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Abstract. A prolonged drought affected Western Europe and the Mediterranean

region in 2022 producing large socio-ecological impacts. The role of anthropogenic

climate change (ACC) in exacerbating this drought has been often invoked in the public

debate, but the link between atmospheric circulation and ACC has not received much

attention so far. Here we address this question by applying the method of circulation

analogs, which allows us to identify atmospheric patterns in the period 1836-2021 very

similar to those occurred in 2022. By comparing the circulation analogs when global

warming was absent (1836-1915) with those occurred recently (1942-2021), and by

excluding interannual and interdecadal variability as possible drivers, we identify the

contribution of ACC. The 2022 drought was associated with a persistent anticyclonic

anomaly over Western Europe. Circulation analogs of this atmospheric pattern in

1941-2021 feature 500 hPa geopotential height anomalies larger in both extent and

magnitude, and higher temperatures at the surface, relative to those in 1836-1915.

Both factors exacerbated the drought, by increasing the area affected and enhancing

soil drying through evapotranspiration. While the occurrence of the atmospheric

circulation associated with the 2022 drought has not become more frequent in recent

decades, the influence of the Atlantic Multidecadal oscillation cannot be ruled-out.

Keywords : Drought - Climate Change - Attribution
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1. Characteristics of the 2022 Euro-Mediterranean drought1

Intense and prolonged drought conditions affected large portions of France, Italy, and2

Spain throughout most of 2022. The drought, related to a persistent lack of precipitation3

in the last months of 2021, became evident in northwestern Italy since March 2022 [1] and4

then expanded to western Europe in the following months. The severity of the drought5

then further worsened during spring and summer 2022 (Fig.1b), due to a persistent lack6

of precipitation combined with a sequence of heatwaves from May onwards [2, 3] which7

further dried the soil through enhanced evapotranspiration [4]. Using the Standardized8

Precipitation Evapotranspiration Index aggregated at 9 months (SPEI9) to monitor and9

characterize the 2022 drought [4, 5], we show in Fig.1c,d the record-breaking negative10

values of the drought indicator SPEI9 in August 2022 (see Sect.2.1 for details about11

SPEI) over southern France and Northern Italy. The area-average of SPEI9 over the12

two areas was consistently below -2 (extreme drought), with local grid points having13

SPEI9 values below -3.14

The socio-ecological impacts of the 2022 drought have been severe in Italy, France15

and Spain. The exceptionality of the water and heat stress substantially reduced yields of16

some of the main crops like, e.g., grain maize, soybean, and sunflowers, with reductions of17

around 15% relative to the last 5-year average [6]. In Italy, about 50% of the population18

was affected by the drought emergency water restrictions, especially in the North of19

the country. The Po river basin Authority reported record-breaking levels of inland20

salt intrusion from the Po delta up to 40 km from the sea coast. Reduced stored21

water severely impacted the energy sector for both hydropower generation and cooling22

systems of other power plants in the north of the country. In southern France, wildfires23

associated with the extreme drought conditions were also more widespread, with a24

surface of burned land more than double than in 2021 and about 4.6 times the average25

of the period 2012-2021. Sixty-six French “departments” were at the highest drought26

warning level in August, with at least ninety-three departments at one of the top three27

levels of warning for drought. Similar impacts on agriculture, energy production and28

domestic water usage were reported in Spain, Portugal and Netherlands too [2].29

While drought is a complex phenomenon [7, 8], whose intensity can be exacerbated30

by non-trivial land surface-atmosphere feedbacks and land usage [9], the large scale31

atmospheric circulation played a key role in driving the 2022 Euro-Mediterranean32

drought. This is evident when examining the mean December 2021-August 202233

circulation anomalies: a persistent high pressure anomaly centered over France is visible34

both in the lower and middle troposphere (Fig.1a). This circulation anomaly favored35

meteorological conditions characterized by stable conditions with no precipitation over36

large swaths of Europe.37

The 2022 Euro-Mediterranean drought unfolded as El Niño-Southern Oscillation38

(ENSO) was in a persistent negative phase (La Niña) since the summer of 2020. It39

is therefore natural to ask whether La Niña did play a role in remotely driving the40

long-lasting anticyclonic circulation. The relationship between ENSO and the North41
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Atlantic-European sector is not as well defined as for other regions of the world, and42

probably non-stationary in time [10, 11, 12]. If we compare the slow-evolving circulation43

anomaly of 2022 in Europe with that of other years featuring similar 3-year La Niña44

conditions (i.e., 1956, 1975, and 2000), we see large differences in the intensity and45

spatial patterns of the anomalies and no resemblance to the 2022 pattern (Fig. S1).46

This leads us to conjecture that there might not be a simple causality relationship47

between La Niña and the persistent anticyclonic anomaly observed over western Europe48

in 2022, although this is a point that we will further investigate in this study.49

The 2022 drought had large societal impacts rising the attention of the media at50

the national and international levels [13, 14, 15, 3] and putting water management high51

on the agenda of water managers and decision-makers. Questions on the role played52

by the ongoing anthropogenic climate change (ACC) on this drought, and eventually53

on future droughts, are therefore pressing in the media debate, and answers to these54

questions are urgent to manage future similar water crises. Specifically, the questions we55

ask here are: how rare was the prolonged atmospheric circulation anomaly that drove56

the 2022 drought situation? Was such anomaly changed in shape, intensity, and thermal57

structure because of ACC, thus exacerbating similar drought events?58

In this study, we address these questions through the method of the analogs of59

circulation for extreme event attribution [16, 17]. We use the implementation developed60

by [18] for short-lived meteorological events of a few days of duration (e.g., cyclones,61

hot and cold spells, etc.), which we adapt to account for long-lasting events such as62

droughts. For the construction of factual and counterfactual climate [19], we rely on63

long-term monthly reanalyses (1836 to present) that allow for the construction of robust64

statistics. We, therefore, compare analogs of this averaged circulation in factual (1836-65

1915) and counterfactual (1941-2021) periods and study the associated temperature,66

precipitation, and SPEI9, looking for statistically significant differences that can then67

be attributed to climate change. Other complementary approaches for event attribution68

of extreme drought rely on single model initial-condition large ensembles [20, 21, 22].69

While a model ensemble approach allows for a clear separation of counterfactual vs70

factual climate, it still suffers from model biases that can limit the realism of the results.71

Therefore in this study, we focus on reanalysis only, planning to analyze models as a72

second step.73

2. Methods and Data74

2.1. Drought and circulation variables75

To capture the 2022 drought condition, we use the Standardized Precipitation76

Evapotranspiration Index [4, 5] aggregated at 9 months (SPEI9) as the 9-month77

aggregation timescale roughly corresponds to the period of negative precipitation deficit78

observed over western Europe. The SPEI generalizes the Standard Precipitation Index79

(SPI, [23]) by taking into account surface temperature too through its effects on Potential80
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Figure 1. Characteristics of the 2022 European drought. (a) 2022 January-

to-August anomalies of 500 hPa geopotential height (contour interval -15 and 45 m)

and Mean Sea Level Pressure (shading interval -3 and 3 hPa), (b) map of SPEI9 in

August 2022, and (c,d) SPEI9 time series obtained as an average of grid points within

the selected regions highlighted in green.

Evapotranspiration. It has been demonstrated that high temperatures - typical of,81

e.g., heat waves - increase drought stress under precipitation shortages by dramatically82

increasing evapotranspiration [24]. The SPEI is calculated first by estimating the83

difference between precipitation and potential evapotranspiration at the surface, which84

provides a simple measure of the water deficit or surplus, and then aggregating it at85

different time scales (SPEI1, SPEI3, SPEI6,etc.). Similarly to the SPI, the time scale86

of accumulation of the water deficits (e.g., 3 months, 6 months, 12 months, etc.) is very87

important for practical reasons, as it differentiates meteorological droughts - typically88

of a few months’ duration - from hydrological droughts, emerging at longer timescales89

(6 months or longer).90

The large scale atmospheric circulation over the North Atlantic-European sector91

is investigated through the 500 hPa geopotential height (Z500) and sea level pressure92

(SLP). All Z500 and SLP data used in the analyses of the analogs of circulation (see93
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Sect. 2.3) are first detrended and then deseasonalized by subtracting, for each month,94

the 1836-2022 monthly average. Details on these applied procedures can be found in the95

Supplementary Material and in Fig. S2. For the circulation analogs defined through Z50096

and SLP, we also monitor the corresponding 2-meter temperature, precipitation and97

SPEI9. We use the 2-meter temperature to keep track of the impact of global warming,98

and the precipitation rate and SPEI9 to further cross-check drought conditions. We do99

not apply any preprocessing to 2-meter temperature, the precipitation rate, and SPEI9.100

A list of the variables and their symbols, used in this study are shown in Table S1.101

2.2. Data102

In order to characterize the 2022 drought event over Europe (Fig. 1) we use SPEI9103

obtained from the SPEI Global Drought Monitor, freely available at https://spei.104

csic.es/index.html at 1◦×1◦ horizontal resolution from 1950 to present. The SPEI105

Global Drought Monitor offers near real-time SPEI estimates at various temporal scales106

(SPEI1, SPEI3, etc.) at the global scale, based on the NOAA NCEP CPC GHCN CAMS107

gridded dataset for mean temperature and the Global Precipitation Climatology Centre108

for the monthly precipitation data.109

To search for analogs of the 2022 atmospheric circulation over the North Atlantic-110

European sector, and their relationship to the drought, we use the NOAA-CIRES-DOE111

Twentieth Century Reanalysis, version 3 (20CRv3) [25]. 20CRv3 is the latest version112

of 20CR, and implements many substantial improvements relative to previous versions113

[26]. 20CRv3 reanalyses are created by assimilating only surface pressure values and114

using observed monthly sea ice and sea surface temperature distributions as boundary115

conditions. Estimates of the uncertainty are obtained using 80 ensemble members,116

which is a peculiar characteristic of 20CRv3. The choice of 20CRv3 - which spans117

the period 1836-2015 and it is available at 1◦×1◦ horizontal resolution - is dictated118

by the need of having a century-long reanalysis product that can thus provide more119

reliable statistics with regards to rare events, as in the case of intense droughts, and a120

sufficient number of analogs of the atmospheric circulation anomaly associated with the121

2022 drought. In order to cover the most recent years (i.e., 2016-2022), we complement122

20CRv3 for the period January 2016-August 2022 with NCEP reanalysis [27]. We use123

both the NCEP/DOE and NCEP/NCAR reanalyses (Table S1). 20CRv3 and NCEP124

Reanalysis data are freely available at https://psl.noaa.gov/data/gridded. In order125

to eliminate differences between 20CRv3 and NCEP reanalysis datasets, we applied a126

bias correction to the complementary period 2016-2022 where datasets are obtained127

from NCEP reanalysis. Details of how we combined the two datasets as well as how bias128

corrections are performed are provided in the Supplementary Material and in Fig. S3.129

SPEI9 is calculated for the combined reanalyses 20CRv3 and NCEP by using the R130

package SPEI9 [5]. This tool assumes a log-logistic probability distribution [4] calibrated131

for 20CRv3 using all available years. We used the Thornthwaite equation as the method132

for determining potential evapotranspiration to be consistent with observations (SPEI133

https://spei.csic.es/index.html
https://spei.csic.es/index.html
https://spei.csic.es/index.html
https://psl.noaa.gov/data/gridded
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Global Drought Monitor).134

We evaluate the effect of interannual and interdecadal variability on the 2022135

drought and on past analog droughts using the Niño3.4 index for ENSO (1870 -present)136

and the Atlantic Multidecadal Oscillation (AMO, 1850 - present) monthly indices137

computed from the HadISST1 data – the same SST used in the 20CRv3 reanalysis138

– and retrieved from KNMI’s climate explorer www.climexp.knmi.nl. Missing values139

are replaced by NaN and not counted in the analysis. We remark that NaN values140

represent only less or at most about 10% of the total data. In particular, the Niño3.4141

index is as defined by [28] and the AMO index is computed as described in [29].142

2.3. Analogs attribution method143

The attribution method we use here is described in detail in [18], where it has been144

applied and validated for daily SLP maps associated with a number of extreme events145

occurred in 2021. In this study, we modify this method, born to deal with extreme events146

of the duration of a few days, in order to apply it to slow-evolving extreme events like147

droughts, which can have a duration of several months. To isolate the slow-evolving148

component of the atmospheric circulation (Fig.1a) and for consistency with SPEI9, we149

smooth Z500 and SLP by applying a nine-month backward moving average. We then150

search for analogs of the SLP and Z500 anomalies observed in August 2022 (Fig. 1a)151

in the factual period 1941-2021 and compare them to the analogs in the counterfactual152

period 1836-1915. The choice of these two periods is motivated by the need of having153

sufficiently long samples to select good analogs, while keeping a separation between154

periods with low and high CO2 emissions. For each period, we examine all monthly155

averaged maps and select the best 29 analogs, i.e. the maps minimizing the Euclidean156

distance to the event map itself. The number of 29 corresponds approximately to the157

smallest 3‰ Euclidean distances in each subset of our data. We tested the extraction158

of 15 to 30 analogous maps, without finding qualitatively important differences in our159

results. For the factual period, as is customary in attribution studies, the event itself is160

suppressed. In addition, we prohibit the search for analogs in 2022.161

Unlike attribution techniques based on a statistical analysis of meteorological162

variables, conditioning to specific atmospheric circulation patterns via analogs allows163

us to link attribution to the dynamics driving extreme events. In addition, the analogs164

method allows us to determine when a weather event is unprecedented because of an165

atmospheric circulation that has never been observed in the past, making it statistically166

impossible to say whether climate change has made the event more likely. To account167

for the possible influence of low-frequency modes of natural variability in explaining the168

differences between the two periods, we also consider the possible roles of ENSO and169

AMO.170

Following [18], we introduce additional indicators that further support our171

interpretation of analog-based results (see detailed description in Supplemental Material172

Section 3):173

www.climexp.knmi.nl
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2.3.1. Analog quality Q. Q is the average Euclidean distance of a given circulation174

pattern from its closest 33 analogs. One can then compare Q associated with the175

extreme event to Q for each analog of the extreme event. If the value of Q for the176

extreme event belongs to the same distribution of the values of Q for the analogs, then177

the extreme event has good analogs. If instead the Q for the extreme event is larger than178

that of the analogs, then the extreme event is associated with a very unusual circulation179

pattern, and care must be taken in interpreting the results. Differences between the180

counterfactual and factual periods in the value of Q associated with the extreme event181

indicate whether the atmosphere is visiting states (analogs) that are more or less similar182

to the map associated with the extreme.183

2.3.2. Predictability Index D. Using dynamical systems theory [30, 31, 32], we can184

compute the local dimension D of each Z500 (SLP) map [33, 34]. The local dimension185

is a proxy for the number of degrees of freedom of the field, meaning that the higher186

D, the more unpredictable the temporal evolution of the Z500 (SLP) maps will be187

[35, 36, 37]. If the dimension D of the extreme event analyzed is higher or lower than188

that of its analogs, then the extreme will be respectively less or more predictable than189

the closest dynamical situations identified in the data.190

2.3.3. Persistence index Θ. Another quantity derived from dynamical systems theory191

is the persistence Θ of a given configuration [38]. Persistence estimates the number of192

subsequent months we are likely to observe a map that is an analog of the one under193

consideration.194

2.3.4. Seasonality of analogs. We can count the number of analogs per each month195

to detect whether there has been a shift in circulation to months earlier or later in the196

season. This can have strong thermodynamic implications, for example, if a circulation197

leading to large positive temperature anomalies in early spring becomes more frequent198

later in the season when average temperatures are much higher.199

We compute the analog quality, the predictability index and the persistence index,200

and their statistical distribution, for extreme events in the factual and counterfactual201

world. Similarly, we estimate the persistence of the analogs for the two periods.202

2.4. Association with ENSO and AMO203

To account for the effect of natural interannual and interdecadal variability, we204

extract from the entire time series of the ENSO and AMO indices only the values205

in correspondence of “analog” months, for both the counterfactual and factual periods.206

If the two distributions – ENSO (AMO) during analogs in the counterfactual period207

and ENSO (AMO) during analogs in the factual period – do differ significantly, then it208

is not possible to exclude that thermodynamic or dynamic differences in the analogs are209

partly due to these modes of natural variability, rather than anthropogenic forcing. On210
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the other hand, if it is not possible to reject the null hypothesis of equal distributions,211

observed changes in analogs cannot be due to these two modes of natural variability and212

hence are attributed to human activity. It is worth noting that such null hypothesis of213

no influence of natural variability is coherent with the view of [39].214

To assess the significance of changes in factual vs. counterfactual distributions, we215

conduct in all cases a two-sided Cramér-von Mises test at the 0.05 significance level. If216

the p-value is smaller than 0.05, the null hypothesis (H = 0) that the two samples come217

from the same distribution can be rejected [40].218

3. Results219

We perform the analogs attribution on both Z500 and SLP. Our results do not sensibly220

depend on the choice of the variable nor on the choice of applying or not the bias221

corrections to the reanalyses products (see Supplementary). Here we present the results222

for Z500 20CRv3 and DOE data with bias corrections, referring the reader for all other223

cases to the Supplementary Material.224

3.1. Pattern analysis225

Figure 2a shows the Z500 anomaly field averaged over the time period December226

2021-August 2022. We note a dipolar structure of the Z500 anomaly, with positive227

values on Western Europe and negative on Eastern Europe, typical of Atlantic ridge228

patterns [41]. Analogs for the counterfactual (Fig. 2b) and factual (Fig. 2c) periods229

show a similar dipolar structure. The difference between the analogs of the factual and230

counterfactual period, ∆Z500, highlights statistically significant diversities between the231

two fields (Fig. 2d). In particular, the factual climate features a dipole structure with232

larger positive anomalies over western Europe relative to the counterfactual climate.233

Furthermore, the positive anomaly has a larger spatial extension and it extends further234

westward over the Atlantic and southeastward towards the Mediterranean basin. This235

feature is pretty robust and independent of the choice of variables (SLP vs. Z500) and236

reanalyses (Fig. S4-Fig. S10).237

Fig. 2e shows T2M averaged over December 2021-August 2022 while Fig. 2f-g show238

the average T2M associated with the two sets of analogs. The analysis for T2M shows239

that the temperature field of the 2022 drought (Fig. 2e) is exceptionally warmer when240

compared to those associated with analogs of the counterfactual (Fig. 2f) or factual241

(Fig. 2g) periods. The difference ∆T2M between the two is shown in (Fig. 2h) and it242

shows an impressing warming associated with the Z500 analogs in the factual periods,243

as we would somewhat expect due to the ongoing global warming [42]. Note that this244

warming is way beyond the average global (1.2°C) but also regional warming and does245

not include the event itself.246

When comparing PRATE for the drought 2022 (Fig. 2i) with those associated247

with counterfactual (Fig. 2j) and factual (Fig. 2k) analogs, we note some similarities248
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such as large precipitation amounts over the Alps, Norway, and southern Iceland, while249

the western Atlantic is dryer in 2022 than in the analogs. Let us bear in mind that250

these are precipitation estimates obtained from a reanalysis and therefore do not have251

to be considered as reliable as real observations. While not accurate, they are still252

useful to connect circulation and thermal anomalies to precipitation deficits and hence253

droughts. What is more informative is the difference in PRATE associated with factual254

and counterfactual analogs (Fig. 2l), which shows a tendency to drier conditions in the255

factual climate relative to the counterfactual climate, with two minima over the British256

isles and over the Mediterranean.257

We complete this analysis by comparing the pattern of SPEI9 of August 2022258

(Fig. 2m; see also Fig. 1b for an estimate of the same field based on observations)259

with the typical SPEI9 patterns associated with the Z500 factual and counterfactual260

analogs (Fig. 2n-Fig. 2o). When comparing the structure of SPEI9 from counterfactual261

to factual period (Fig. 2p), we see an extension of the area with negative values from262

Eastern Atlantic and the Iberian peninsula to all Western and Southern Europe. In263

fact, the resulting difference ∆SPEI9 shows a marked tendency to negative values264

over all Europe. As SPEI9 takes into account both precipitation and surface potential265

evapotranspiration – which is temperature dependent – this patterns is fully consistent266

with both the tendency towards higher temperatures (Fig. 2h) and reduced precipitation267

(Fig. 2l) of Z500 analogs in the factual climate.268

3.2. Dynamical indicators analysis269

An analysis of the analogs quality Q (Fig. 2q) shows that factual analogs, as compared270

to counterfactual ones, are more similar to the Z500 pattern defined in Fig. 2a. This is271

because the Euclidean distance of the 2022 circulation pattern from the factual analogs272

(blue dots) is well centered with the distribution of the distances of 2022 analogs from273

their analogs (pink violin plot). Contrary to that, the distance of the 2022 circulation274

pattern from the counterfactual analogs is at the edge for the counterfactual (blue275

violin plot). The difference between the distribution of the quality for the two periods276

is significant with p-value virtually zero. However, this is not consistent through the277

different members of the 20CRv3 ensemble (see Section 3.5) so that these changes do278

not appear as robust.279

The predictability (Fig. 2r) and the persistence (Fig. 2s) of the analogs do not show280

significant differences between the counterfactual and factual climates. The seasonality281

of the analogs (Fig. 2t) shows a tendency of observing such Z500 anomalies more in282

the summer and early autumn months in the factual period than in the counterfactual283

period. Supplementary Fig. S4-S10 show that this analysis is overall fairly qualitative284

insensitive to the choice of the variable (Z500 or SLP) or the dataset or the bias-285

correction procedure employed, with the exception of the persistence of the analogs,286

which show a tendency to be more common in winter and spring in the factual climate287

when SLP is employed.288
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Figure 2. Attribution results for the 2022 Drought via analogs. December

2021 to August 2022 averaged mean 500 hPa geopotential height field Z500 (a), 2-

meter temperatures T2M (e), monthly precipitation rate PRATE (i), SPEI9 index

(m). Average of the 29 Z500 analogs found for the counterfactual [1836-1915] (b)

and factual [1941-2021] (c) periods and corresponding 2-meter temperatures (f,g),

daily precipitation rate (j,k) and SPEI9 (n,o). ∆Z500 (d), ∆T2M (h), ∆ PRATE

(i) and ∆SPEI9 (p) between factual and counterfactual periods: colored-filled areas

show significant anomalies with respect to the bootstrap procedure. Violin plots for

counterfactual (blue) and factual (orange) periods for the analogs Quality Q (q) the

Predictability index D (r), the Persistence index Θ (s) and the distribution of analogs

in each month (t). Black (red) lines in violin plots indicate mean (median) values.

Titles in violin plots report the results H of the two-sided Cramér-von Mises test at

the 0.05 significance level with the corresponding p-values (see section 2.4 for details).

3.3. Frequency of occurrence289

In order to determine whether the atmospheric circulation that led to the 2022 drought290

(Fig. 1a, Fig. 2a) has become more frequent in the factual climate, we now examine291

whether there is a trend in the frequency of the associated analogs over the whole 1836-292

2021 period, again leaving the year 2022 outside of this search. This analysis will allow293

us to isolate circulation trends on top of that induced by the thermodynamics, as we294

are using detrended SLP and Z500 data. For this analysis, we set the quantile for the295

analogs search to 0.95, i.e. we consider the 5% closest analogs to the event, to have296

enough analogs in each decade to estimate a robust trend. We have however tested297

trends obtained for higher quantiles (0.97, 0.98), i.e. looking at the 3% and 2% closest298
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Figure 3. Evolution of the Frequency of analogs per decade. Evolution of

the number of analogs per decade. In this case, analogs are computed for all the period

1836-2021. A linear fit is performed. The title reports the magnitude of the trends,

the 95% confidence intervals (CI) of the a parameter for the fit computed using the

Wald method [43] and the results H of the Breusch Pagan test [44] for the variability

of analogs with its p-value

analogs without finding qualitative differences. Results are shown in Figure 3, where we299

can see the number of analogs per decade. We estimate a linear trend ax + b where x300

is the number of analogs per decade and the upper and lower 95% confidence intervals301

(CI) of the a parameter of the fit using the Wald method [43]. The analysis shows an302

increasing variability in the frequency of the analogs without any significant increasing303

or decreasing trends. Similar results are obtained for SLP and other datasets (Fig.304

S11-S17). This leads us to conclude that the slow-evolving component of the circulation305

anomaly that drove the 2022 drought has not become more frequent in recent decades.306

Once the linear trend is removed, we investigate possible changes in the variability of307

the number of analogs using the Breusch-Pagan test [44] with a significance level 0.05.308

If the test statistic is found to be significant (H=1, pvalue < 0.05), it suggests that309

the residuals are not homoscedastic: in our case, this would mean that the analogs’310

variability changes over time. We tested this hypothesis in our datasets: for the Z500311

variables H=0 in all cases (Figures S11-S13) and for all the 80 ensemble members (Table312

S2). For SLP only 15 members of the ensemble and the combination SLP bias corrected313

DOE (Figure S14) is compatible with a change of variability in time.314

3.4. Dependence on ENSO and AMO315

Finally, we examine the association of the analogs with two major modes of interannual316

and interdecadal variability, namely ENSO and AMO. We build the probability317
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Figure 4. Analysis of the interannual and interdecadal variability. Violin

plots for counterfactual (blue) and factual (orange) periods for ENSO (a) and AMO (b)

values corresponding to the analogs months. Black (red) lines in violin plots indicate

mean (median) values. Titles in violin plots report the results H of the two-sided

Cramér-von Mises test at the 0.05 significance level with the corresponding p-values

(see section 2.4 for details).

distributions of the values of the ENSO and AMO indices selected at the months of318

the occurrence of analogs. If there exists a strong association between ENSO or AMO,319

and the circulation anomaly of Fig. 2a, then we would find a probability distribution320

not centered around zero.321

The results are shown in Fig. 4a for ENSO and in Fig. 4b for AMO. For the322

dataset used in the main text (20CRv3 plus NCEP/DOE) the analysis shows: (1) no323

significant changes in the distribution of ENSO (AMO) between the counterfactual and324

factual world, and (2) no tendency for El Niño or La Niña (positive AMO or negative325

AMO) to prevail during periods characterized by circulation analogs of the one seen326

during December 2021-August 2022. That would seem to reinforce our initial conjecture327

(Sect. 1) of no strong association between La Niña and the 2022 drought.328

We note however that the p-value of the test for ENSO is equal to 0.088, close329

to the significance value of 0.05. Indeed some of the supplementary datasets shown330

in Fig. S18, S20, S21 show a significant change in the distribution of ENSO between331

the counterfactual and factual climate. Hence, we cannot completely reject a moderate332

role of interannual variability in exacerbating the 2022 drought. Interestingly, the same333
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analysis performed for the sea-level pressure patterns (Figs. S22-S24) show instead a334

dependence on the AMO but not on the ENSO.335

3.5. Single-member analyses336

The use of 20CRv3 reanalysis ensemble average at the beginning of the period can337

be problematic because it is based on a limited amount of observational data. This338

can lead to inaccuracies and biases in the ensemble average, which can affect the overall339

analysis. To address this issue, we repeated our analysis for all the 80 ensemble members.340

Results are reported in Supplemental Material Section 4, Figures S25-S28 and Table341

S2. This allows for a more comprehensive and accurate assessment of the data, as it342

takes into account the variability among the individual members. Results obtained for343

single members are largely consistent with those presented here for the ensemble means.344

The analysis of S25-S28 suggest that the standard deviation of the ensemble is way345

smaller than the averages, therefore the uncertainty in the reanalyses does not affect346

sensibly the results. Table S2 suggests that dynamical changes in predictability and347

persistence are more robust for SLP than Z500, and a prominent role of the AMO as348

sources of interdecadal variability. Only few members show changes in Analogs Quality,349

so that the results found in Figs. 2,S4-S10 (q) are specific of ensemble averages. For350

Predictability, Persistence and Variability, results of the ensemble are coherent with351

those of the ensemble means supporting our claim that analogs of our event have overall352

not changed significantly in time.353

4. Discussion354

We find a prominent role of the atmospheric circulation in driving the 2022 drought.355

There is a strong correspondence between the areas where Z500 was higher in the 2022356

and the anomaly of this quantity in the factual vs counterfactual period. In particular,357

the geopotential height is not just higher but the area with positive anomalies is also358

larger. As a consequence, while in the counterfactual periods droughts associated with359

these synoptic situations were confined to the British Isles, France, and partially the360

Iberian peninsula, in the factual world they embrace a larger portion of continental361

Europe and Italy. There is therefore a sort of “inflating balloon” effect which expands the362

spatial extent of the drought and makes the anticyclonic dome higher, thus contributing363

to increasing the severity of the 2022 drought. This might be a “thermodynamic”364

effect of global warming [45]. In addition to that, we also found that factual analogs365

get “warmer”, i.e., the near-surface temperature associated with them becomes higher366

(Fig. 2h). That leads to a more negative value of SPEI even if PRATE remains367

unchanged because higher surface temperature increases evapotranspiration, which dries368

the soil. This result is in line with [3], which focused on the exceptionality of the June-369

August soil moisture deficit in Europe and found that human-induced climate change370

made the 2022 root zone soil moisture drought about 3-4 times more likely, and the371
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surface soil moisture drought about 5-6 times more likely.372

While the “balloon” expansion effect of Z500 is the most visible, we also note a373

change in the shape of the anticyclonic structure going from the counterfactual and374

factual periods, with the positive Z500 anomaly featuring a “crescent” shape from the375

Atlantic through Central Europe into the Mediterranean (Fig. 2d). While this change in376

shape is of dynamical nature and thus related to systematic changes in the atmospheric377

circulation goes beyond the scope of this study, but would deserve further attention in378

future studies.379

No trends in the frequency of this pattern have been observed and we do not have380

enough elements pointing to a change in the variability of the analogs with time. Finally,381

the analysis of the interannual and interdecadal oceanic variability on the 2022 drought382

suggests that we cannot completely rule out the influence of ENSO for the upper-level383

circulation and for the Atlantic Multi-decadal Oscillation for the lower-level circulation,384

although such influences are likely to be very modest.385

5. Conclusions386

According to the World Meteorological Organization, drought represents one of the most387

damaging and life-threatening climate-related hazards [46]. The attribution of drought388

events to human-caused climate change is not as clear as for other types of weather389

hazards like, e.g., heatwaves, because of the confounding role of natural variability390

[19]. Exceptional droughts have in fact occurred over the last two thousand years in391

association with decadal variations in sea surface temperatures [47]. While the last392

IPCC 6th Assessment Report states that we have “medium confidence” in attributing393

to human-induced climate change the increases in agricultural and ecological droughts394

because of increased land evapotranspiration [48, 42, 49], attribution to human-caused395

climate change of meteorological droughts – directly related to rainfall deficits and hence396

to atmospheric dynamics – remains challenging. Nevertheless, progress has been made397

and recent research highlighted the role of global warming in the exacerbation of some398

recent extraordinary meteorological droughts [50, 51, 20, 21].399

In this study we considered the 2022 European-Mediterranean drought [1, 2]400

and investigated the exceptionality of the event and of its atmospheric drivers in a401

century-long reanalysis (1836-2021) using the analog-based methodology proposed in402

[18]. Our results indicate a role for ACC in making the atmospheric anticyclonic403

anomaly “stronger” and “warmer”, two facts that in turn caused more widespread and404

exacerbated drought conditions. Conversely, we found that the frequency of occurrence405

of such a slow-evolving circulation component has not significantly changed over the406

last two centuries. These conclusions highlight a thermodynamic component in the407

exacerbation of droughts by human-caused global warming, while no strong evidence408

was found about a dynamical component - i.e., a change in circulation – in the recent409

period which could have triggered the 2022 drought.410

While our study heavily relies on the observational datasets used and does not411
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employ climate models, our results appear robust to the choice of meteorological412

variables and reanalysis. They further illustrate the capability of a reanalysis-based413

attribution conditioned on the atmospheric circulation on longer time-scales suggesting414

that this methodology could also be used to investigate other long-lasting events driven415

by synoptic situations such as prolonged cold periods or heatwaves.416

An approach based only on atmospheric reanalysis, like the one applied in this417

study, while providing important information on the likelihood of the 2022 drought, has418

some limitations for attributing this extreme event to human-caused climate change,419

that is, first, the impossibility to define a counterfactual climate with no anthropogenic420

forcing and, second, the limited number of years available in reanalyses datasets. In421

a follow-up study thus we plan to complement this study by applying this method to422

climate models too, and in particular to single model initial-condition large ensembles423

[52, 53, 54, 20, 55]. While these models are affected by systematic biases which can424

compromise their realism, they allow for a more rigorous definition of factual and425

counterfactual climate, and provide thousands of years of data is available for more426

robust statistics.427
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[12] López-Parages J, Rodŕıguez-Fonseca B, Dommenget D and Frauen C 2016 Clim. Dynamics 47469

2071–2084470

[13] Reuters 2022471

[14] Bost A F, Villeneuve A, Armand M, Zabalza F, Gauchard Y, Foucart S and Rof G 2022 Le Monde472

[15] Kaleem J and Johnson S 2022 Los Angeles Times473
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1. Anomalies calculation for the analog analysis

In this section, we provided information about how anomalies of SLP and Z500 were

calculated for the analog analysis.

Firstly, the normalization of the datasets is achieved in two steps; firstly, the

raw data (x) is purged from its linear trend (x’), and secondly, the seasonality effect

is removed by discarding long-time (1836-2022) monthly averages from corresponding

months (x”). Secondly, the moving average of each month (x”’) is obtained by taking the

mean of the values from the related month and 8 months prior (i.e., for August, months

between January and August). The results of each applied step to obtain anomalies are

shown in (Fig.S2).

2. Combining the 20CR and NCEP reanalyses and bias correction

In the following section, we describe why a bias correction is required before combining

two reanalysis datasets and how we achieved the bias correction. In addition to the bias

corrected datasets, we also provided merged datasets without using any correction.

It is required to merge two different datasets in order to provide uninterrupted data

in the time period selected for the scope of the study. For this purpose, the 20CR dataset

available between 01/1836 - 12/2015 and NCEP/DOE between 01/1979 - 08/2022 (and

NCEP/NCAR 01/1948 - 08/2022) are combined. Firstly, all datasets are aggregated to

the lowest resolution 2.5◦ using linear interpolation in order to eliminate the difference in

spatial resolution. Then, it is necessary to eliminate the systematic difference between

the two datasets, which has an effect on the calculation of the drought index. The linear

rescaling method is used for the bias correction using the given equation below. The

most linear relation between reference dataset X and the dataset to be rescaled Y is

considered to implement the linear rescaling method in the form

Y ∗ = µX + (Y − µY )cY (1)

where Y ∗ is the rescaled version of Y, µX and µY are time averages of X and Y,

and cY is a scalar rescaling factor found by using variance-based linear methods as

cY = σX/σY (2)

where σX and σY are standard deviations of X and Y datasets, respectively. Here

in these equations, X and Y datasets refer to 20CR datasets and Reanalysis datasets

within the commonly available period (01/1979 - 12/2015 for NCEP/DOE and 01/1948

- 12/2015 for NCEP/NCAR), respectively.
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As a result, the datasets used in this study are obtained from the combination of

all available raw 20CR datasets for the dates between 01/1836 - 12/2015, and either

bias-corrected or not NCEP/DOE or NCEP/NCAR datasets for 01/2016 - 08/2022.

The time series obtained with and without the bias correction method and the SPEI9

values, calculated from these two different time series are shown in (Fig.S3).

The Genova example showed that if we do not use bias correction when we merge

two datasets and calculate SPEI9, it is not possible to catch drought events after 2016

due to the difference between the variables of the two datasets (Fig.S3 f). On the other

hand, if we apply a linear rescaling method based on parameters obtained from the

common years, we can calculate SPEI9 values (Fig.S3 g) consistent with the observed

SPEI9 values obtained from SPEI Global Drought Monitor shown in the main text (Fig

1).

3. Detailed explanation of the Analogs Metrics

3.1. Predictability

The attractor of a dynamical system is a geometric object defined in the space hosting

all the possible states of the system (phase-space). Each point ζ on the attractor can be

characterized by two dynamical indicators: the local dimension D, which indicates the

number of degrees of freedom active locally around ζ, and the persistence Θ, a measure

of the mean residence time of the system around ζ [1]. To determine D, we exploit

recent results from the application of extreme value theory to Poincaré recurrences in

dynamical systems. This approach considers long trajectories of a system — in our

case successions of monthly Z500 or SLP latitude–longitude maps — corresponding to

a sequence of states on the attractor. For a given point ζ in phase space (e.g., a given

Z500 or SLP map), we compute the probability that the system returns within a ball of

radius ϵ centered on the point ζ. The [2] theorem, modified by [3], states that logarithmic

returns:

g(x(t)) = − log(dist(x(t), ζ)) (3)

yield a probability distribution such that:

Pr(z > s(q)) ≃ exp

[
−ϑ(ζ)

(
z − µ(ζ)

σ(ζ)

)]
(4)

where z = g(x(t)) and s is a high threshold associated to a quantile q of the series

g(x(t)). Requiring that the orbit falls within a ball of radius ϵ around the point ζ is

equivalent to asking that the series g(x(t)) is over the threshold s; therefore, the ball

radius ϵ is simply e−s(q). The resulting distribution is the exponential member of the

Generalized Pareto Distribution family. The parameters µ and σ, namely the location

and the scale parameter of the distribution, depend on the point ζ in phase space. µ(ζ)
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corresponds to the threshold s(q) while the local dimension D(ζ) can be obtained via the

relation σ = 1/D(ζ). This is the metric of predictability introduced in the manuscript.

When x(t) contains all the variables of the system, the estimation of D based on

extreme value theory has a number of advantages over traditional methods (e.g. the box

counting algorithm [4, 5]). First, it does not require to estimate the volume of different

sets in scale-space: the selection of s(q) based on the quantile provides a selection of

different scales s which depends on the recurrence rate around the point ζ. Moreover,

it does not require the a priori selection of the maximum embedding dimension as the

observable g is always a univariate time-series.

3.2. Persistence

The persistence of the state ζ is measured via the extremal index 0 < ϑ(ζ) < 1, an

adimensional parameter, from which we extract Θ(ζ) = ∆t/ϑ(ζ). Here, ∆t is the

timestep of the dataset being analysed. Θ(ζ) is therefore the average residence time of

trajectories around ζ, namely the metric of persistence introduced in the manuscript,

and it has unit of a time (in this study months). If ζ is a fixed point of the attractor,

then Θ(ζ) = ∞. For a trajectory that leaves the neighborhood of ζ at the next time

iteration, Θ = 1. To estimate ϑ, we adopt the Süveges estimator [6]. For further details

on the the extremal index, see [7].

3.3. Quality

Q is the average euclidean distance of a given month from its closest 29 analogs [8]. One

can then compare Q for the targeted SLP or Z500 map to Q for each analogue of the

target. If the value of Q for the targeted map belongs to the same distribution as, or

is smaller than, the values of Q for the analogs, then the event has good analogs and

attribution can be performed. If instead the Q for the targeted map is larger than that

of the analogue months, then this indicates a highly unusual Z500 or SLP configuration

and the results of the attribution analysis must be interpreted with care. Differences

between the counterfactual and factual periods in the value of Q for the peak month

of the targeted map indicate whether the the atmosphere is visiting states (analogs)

that are more or less similar to the map associated with the extreme. Differences in the

distribution of Q for the 29 analogs indicate whether those states are in turn becoming

more or less ”typical” of the atmospheric variability. In order to test the homogeneity

of the analogs in the two periods, we have computed Q for all months in the factual and

counterfactual periods on the wide North Atlantic domain and applied the two-sided

Cramér-von Mises test at the 0.05 significance level. The analogs quality diagnostic

provides information on the fact that we have enough good and independent analogs to

perform the analysis for the following reasons: i) the distance of the targeted maps from

the analogs (dark dots in Figures 1,S4-S10 (q)) is within the range of that of the analogs

of the analogs. If we did not have good analogs the dots would lie outside of the violins

for factual and counterfactual periods. ii) if the number of independent analogs for
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study would not be sufficient, the violin plots in Figures 1,S4-S10 (q) would not show a

continuous distribution probability density function but rather consist of discontinuous

and discrete patches.

4. Analysis for each member of the 20CRv3 ensemble

The use of 20CRv3 reanalysis ensemble average at the beginning of the period can be

problematic because it is based on a limited amount of observational data. This can

lead to inaccuracies and biases in the ensemble average, which can affect the overall

analysis. To address this issue, it is common practice to use individual members of

the ensemble, rather than the ensemble average, for the analysis. This allows for a

more comprehensive and accurate assessment of the data, as it takes into account the

variability among the individual members. To ensure robustness of our results with

respect to this issue, we have repeated the analysis for each of the 80 individual members

of the 20CRv3. Figures S25-S28 and Table S2. Patterns show for ∆ Z500 (Figure S25a),

∆ SLP (Figure S26a) closely match those shown in Figure 1d and Figure S7d in shape

and in magnitude of the structures. The same observation applies for the diagnostic

T2M, PRATE and SPEI9 variables in the analyses. To get an idea of whether these

results are significant with respect to the member variability, we display in Figures S27-

S28, the standard deviations of the ensemble. The scale of the standard deviation for

all variables but T2M is an order of magnitude smaller than that of the anomalies,

proving the robustness of our analysis for circulation fields with respect to the 20CRv3

ensemble. For T2M, the uncertainty among members is mostly concentrated in Eastern

Europe and Russia, i.e. regions that are not concerned by our analysis. Table S2 shows

the number of ensemble members scoring H=1 in the statistical tests of Cramér-von

Mises [9] and the Breusch-Pagan test for the Variability [10]. It allows to verify that

there are not many members for which the analogs quality Q is different among factual

and counterfactual periods. There is about half of the ensemble showing changes in

Predictability and persistence for the SLP. Changes in the AMO for both of the SLP

and Z500 are found in about half of the members, while very few ensemble members

seem to point to a change in variability of the analogs with time.
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5. Supplemental Tables and Figures

Variable
Spatial Reso-

lution
Temporal Coverage Reference

SLP, Z500, PRATE,

T2M, SPEI9
1° x 1° 01/1836-12/2015

NOAA/CIRES/DOE 20CRv3,

(Slivinsk et al., 2019)

SLP, Z500 2.5° x 2.5° 01/1948-08/2022
NCEP/NCAR Reanalysis I,

(Kalnay et al., 1996)

PRATE,
1.875° x 1.90° 01/1979-08/2022

NCEP/DOE Reanalysis II,

T2M (Kanamitsu et al., 2002)

ENSO 1° x 1° 01/1870-08/2022
HadISST1 Nino3.4 Index,

(Rayner et al., 2003)

AMO 1° x 1° 01/1850-08/2022

Atlantic Multidecadal Variabil-

ity index, (van Oldenborgh et al.,

2009)

SPEI9 1° x 1° 01/1950-08/2022
SPEI9Global Drought Monitor,

(Begueŕıa et al., 2014)

Table S1. Data sets used in the study, the period of record available, spatial resolution,

and references.

Test on Analogs Metrics # with H=1 (Z500) # with H=1 (SLP)

Cramér-von Mises for Quality Q 23 5

Cramér-von Mises for Predictability D 22 53

Cramér-von Mises for Persistence Θ 7 36

Cramér-von Mises for AMO 49 34

Cramér-von Mises for ENSO 4 2

Breusch-Pagan for Variability 0 15

Table S2. Number of ensemble members scoring H=1 in the statistical tests of

Cramér-von Mises and the Breusch-Pagan test for the Variability.
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Figure S1. Circulation anomalies during persisting 3-year La Niña. 500

hPa January-to-August mean geopotential height anomaly in years (i.e., 1956, 1975,

2000, 2022) characterized by a three-year persisting La Niña.
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Figure S2. Example of the results at each step applied to obtain anomalies

(SLP over Genova) time series of raw data (x), detrended data (x’), seasonality

removed data (x”), and moving average applied data (x”’).
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Figure S3. Comparisons of the time series obtained by combining 20CR and

raw/bias-corrected NCEP/DOE T2M and PRATE time series for the common

period (a,c) and complete study period (b,d), SPEI9 time series obtained from raw

input datasets (e) and bias-corrected datasets (f) obtained over Genova. CR20, raw,

and bias-corrected NCEP/DOE time series are shown in black, red, and green colors,

respectively.
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Figure S4. Attribution results for the 2022 Drought via analogs. As in Figure

2 in the main text, but for analogs of the non-bias corrected 500 geopotential height

and the DOE dataset.
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Figure S5. Attribution results for the 2022 Drought via analogs. As in Figure

2 in the main text, but for analogs of the non-bias corrected 500 geopotential height

and the NCAR dataset.



Supplemental Material 13

Figure S6. Attribution results for the 2022 Drought via analogs. As in Figure

2 in the main text, but for analogs of the bias corrected 500 geopotential height and

the NCAR dataset.
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Figure S7. Attribution results for the 2022 Drought via analogs. As in Figure

2 in the main text, but for analogs of the bias corrected sea-level pressure and the DOE

dataset.
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Figure S8. Attribution results for the 2022 Drought via analogs. As in Figure

2 in the main text, but for analogs of the non bias-corrected sea-level pressure and the

DOE dataset.
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Figure S9. Attribution results for the 2022 Drought via analogs. As in

Figure 2 in the main text, but for analogs of the bias corrected sea-level pressure and

the NCAR dataset.
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Figure S10. Attribution results for the 2022 Drought via analogs. As in

Figure 2 in the main text, but for analogs of the non bias-corrected sea-level pressure

and the NCAR dataset.

Figure S11. Evolution of the Frequency of analogs in time. As in Figure 3 in

the main text, but for analogs of the non-bias corrected 500 geopotential height and

the DOE dataset.
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Figure S12. Evolution of the Frequency of analogs in time. As in Figure 3 in

the main text, but for analogs of the non-bias corrected 500 geopotential height and

the NCAR dataset.

Figure S13. Evolution of the Frequency of analogs in time. As in Figure 3 in

the main text, but for analogs of the bias corrected 500 geopotential height and the

NCAR dataset.
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Figure S14. Evolution of the Frequency of analogs in time. As in Figure 3 in

the main text, but for analogs of the bias corrected sea-level pressure and the DOE

dataset.

Figure S15. Evolution of the Frequency of analogs in time. As in Figure 3

in the main text, but for analogs of the non bias-corrected sea-level pressure and the

DOE dataset.
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Figure S16. Evolution of the Frequency of analogs in time. As in Figure 3 in

the main text, but for analogs of the bias corrected sea-level pressure and the NCAR

dataset.

Figure S17. Evolution of the Frequency of analogs in time. As in Figure 3

in the main text, but for analogs of the non bias-corrected sea-level pressure and the

NCAR dataset.
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Figure S18. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the non-bias corrected 500 geopotential

height and the DOE dataset.
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Figure S19. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the non-bias corrected 500 geopotential

height and the NCAR dataset.
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Figure S20. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the bias corrected 500 geopotential height

and the NCAR dataset.
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Figure S21. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the bias corrected sea-level pressure and

the DOE dataset.
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Figure S22. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the non bias-corrected sea-level pressure

and the DOE dataset.
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Figure S23. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the bias corrected sea-level pressure and

the NCAR dataset.
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Figure S24. Analysis of the Interannual and Interdecadal variability. As in

Figure 4 in the main text, but for analogs of the non bias-corrected sea-level pressure

and the NCAR dataset.
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Figure S25. Average of the Z500 attribution results obtained for the

individual 20CRv3 ensemble members. Average for ∆Z500 (a), ∆T2M (b), ∆

PRATE (c) and ∆SPEI9 (d) obtained by analysing individually single members of the

20CRv3 ensemble completed with the bias-corrected DOE dataset.
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Figure S26. Average of the SLP attribution results obtained for the

individual 20CRv3 ensemble members. Average for ∆SLP (a), ∆T2M (b), ∆

PRATE (c) and ∆SPEI9 (d) obtained by analysing individually single members of the

20CRv3 ensemble completed with the bias-corrected DOE dataset.
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Figure S27. Standard Deviation of the Z500 attribution results obtained for

the individual 20CRv3 ensemble members. Standard deviation for ∆Z500 (a),

∆T2M (b), ∆ PRATE (c) and ∆SPEI9 (d) obtained by analysing individually single

members of the 20CRv3 ensemble completed with the bias-corrected DOE dataset.
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Figure S28. Standard Deviation of the SLP attribution results obtained for

the individual 20CRv3 ensemble members. Standard deviation for ∆SLP (a),

∆T2M (b), ∆ PRATE (c) and ∆SPEI9 (d) obtained by analysing individually single

members of the 20CRv3 ensemble completed with the bias-corrected DOE dataset.


	Characteristics of the 2022 Euro-Mediterranean drought
	Methods and Data
	Drought and circulation variables
	Data
	Analogs attribution method
	Analog quality Q.
	Predictability Index D.
	Persistence index .
	Seasonality of analogs.

	Association with ENSO and AMO

	Results
	Pattern analysis
	Dynamical indicators analysis
	Frequency of occurrence
	Dependence on ENSO and AMO
	Single-member analyses

	Discussion
	Conclusions
	Anomalies calculation for the analog analysis
	Combining the 20CR and NCEP reanalyses and bias correction
	Detailed explanation of the Analogs Metrics
	Predictability
	Persistence
	Quality

	Analysis for each member of the 20CRv3 ensemble
	Supplemental Tables and Figures

