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Abstract

Due to the rapid growth of the Internet of Things (IoT), secure communica-
tion is becoming a significant concern. Nodes that compose such a dynamic
network need to exchange sensitive and valuable data. The data must be
kept safe against attacks. This protection requires the development of effi-
cient key management protocols. However, this task is challenging because
of the high resource constraints of most IoT devices in terms of storage, com-
munication, processing, and energy capabilities. Some existing key manage-
ment techniques have certain weaknesses since sensitive parameters are not
protected during transmission, and cryptographic keys are stored in plain
text and usually renewed at a fixed period of time. This paper proposes
a new key management protocol aiming to secure communications before
and after key establishment. Our scheme uses hash and one-one functions
to achieve security during the key establishment process. The symmetrical
character of the invertible functions is thus exploited to conceal critical data
and pairwise keys stored in nodes’ memories. Moreover, the key refresh pe-
riod is variable, which can be adjusted according to the number of occurred
attacks in the network. BAN (Burrows Abadi Needham) logic is employed
to assess the correctness of the proposed scheme. The results show that our
scheme operates correctly and does not have redundancies or security flaws.
Furthermore, the security and performance analysis point out that the pro-
posed scheme is resilient against well-known attacks, and efficient in terms of
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storage, communication, computation overhead, and energy consumption.

Keywords: Security, Key management, IoT, Inverse function, BAN logic
Variable refresh period, Hash function, One-one function

1. Introduction

Internet of Things (IoT) refers to a system that interconnects various
types of autonomous and heterogeneous everyday objects. These devices
are connected to the Internet and are provided with unique identifiers and
communication capabilities. This allows them to exchange data with each
other and with their environment over a network without any human inter-
vention [1]. IoT belongs to the dynamic networks category since its compo-
sition is not fixed and frequently changes following the addition and deletion
of nodes after deployment. The goal is to extend the network and replace
faulty nodes [2]. These networks have gained a lot of interest due to their
wide range of application fields, including health care, smart home, smart
cities, environment, agriculture, etc.

Devices that compose such a dynamic network sometimes have to ex-
change sensitive data. For instance, in a healthcare scenario, the sensors
collect and transmit patients’ physiological data toward the server to be
reachable and analyzed by doctors. So, two legitimate entities need to com-
municate securely. An adversary may try to intercept, alter or delete ex-
changed sensitive data. Securing such communication is a real challenge.
Nodes mainly communicate over vulnerable wireless channels, subject to
passive and active attacks. Devices have high resource constraints in stor-
age, processing, communication, and energy capabilities. Heterogeneity in
terms of resources and dynamic topology resulting from nodes’ mobility and
frequent changes in network composition, etc. To provide security, one or
more cryptographic keys is required. However, key management is complex,
including key establishment, distribution, revocation, renewal, and addition.

Several security solutions have been proposed in the literature to address
the issue of key management in dynamic networks. However, most of them
suffer from two main problems that must be fulfilled. The first one is that
sensitive parameters such as nodes’ and keys’ identifiers are usually trans-
mitted alone and in clear text during the keys discovery phase. This is a
point of weakness that may be exploited by an adversary to easily attack
the network by doing man-in-the-middle and denial of service (DoS) attacks.
Thus, recipient nodes cannot detect changes that an attacker might make
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during the transmission of these sensitive data over an insecure wireless com-
munication channel. The second problem is that keys are always renewed
at a specific moment. The key refresh period is fixed and does not adapt to
the network’s dynamic over time. An attacker only needs to compromise a
node once to obtain this information. Consequently, he or she only has to
strengthen his or her attack during its expiration in order to succeed.

This paper proposes a new key management scheme, termed IFKMS
(Inverse Function-based Key Management Scheme for IoT networks), which
corrects the previously highlighted shortcomings of some existing solutions.
The main objective is to support both resilience and efficiency. In fact,
the proposed scheme mainly uses one-one functions to conceal the stored
keys and the sensitive data sent over an insecure channel before the key
establishment phase. The critical parameters are thus never sent alone,
but coupled with other information, which gives the recipient the ability to
detect any message alteration. Moreover, our scheme uses a variable refresh
period, which increases resilience because not only it adds difficulties to the
adversary to find out the value of the refresh period, but also the current
keys are frequently refreshed in the presence of attacks. It also improves
efficiency since nodes save their energy in the absence of attacks.

The main features of the proposed key management scheme are enumer-
ated in the following points:

– The proposal better secures communications between different legiti-
mate entities not only after pairwise keys establishment, but also dur-
ing this process;

– The sensitive data are never sent in plain text but always transmitted
in a secure manner. Indeed, the data is hidden by using both one-one
and hash functions or encrypted with the established pairwise keys;

– The established pairwise keys are protected using invertible functions
associated with nodes before their storage;

– The refresh period is not fixed and can be dynamically adjusted accord-
ing to the number of occurred attacks. In fact, this period increases
if no attacks are detected and decreases otherwise. As a result, our
scheme supports both efficiency and resilience;

– Efficiency in terms of energy consumption is guaranteed because
in the absence of attacks, the constrained devices must wait for
a long time before renewing their secret keys;
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– Resilience is also ensured because the secret keys are frequently
refreshed in the presence of attacks;

– The key revocation phase does not require any exchange of messages
between current members, which considerably reduces costs in terms
of communication and energy consumption;

– The proposed scheme allows node addition and revocation after the
initial deployment phase.

The proposed scheme can be used in many areas, including the Medical
Internet of Things, where wearable devices and sensors continuously collect
patient physiological data, and securely transmit it to the server so that
doctors can access and process it in real-time. This allows them to intervene
in time and thus improve patients care.

The remainder of this paper is organized as follows. Section 2 recalls
some basic mathematical concepts used in this paper. An overview of some
related works is given in Section 3. Our proposed key-management scheme
is described in detail in Section 4. Section 5 discusses the scheme’s formal
and informal security analysis. Section 6 highlights the performance eval-
uation of our scheme compared with recent existing schemes according to
storage, communication, computation costs, and energy consumption. Fi-
nally, Section 7 concludes the paper and gives some future directions.

2. Mathematical preliminaries

This section briefly gives the basic concepts of one-one and inverse func-
tions used in our scheme for security purposes.

2.1. One-one function

A one-one function f is a function where each element x in the domain
Df corresponds exactly to one element, called image y = f(x) in the range
or co-domain Rf and vice versa. This means, no two different elements in
the domain of f have the same image in the range, and no element y in the
range is the image of more than one element x in the domain. A one-one
function f can therefore be expressed as :
if f(x1) = f(x2) =⇒ x1 = x2, or equivalently,
if x1 ̸= x2 =⇒ f(x1) ̸= f(x2).
It is important to note that only one-one functions have an inverse that is
also a one-one function.
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2.2. Inverse of one-one function

The inverse of a one-one function f with domain Df and range Rf, de-
noted f−1, is the function with domain Rf and range Df, which is defined
by f−1(y) = x for any y = f(x) in the range of f. In other words, the inverse
function f−1 of f is defined as: {(y, x)|(x,y) ∈ f}, that means f−1 is obtained
by interchanging the coordinates in each ordered pair of f.

2.3. Properties of one-one function

The main properties of an invertible function f are listed as follows:

– The domain of f equals to the range of f−1(Df = Rf−1) and the range
of f equals to the domain of f−1(Rf = Df−1).

– Each function reverses what the other function does. That means,
f−1(f(x)) = x for all x in the domain of f and f(f−1(x)) = x for all x
in the domain of f−1.

– The graph of an invertible function and the graph of its inverse are
symmetric with respect to the line y = x. That means, (x,y) is on the
graph of f if and only if (y, x) is on the graph of f−1.

– Strong-collision resistance: It is impossible to find two different input
values that give the same output or image.

3. Related work

This section reviews some related works presented in the literature to ad-
dress key management issue in dynamic networks. These key establishment
schemes can be classified into two main categories, namely probabilistic and
deterministic. This paper mainly focuses on key pool-based, polynomial
pool-based, and hybrid schemes. The last technique consists on the combi-
nation of both key and polynomial pool-based schemes.

In [2], the authors proposed a random key pre-distribution scheme (RKP)
for sensor networks, called the basic scheme. Before deployment, each sensor
is assigned a subset of keys, called key ring, randomly chosen from a large
key pool. Every node broadcasts the list of keys’ identifiers belonging to its
key ring in the key discovery phase. Any pair of sensors share at least one
key with a certain probability. If they do not find a common key, a path key
is established by relying on an intermediate node, which has a common key
with both sensors. The main drawback of this scheme is its resilience to node
capture attack. Since the keys are chosen randomly from the same key pool,
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more than one pair of nodes may share the same key. Hence, compromising
a node affects its links and some other links in the network. Thus, when
the number of compromised nodes increases, the fraction of affected links
quickly increases. In addition, whenever the key identifiers are sent in clear
text during key discovery, an attacker could use them to launch attacks.

A key management scheme based on symmetric polynomial is presented
by Blundo et al. [3]. The idea is that a server selects a symmetric bivariate
polynomial P(x,y) of degree t with coefficients randomly chosen over Fq,
where q is a prime number large enough q > n. The server gives each user
i the polynomial P(i,y), which is obtained by evaluating the initial polyno-
mial P(x,y) at point x = i. The scheme enables a pair of sensors i and j

to establish a pairwise key by evaluating P(i, j) and P(j, i) respectively. The
scheme is t-secure since it can resist to t captured nodes. Moreover, it does
not require any communication during pairwise keys establishment. How-
ever, when the network size increases, an adversary may easily compromise
more than t sensors, which may compromise the whole network.

Liu et al. [4], proposed a framework for polynomial pool-based key pre-
distribution that enables two sensors to establish a pairwise key between
them. This scheme is similar to the probabilistic key distribution or key
pool [2] when the degree of all the polynomials is equal to zero, and it is
equivalent to the polynomial-based key pre-distribution protocol [3] when
the size of the polynomial pool is equal to one. The scheme provides better
security when compared to the previous ones. It is more resilient to a node
capture attack since an attacker has to find out more than t shares of the
same polynomial to be able to disclose pairwise keys of non-compromised
nodes. In addition, unlike the previous scheme, the same key is never shared
by multiple couples of sensors. However, some sensitive data like polynomial
IDs are sent in clear text during polynomial share discovery.

An efficient multi-party key management scheme (EKM) for securing
group communication in resources constrained networks is proposed by Mah-
mood et al. [5]. The network is first organized into clusters. After receiving
an encrypted identifier from each member, cluster heads perform XOR op-
erations on the subset of randomly picked hash values of these identifiers to
generate the polynomial. The latter is then securely sent to members. The
scheme preserves the anonymity of nodes because their identifiers are not
transmitted in clear text. When generating the polynomial, it also reduces
computation cost by performing light XOR operations instead of expensive
multiplication. Moreover, EKM allows node addition and migration. How-
ever, its communication overhead remains high, and the polynomial needs
to be refreshed after each node addition or deletion. Furthermore, too many
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operations are still performed by cluster heads, which may become a point
of weakness for the network.

The authors in Kumar et al. [6] presented a k-degree multivariate polynomial-
based session key computation protocol for securing communication in a
dynamic group called NISKC. The scheme is non-interactive because the
session key is computed at the group members’ side without exchanging
them. Initially, a trusted server generates polynomial shares for every mem-
ber who wants to participate in group communication. The private values of
group members constitute the polynomial variables. The polynomial shares
are then securely distributed to participants. The latter have to insert their
values into the polynomial to be able to compute a common session key.
The scheme allows new members to join and current ones to leave the group
during the communication process. The scheme also reduces the communi-
cation and computation overhead during the generation of the symmetric
session key. However, the polynomial must be regenerated every time there
is a change in group membership.

The authors in [7] proposed a key establishment scheme for wireless sen-
sor networks based on both polynomial and probabilistic key pre-distribution
schemes. Before network deployment, the server generates a polynomial and
key pools. Each polynomial and key are assigned with a distinct identifier.
The server randomly assigns a set of polynomials shares and keys with their
corresponding identifiers for each sensor. Two nodes can establish a commu-
nication key if they have at least one shared key, a common polynomial, or
the pre-loaded keys of one node are computed using the polynomial shares
selected for the other node. This scheme provides better resilience against
node capture attacks than the previous works. However, it requires a large
amount of memory to store keys and polynomial shares. In addition, the
more polynomials and keys are stored in each node, the greater the con-
nectivity and the lower the security. Thus, a trade-off between storage,
connectivity, and resilience to node capture attacks must be established.

Lu et al. proposed in [8] a distributed key management framework in het-
erogeneous wireless sensor networks. The proposed framework is based on a
random key pre-distribution scheme and a polynomial key pre-distribution
scheme. The network is divided into several classes, where each class con-
tains sensors having the same resource capabilities. The lower class holds
the least powerful nodes, and the higher one includes larger resource nodes
in terms of communication, processing, and energy capabilities. Like previ-
ous key establishment schemes, this framework also consists of three phases:
initialization, direct key, and path key setup. In the first step, the server
considers the heterogeneity features of sensor nodes when distributing them
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polynomial shares. Direct and path keys are then established during the
second and third steps, respectively. Classifying sensors based on their com-
munication ranges, processing capability, and energy levels helps designing
the network. However, the authors do not present how these classes are
formed and how classes evolve through the network lifetime when the en-
ergy levels of sensors decrease.

In Manasrah et al. [9], a key management scheme in wireless sensor net-
works (WSN) is proposed. The scheme combines polynomial pool-based
and matrix-based schemes and uses the block LU decomposition algorithm
presented in [10]. This approach consists of three phases, namely polyno-
mial pool generation, polynomials pre-distribution, and key generation. In
the first phase, a large pool of bivariate symmetric t-degree polynomials
is generated by the base station. In the second phase, an n by n matrix
is constructed from a set of polynomials chosen from the pool, where n is
the size of the network. An LU decomposition of the obtained matrix is
then performed. Each sensor i is pre-loaded with a rowi of the matrix L

and the corresponding columni of the matrix U, as well as the univariate
polynomial P(i,y). In the last phase, two sensors generate a common key
after authenticating each other by exchanging their identifiers and the rows
of their L matrices. In this scheme, each sensor needs to store (t + 1) coef-
ficients of the polynomial and N/2 elements of the row of the matrix L and
the same number of the column of the matrix U. However, this approach
did not address new node addition, key renewal, and revocation that are
important in WSNs.

Ashwag Albakri et al. [11] proposed a new polynomial-based key distri-
bution scheme in hierarchical WSN. The proposed scheme aims to reduce
the impact of sensor capture attacks. The scheme includes three phases
that are token generation, key establishment, and revocation. Three types
of polynomials are used: trivariate, bivariate, and univariate, which are
held respectively by the sink, cluster heads, and sensors. Sensors’ tokens
are generated using a trivariate polynomial F(x,y, z) and a prime number
p. The parameters x, y, and z are of degree (k − 1), (t − 1), and (h − 1),
respectively. Two types of keys are also employed: unicast and broadcast
keys. The scheme requires low communication overhead, and its resistance
to node capture attack is mainly related to the thresholds k, t, and h. The
scheme withstands the capture of (k−1) cluster heads (CH). In other words,
if more than k CH are captured, an attacker can reconstruct the trivariate
polynomial and thus compromise the whole network. Moreover, if at least t
sensors of the same cluster are captured, an attacker can recover the bivari-
ate polynomial and thus compromise all the clusters. However, the addition
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of new nodes to the network is not considered in this scheme.
A distributed and dynamic key management scheme for homogeneous

wireless sensor networks has been introduced in [12]. This scheme uses three
types of keys: network key shared by all the sensors, cluster key known only
to the cluster’s members, and pairwise key established by a couple of nodes.
Every node is pre-loaded with a recursive function with the first term. It is
also assigned with m keys picked from m selected key chains. Two nodes can
securely communicate if they share a common key or establish a pairwise
key using the nonconvergent numerical sequence. The scheme is scalable and
efficient in terms of communication overhead. It also allows node addition
and key refresh. However, the storage overhead remains high.

A new set of hybrid hierarchical key distribution protocols in the context
of smart cities, called H2KD are proposed in [13]. The scheme uses both
elliptic curve and symmetric cryptography. It is composed of four phases,
which are key pre-deployment, key initialization, key establishment and key
updating. Required parameters are first distributed to the nodes during the
first and second phases. Master, public/private and session keys are then
established at the third phase. New keys are generated in the last phase
when a mobile node changes its location. The scheme supports mobility,
heterogeneity, scalability and resilience. However, some messages are trans-
mitted in clear text during key updating phase for instance. As a result, an
adversary could easily alter them in order to disturb the key establishment
process.

Recently, a new key establishment scheme based on Rabin cryptosystem
is proposed in [14]. The Rabin cryptosystem is an asymmetric encryption al-
gorithm which relies on integer factorization problem. The proposed scheme
is considered in a smart home IoT application where a trustworthy third
party initializes the system and registers all devices in the smart home. The
third party generates keys and a hash function is used to register devices.
Then, different steps for establishing session keys are described to secure
communication. The proposed scheme lacks an energy evaluation for the
use of an asymmetric cryptography algorithm. The presence in the network
of a trusted third entity does not apply to all IoT network applications more
precisely where the devices are deployed in hostile places. In addition, the
proposed scheme is vulnerable to integer factorization attacks.

More recently, authors in [15] presented a key distribution method based
on elliptic curve cryptography (ECC) in IoT networks. An improved version
of the well known protocol, called LEACH [16] has also been proposed. The
network is organized into clusters. The proposed method consists of four
phases. First, the number of clusters is identified and cluster-heads are
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selected after authentication of all nodes. Next, IoT nodes use the ECC
method to establish and distribute keys. Then, routing tables are generated.
Finally, the re-keying method is described when the topology of the clusters
changes. A drawback of this method is that the authors do not present
how the number of clusters is identified. In addition, the use of ECC is
still an energy consuming process which can shorten the lifetime of nodes.
Moreover, the re-keying step requires an exchange of messages between IoT
nodes, but the authors do not show its impact on the resources of nodes.

4. IFKMS: Inverse Function-based Key Management Scheme

This section presents our solution for key management in IoT networks
by focusing mainly on the system models, the notations used in this paper,
and the different phases of the proposed scheme.

4.1. System models

This subsection presents the two models adopted in the proposed scheme:
the network and threat models.

4.1.1. Network model

The proposed key management approach uses the network model pre-
sented in [17], which is illustrated in Fig. 1 and includes the following three
components:

– Server node (S): This performs several heavy operations, such as the
computation of the inverse functions corresponding to the selected
invertible functions. Moreover, we assume that the server is equipped
with an Intrusion Detection System (IDS) and can detect attacks.

– Gateway node (G): This acts as an intermediary between the server
and the highly constrained nodes since the latter are not within the
communication range of the server.

– Constrained node (N): these nodes carry out operations that are as
light as possible to preserve their resources.
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Server node (S)

Gateway node (G)

Bi-directed link

Constrained node (N)

Fig. 1 Network model

4.1.2. Threat model

We use the widely known Dolev-Yao threat model [18], where each par-
ticipant transmits messages over an unsecured medium. According to this
model, an adversary may:

– eavesdrop on all the messages sent in an insecure way;

– alter, delete or replay intercepted messages;

– capture any node and have access to its memory.

4.2. Notations

The notations with their corresponding descriptions used in this paper
are illustrated in Table 1.

4.3. Phases of the proposed scheme

The proposed scheme includes five important phases, namely (1) initial-
ization, (2) key establishment, (3) key refresh, (4) node addition, and (5)
key revocation. These phases are detailed below.
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Notation Description

i Identifier of the node i

fi Non-usual invertible function assigned to node i

Df, Rf Domain and range of the function f respectively
f−1
i Inverse function of fi
ri Random number generated by node i

xi || xj Concatenation of xi with xj

Tr Refresh period
Tmin Minimum value of refresh period
Tmax Maximum value of refresh period
Kij Shared key between nodes i and j

{M}k Message M encrypted with the key k

α Security parameter

Table 1 Notations

4.3.1. Initialization phase

The setup phase is carried out for the purpose of initializing IoT devices
with involved key materials prior to network deployment. First, the server
node randomly generates a pool of n invertible functions f over a definition
domain Df, and computes the pool of their corresponding inverse functions,
denoted f−1, where n represents the network size. After that, for each node
i, the server assigns a one-one function fi with its corresponding inverse
function f−1

i . Initially, each device i that compose the network is pre-loaded
with one 3-tuple (i, fi, f

−1
i ) and (n− 1) 2-tuples (j, fj), with j = 1, ...,n and

j ̸= i. The nodes are also pre-distibuted with a common hash function h(),
and the refresh period Tr along with its minimum Tmin and maximum Tmax

values. Note that the refresh period is set to the medium value between the
two last ones, that is Tr = (Tmin + Tmax)/2.

4.3.2. Key establishment phase

The present phase includes two steps: neighbor discovery and pairwise
key generation, which are described in the following.

a) Neighbor discovery
This step is performed for neighborhood discovery purposes. Once the

network deployment is established, each node i proceeds to discover the
adjacent devices within its communication range. This is carried out by
broadcasting its identifier i along with its masked identifier obtained with
its one-one function f−1

i . A node i maintains a neighbors vector vi, wherein
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it stores the received identifiers from the authentic and direct neighbors.
At the end of this step, each node i keeps in its memory only its 3-tuple
(i, fi, f

−1
i ) and the 2-tuples (j, fj), where j ∈ vi, and erases all the remaining

2-tuples.

b) Pairwise key generation
When a node i needs to communicate securely, for the first time, with

its direct neighbors j, it first generates a random number ri. It uses its one-
one function f−1

i to hide this sensitive data by calculating its image. After
that, this node sends a request composed of two parts: the first one includes
its identifier and the masked information, which is the image of both its
identifier i and the secret value ri concatenated together. The second part
contains the hash value obtained after applying the hash function to the
previous concatenated values before being masked.

Nodei → Nodej : Request, i, f−1
i (i || ri),h(i || ri) (1)

Upon receiving this request, the recipient node j uses the appropriate
inverse function fi to extract the initial values hidden by the sender, namely
its identifier and the random number. After that, the node checks whether
that request is not tampered with by an adversary during its transmission. If
the verification is successful, then the latter generates a new random number
rj, and responds with a reply message that also consists of two parts: the
first one is composed of its identifier concatenated with the image of its
identifier j, the nonce rj, and the successor of the received random number
ri+1 all concatenated together. The second part includes the digest of these
three last pieces of information concatenated together.

Nodej → Nodei : Reply, j, f−1
j (j || rj || ri+ 1),h(j || rj || ri+ 1) (2)

After the reception of the reply, the node i checks whether it is authentic
and has not been altered by an attacker. If the verification succeeds then
both nodes i and j proceed to compute the common pairwise key kij as in
the following Eq. 3.

Kij = h(ri || rj), with ri < rj (3)

The node i replies with a message that mainly contains the successor
of the received random number encrypted with the established pairwise key
Kij afterward.
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Nodei → Nodej : {ri||rj+ 1}Kij (4)

Finally, the node j receives and decrypts the cipher message using the
established pairwise key Kij. The key generation phase is depicted in Fig. 2.

Nodei

Nodej

m1 m2 m3

m1: Request, i, fi
-1 (i || ri), h (i || ri)

m2: Reply, j, fj
-1 (j || rj || ri+1), h (j || rj || ri+1)

m3: {ri || rj+1}Kij

Time

 

ri
 
 

 
rj 

Kij

Kij

Fig. 2 Pairwise key generation phase

It is important to note that keys are subsequently concatenated with the
secret values and stored in nodes’ memories after they have been concealed
with their appropriate one-one functions. As a result, this avoids storing
keys in plain text, which reduces the impact of capture node attacks. As an
example, the node i stores fi(Kij||ri), with ri is the random value.

Illustrative example. The Fig. 3 gives an example of the key establish-
ment process between the two nodes 1 and 2. The network is composed of
three nodes. During the setup phase, each node i, i=1,2,3 is pre-loaded with
one 3-tuple (i, fi, f

−1
i ) and two 2-tuples (j, fj), with i ̸= j. At the deploy-

ment phase, each node i broadcasts a message i, f−1
i (i) in order to discover

its neighbors. For instance, the node 1 broadcasts 1, f−1
1 (1). Both nodes 2

and 3 receive that message. Therefore, they update their neighbor vector by
adding the node 1. At the end of this phase, each node keeps in its memory
only its one 3-tuple and the 2-tuples of its neighbors. For example, the node
2 has one neighbor 1. Thus, it has one 3-tuple (2, f2, f

−1
2 ) and one 2-tuple

(1, f1). Finally, to establish a pairwise key with the node 2, the node 1 sends
a request and receives a reply. As a result, both nodes 1 and 2 generate the
same pairwise key K12.
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1

3 2

ID Fi F i -1

1 F1 FI 
-1

2 F2 -

3 F3
 
-

1

3 2

1, F1 
-1 (1) 

2, F2 
-1 (2) 3, F3 

-1 (3) 

Phase 2. a). Neighbor discovery (the begining)  Phase 1. Initialization 

ID Fi F i -1

1 F1 - 

2 F2 F2 
-1

 

3 F3
 
-

ID Fi F i -1

1 F1 -

2 F2 -

3 F3 F3 
-1 

ID Fi F i -1

1 F1 FI 
-1

2 F2 -

3 F3
 
-

1

3 2

Phase 2.a) Neighbor discovery (the end) 

ID Fi F i -1

1 F1 -

2 F2 F2 
-1 

ID Fi F i -1

1 F1 -

3 F3 F3 
-1

1

3 2
(2)

Phase 2.b). Pairwise Key generation between node 1 and 2 (with r1=12 , r2=21)  

(1), (3)

(1): Req, 1, F1 
-1 (1||12 ), H(1||12 )

                (2): Rep, 2, F2 
-1 (2|| 21|| 13), H(2|| 21||13)

(3): {12||22 }K12 = {1222}K12

K12 = H(12|| 21) = H(1221)

Fig. 3 Example of pairwise key generation phase

4.3.3. Key refresh phase

The keys must be refreshed periodically to counter some security attacks.
When the same keys are used for a long time, an adversary would be able to
discover them by a brute-force attack. In the proposed scheme, the nodes
refresh the keys by generating new random numbers after each period Tr,
and re-run the key generation phase. Furthermore, when the expiration time
of (2 ∗ Tr) is reached, the server chooses a set of new invertible functions,
computes their corresponding inverses, and transmits them to end devices
through gateways in a secure manner. Therefore, every device replaces the
old inverse functions with the appropriate new ones and performs the key
generation phase. Note that the value of the timer changes continuously
depending on the number of occurred attacks in the system. Whenever no
attack happens during the renewal period Tr, the server will not send any
refresh message to the network members. Hence, the latter wait for the
expiration of their timer before renewing the keys and update the period
Tr as follows: Tr = Tr + α, if the timer has not yet reached its maximum
threshold Tmax, where α is the security parameter. The attack window
is thus increased. Otherwise, if one or more attacks have been detected
during this period, the members receive a refresh message from the server
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via the gateway node to which they are attached. This message is encrypted
with the appropriate pairwise keys and contains a nonce and the number of
attacks that occurred cpt. In this case, the recipient nodes do not wait for
the expiration of their timer, but they immediately carry out key renewal
and update the period as follows: Tr = (Tr − cpt ∗ α), if the minimum
threshold Tmin has not been reached yet. The attack window will therefore
decrease. The different values taken by the timer Tr according to the number
of occurred attacks, are summarized in Eq. 5 and Eq. 6 below, and also shown
in Fig. 4.

• Absence of attacks (cpt = 0)

Tr =

{
Tr+ α if Tr ⩽ Tmax − α

Tmax otherwise
(5)

• Presence of attacks (cpt ̸= 0)

Tr =

{
Tr− (cpt ∗ α) if Tr ⩾ Tmin + (cpt ∗ α)
Tmin otherwise

(6)

Tr

No attack?
(cpt=0)

Tr ← Tmax

Tr ≤ Tmax - α?Tr ≥ Tmin+ cpt*α?

YesNo

Tr ← Tr + αTr ← Tmin

YesYes NoNo

    Tr ← Tr - cpt * α

Fig. 4 Refresh period updates

4.3.4. Node addition phase

When a node intends to join the network or participate in its operations,
it must go through the server. First of all, the server pre-loads current key
materials into the memory of that new node before its deployment in the
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network. The pre-loaded parameters include: the minimum Tmin and maxi-
mum Tmax thresholds of the timer Tr, hash function h(), security parameter
α and the current one-one function of the gateway node fg to which the new
node will be attached. Moreover, the server generates and assigns to this
node a unique identifier n, a one-one function fn with its corresponding
inverse f−1

n . As soon as the deployment is established, the new node gen-
erates a random number rn, then broadcasts a join message. This latter
contains the information hidden with the one-one function of the gateway
and a digest so that the other entities could not read its content.

Noden → ∗ : Join,n, fg(n || fn || rn),h(n || fn || rn) (7)

Upon receiving the previous message, the gateway proceeds to check
whether or not it is authentic. In the case of successful verification, the
gateway in turn broadcasts the following message inviting the current mem-
bers to deal with this addition. In this time, the content of the message is
masked with the inverse function f−1

g of the gateways node.

Nodeg → ∗ : g, f−1
g (g || (n || fn || rn)),h(g || (n || fn || rn)) (8)

A current member that has received a join message waits for the recep-
tion of another message that would stem from its gateway. If the member
does not receive the second message, that means the new node fails its
authentication with the gateway, so the join message will be ignored. Oth-
erwise, the member checks the authenticity and integrity of the last message.
If the verification succeeds, the member will send to the new node an ac-
knowledgment Ack message containing essentially its one-one function and
the current timer that are hidden with the one-one function of the new node.

Nodei → Noden : Ack, i, fn(i || fi || ri || rn + 1 || Tr),h(i || fi || ri || rn + 1 || Tr)
(9)

When receiving an Ack message, the new node uses its inverse and the
hash functions to check it. After that, it updates its neighbors vector vn
by adding the identifier i and saves the timer Tr as well as the 2-tuple
(i, fi), with i ∈ vn, when the verification is succeed. Accordingly, both the
member and new node use Eq. 3 to compute their shared pairwise key that
will be used when they want to communicate securely. Finally, the new
node closes the addition process by sending the last message encrypted with
the established pairwise key. The node addition process is illustrated in the
Fig. 5 as follows:
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Noden → Nodei : {rn||ri + 1}Kin (10)

Nodeg

Nodei

m1

m2

m4

m1	:	Join,	n,	fg(n||fn||rn),	h(n||fn||rn)

m2	:	g,	fg
-1(g||(n||fn||rn)),	h(g||(n||fn||rn))

m4	:	{rn||ri+1}Kin

Time

m3

Noden

m3	:	Ack,i,fn((i||fi||ri)||rn+1||T_{r}),h((i||fi||ri)||rn+1||T_{r})

Fig. 5 Node addition phase

Note that the pool of one-one functions and their corresponding inverse
functions are populated with new functions after each node addition.

4.3.5. Key revocation phase

The key revocation phase is carried out according to two cases: when a
node leaves the network with its willingness or does not correctly interact
with other members or send any message for a long time. That node is
automatically excluded from the network. Therefore, its neighbors delete the
pairwise keys and security parameters, such as the one-one function shared
with that node, so it will not succeed when trying to communicate with
them later. That way, the current members do not save obsolete information
about nodes having already left the network. Consequently, this allows them
to gain some precious memory space. Note that the size of both pools of
invertible and their corresponding inverse functions are reduced after each
node revocation.

5. Security analysis

In this section, we discuss our scheme’s formal and informal analysis.
The formal analysis is performed using BAN logic.
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5.1. Formal analysis

Formal verification is required to analyze and prove the correctness of
the proposed scheme. For this purpose, we use Burrows Abadi Needham
(BAN) logic [19] to check whether the proposed key establishment protocol
works correctly and does not have redundancies or security flaws. We mainly
evaluate secrecy, authentication, and freshness aspects.

a) Notation
The symbols P and Q denote principals, X and Y range over statements, and
K represents the encryption key. A comma denotes the conjunction. The
rest of the notations used in this analysis is given in Table 2.

Notation Description

P |≡ X P believes X

P∢X P sees X or P has received a message containing X

P ⊢ X P once said X or P has sent a message including X

P
K↔ Q K is the shared key known only to P and Q

P |⇒ X P controls or has jurisdiction over X
#(X) Formula X is fresh
(X, Y) Concatenation of X and Y

{X}K X is encrypted under the key K

Table 2 Notations

b) Inference rules
The main logical postulates or rules used in our analysis are listed in the
following.

(1) The selection:
- R-Select: if a principal P sees a formula, then he also sees its components.

R11 :
P∢(X, Y)
P∢X

;
P∢(X, Y)
P∢Y

(11)

- BS-Select: If P believes that Q said (X,Y), then P believes that Q said X.

R12 :
P |≡ Q ⊢ (X, Y))

P |≡ Q ⊢ X
(12)

(2) From the message meaning rule for shared keys, we can deduce the
following rule for shared functions. That is, if P believes that the function
F is a public function of Q and P sees or receives a message X hidden with
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the corresponding private function F−1, then P believes that Q once said X.

R2 :
P |≡ F↔ Q,P∢F−1(X)

P |≡ Q ⊢ X
(13)

(3) The nonce verification or freshness: if P believes on the freshness of
the statement X and P also believes that Q once said X, then P believes Q
believes the statement X.

R3 :
P |≡ #(X) ,P |≡ Q ⊢ X

P |≡ Q |≡ X
(14)

(4) The jurisdiction: if P believes that Q has jurisdiction over the statement
X and P believes that Q believes the statement X, then P believes the
statement X.

R4 :
P |≡ Q |⇒ X ,P |≡ Q |≡ X

P |≡ X
(15)

(5) The fresh inject : If P believes that some part X of a formula is fresh,
then the whole formula (X,Y) must also be fresh.

R5 :
P |≡ #(X)

P |≡ #(X, Y)
(16)

(6) The belief : If a principal P believes part X of a statement and the
remaining part Y of the same statement, he believes the whole statement
(X.Y).

R6 :
P |≡ X,P |≡ Y

P |≡ (X, Y)
(17)

c) Analysis
Security analysis using BAN logic goes mainly through four steps: (1)

idealization of the protocol to be analyzed, (2) definition of security goals
to be achieved, (3) formulation of initial assumptions, and (4) the analysis
or the verification of the protocol itself.

1) Idealization
The idealized form of our key establishment protocol is presented as follows:

Message 1. A− > B : F−1
a (ra),H(ra)
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Message 2. B− > A : F−1
b (rb, ra),H(rb, ra)

Message 3. A− > B :
{
rb,A

Kab↔ B
}
Kab

From the previously exchanged messages, we get the following idealized
forms expressed differently:

I1: B∢(F−1
a (ra),H(ra))

I2: A∢(F−1
b (rb, ra),H(rb, ra))

I3: B∢(
{
rb,A

Kab↔ B
}
Kab)

2) Goals
The main goal of the proposed key establishment protocol will be achieved
when two principals A and B generate a pairwise key Kab, which must be
authentic and known only to them. This results in the following statements:

G1: B |≡ A
Kab↔ B; G2: A |≡ B

Kab↔ A; G3: B |≡ A |≡ B
Kab↔ A

3) Assumptions
To analyze this protocol, we first give the following assumptions, which state
the initial beliefs of the principals at the beginning of the protocol.
Initially, each device must trust the one-one and hash functions pre-shared
with each of its neighbors, which results in the following assumptions:

A1: A |≡ Fa↔ A, A2: B |≡ Fa↔ A, A3: A |≡ Fb↔ B

A4: B |≡ Fb↔ B, A5: A |≡ A
H↔ B, A6: B |≡ A

H↔ B

In addition, each principal also believes in the integrity, authenticity, and
freshness of the generated secret value, which leads to the following formulas:

A7: A |≡ ra, A8: A |≡ #(ra), A9: B |≡ rb, A10: B |≡ #(rb), A11:
B |≡ #(ra)
Finally, every principal knows that its neighbor controls or has jurisdiction
over the secret value that it generates, which results in the following:

A13: A |≡ B |⇒ rb, A14: B |≡ A |⇒ ra

4) Formal proof or verification
The main steps of the proof are described as follows.
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- The principal B receives the first message from A, and by applying the
R-select rule R11 to the idealized form I1 or by breaking conjunction, we
get:
F1: B∢F−1

a (ra)
Since we have the hypotheses A2 and F1, the message-meaning rule R2 for
shared functions applies and yields the following:
F2: B |≡ A ⊢ ra

By using the freshness rule R3 over the assumption A11 and the previous
result F2, we obtain:
F3: B |≡ A |≡ ra

Since we have the assumption A14 and F3, the jurisdiction rule R4 applies
and yields the following:
F4: B |≡ ra

From F4, A9 and R6, we get:
F5: B |≡ (ra, rb)
From A6 and F5, we obtain the first goal

G1: B |≡ H(ra, rb), with ra < rb, that means G1: B |≡ A
Kab↔ B.

- The principal A receives the second message from B and by applying the
R-select rule R11 to the idealized form I2 or by breaking conjunction, we
have:
F6: A∢F−1

b (rb, ra)
Since we have the hypothesis A3 and F6, the message-meaning rule R2 for
shared functions applies and yields the following:
F7: A |≡ B ⊢ (rb, ra).
By applying the refresh inject rule on the assumption A8, we get:
F8: A |≡ #(rb, ra).
We use the nonce verification rule R3 over the results F8 and F7 to get:
F9: A |≡ B |≡ (ra, rb).
From the received message, the principal A can deduce the following result:
F10: A |≡ B |⇒ (ra, rb)
The jurisdiction rule R4 is applied to the results F9 and F10 to obtain:
F11: A |≡ (ra, rb).
From A5 and F11, we obtain the second goal:

G2: A |≡ H(ra, rb), with ra < rb, that means G2: A |≡ B
Kab↔ A.

- The principal B receives the third message from A, and by applying the
message meaning rule for shared keys to the goal G1 and the idealized form
I3, we will have:
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F12: B |≡ A ⊢ B
Kab↔ A.

On the other hand, when applying the rule R5 on A10, we obtain

F13: B |≡ #(B
Kab↔ A).

Finally, we use the nonce verification rule on the results F12 and F13 to
deduce the third goal

G3: B |≡ A |≡ B
Kab↔ A.

5.2. Informal analysis

We informally discuss the resilience of the proposed scheme against some
well-known attacks, such as eavesdropping, man-in-the-middle, node com-
promising, replay, and forward and backward secrecy attacks.

Eavesdropping attack
An intruder can eavesdrop on and intercept the relevant network traffic ex-
changed between legitimate participants for further analysis. During the
pairwise key generation process, an attacker can obtain neither the pairwise
keys nor key materials, allowing him/her to compute these secret keys. No
sensitive data is transmitted in plain text, but it is always sent securely.
They are all hidden or protected with both inverse and hash functions.
Furthermore, after the key establishment phase, all the communications
between two legitimate entities are protected by the use of appropriate es-
tablished pairwise keys. The proposed scheme is therefore resilient against
such attacks.

Man-in-the-middle attack
We distinguish two attack scenarios where an adversary captures and alters
the content of the request and/or reply messages exchanged during the pair-
wise key establishment phase between two legitimate nodes.

Attack 1. When an adversary changes the identifier of the sender i to
k, the recipient j will be able to detect such an attack. Two cases may arise.

− k ∈ vj: that means k belongs to the neighbor vector of the receiver
j. In other words, k is also a neighbor of j. In this case, the recipient
node j finds and uses the inverse function of k, noted fk, instead of the
function fi of i, to calculate the image of the first part of the received
message. As a result, it gets a completely different image or value.
After that, when it applies the hash function to the last result, it will
find a footprint different from the one emitted by the sender. Hence,
the recipient immediately detects that the message has been altered.
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− k /∈ vj: this means that k is not in the neighborhood of the recipient
node j. In this case, the receiver fails when it attempts or tries to
retrieve the initial hidden information because it does not find the
appropriate inverse function to be used for this purpose. As a result,
this node suspects an attack and thus discards the message.

Attack 2 Whenever an intruder replaces the hidden information or the im-
age f−1

i (x) with another one, let’s say, f−1
k (x) with k ̸= i, the recipient also

detects such attack, because it obtains a hash value that will not match one
of the senders. Thus, the proposed scheme is secure against the Man-in-the-
middle attack.

Node capture attack
In this type of attack, when an adversary captures a node, he/she can gain
access to its memory. The proposed scheme resists this kind of attack well
since, on the one hand, each node holds a small number of keys, allowing
it to communicate securely with its direct neighbors. On the other hand,
these keys are not stored in clear text, but they are hidden or masked by
using the inverse function of the node. Therefore, the compromise of a given
device has no impact on the other nodes and communication links.

Replay attack
A replay attack is a security threat where the malicious entity repeats or
re-injects the old valid messages intercepted during previous communication
sessions into the network. The proposed scheme can withstand this security
attack since transmitted messages contain random secrets. On the other
hand, when an adversary replies a captured message after a waiting time
equals to t, If t > Tr, upon the reception of that replay message, the ver-
ification does not succeed because all devices have already refreshed their
pairwise keys. When t > 2Tr, verification fails because all inverse functions
have been updated. As a result, the recipients will reject this old replayed
message coming from the malicious node.

Forward and backward secrecy
Forward and backward secrecy is guaranteed because all pairwise keys are
renewed after the expiration of the timer Tr. On the other hand, the old
one-one functions are erased from the memories of nodes and replaced by
the new ones after the timer 2Tr elapses. Thus, the new secret keys are
independent of the old keys. Therefore, the old keys become unusable, and
they can not be able to decrypt new encrypted messages. In the same way,
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the new keys can not be used to decrypt old messages sent in the previous
communication sessions.

6. Performance analysis

The performance of the proposed scheme is compared with the recent
protocols [9] and SSEKM [12] introduced in the related work section. The
evaluation is performed according to storage, communication, computation
costs, and energy consumption metrics. The simulations are conducted using
MATLAB environment. We consider a network where nodes are randomly
deployed in a square area of 100 m2. Nodes are equipped with wireless
communication antennas with a range of 10 meters. Moreover, the energy
model presented by Heinzelman et al. [20] is used to estimate the amount
of dissipated energy. According to this model, when a node sends a data
of k bits length over a distance d, it dissipates a quantity of energy (joule)
estimated to

Et(k,d) = k ∗ (Eelec + Eamp ∗ d2) (18)

whereas when it receives the same amount of data, it consumes

Er(k) = Eelec ∗ k (19)

where Eelec = 50 ∗ 10−9j/bit and Eamp = 100 ∗ 10−12j/bit/m2.
The notation used in this section is summarized in Table 3.

6.1. Storage overhead

The storage overhead can be defined as the total memory space required
to store keys and security parameters. In IFKMS, each node saves a refresh
period Tr along with its thresholds Tmin, Tmax, one 3-tuple, and as many
2-tuples as it has neighbors in its communication range. Furthermore, a
node with d neighbors has to store at most d pairwise keys.
In the experiments, it is assumed that the values of lid, lf and lk are set to
4, 16 and 16 bytes respectively. Furthermore, the value of m in SSEKM, is
fixed to 50 since the probability of sharing at least one key is high when the
pool contains 1000 keys.
The overall storage overhead in the function of the network size is shown in
Fig. 6. From the figure, we can observe that the storage overhead increases in
the compared schemes with the number of nodes in the network. However,
IFKMS has less storage overhead when compared to the other protocols.
When the network size is equal to 10, for instance, our scheme saves about
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Notation Description

lid Size of an identifier of a (node, key, or polynomial), refresh value,
polynomial share (coefficient), secret value, vector element

lk Size of a key
lt Size of message type (Req, Rep, ACK)
lf Size of one-one function or polynomial
lof Size of one-one function’s output
le Size of an encrypted message
lh Size of a hash value
H Hash operation
F Image computation
Mod Modulus operation
PE Polynomial evaluation
M Multiplication operation
E/D Encryption/Decryption operations

Table 3 Notations

3, 83% of memory space in comparison with the protocol [9]. This gain
progressively increases to reach approximately 67, 54% when the number of
nodes reaches 100 in the network. That is a growth of about 63, 71%.
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Fig. 6 Storage overhead vs. Network size (m=50)
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6.2. Communication overhead

The communication cost can be measured as the total amount of data
exchanged in the whole network. In our scheme, nodes do not have to
communicate during the setup phase. That is why we were just interested
in communication load during the key establishment phase. In this second
phase, to establish pairwise keys with all adjacent members, a node must
send one request, receive d responses and send back d encrypted messages,
where d represents the number of nodes in its direct neighborhood.

The communication cost, expressed in bytes, in the function of the hash
algorithm during the key establishment phase is illustrated in Fig. 7. Note
that we considered a network of 100 nodes in the simulations. The figure in-
dicates that the communication cost progressively increases in the network
when increasing the hash value for the compared schemes. However, the
results show that IFKMS is comparable to SSEKM and it is better than [9].
The amount of data required to be exchanged between adjacent nodes for
key establishment purposes in IFKMS is less than the latter. For instance,
when the hash value is equal to 16 bytes, the total quantity of information
exchanged is about 18.6 Kbytes in our scheme against 128.6 Kbytes in [9].
Consequently, our scheme requires roughly 85.54% fewer data exchanged
than that protocol. This gain in terms of communication progressively de-
creases up to 67.92% when the hash value reaches 64 bytes.
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Fig. 7 Communication overhead vs. Hash algorithm (n=100 Nodes)
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The impact of the network size on the communication overhead during
the pairwise key establishment phase is given in Fig. 8. Note that the hash
value is set to 16 bytes during simulations while the network size ranges
from 10 to 100 nodes. As depicted in this figure, IFKMS considerably re-
duces the number of messages exchanged during this phase when compared
with the scheme [9]. The figure shows that the communication overhead
increases slowly in IFKMS and SSEKM, whereas this raises quickly in the
other scheme. For instance, when the number of nodes reaches 100, the over-
all communication load in the network rises to 129.56 kbytes in [9], while it
is only 18.71 kbytes in ours. That is a difference of about 85.58%.
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Fig. 8 Communication overhead vs. Network size (h=16 bytes)

6.3. Comparative study

A comparison between IFKMS with the related schemes introduced in
Section 3 is summarized in Table 4. This comparison concerns the storage,
communication, and computation overhead at the constrained node side.
Notice that the evaluation of the two last requirements is performed when
computing just one pairwise key between a pair of nodes. In addition, the
established keys are not considered in the memory occupation estimation for
all the compared schemes. For example, concerning the storage overhead,
every node in our scheme needs to store (d + 2) one-one functions, (d + 1)
nodes identifiers, and 3 refresh values. At the same time, in [9], each sensor
stores a t-degree polynomial shares, as well as a row of BL and a column

28



of BU matrices of (N/2) elements each, with N represents the size of the
network. Whereas, in SSEKM [12], to each node is assigned an identifier,
m keys and a non-convergent recursive sequence with its first term. For the
communication overhead, to compute one pairwise key in IFKMS, a node
needs to send a request with an encrypted message and receive a reply from
the adjacent node. Both the request and the response contain a message
type, a node identifier as well as a hidden and hash values. Meanwhile, in
[9], a sensor sends its identifier, the row of BL matrix, and an encrypted
identifier. At the same time, it receives an ACK, a row of BL matrix, an
identifier, an encrypted message, and a MAC. While in SSEKM, one node
has to send and receive an identifier, a key chain identifier as well as a nonce
and hash value. Finally, in terms of computation overhead, to establish one
key in IFKMS, a node needs to perform two one-one function evaluations,
three hash operations, and one encryption, while in [9], a sensor carries out
polynomial evaluation, vector multiplication, encryption/decryption, and
MAC operations. Whereas, a node performs only two recursive function
evaluations in SSEKM.
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Scheme Storage Communication Computation

IFKMS (d+ 4) ∗ lid + (d+ 2) ∗ lf 2(lt + lid + lof+ 2F+ 3H+ E
+lh) + le

RKP [2] (k+ 1) ∗ lk + k ∗ lid 2k ∗ lid or 2k ∗ le k ∗ (E+D)

[4] s ′(lf + lid) (s ′ + 1) ∗ lid or PE or D
4s ′ ∗ lid + le

EKM [5] lk + lf 2 ∗ le 2H+ E+D+ PE

NISKC [6] lid + lf lt + lf PE

[7] s ∗ lk + g ∗ lf+ 2 ∗ (3s+ g+ 1) ∗ lid PE or H
(3s+ g+ 1) ∗ lid

[9] N ∗ lid + lf (2+N) ∗ lid+ (N/2) ∗M+
lt + 2 ∗ le + lh E+D+H+ PE

[11] 2 ∗ lf + lk le PE+Mod+D

SSEKM [12] m ∗ lk + 2 ∗ lid + lf 8 ∗ lid + 2 ∗ lh 2 ∗ F

H2KD [13] lid + lk 3 ∗ lid + le –

[14] lid + lk + lh 6 ∗ lid + 2 ∗ lh 3 ∗ (XOR+H)

[15] lk 4 ∗ lid + 2 ∗ lt 2 ∗M

Table 4 Overhead comparison of different schemes

6.4. Energy consumption

We evaluate the performance of IFKMS with respect to dissipated energy
in the entire network when nodes exchange required messages for pairwise
key computation purposes. This energy consumption is directly related to
the size and the number of messages sent and received by each node in
the network. This explains why the Fig. 9 is very similar to Fig. 7, and
the Fig. 8 and Fig. 10 are very close. Fig. 9 shows the dissipated energy
in communication in the function of the hash algorithm during the key
establishment phase. The network size is set to 100 nodes as in Fig. 7. As
illustrated in this figure, the energy consumption increases with increasing
the hash value for the compared schemes. However, IFKMS and SSEKM
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widely outperform the scheme proposed in [9]. This can be explained by the
high amount of data required to be exchanged between nodes in the latter
scheme compared with IFKMS and SSEKM. For instance, when the hash
value is equal to 64 bytes, the total energy dissipated in IFKMS is about
19633.06µJ against nearly 60551.97µJ in [9]. As a result, our protocol saves
roughly 67, 58% of energy compared with that scheme.
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Fig. 9 Communication energy vs. Hash algorithm (n=100 Nodes)

Fig. 10 plots the impact of the network size on the communication energy
during pairwise key establishment. Note that during simulations, we have
kept the same values of the hash and the network size as those in Fig. 8. As
shown in this figure, IFKMS and SSEKM considerably reduce the energy
consumption during this phase when compared to the scheme [9]. We can
observe that when the number of nodes reaches approximately 40 nodes
in the network, the dissipated energy starts to rise rapidly in [9]. At the
same time, it remains stable and increases slowly in ours. For example,
whenever the network size reaches 100 nodes, the energy consumed in the
entire network is 7951.6µJ in IFKMS against about 54352.12µJ in [9]. As a
result, our scheme saves up 46400, 52µJ of energy.
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Fig. 10 Communication energy vs. Network size (h=16 bytes)

7. Conclusion

IoT networks are increasingly used in various applications such as Med-
ical Internet of Things. Securing communications in such systems is chal-
lenging due to severe resource constraints and heterogeneity of IoT devices.
In this paper, we proposed a new key management scheme that exploits the
features of inverse functions to protect communications between devices.
Therefore, sensitive data is hidden during message exchanges by employing
one-one functions to defeat security attacks. Moreover, a variable re-keying
period is used, making our scheme more adaptable and resilient to attacks.
The security and performance analysis showed that IFKSM meets basic
security goals including secrecy, integrity and authentication, and ensures
resilience since keys are refreshed frequently in the presence of attacks in
the system. It is also efficient in terms of energy consumption as well as
memory, communication, and computation overheads when compared with
most studied protocols, and it has approximately the same performance as
other ones.

As further work, we intend to extend the proposed scheme by integrating
the group key establishment mechanism to deal with group communication,
and implement this solution in a real application of IoT environment.
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