b∗i is the solution of the following regression model

Zj
k∆ = b∗i (X

j
k∆) + ξjk∆ +Rj

k∆, j ∈ Ii, k ∈ [[0, n− 1]]

where we recall that Ii is the set of indices j such that Yj = i, and

ξjk∆ :=
1

∆

∫ (k+1)∆

k∆
σ∗(Xj

s )dW
j
s , Rj

k∆ :=
1

∆

∫ (k+1)∆

k∆
(b∗i (X

j
s )− b∗i (X

j
k∆))ds. (50)

We first focus on the error Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
for each label i ∈ Y. Therefore, we consider the

following decomposition:

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
= Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λi

]
+ Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λ′
i

]
(51)

where
Λi = Ωn,Ni,KNi

and Λ′
i = Ωc

n,Ni,KNi
.

Upper bound of Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λi

]
. From the proof of Proposition 4.4 in Denis et al. (2021),

Equation (D.5), we see that for all h ∈ SKNi
,M and for all a, d > 0, we have on the event Λi = Ωn,Ni,KNi

,(
1− 2

a
− 4

d

)∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

≤
(
1 +

2

a
+

4

d

)∥∥∥h− b∗ANi
,i

∥∥∥2
n,Ni

+ d sup{
h∈SKNi

,M ,∥h∥n,i=1
}ν2 (t) + aC∆

34



where C > 0 is a constant and where for all h ∈ SKNi
,M ,

ν(h) =
1

Nin

∑
j∈Ii

n−1∑
k=0

h(Xj
k∆)ξ

j
k∆. (52)

We set a = d = 8, and we obtain,

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λi

]
≤ 7 inf

h∈SKNi
,M

∥∥∥h− b∗ANi
,i

∥∥∥2
n,i

+ 32Ei

 sup{
h∈SKNi

,M ,∥h∥n,i=1
}ν2 (h)


+32C∆.

For h ∈ SKNi
,M , h =

∑KNi
−1

ℓ=−M wℓBℓ,M,u and ∥h∥2n,i = w′Ψi
KNi

w equals to one here, then w = Ψ
−1/2
KNi

u

where the vector u satisfies ∥u∥2,KNi
+M = 1. Finally, one obtains,

h =

KNi
−1∑

ℓ=−M

wℓBℓ,M,u =

KNi
−1∑

ℓ=−M

uℓ

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u

. (53)

For all h ∈ SKNi
,M such that ∥h∥n,i = 1, using Equation (52) and (53), gives

ν2(h) =

KNi
−1∑

ℓ=−M

uℓ
1

Nin

Ni∑
j=1

n−1∑
k=0

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u(X
ij
k∆)ξ

ij
k∆

2

.

Cauchy-Schwarz inequality together with ∥u∥2 = 1, produce

ν2(h) ≤
KNi

−1∑
ℓ=−M

 1

Nin

Ni∑
j=1

n−1∑
k=0

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u(X
ij
k∆)ξ

ij
k∆

2

.

Finally we obtain,

Ei

 sup
h∈SKNi

,M ,∥h∥n,i=1
ν2(h)

 ≤ 1

Ni
Ei

 1

n2

KNi
−1∑

ℓ=−M

n−1∑
k=0

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u(X
i1
k∆)ξ

i1
k∆

2
=

1

Ni
Ei

 1

n2

KNi
−1∑

ℓ=−M

n−1∑
k=0

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u(X
i1
k∆)

2 (
ξi1k∆

)2 .

According to Equation (50) and considering the natural filtration (Ft)t≥0 of the Brownian motion, for

all k ∈ [[0, n− 1]], we have Ei

(
ξi1k∆|Fk∆

)
= 0 and

Ei

[(
ξi1k∆

)2
|Fk∆

]
=

1

∆2
E

σ∗2
(
Xi1

k∆

)
E

(∫ (k+1)∆

k∆
σ∗(Xi1

s )

)2

|Fk∆

 ≤ σ∗2
1

∆
.
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By definition of the Gram matrix ΨKNi
, we deduce that

Ei

 sup
h∈SKNi

,M ,∥h∥n,i=1
ν2(h)

 ≤σ∗2
1

Ni
Ei

 1

n

KNi
−1∑

ℓ=−M

n−1∑
k=0

KNi
−1∑

ℓ′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

Bℓ′,M,u(X
1,i
k∆)

2
≤σ∗2

1

Ni
Ei

 KNi
−1∑

ℓ,ℓ′,ℓ′′=−M

[
Ψ

−1/2
KNi

]
ℓ′,ℓ

[
Ψ

−1/2
KNi

]
ℓ′′,ℓ

[
ΨKNi

]
ℓ′,ℓ′′


=
σ∗2
1

Ni
Ei

(
Tr
(
Ψ−1

KNi
ΨKNi

))
.

Besides,
Tr
(
Ψ−1

KNi
ΨKNi

)
= KNi +M.

Thus, finally, there exists a constant C1 > 0 depending on σ∗
1 and M such that

Ei

 sup
h∈SKNi

,M ,∥h∥n,i=1
ν2(h)

 ≤ C1
KNi

Ni
.

Thus, there exists a constant C > 0 such that,

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λi

]
≤ 7 inf

h∈SKNi
,M

∥∥∥h− b∗ANi
,i

∥∥∥2
n,i

+ C

(
KNi

Ni
+∆

)
. (54)

Upper bound of E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n,Ni

1Λ′
i

]
. Using the Cauchy-Schwarz inequality, we have

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

1Λ′
i

]
≤ C0 log

2(Ni)Pi

(
Ωc
n,Ni,KNi

)
since for N large enough, using (13), we have,∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n,Ni

≤2∥b̂i∥2∞ + 2∥b∗ANi
,i∥2∞ ≤ 4A2

Ni
log(Ni) ≤ C0 log

2(Ni)

where C0 > 0 is a constant. Using Lemma 7.8, we have

Pi(Λ
′
i) = Pi

(
Ωc
n,Ni,KNi

)
≤ c

KNi

Ni
. (55)

Then, from Equation (55), there exists a constant C > 0 such that

Ei

[∥∥∥b̂i − b∗AN ,i

∥∥∥2
n,Ni

1Λ′
i

]
≤ C log2(Ni)

KNi

Ni
. (56)

Upper bound of Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
. From Equations (51), (54) and (56), there exists a constant

C > 0 such that

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
≤ 7 inf

h∈SKNi
,M

∥∥∥h− b∗ANi
,i

∥∥∥2
n,i

+ C

(
log2(Ni)KNi

Ni
+∆

)
. (57)
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Upper bound of Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
. Using Equation (57), we have

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
= Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
− 2Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
+ 2Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
≤ Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
− 2Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
+ 7 inf

h∈SKNi
,M

∥∥∥h− b∗ANi
,i

∥∥∥2
n,i

+ C

(
log2(Ni)KNi

Ni
+∆

)
.

From the proof of Theorem 3.3, we deduce that

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
− 2Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,Ni

]
≤ C log3(Ni)KNi/Ni

with C > 0 a constant depending on p0 = min
i∈Y

p∗i . Besides, since b∗i ∈ Σ(β,R), we have

inf
h∈SKNi

,M

∥h− b∗ANi
,i∥2n,i ≤ C

(
ANi

KNi

)2β

where C > 0 is a constant (see Denis et al. (2021), Lemma D.2). Then it comes that

Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
≤ C

((
ANi

KNi

)2β

+
KNi log

3(Ni)

Ni
+∆

)

where C > 0 is a constant depending on β, ∆ = O(1/N). Since

KNi = O
(
log−5/2(Ni)N

1/(2β+1)
i

)
,

we obtain
Ei

[∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
≤ C log6β(Ni)N

− 2β
2β+1

i ≤ C log6β(N)N
− 2β

2β+1

i .

Using the Jensen’s inequality,

E
[
1Ni>1

∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
≤ C log6β(N)E

[
1Ni>1N

− 2β
2β+1

i

]
≤ C log6β(N)

(
E
[
1Ni>1

Ni

]) 2β
2β+1

.

Using again Lemma 4.1 from Györfi et al. (2006), we obtain

E
[
1Ni>1

∥∥∥b̂i − b∗ANi
,i

∥∥∥2
n,i

]
≤ C log6β(N)

(
E
[
1Ni>1

Ni

]) 2β
2β+1

≤ C log6β(N)N
− 2β

2β+1 .

Proof of Theorem 4.7 . For all i ∈ Y, recall that b∗ANi
,i = b∗i1[−ANi

,ANi
]. Furthermore, set

N0 := min
i∈Y

Ni, then AN0 := min
i∈Y

ANi . (58)
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We have
E [R(ĝ)−R(g∗)] = E [(1−R(g∗))1N0≤1] + E [(R(ĝ)−R(g∗))1N0>1] .

Then, from Proposition 7.6, we deduce that

E [R(ĝ)−R(g∗)] ≤
K∑
i=1

P(Ni ≤ 1) + 2
K∑
i=1

E [|π̂i(X)− π∗
i (X)|1N0>1]

≤ 2KN(1− p∗0)
N−1 + 2

K∑
i=1

E [|π̂i(X)− π∗
i (X)|1N0>1]

since ĝ = 1 on the event {N0 ≤ 1}. For all i ∈ Y and on the event {N0 > 1},

|π̂i(X)− π∗
i (X)| ≤

∣∣∣π̂i(X)− π̄
AN0
i (X)

∣∣∣+ ∣∣∣π̄AN0
i (X)− π̄∗

i (X)
∣∣∣+ |π̄∗

i (X)− π∗
i (X)|

where π̄
AN0
i (X) := ϕi

(
F̄AN0

)
and F̄AN0 =

(
F̄

AN0
1 , · · · , F̄AN0

K

)
with

∀i ∈ Y, F̄
AN0
i =

n−1∑
k=0

b∗AN0
,i(Xk∆)(X(k+1)∆ −Xk∆)−

∆

2
b∗2AN0

,i(Xk∆).

Then, there exists a constant c > 0 such that

E [R(ĝ)−R(g∗)] ≤ 2

(
K∑
i=1

E
(∣∣∣π̂i(X)− π̄

AN0
i (X)

∣∣∣1N0>1

)
+

K∑
i=1

E
(∣∣∣π̄AN0

i (X)− π̄∗
i (X)

∣∣∣1N0>1

))

+c(1− p∗0)
N/2 + 2

K∑
i=1

E |π̄∗
i (X)− π∗

i (X)|.

From the proof of Theorem 3.1, there exists a constant C1 > 0 depending on K, p∗0 and Cb∗ and a
constant C2 > 0 depending on K such that

K∑
i=1

E
∣∣∣π̂i(X)− π̄

AN0
i (X)

∣∣∣ ≤ C1

(
1√
N

+
K∑
i=1

E
[
1N0>1

∥∥∥b̂i − b∗AN0
,i

∥∥∥
n

])
,

K∑
i=1

E |π̄∗
i (X)− π∗

i (X)| ≤ C2

√
∆.

Thus, we have

E [R(ĝ)−R(g∗)] ≤ 2C1

(
1√
N

+

K∑
i=1

E
[
1N0>1

∥∥∥b̂i − b∗AN0
,i

∥∥∥
n

])
+ 2C2

√
∆+ c(1− p∗0)

N/2

+2K
K∑
i=1

E
[∣∣∣F̄AN0

i (X)− F̄i(X)
∣∣∣1N0>1

]
.

For all i ∈ Y,

E
[∣∣∣F̄AN0

i (X)− F̄i(X)
∣∣∣1N0>1

]
≤ E

[∣∣∣∣∣
n−1∑
k=0

b∗i (Xk∆)1|Xk∆|>AN0

∫ (k+1)∆

k∆
b∗i (Xs)ds

∣∣∣∣∣1N0>1

]

+
∆

2

n−1∑
k=0

E
[
1N0>1b

∗2
i (Xk∆)1|Xk∆|>AN0

]
+E

∣∣∣∣∣
n−1∑
k=0

b∗i (Xk∆)1N0>11|Xk∆|>AN0
(W(k+1)∆ −Wk∆)

∣∣∣∣∣ .
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Under Assumption 4.1, we easily obtain that

E

∣∣∣∣∣
n−1∑
k=0

b∗i (Xk∆)1N0>11|Xk∆|>AN0

∫ (k+1)∆

k∆
b∗i (Xs)ds

∣∣∣∣∣ ≤ C2
b∗ sup

t∈[0,1]
P ({N0 > 1} ∩ {|Xt| > AN0}),

and
∆

2

n−1∑
k=0

E
[
b∗2i (Xk∆)1|Xk∆|>AN0

]
≤

C2
b∗

2
sup
t∈[0,1]

P ({N0 > 1} ∩ {|Xt| > AN0}).

For the last term, consider the natural filtration Ft = σ(Ws, s ≤ t) of the Brownian motion (Wt)t≥0.
For all k ∈ [[0, n − 1]], Xk∆ is measurable with respect to Fk∆ and W(k+1)∆ −Wk∆ is independent of
Fk∆ since the Brownian motion is an independently increasing process. Consequently, we obtain

E

∣∣∣∣∣
n−1∑
k=0

b∗i (Xk∆)1N0>11|Xk∆|>AN0
(W(k+1)∆ −Wk∆)

∣∣∣∣∣
≤Cb∗ sup

t∈[0,1]
P ({N0 > 1} ∩ {|Xt| > AN0})E

[
n−1∑
k=0

|W(k+1)∆ −Wk∆|

]
≤Cb∗ sup

t∈[0,1]
P ({N0 > 1} ∩ {|Xt| > AN0})

,

since,

E

[
n−1∑
k=0

|W(k+1)∆ −Wk∆|

]
≤ 1

Finally, there exists a constant C > 0 such that

E [R(ĝ)−R(g∗)] ≤ C

 1√
N

+
K∑
i=1

K∑
j=1

p∗jE
[∥∥∥b̂i − b∗AN0

,i

∥∥∥
n,j

1N0>1

]
+ sup

t∈[0,1]
P (N0 > 1, |Xt| > AN0)

 .

(59)
From Proposition 4.2 with α = 1, for all i, j ∈ Y such that i ̸= j, we have

E
[∥∥∥b̂i − b∗AN0

,i

∥∥∥
n,j

1N0>1

]
≤ C exp(

√
c log(N))E

[∥∥∥b̂i − b∗AN0
,i

∥∥∥
n,i
1N0>1

]
+ C

log(N)

N
. (60)

Furthermore, for all i ∈ Y, we have

E
[∥∥∥b̂i − b∗AN0

,i

∥∥∥
n,i
1N0>1

]
≤ E

[∥∥∥b̂i − b∗ANi
,i

∥∥∥
n,i
1Ni>1

]
+ E

[∥∥∥b∗ANi
,i − b∗AN0

,i

∥∥∥
n,i
1N0>1

]
≤ E

[∥∥∥b̂i − b∗ANi
,i

∥∥∥
n,i
1Ni>1

]
+ ∥b∗i ∥∞ sup

t∈[0,1]
P ({ANi ≥ |Xt| > AN0} ∩ {N0 > 1})

≤ E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥
n,i
1Ni>1

]
+ Cb∗ sup

t∈[0,1]

∑
j ̸=i

P
(
{|Xt| > ANj} ∩ {Nj > 1}

)
.

We deduce from Equations (59) and (60) that there exists a constant C > 0 depending on Cb∗ ,K and
p0 such that

E [R(ĝ)−R(g∗)] ≤ C

(
1√
N

+ exp
(√

c log(N)
) K∑

i=1

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥
n,i
1Ni>1

])

+ C exp
(√

c log(N)
)

sup
t∈[0,1]

K∑
i=1

P ({|Xt| > ANi} ∩ {Ni > 1}).
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Under the Assumptions of the Proposition and according to Theorem 4.6, there exist two constants
C1, C2 > 0 such that ∀i ∈ Y,

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥
n,i
1Ni>1

]
≤ C1 log

3β(N)N−β/(2β+1)

and we deduce from Lemma 7.5 with q = 3/2, for all i ∈ Y, and for all t ∈ [0, 1],

P({|Xt| > ANi} ∩ {N0 > 1}) = E [P({|Xt| > ANi} ∩ {Ni > 1}|1Y1=i, · · · ,1YN=i)]

≤ C2E

[
1Ni>1

ANi

exp

(
−
A2

Ni

3

)]
.

Thus, we obtain

E [R(ĝ)−R(g∗)] ≤ C

(
exp

(
2
√

c log(N)
)
N−β/(2β+1) +

K∑
i=1

E

[
1Ni>1 exp

(
−
A2

Ni

3

)])

where C > 0 is a constant depending on β,Cb∗ ,K, p∗0. Finally, choosing ANi =
√

3β
2β+1 log(Ni) for each

i ∈ Y leads to the attended result applying the Jensen’s inequality together with Lemma 4.1 in Györfi
et al. (2006).

Proof of Theorem 4.9 . From Theorem 3.1, as we assumed σ∗(.) = 1, the excess risk of ĝ satisfies

E [R(ĝ)−R(g∗)] ≤ C

(
√
∆+

1

p∗0
√
N

+
K∑
i=1

E
[∥∥∥b̂i − b∗i

∥∥∥
n
1Ni>1

]
+

K∑
i=1

P(Ni ≤ 1)

)
(61)

where the constant C > 0 depends on b∗ = (b∗1, · · · , b∗K) and K. For each i ∈ Y, we have

P(Ni ≤ 1) ≤ 2N(1− p∗0)
N−1

and

E
[∥∥∥b̂i − b∗i

∥∥∥
n
1Ni>1

]
≤

√
E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n
1Ni>1

]
+ E

[∥∥∥b∗i1[−ANi
,ANi

]c

∥∥∥2
n
1Ni>1

]
Using the Cauchy-Schwarz inequality and Assumption 2.1, there exists a constant C ′ > 0 such that

E
[∥∥∥b∗i1[−ANi

,ANi
]c

∥∥∥2
n
1Ni>1

]
≤ C ′

√
sup
t∈[0,1]

P({|Xt| > ANi} ∩ {Ni > 1}).

Thus, for all i ∈ Y, we obtain

E
∥∥∥b̂i − b∗i

∥∥∥
n
≤
√

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n
1Ni>1

]
+ C ′

√
sup
t∈[0,1]

P({|Xt| > ANi} ∩ {Ni > 1}). (62)

For each label i ∈ Y,

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n
1Ni>1

]
=E

(
1Ni>1

∫ ANi

−ANi

(
b̂i − b∗ANi

,i

)2
(x)fn,Y (x)dx

)
+

2 log3(N)

n

40



where

fn,Y (x) :=
1

n

n−1∑
k=1

pY (k∆, x).

From the proof of Lemma 4.5, under Assumption 2.1, there exist constants C1, C2 > 0 such that on
the event {Ni > 1},

∀x ∈ [−ANi , ANi ], fn,Y (x) ≥
C1

log(N)
exp

(
−

2A2
Ni

3(1− log−1(N))

)
≥ C2

log(N)
exp

(
−2

3
A2

Ni

)
a.s

and from Lemma 7.4 there exists another constant C0 > 0 such that fn,Y (x) ≤ C0 for all x ∈ R. Then
we have

∀i ∈ Y, ∀x ∈ [−ANi , ANi ],
fn,Y (x)

fn,i(x)
≤ C0

C2
log(N) exp

(
2

3
A2

N

)
.

Then, for all i ∈ Y, we obtain

E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n
1Ni>1

]
≤ E

[
1Ni>1

∫ ANi

−ANi

(
b̂i − b∗ANi

,i

)2
(x)fn,i(x)

fn,Y (x)

fn,i(x)

]
+

2 log3(N)

n

≤ C0

C2
log(N) exp

(
2

3
A2

N

)
E
[∥∥∥b̂i − b∗ANi

,i

∥∥∥2
n,i
1Ni>1

]
+

2 log3(N)

n
.

From Theorem 4.6, Equation (62) and for n ∝ N , there exists a constant C3 > 0 such that

E
[∥∥∥b̂i − b∗i

∥∥∥
n
1Ni>1

]
≤ C3

√
exp

(
2

3
A2

N

)
log6β+1(N)N

− 2β
2β+1 +

√
sup
t∈[0,1]

P({|Xt| > ANi} ∩ {Ni > 1}).

Using the Markov inequality, for all t ∈ [0, 1], we have

P({|Xt| > ANi} ∩ {Ni > 1}) =E
[
P
(
{exp(4|Xt|2) > exp(4A2

Ni
)} ∩ {Ni > 1}|1Y1=i, · · · ,1YN=i

)]
≤E

[
exp(4|Xt|2)

]
E
[
exp(−4A2

Ni
)1Ni>1

]
and since σ∗(.) = 1 and under Assumption 4.8, there exists a constant C∗ > 0 such that E

[
exp(4|Xt|2)

]
≤

C∗ (according to Gobet (2002), Proposition 1.1). Thus, there exists a constant C > 0 such that

E
[∥∥∥b̂i − b∗i

∥∥∥
n
1Ni>1

]
≤ C

(
exp

(
1

3
A2

N

)
log3β+1(N)N−β/(2β+1)

)
+ CE

[
exp(−4A2

Ni
)1Ni>1

]
. (63)

From Equations (63) and (61), we finally obtain

E [R(ĝ)−R(g∗)] ≤ C log3β+1(N)N−3β/4(2β+1)

with ANi =
√

3β
4(2β+1) log(Ni) and C > 1 a new constant.
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Appendix

Proof of Lemma 7.1. Let s, t ∈ [0, 1] with s < t, and q ≥ 1. By convexity of x 7→ |x|2q, we have

|Xt −Xs|2q ≤ 22q−1

(∣∣∣∣∫ t

s
b∗Y (Xu)du

∣∣∣∣2q + ∣∣∣∣∫ t

s
σ(Xu)dWu

∣∣∣∣2q
)

Then, from Jensen’s inequality, we have∣∣∣∣∫ t

s
b∗Y (Xu)du

∣∣∣∣2q ≤ (t− s)2q−1

∫ t

s
|b∗Y (Xu)|2q du,

Hence, under Assumption 2.1 on function b∗Y , we deduce that

E

[∣∣∣∣∫ t

s
b∗Y (Xu)du

∣∣∣∣2q
]
≤ Cq(t− s)2q

(
1 + E

[
sup
t∈[0,1]

|Xs|2q
])

,

and using Burkholder-Davis-Gundy inequality, we obtain

∀m > 0, E

[(∫ t

s
σ(Xu)dWu

)2m
]
≤ CmE

[(∫ t

s
σ2(Xu)du

)m]
≤ Cmσ2m

1 (t− s)m.

From the above equalities, we get
Finally, as the process has finite moments, we obtain that

E |Xt −Xs|2q ≤ C(t− s)q

where C is a constant depending on q, L0, and σ1.

Proof of Lemma 4.5 . For all i ∈ Y and on the event {Ni > 1}, let us consider a vector(
x−M , · · · , xKNi

−1

)
∈ RKNi

+M such that xj ∈ [uj+M , uj+M+1) and Bj,M,u(xj) ̸= 0. Since
[uj+M , uj+M+1) ∩ [uj′+M , uj′+M+1) = ∅ for all j, j′ ∈ {−M, · · · ,KNi − 1} such that j ̸= j′, then
for all j, j′ ∈ {−M, · · · ,KNi − 1} such that j ̸= j′, Bj,M,(u)(xj′) = 0. Consequently, we obtain:

det
(
(Bℓ,M,u(xℓ′))−M≤ℓ,ℓ′≤KNi

−1

)
= det

(
diag

(
B−M,M,u(xM ), · · · , BKNi

−1,M,u(xKNi
−1)
))

=

KNi
−1∏

ℓ=−M

Bℓ,M,u(xℓ) ̸= 0.

Then, we deduce from Comte & Genon-Catalot (2020a), Lemma 1 that the matrix ΨKNi
is invert-

ible for all KNi ∈ KNi , where the interval [−ANi , ANi ] and the function fT is replaced by fn : x 7→
1
n

∑n−1
k=0 p(k∆, x) with λ([−ANi , ANi ] ∩ supp(fn)) > 0, λ being the Lebesgue measure.

For all w ∈ RKNi
+M such that ∥w∥2,KNi

+M = 1, we have:

w′ΨKNi
w = ∥hw∥2n =

∫ ANi

−ANi

h2w(x)fn(x)dx+
h2w(x0)

n
with hw =

KNi
−1∑

ℓ=−M

wℓBℓ,M,u.

Since σ∗ = 1, according to Lemma 7.5, under Assumption 2.1, the transition density satisfies:

∀(t, x) ∈ (0, 1]×R,
1

Kq

√
t
exp

(
−(2q − 1)x2

2qt

)
≤ p(t, x) ≤ Kq√

t
exp

(
− x2

2qt

)
where Kq > 1 and q > 1.
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We set q = 3/2, thus, since s 7→ exp
(
−(2q − 1)x2/2qs

)
is an increasing function, we have on the

event {Ni > 1} and for all x ∈ [−ANi , ANi ],

fn(x) ≥
1

Cn

n−1∑
k=1

exp

(
− 2x2

3k∆

)
≥ 1

C

∫ (n−1)∆

0
exp

(
−2x2

3s

)
ds

≥ 1

C

∫ 1−2−1 log−1(Ni)

1−log−1(Ni)
exp

(
−2x2

3s

)
ds

≥ 1

2C log(Ni)
exp

(
−

2A2
Ni

3(1− log−1(Ni))

)
.

Finally, since there exists a constant C1 > 0 such that ∥hw∥2 ≥ C1ANiK
−1
Ni

(see Denis et al. (2021),
Lemma 2.6), for all w ∈ RKNi

+M such that ∥w∥2,KNi
+M = 1, there exists constants C ′, C > 0 such

that,

w′ΨKNi
w ≥ C ′ANi

KNi log(Ni)
exp

(
−

2A2
Ni

3(1− log−1(Ni))

)
≥ CANi

KNi log(Ni)
exp

(
−2

3
A2

Ni

)
.

Furthermore, we set w0 = eKNi
−1 ∈ RKNi

+M where for all ℓ ∈ [[−M,KNi − 1]],

[
eKNi

−1

]
ℓ
:= δℓ,KNi

−1 =

{
0 if ℓ ̸= KNi − 1

1 else.

We have,

w′
0ΨKNi

w0 =

∫ ANi

−ANi

B2
KNi

−1,M,u(x)fn(x) +
BKNi

−1,M,u(0)

n

≤ C

n

n−1∑
k=1

1√
k∆

exp

(
−
u2KNi

−1

3k∆

)∥∥∥BKNi
−1,M,u

∥∥∥2 + 1

n

≤
CC1ANiK

−1
Ni

n

n−1∑
k=1

1√
k∆

exp

(
−

α2
Ni

3k∆

)
+

1

n

where αNi = ANi(KNi − 2)/KNi ,
∥∥∥BKNi

−1,M,u

∥∥∥2 ≤ C1ANiK
−1
Ni

(see Denis et al. (2021), Lemma 2.6)

and C1 > 0 is a constant. Since the function s 7→ exp
(
−α2

Ni
/3s
)
/
√
s is increasing, we deduce that

n−1
n−1∑
k=1

1√
k∆

exp
(
−α2

Ni
/3k∆

)
≤ n−1

n−1∑
k=1

exp
(
−α2

Ni
/3
)
,

and for N large enough,

w′
0ΨKNi

w0 ≤
CANi

KNi

exp

(
−
A2

Ni

3

(
KNi − 2

KNi

)2
)

+
1

n
≤ C ′ANi

KNi

exp

(
−
A2

Ni

3

(
KNi − 2

KNi

)2
)

where C ′ > 0 is a constant and n ≥ N ≥ Ni.
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Proof of Lemma 7.8 . Let us remind the reader of the Gram matrix ΨKNi
given in Equation (14)

for i ∈ Y,

ΨKNi
= E

[
1

Nin
B′

KNi
BKNi

]
= E

(
Ψ̂KNi

)
where, on the event {Ni > 1}, and denoting by Ii := {i1, . . . , iNi} the indices j such that Yj = i,

BKNi
:=



B−M

(
Xi1

0

)
. . . . . . BKNi

−1

(
Xi1

0

)
...

...
B−M

(
Xi1

(n−1)∆

)
. . . . . . BKNi

−1

(
Xi1

(n−1)∆

)
...

...
B−M

(
X

iNi
0

)
. . . . . . BKNi

−1

(
X

iNi
0

)
...

...
B−M

(
X

iNi

(n−1)∆

)
. . . . . . BKNi

−1

(
X

iNi

(n−1)∆

)


∈ RNin×(KNi

+M). (64)

The empirical counterpart Ψ̂ is the random matrix given by Ψ̂KNi
of size (KNi +M)× (KNi +M) is

given by

Ψ̂KNi
:=

1

Nin
B′

KNi
BKNi

=

 1

Nin

Ni∑
j=1

n−1∑
k=0

Bℓ(X
ij
k∆)Bℓ′(X

ij
k∆)


ℓ,ℓ′∈[−M,KNi

−1]

. (65)

We build an orthonormal basis θ = (θ−M , · · · , θKNi
−1) of the subspace SKNi

,M with respect to the L2 in-
ner product ⟨., .⟩ through the Gram-Schmidt orthogonalization of the spline basis (B−M , · · · , BKNi

−1).
Then, we have

Span(B−M , · · · , BKNi
−1) = Span(θ−M , · · · , θKNi

−1) = SKNi
,M

and the matrix given in Equation (64) is factorized as follows

BKNi
= ΘKNi

RKNi
(66)

where

ΘKNi
=

((
θℓ(X

ij
0 ), θℓ(X

ij
∆), · · · , θℓ(X

ij
n∆)
)′)

1≤j≤Ni
−M≤ℓ≤KNi

−1

∈ RNin×(KNi
+M)

and RKNi
is an upper triangular matrix of size (KNi +M)× (KNi +M) see Leon et al. (2013)). Let

ΦKNi
be the Gram matrix under the orthonormal basis θ =

(
θ−M , · · · , θKNi

−1

)
and given by

ΦKNi
= E

[
1

Nin
Θ′

KNi
ΘKNi

]
= E

(
Φ̂KNi

)
where,

Φ̂KNi
:=

1

Nin
Θ′

KNi
ΘKNi

=

 1

Nin

Ni∑
j=1

n−1∑
k=0

θℓ(X
ij
k∆)θℓ′(X

ij
k∆)


ℓ,ℓ′∈[−M,KNi

−1]

. (67)
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The matrices ΨKNi
and Ψ̂KNi

are respectively linked to the matrices ΦKNi
and Φ̂KNi

through the
following relations

ΨKNi
= R′

KNi
ΦKNi

RKNi
and Ψ̂KNi

= R′
KNi

Φ̂KNi
RKNi

Since for all h =
∑KNi

−1

i=−M aiBi,M,u ∈ SKNi
,M one has

∥h∥2n,Ni
= a′Ψ̂KNi

a and ∥h∥2n,i = a′ΨKNi
a, with a =

(
a−M , · · · , aKNi

−1

)′
,

we deduce that

∥h∥2n,Ni
= w′Φ̂KNi

w and ∥h∥2n,i = w′ΦKNi
w, with w = RKNi

a.

Under Assumption 2.1, we follow the lines of Comte & Genon-Catalot (2020c) Proposition 2.3 and
Lemma 6.2. Then,

sup
h∈SKNi

,M ,∥h∥n,i=1

∣∣∥h∥2n,Ni
− ∥h∥2n,i

∣∣ = sup

w∈RKNi
+M

,

∥∥∥∥Φ1/2
KNi

w

∥∥∥∥
2,KNi

+M

=1

∣∣∣w′
(
Φ̂KNi

− ΦKNi

)
w
∣∣∣

= sup
u∈RKNi

+M
,∥u∥2,KNi

+M=1

∣∣∣u′Φ−1/2
KNi

(
Φ̂KNi

− ΦKNi

)
Φ
−1/2
KNi

u
∣∣∣

=
∥∥∥Φ−1/2

KNi
Φ̂KNi

Φ
−1/2
KNi

− IdKNi
+M

∥∥∥
op

.

Therefore,

Ωc
n,Ni,KNi

=

{∥∥∥Φ−1/2
KNi

Φ̂KNi
Φ
−1/2
KNi

− IdKNi
+M

∥∥∥
op

> 1/2

}
.

Then, we apply here Theorem 1 of Cohen et al. (2013), it yields

Pi

(
Ωc
n,Ni,KNi

)
≤ 2(KNi +M) exp

(
−c1/2

Ni

L(KNi +M)(∥Φ−1
KNi

∥op ∨ 1)

)
(68)

with c1/2 = (3 log(3/2) − 1)/2 and L(KNi + M) := sup
x∈[−ANi

,ANi
]

∑KNi
−1

ℓ=−M θ2ℓ (x) (from application of

Lemma 6.2 from Comte & Genon-Catalot (2020b)). For all h =
∑KNi

−1

ℓ=−M wℓθℓ ∈ Span
(
θ−M , · · · , θKNi

−1

)
=

SKNi
,M , we have

∥h∥2 = ∥w∥22,KNi
+M and ∥h∥2n,i = 1 implies w = Φ

−1/2
KNi

u where u ∈ RKNi
+M : ∥u∥2,KNi

+M = 1.

We deduce that

sup
h∈SKNi

+M , ∥h∥2n,i=1

∥h∥2 = sup
u∈RKNi

+M
,∥u∥2,KNi

+M=1

u′Φ−1
KNi

u =
∥∥∥Φ−1

KNi

∥∥∥
op

.

Furthermore, for all h =
∑KNi

−1

ℓ=−M aℓBℓ ∈ Span
(
B−M , · · · , BKNi

−1

)
= SKNi

,M , we have on one side

∥h∥2n,i = 1 implies a = Ψ
−1/2
KNi

u where u ∈ RKNi
+M : ∥u∥2,KNi

+M = 1
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and on the other side, for all h ∈ SKNi
+M such that ∥h∥2n,i = 1, from Denis et al. (2021) Lemma 2.6,

there exists a constant C > 0 such that,

∥h∥2 ≤ CANiK
−1
Ni

∥a∥22,KNi
+M = CANiK

−1
Ni

u′Ψ−1
KNi

u.

Then we have a.s∥∥∥Φ−1
KNi

∥∥∥
op

= sup
h∈SKNi

+M , ∥h∥2n,i=1

∥h∥2 ≤ CANi

KNi

sup
u∈RKNi

+M
,∥u∥2,KNi

+M=1

u′Ψ−1
KNi

u =
CANi

KNi

∥∥∥Ψ−1
KNi

∥∥∥
op

.

(69)
From Equations (68), (15) and (69), there exists a constant C > 0 such that

Pi

(
Ωc
n,Ni,KNi

)
≤ 2(KNi +M) exp

(
−C

KNi log
2(Ni)

ANiL(KNi +M)

)
. (70)

Then, as L(KNi + M) := sup
x∈[−ANi

,ANi
]

∑KNi
−1

ℓ=−M θ2ℓ (x) ≤ sup
x∈R

∑KNi
−1

ℓ=−M θ2ℓ (x) a.s. and the functions θℓ

bounded, there exists a constant Cθ depending on the orthonormal basis θ =
(
θ−M , · · · , θKNi

−1

)
such

that L(KNi +M) ≤ CθKNi . Furthermore, since ANi ≤
√

3β
2β+1 log(Ni), we obtain from Equation (70),

Pi

(
Ωc
n,Ni,KNi

)
≤ 2(KNi +M) exp

(
−C log3/2(Ni)

)
(71)

where C > 0 is a new constant depending on Cθ, β and M . Since Ni −→ ∞ a.s. as N −→ ∞, one has

exp
(
log(Ni)− C log3/2(Ni)

)
−→ 0 a.s. as N −→ ∞.

Then, for N large enough, exp
(
log(Ni)− C log3/2(Ni)

)
≤ 1 a.s. and from Equation (71),

Pi

(
Ωc
n,Ni,KNi

)
≤ 2(KNi +M)

Ni
≤ c

KNi

Ni

where the constant c > 0 depends on M .
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