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1. Introduction
Global aquaculture production has increased by 500% since the late 1980s to address the growing demand for 
aquatic proteins and decreasing fishery resources in natural aquatic ecosystems (FAO, 2016). More than 40% of 
global aquaculture production is carried out in earthen aquaculture ponds (Yuan et al., 2019). A total volume of 
101 million tons of aquaculture was produced in 2014, and this volume is expected to continuously increase to 
230 million tons in the next 20 years (FAO, 2014). Such huge increases in aquatic production depend heavily on 

Abstract Expanding worldwide aquaculture has greatly increased greenhouse gas emissions; however, the
underlying microbial mechanisms are poorly understood. In particular, the role of ferric iron [Fe(III)] (hydro)
oxides in carbon mineralization in aquaculture pond sediments remains unclear. Here, we studied the rates 
of microbial Fe(III) reduction, sulfate reduction, methanogenesis, and carbon mineralization in aquaculture 
shrimp (Litopenaeus vannamei) ponds of various salinities before, during, and after shrimp farming in 
subtropical estuaries in southeast China. Sediment samples (0–10 cm) were collected to investigate the content 
of iron species, characteristics of organic matter, and abundance of Geobacter, a proxy of iron reducers. 
Overall, Fe(III) reduction (46.1% ± 19.1%) dominated carbon mineralization, followed by sulfate reduction 
(39.6% ± 16.8%) and methanogenesis (1.5% ± 1.1%). Microbial Fe(III) reduction contributed more to carbon 
mineralization during farming than before and after farming. This enhancement in Fe(III) reduction is attributed 
to a significant increase in Fe(III) content during farming. Additionally, the contributions of microbial Fe(III) 
reduction to carbon mineralization were lower in the high-salinity ponds than in the low-salinity ponds due 
to the suppression of sulfate reduction, abiotic Fe(III) reduction by sulfides, and lower oxidation-reduction 
potential. Our findings demonstrate that microbial Fe(III) reduction plays a significant role in carbon 
mineralization in aquaculture pond sediments. Future carbon flux prediction models of aquaculture pond 
systems should fully integrate microbial Fe(III) reduction.

Plain Language Summary The expanding global aquaculture industry has greatly increased
the carbon mineralization potential (i.e., production of carbon dioxide and methane). Carbon mineralization 
is mediated by various types of microbial respiration, including iron reduction, sulfate reduction, and 
methanogenesis. Aquatic sediments are enriched with iron oxides; however, the contribution of microbial iron 
reduction to carbon mineralization in the aquaculture sediments is poorly understood. Here, we studied the 
rates and pathways of carbon mineralization in aquaculture shrimp (Litopenaeus vannamei) ponds of varying 
salinities before, during, and after shrimp farming in subtropical estuaries in southeast China. Our results show 
that microbial iron reduction has a larger contribution to carbon mineralization during farming than before 
and after farming. In addition, the contributions of microbial iron reduction to carbon mineralization were 
lower in the high-salinity ponds than in the low-salinity ponds. Overall, microbial iron reduction contributed 
approximately 46% to carbon mineralization, followed by sulfate reduction (approximately 40%) and 
methanogenesis (approximately 2%). Our findings demonstrate that microbial iron reduction plays a significant 
role in carbon mineralization in aquaculture pond sediments. Microbial Fe(III) reduction should be involved in 
future carbon flux prediction models of aquaculture pond systems.
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high stocking densities and large amounts of aquafeed inputs (Naylor et al., 2021). Unfortunately, approximately 
35% of aquafeed cannot be utilized by aquatic animals, which leads to large amounts of residual aquafeed or 
feces accumulating in aquaculture pond sediments (Pereyra et al., 2010). These organic-rich biodeposit stimu-
late carbon mineralization and yield carbon greenhouse gases such as carbon oxides (CO2) and methane (CH4) 
(Burkholder & Shumway, 2011). It is estimated that the annual CO2 emissions of aquaculture ponds are equal 
to 7.1 × 10 3 CO2-eq m −2 (Tong, Bastviken, et al., 2021), which accounts for 15.1% of CO2 emissions in inland 
waters (Holgerson & Raymond, 2016). Although much attention has been paid to greenhouse gas emission fluxes 
from aquaculture ponds (Yang et al., 2018; Yuan et al., 2021, 2019; Zhang et al., 2022), little is known about the 
mechanisms underlying microbially mediated carbon mineralization, which leads to inaccurate estimations of 
carbon stocks and fluxes in aquaculture pond systems.

Organic carbon mineralization refers to the process by which microorganisms transfer electrons from organic 
substrates to electron acceptors and obtain the energy produced during this process (Stams et  al.,  2006). In 
organic-rich aquatic ecosystems such as wetlands, lakes, and reservoirs, oxygen is depleted quickly within a 
few millimeters of the surface sediment (Brodersen et al., 2019; Kostka et al., 2002; Servais et al., 2019), and 
carbon mineralization is mediated by anaerobic microbial metabolism, including nitrate reduction, manganese 
reduction, ferric iron [Fe(III)] reduction, sulfate (SO4 2−) reduction, and methanogenesis (Lamers et al., 2012). 
These microbial metabolic pathways are not exclusive and can coexist in various aquatic sediments (Dombrowski 
et al., 2018).

Microbial Fe(III) reduction can be comparable and even outcompete other microbial metabolic pathways in 
the sediments of tidal wetlands (Liu et al., 2019; Luo et al., 2020), lakes (Emmerich et al., 2012), rivers (Yu 
et al., 2012), and paddy soils (Ding et al., 2015; Khan et al., 2019). Although sulfate reduction and methano-
genesis have been widely reported in aquaculture pond systems (Hyun et  al.,  2013; Nho et  al.,  2018; Zhou 
et al., 2022), few studies have focused on Fe(III) reduction and its role in carbon mineralization in aquaculture 
pond systems. Indeed, aquaculture pond sediments have comparable or higher Fe(III) content than other aquatic 
sediments (Kim et al., 2020; Lemonnier et al., 2021; Mok et al., 2021). It is therefore reasonable to expect that 
microbial Fe(III) reduction also plays an essential role in aquaculture pond sediments, although there is currently 
a lack of field data to support this hypothesis. Iron reduction not only plays a key role in greenhouse gas emissions 
(Hyun et al., 2009; Neubauer et al., 2005) but also has a significant impact on the energy and nutrient flow and 
the adsorption and co-precipitation of trace metals (Burton et al., 2008; Johnston et al., 2011). Clarifying micro-
bial Fe(III) reduction and its relationship with sulfate reduction and methanogenesis could contribute to a better 
understanding of the biogeochemical Fe and C cycling in aquaculture pond sediments.

Farming activities can significantly alter sediment C cycling in aquaculture pond systems (Chanda et al., 2019; 
Ma et al., 2018; Yang et al., 2018). Little is known about how farming activities affect the rates of microbial 
Fe(III) reduction in aquaculture systems. Farming activities can modify the availability and lability of organic 
substrates (Ali et al., 2021; Mulat et al., 2016; Sabu et al., 2022). For instance, in grass carp aquaculture ponds, 
carp feeding has been found to increase dissolved organic carbon (DOC) concentrations in sediments by 2–5-fold 
(Chen et al., 2015). Additionally, in a shrimp pond in New Caledonia, the protein content increased from 3.8 
to 5.9 mg g −1 from the initial to last stages of shrimp farming, while the lipid content increased from 1.2 to 
3.0 mg g −1 (Pusceddu et al., 2011). Furthermore, farming activities can modify the availability of Fe(III). Since 
oxygen concentrations are sometimes too low to maintain shrimp survival due to intensive aquaculture activities, 
aerators are widely used in aquaculture ponds during farming (Reis et al., 2021). The application of aerators can 
significantly elevate oxygen concentrations in aquaculture pond sediments, which can stimulate Fe(II) oxidation 
and Fe(III) replenishment (Chen, Hall, et al., 2020). Overall, farming activities have the potential to alter the 
organic substrate and electron acceptors of microbial Fe(III) reduction; and we thus hypothesized that the rates of 
microbial Fe(III) reduction may also vary across farming stages in aquaculture pond sediments.

Salinity is also an important environmental driver that affects the rates and pathways of carbon mineralization 
(Luo et al., 2019). Altered salinity could influence carbon mineralization by changing sulfate concentrations, 
mineral availability, microbial activities, and substrate quantity and quality (Herbert et al., 2015). Previous studies 
have suggested that increasing salinity could promote sulfate reduction and suppress methanogenesis in aquacul-
ture pond systems (Alongi et al., 1999). This occurs because microbial sulfate reduction is a more energetically 
favorable process than methanogenesis (Froelich et al., 1979). A relatively unexplored question is how microbial 
Fe(III) reduction responds to changes in salinity in aquaculture pond systems. A study conducted in tidal wetland 



systems suggested that an increase in salinity of 10 mg g −1 reduced Fe(III) reduction rates by 95% because the 
activities of iron reducers were suppressed by increasing sulfate reduction (Weston et al., 2006). In contrast, a 
laboratory study reported that Fe(III) reduction rates increased with increasing porewater Cl − concentrations 
(0–50 mmol L −1) because increased ionic strength increased the availability of Fe(III) (hydro)oxides (Schoepfer 
et al., 2014). These inconsistent mechanisms led to an uncertain response of Fe(III) reduction to salinity. Salin-
ity differs highly among coastal aquaculture ponds; thus, identifying the rates of microbial Fe(III) reduction in 
aquaculture ponds with different salinities may be beneficial for understanding the spatial variation of rates and 
pathways of carbon mineralization among coastal aquaculture ponds.

To address these gaps, we conducted field investigations in the sediments of aquaculture shrimp (Litopenaeus 
vannamei) ponds in two estuaries with great differences in salinity across pre-farming, farming, and post-farming 
stages. The major objectives of this study were to explore the effects of aquaculture farming activities and salinity 
on microbial Fe(III) reduction and its role in carbon mineralization in aquaculture pond systems. We hypothe-
sized that (a) aquaculture farming activities increased the rates of carbon mineralization because of the intro-
duction of aquafeeds; (b) aquaculture farming activities stimulated the contribution of Fe(III) reduction due to a 
replenishment of Fe(III); (c) high-salinity ponds had higher carbon mineralization rates than low-salinity ponds 
because more electron acceptors, that is, sulfate, were available; and (d) high-salinity ponds had lower Fe(III) 
reduction contribution than low-salinity ponds because of intense competition with sulfate reduction.

2. Materials and Methods
2.1. Study Site

The study was conducted in the Minjiang Estuary (26°00′N–26°05′N, 119°30′E−119°41′E) and Mulanxi Estuary 
(25°23′N–25°25′N, 119°08′E−119°12′E) in Southeast China (Figure 1). The climate in both estuaries comprises 
subtropical marine monsoons. The average air temperatures of the Minjiang and Mulanxi estuaries are 19.6 and 
20.2°C, respectively, and the average precipitation is 1,350 and 1,400 mm, respectively (www.weather.com.cn). 
Many monoculture aquaculture shrimp (L. vannamei) ponds are distributed in the two estuaries, which were all 
converted from coastal tidal wetlands 7–9 years ago.

Figure 1. Location of the selected aquaculture ponds in the Minjiang and Mulanxi estuaries near the East China Sea. Three 
shrimp ponds were selected in the Minjiang Estuary (with a salinity of 2–4 mg g −1; pond I, II, III) and were referred to as 
“low-salinity” ponds. Three other shrimp ponds were selected in the Mulanxi Estuary (salinity of 14–16 mg g −1; pond IV, V, 
VI) and were referred to as “high-salinity” ponds.

http://www.weather.com.cn/


The salinity of the two estuaries varies greatly. Studies on the ponds from the two estuaries may therefore 
provide important insights into the ecosystem response of aquaculture ponds to changes in salinity. Moreover, 
L. vannamei is a euryhaline shrimp species that grows well in all ponds. We selected three shrimp ponds in the
Minjiang Estuary (with a salinity of 2–4 mg g −1) and referred to them as “low-salinity” ponds. Three other shrimp 
ponds were selected in the Mulanxi Estuary (salinity of 14–16 mg g −1) and were referred to as “high-salinity”
ponds. To isolate the effects of aquaculture farming practices and salinity, the selected ponds were similar in size, 
maximum water depth, sediment texture, bulk density, and were maintained by consistent aquaculture manage-
ment practices such as stocking density (Table 1).

Aquaculture farming management was consistent for all the ponds during the experimental period from April to 
December 2018. On April 2, 2018, water was introduced into the ponds from nearby estuaries, and no additional 
artificial disturbance occurred during the pre-farming stage (April 3 to May 4, 2018). On May 5, 2018, shrimp 
larvae were released into the ponds for the farming stage. During the farming stages (May 5–17 November 2018), 
commercial aquatic feed pellets (including crude protein 31.1%, crude fat 6.8%, moisture 8.7%, ash 5.3%, and 
fiber 1.1%) were added to the ponds twice a day. Shrimps were harvested from November 12 to 17, 2018. During 
the post-farming stage (November 18 to December 20, 2018), aquaculture wastewater remained in the ponds, and 
no additional artificial disturbance occurred.

2.2. Sediment and Porewater Collection

In 2018, sediment sampling was conducted at the pre-farming (April 25th), farming (July 21st), and post-farming 
(December 11th) stages in all the shrimp ponds. During the sediment sampling, triplicate polyvinyl chloride 
tubes (length, 15 cm; inner diameter, 10 cm) were randomly inserted into the sediments. The sampling depth 
was 0–10 cm as this layer is affected the most by aquaculture farming activities (Suárez-Abelenda et al., 2014; 
Tho et al., 2011). The sediments were bubbled with nitrogen (N2) and closed with silicone gaskets on both ends 
before being stored on ice and transferred to the laboratory. The sediment samples were pooled, homogenized, 
and sieved (2 mm mesh size) in an anaerobic glove bag. The sediment subsamples for incubation and molecular 
genetics analyses were stored at 4 and −20°C, respectively. Porewater samples were extracted by centrifuging 
the sediment subsamples at 4,000 × g for 5 min. Porewater samples for NO3 −, NH4 +, and SO4 2− determination 
were filtered through a 0.22 μm filter with a cellulose acetate syringe filter, and those for DOC determination 
were filtered through a 0.45 μm filter with a glass fiber filter. All porewater samples were stored at 4°C before 
further analysis.

Minjiang estuary (low-salinity ponds) Mulanxi estuary (high-salinity ponds)

Pond I Pond II Pond III Pond IV Pond V Pond VI

Latitude 26°00′58″N 26°00′56″N 26°01′01″N 25°22′58″N 25°22′58″N 25°22′52″N

Longitude 119°39′25″E 119°39′38″E 119°39′35″E 119°08′26″E 119°08′39″E 119°08′40″E

Stocking density (tails hm −2) 130 × 10 4 130 × 10 4 130 × 10 4 130 × 10 4 130 × 10 4 130 × 10 4

Feed conversion rate 1.48 1.42 1.56 1.49 1.57 1.63

Yield (kg m −3) 12.4 11.8 11.5 12.2 12.7 13.0

Pond size (hm 2) 1.39 1.48 1.33 1.38 1.21 1.26

Maximum water depth (m) 1.75 1.63 1.84 1.62 1.82 1.74

Sand (%) 9.60 ± 0.28 10.64 ± 3.63 7.36 ± 0.77 10.45 ± 2.39 10.26 ± 1.06 9.93 ± 3.06

Slit (%) 76.24 ± 0.72 77.49 ± 2.77 79.03 ± 2.54 77.56 ± 2.53 77.46 ± 1.44 76.46 ± 2.18

Clay (%) 14.16 ± 0.89 11.87 ± 1.35 13.61 ± 2.65 11.99 ± 1.79 12.28 ± 0.54 13.61 ± 0.93

Bulk density (g cm −3) 1.30 ± 0.20 1.29 ± 0.01 1.37 ± 0.02 1.34 ± 0.23 1.32 ± 0.21 1.33 ± 0.16

Table 1 
Location, Stocking Density, Feed Conversion Rate, Yield, Pond Size, Maximum Water Depth, Sediment Texture, and Bulk 
Density in Aquaculture Ponds in the Minjiang and Mulanxi Estuaries in Southeast China



2.3. Sediment Properties Analyses

Sediment total organic carbon (TOC) and total nitrogen (TN) were measured using a CN-elemental analyzer with 
detection limits of 0.02 mg g −1 (Vario MAX CN, Germany). Prior to assessing the TOC measurements, the sedi-
ments were leached with 10% HCl to remove inorganic carbon (Hou et al., 2013). The sediment C:N ratios refers 
to the TOC versus TN ratio. Salinity was detected using a salinity meter (SALT 6+, Eutech Instruments, Thermo 
Fisher Scientific, USA), and the unit of salinity was given as mg g −1 (i.e., absolute salinity; Millero, 2010; Millero 
et al., 2008). Sediment oxidation-reduction potential (ORP) was detected using an ORP meter (FJA-6, Nanjing 
Chuan-Di Instruments & Equipment Co., Ltd., China; detection limit = 0.1 mV). The ORP of surface sediments 
was measured when the pond aerators were not operational. The SO4 2− concentrations in the porewater were 
analyzed using an ICS-2000 Dionex ion chromatograph (Thermo Fisher Scientific) with a detection limit of 
2 μmol L −1. The DOC concentrations were analyzed using a TOC analyzer (TOC-VCPH, Shimadzu, Tokyo, 
Japan) with a detection limit of 2 μmol L −1. The dissolved inorganic carbon (DIC) concentrations were measured 
using headspace method by collected CO2 through acidifying porewater to pH = 2.0 with 10% ultrapure HCl 
(Stainton, 1973). The ammonia (NH4 +) and nitrate (NO3 −) concentrations in the porewater were determined using 
a continuous flow analyzer (San++, Skalar Analytical) with detection limits of 2 and 1 μmol L −1, respectively.

Bioavailable Fe(II) and Fe were extracted with 0.5 mol L −1 of HCl and a mixture of 0.5 mol L −1 of HCl and 
100 g L −1 of hydroxylamine, respectively (Kostka & Luther III, 1994). The Fe content was determined by the 
1,10-phenanthroline method using UV spectrophotometry (UV-2450, Shimadzu, Japan) (APHA,  2005). The 
Fe(III) content was calculated as the difference between bioavailable Fe and Fe(II) contents. Total reduced sulfur 
(TRS) was extracted using a 6 mol L −1 HCl solution plus 0.1 mol L −1 of ascorbic acid (Burton et al., 2008). The 
hydrogen sulfide (∑H2S) concentrations were determined by the methylene blue method using UV spectropho-
tometry (Cline, 1969). The S content in ferrous sulfide (FeS) was estimated based on the difference in the S 
content between TRS and ∑H2S (Kostka et al., 2002). The Fe content in FeS was calculated using the stoichi-
ometric relationship between Fe and S in FeS (i.e., Fe:S = 1:1). The non-sulfidic Fe(II) content was calculated 
based on the difference in the Fe content between Fe(II) and FeS (Luo et al., 2014). The Fe(II), Fe(III), and TRS 
recovery rates were assessed in triplicate using FeCO3, ferric oxide-hydroxide, and Na2S and were found to be 
95%–104%, 97%–103%, and 89%–108%, respectively.

2.4. Fluorescence Measurements

Three-dimensional emission matrix (3D-EEM) fluorescence measurements were assessed using a fluorescence 
spectrophotometer (Hitachi F-7100, Tokyo, Japan). The scanning ranges of the excitation (Ex) and emission 
wavelengths (Em) were 200–450 nm (interval: 5 nm) and 210–550 nm (interval: 1 nm), respectively. The fluo-
rescence spectra samples were corrected by subtracting the Milli-Q water blank signals and normalized by the 
Raman peak at 350 nm of Milli-Q water (Lawaetz & Stedmon, 2009). The negative fluorescence intensity values 
were set to 0, and the Rayleigh scattering peaks were trimmed. A total of 54 3D-EEM datasets were then modeled 
with a parallel factor analysis (PARAFAC) in MATLAB 2019 with the DOMFluor toolbox version 1.7 (Stedmon 
& Bro,  2008). Three fluorescent components were identified by split-half validation and visual inspection 
(Stedmon et al., 2003). The normalized maximum fluorescence intensity (Fmax) of each component was used to 
estimate quantitative and qualitative variations (Stedmon & Markager, 2005).

2.5. Molecular Genetic Analyses

Soil DNA was extracted from 0.25 g of fresh soil using PowerSoil DNA Extraction Kits (MoBio Laboratory, 
CA, USA), according to the manufacturer's instructions. The abundance of the mcrA gene (methanogen) was 
determined using the primers mcrA-F and mcrA-R (Steinberg & Regan, 2009). The dsrA gene (sulfate reducer) 
was targeted using the primers dsrA 290F and dsrA 660R (Pereyra et al., 2010). Iron reducers have no functional 
genes (Li et al., 2011); however, based on investigations of 16S rRNA gene sequences, Geobacter accounted for 
84.5% of the total identified iron reducers in the aquaculture shrimp pond sediments. Thus, we selected Geobac-
ter as a proxy for iron reducers in this study. The abundance of Geobacter was targeted using the primers 494F 
and 825R (Holmes et al., 2002). qPCR assays were performed using a real-time PCR system (Applied Biosystems 
7500, Thermo Fisher Scientific Inc., USA). Further details on the molecular genetics analyses can be found in 
the study by Liu et al. (2019).



2.6. Sediment Incubation

We applied anaerobic incubation to determine the rates of microbial Fe(III) and sulfate reduction, methanogene-
sis, and carbon mineralization because our ORP data showed that the aquaculture pond sediments were anaerobic 
(Table 2). The rates of microbial Fe(III) and sulfate reduction, methanogenesis, and carbon mineralization have 
previously been quantified by sediment incubation (Luo et al., 2020; Neubauer et al., 2005).

For the rates of microbial Fe(III) and sulfate reduction, ∼5  g soil subsamples were slurried with deoxygen-
ated in situ surface water (2:1, w:w) in vials under a nitrogen atmosphere, purged with nitrogen gas for 5 min, 
crimp-sealed, and incubated in the dark at room temperature (25°C) for 4 days. To determine the reduction rates 
of Fe(III), sodium molybdate solution was added to the soils to inhibit microbial sulfate reduction at a final 
concentration of 20 mmol L −1 (Luo et al., 2020). During incubation, subsamples were sacrificed to determine the 
accumulation of Fe(II) and TRS. The Fe(III) reduction rates were determined by the linear regression of Fe(II) 
concentration with time (Chen & Jiang, 2016; Hyun et al., 2009; Kostka et al., 2002; Vermeire et al., 2019). 
The rates of microbial sulfate reduction were determined by the production of TRS (Kristensen et  al.,  2000; 

Properties Ponds

Stages

Factor

Two-way ANOVA

Pre-farming Farming Post-farming Stage Pond Interaction

Salinity (mg g −1) Low-salinity 3.24 ± 1.06Ab 2.50 ± 1.50Ab 2.70 ± 1.08Ab F 0.999 439.799 0.451

High-salinity 15.57 ± 2.19Aa 14.48 ± 3.32Aa 16.03 ± 2.93Aa P 0.376 <0.001 0.639

Sulfate (mmol L −1) Low-salinity 2.84 ± 1.52Ab 3.12 ± 1.20Ab 2.49 ± 1.37Ab F 1.830 464.871 1.532

High-salinity 16.03 ± 2.31Aa 14.12 ± 1.72Aa 13.84 ± 3.24Aa P 0.171 <0.001 0.226

ORP a (mV) Low-salinity −150.5 ± 48.6Aa −142.2 ± 63.5Aa −169.1 ± 33.5Aa F 0.136 19.037 0.944

High-salinity −207.9 ± 39.6Ab −210.6 ± 36.1Ab −198.7 ± 32.2Ab P 0.873 <0.001 0.396

TOC (mg g −1) Low-salinity 20.12 ± 1.48Ab 21.23 ± 1.18Ab 20.42 ± 1.74Ab F 2.986 6.040 0.031

High-salinity 21.15 ± 1.38Aa 22.34 ± 1.25Aa 21.28 ± 1.83Aa P 0.60 0.018 0.971

C:N ratios Low-salinity 10.89 ± 1.17Ab 10.13 ± 1.20Ab 10.28 ± 0.70Ab F 2.996 17.347 0.031

High-salinity 11.96 ± 0.80Aa 11.21 ± 0.93Aa 11.41 ± 0.91Aa P 0.059 <0.001 0.970

DOC (mmol L −1) Low-salinity 11.46 ± 2.65Ba 15.34 ± 2.19Aa 11.89 ± 0.71Ba F 17.685 9.865 0.419

High-salinity 9.97 ± 2.17Bb 13.10 ± 1.66Ab 10.79 ± 1.21Bb P <0.001 0.003 0.660

DIC (mmol L −1) Low-salinity 1.48 ± 0.23Ba 2.42 ± 0.28Aa 1.64 ± 0.35Ba F 64.159 8.749 0.318

High-salinity 1.35 ± 0.26Bb 2.19 ± 0.16Ab 1.38 ± 0.23Bb P <0.001 0.005 0.729

NO3 − (μmol L −1) Low-salinity 0.81 ± 0.26Ba 1.73 ± 0.45Aa 2.33 ± 0.52Aa F 52.004 11.825 0.242

High-salinity 0.51 ± 0.27Bb 1.34 ± 0.38Ab 1.84 ± 0.55Ab P <0.001 0.001 0.786

NH4 + (μmol L −1) Low-salinity 55.78 ± 10.09Bb 165.25 ± 24.68Ab 178.00 ± 32.32Ab F 155.402 12.412 0.720

High-salinity 69.44 ± 9.79Ba 188.57 ± 32.36Aa 211.16 ± 25.85Aa P 0.001 0.001 0.492

Fe(III) (μmol g −1) Low-salinity 29.98 ± 7.26Ba 74.19 ± 14.78Aa 29.55 ± 7.74Ba F 93.768 44.772 7.926

High-salinity 19.27 ± 4.13Bb 45.04 ± 8.91Ab 21.75 ± 5.40Bb P <0.001 <0.001 0.001

Non-sulfidic Fe(II) 
(μmol g −1)

Low-salinity 41.06 ± 6.83Aa 13.29 ± 4.91Ba 38.54 ± 12.61Aa F 46.121 26.408 2.322

High-salinity 29.88 ± 12.07Ab 7.56 ± 4.99Bb 21.03 ± 1.82Ab P <0.001 <0.001 0.109

FeS (μmol g −1) Low-salinity 20.96 ± 3.89Ab 11.86 ± 2.54Bb 27.36 ± 2.82Ab F 20.739 24.622 1.652

High-salinity 38.31 ± 13.41Aa 18.64 ± 5.71Ba 41.98 ± 14.15Aa P <0.001 <0.001 0.202

Fe(III):Fe(II) ratios b Low-salinity 0.49 ± 0.14Ba 3.07 ± 0.86Aa 0.47 ± 0.18Ba F 123.538 16.579 8.214

High-salinity 0.31 ± 0.12Bb 1.86 ± 0.65Ab 0.36 ± 0.10Ba P <0.001 <0.001 0.001

Note. Different uppercase letters indicate significant differences across the three aquaculture farming stages. Different lowercase letters indicate significant differences 
between the low- and high-salinity ponds within a single stage.
 aOxidation-reduction potential.  bFe(II) contains Fe sulfides and non-sulfidic Fe(II).

Table 2 
Sediment and Porewater Properties (Mean ± Standard Deviation; n = 9) in the Low-Salinity and High-Salinity Ponds Across the Three Aquaculture Farming Stages



Łukawska-Matuszewska et al., 2019; Luo et al., 2016). We cannot rule out the possibility that rapid reoxidation 
of TRS to SO4 2− was taking place in our slurries, leading to an underestimate of the role of sulfate reduction. 
However, given the anaerobic nature of the slurries, we assume that the reoxidation of TRS to SO4 2− was likely 
minimal in this experiment (Kristensen et al., 2011). The rates of Fe(III) and sulfate reduction were determined 
by regressing Fe(II) (r 2 > 0.84) and TRS (r 2 > 0.81) production against incubation time.

To measure the rates of methanogenesis and carbon mineralization, triplicated sediment samples of approxi-
mately 20 g were slurried with deoxygenated in situ surface water (2:1, w:w) in an N2 atmosphere, purged with 
N2 gas for 5 min, crimp-sealed, and incubated in 100 mL glass incubation bottles with a precise volume measure-
ment in the dark at ambient temperature. Gas samples were collected from the headspace on days 0, 1, 2, and 3 
of incubation and analyzed for CO2 and CH4 concentrations. Before sampling, each bottle was shaken on a rotary 
shaker at 240 rpm for 1 hr to drive the escaped CO2 and CH4 into the headspaces. After each gas sample was 
collected, the incubation bottles were backfilled with N2 (equal to the sampling amount) to re-establish normal 
atmospheric pressure. The CO2 and CH4 concentrations were measured using a gas chromatograph fitted with 
a flame-ionization detector and a CO2 reforming furnace (GC2010, Shimadzu, Japan). The measured CO2 and 
CH4 concentrations were corrected for pH, headspace pressure, and temperature (Ye et al., 2012). The rates of 
methanogenesis and carbon mineralization were estimated from the cumulative production of CH4 (r 2 > 0.90) and 
CO2 plus CH4 over time (r 2 > 0.90), respectively.

To partition the carbon mineralization, the rates of Fe(III) and sulfate reduction and methanogenesis were 
normalized with the carbon unit (μmol C g −1 d −1) using the theoretical stoichiometry of Fe:C = 4:1, S:C = 1:2, 
and C–CH4:C = 1:2 (Kostka et al., 2002; Neubauer et al., 2005).

2.7. Data Analysis

All analyses were conducted using the software R (version 4.0.3; R Core Team, 2013). A two-way analysis of 
variance (ANOVA) was used to test the effects of aquaculture farming activities and salinity on the rates of carbon 
mineralization and microbial metabolic pathways, sediment and porewater properties, PARAFAC components, 
and microbial abundance at a significance level of p < 0.05. Prior to performing the ANOVA, all the datasets 
were analyzed to identify whether they met the assumptions of normality (Shapiro-Wilk test). The data were log10 
transformed if the transformation substantially improved their distribution. The ANOVA was performed using the 
aov function. Multiple comparisons across the three aquaculture farming stages were performed using one-way 
ANOVAs followed by Tukey's HSD post-hoc test. Pairwise comparisons between the low- and high-salinity 
ponds were performed using paired-sample t-tests.

Linear regression models were used to examine the relationships between the carbon mineralization rates and 
DOC concentrations, C3:(C1+C2+C3) ratios, and C:N ratios, with significance set at p < 0.05. A redundancy 
analysis was performed using the packages vegan and rdacca.hp to determine the main factors that affected the 
changes in the microbial metabolic pathway (Lai et al., 2022; Oksanen et al., 2007).

A hypothesized structural equation model was built to assess the impact of salinity on the rates and pathways of 
carbon mineralization using the lavaan package (Rosseel, 2012). The hypothesized structural equation model 
was based on the proposition that salinity could drive carbon mineralization by influencing environmental factors 
(Figure S1 in Supporting Information  S1). Our hypotheses were that (a) salinity affected sulfate concentra-
tions, Fe(III) content, and organic substrate characteristics; (b) sulfate concentrations and Fe(III) content further 
affected microbial metabolic pathways; and (c) Fe(III) content, sulfate concentrations, organic substrate charac-
teristics, and microbial metabolic pathways affected carbon mineralization rates. After the initial model had been 
established, we went through the processes of adding and removing pathways and variables to achieve the final 
model. Goodness of fit was assessed based on a chi-square test, comparative fit index, and Akaike information 
criterion values.

3. Results
3.1. Sediment and Porewater Properties

The salinity in the ponds of the Minjiang Estuary ranged from 2.50 to 3.24 mg g −1, while the salinity in the 
ponds of the Mulanxi Estuary ranged from 14.48 to 16.03  mg  g −1 (Table  2). The sulfate concentrations in 



the porewater were lower in the low-salinity ponds of 2.50–3.24  mmol  L −1, than the high-salinity ponds, of 
14.48–16.03 mmol L −1 (Table 2). Both salinity and the porewater sulfate concentrations were comparable across 
three aquaculture farming stages. The sediment ORP ranged from −210.6 to −142.2 mV (Table 2). High-salinity 
ponds had lower ORP than low-salinity ponds (Table 2). The TOC content ranged from 20.12 to 22.34 mg g −1 
(Table 2). The TOC content was comparable across the three aquaculture farming stages. High-salinity ponds had 
higher TOC content than low-salinity ponds (Table 2). Sediment C:N ratios ranged from 10.13 to 11.96 (Table 2). 
Lower sediment C:N ratios were observed in the low-salinity ponds than in the high-salinity ponds, while sedi-
ment C:N ratios did not significantly change across the three aquaculture farming stages. The DOC concentra-
tions ranged from 9.97 to 15.34 mmol L −1, while the DIC concentrations ranged from 1.35 to 2.42 mmol L −1 
(Table  2). Higher DOC and DIC concentrations occurred in the farming stages than in the pre-farming and 
post-farming stages, whereas higher DOC and DIC concentrations were observed in the low-salinity ponds than in 
the high-salinity ponds (Table 2). The NO3 − concentrations in the porewater ranged from 0.51 to 2.33 μmol L −1, 
while the NH4 + concentrations in the porewater ranged from 55.78 to 211.16 μmol L −1 (Table 2). Higher NH4 + 
concentrations were observed in the high-salinity ponds than in the low-salinity ponds, whereas higher NO3 − 
concentrations were observed in the low-salinity ponds than in the high-salinity ponds. Fe(III) content ranged 
from 19.27 to 74.19 μmol g −1, while non-sulfidic Fe(II) and FeS contents ranged from 7.56 to 41.06 μmol g −1 and 
11.86–41.98 μmol g −1, respectively (Table 2). Higher Fe(III) content was observed during farming than before 
and after farming, with Fe(III):Fe(II) ratios being greater than 1 during farming. In contrast, higher non-sulfidic 
Fe(II) and FeS contents were observed before and after farming than during farming, with Fe(III):Fe(II) ratios 
being smaller than 1 before and after farming. The non-sulfidic Fe(II) content was higher in the low-salinity 
ponds than in the high-salinity ponds, whereas the FeS content was lower in the low-salinity ponds than in the 
high-salinity ponds.

3.2. Rates and Pathways of Carbon Mineralization

Microbial Fe(III) reduction rates ranged from 0.24 to 1.52  μmol  g −1  d −1 (Figure  2a). Across three aquacul-
ture farming stages, microbial Fe(III) reduction rates were higher in the farming stages than in the pre- and 
post-farming stages. The low-salinity ponds had relatively higher microbial Fe(III) reduction rates than the 
high-salinity ponds. Sulfate reduction rates ranged from 0.38 to 0.80 μmol g −1 d −1, while methanogenesis rates 
ranged from 0.00 to 0.05 μmol g −1 d −1 (Figures 2b and 2c). The sulfate reduction and methanogenesis rates were 
also higher in the farming stages than in the pre- and post-farming stages. Moreover, the sulfate reduction rates 
were higher in the high-salinity ponds than in the low-salinity ponds, whereas the methanogenesis rates were 
higher in the low-salinity ponds than in the high-salinity ponds. The carbon mineralization rates ranged from 
1.02 to 2.17 μmol g −1 d −1 (Figure 2d). Similar to the microbial metabolic pathways, the carbon mineralization 
rates were also higher in the farming stages than in the pre- and post-farming stages. The high-salinity ponds had 
relatively lower carbon mineralization rates than the low-salinity ponds.

On average, Fe(III) reduction (mean: 46.1%) dominated carbon mineralization, followed by sulfate reduction 
(mean: 39.6%) and methanogenesis (mean: 1.5%; Figure 3). Higher Fe(III) reduction contribution was observed 
in the farming stages (mean: 56.9%) than in the pre-farming (mean: 40.5%) and post-farming stages (mean: 
40.8%; Figure 3). Sulfate reduction contribution was lower during farming (mean: 33.1%) than before (mean: 
45.9%) and after farming (mean: 39.7%; Figure 3). Methanogenesis contribution (<3%) was comparable across 
the aquaculture farming stages in both pond types (Figure 3). The high-salinity ponds (mean: 31.1%) had a rela-
tively lower Fe(III) reduction contribution to carbon mineralization than the low-salinity ponds (mean: 61.1%; 
Figure 3).

3.3. Microbial Abundance

The abundance of Geobacter ranged from 2.13 × 10 7 to 9.78 × 10 7 copies g −1 (Figure 4a), while the abundance 
of dsrA ranged from 0.61 × 10 8 to 5.82 × 10 8  copies g −1 (Figure 4b). The abundance of mcrA ranged from 
0.46 × 10 6 to 1.62 × 10 6 copies g −1 (Figure 4c). The abundances of Geobacter and dsrA were higher during farm-
ing than before and after farming. The high-salinity ponds had relatively lower Geobacter and mcrA abundance 
but higher dsrA abundance than the low-salinity ponds.



3.4. PARAFAC Components

Three common fluorescent components (C1–C3) were extracted using 3D-EEM PARAFAC (Figure 5). The posi-
tions of the Ex/Em maxima for the three components were 295/430 nm (C1), 230/410 nm (C2), and 285/340 nm 
(C3).

The Fmax of C1, C2, and C3 ranged from 0.06 to 0.10, 0.00 to 0.13, and 0.08 to 0.19 Raman Units, respectively 
(Table 3). The Fmax of C1 did not change across the farming stages. The Fmax of C2 decreased from pre- and 
post-farming to the farming stage, whereas the Fmax of C3 was higher during farming than before and after farm-
ing. The Fmax of C1, C2, and C3 did not change between the low- and high-salinity ponds.

3.5. Relationships Between the Rates and Pathways of Carbon Mineralization and Environmental 
Factors

The carbon mineralization rates increased with the DOC concentrations (Figure  6a), increased with the 
C3:(C1+C2+C3) ratios (Figure 6b), and decreased with the C:N ratios (Figure 6c).

Figure 2. Microbial Fe(III) and sulfate reduction rates (a and b), methanogenesis rates (c), and carbon mineralization rates 
(d) in the aquaculture shrimp ponds of the Minjiang and Mulanxi estuaries across the three aquaculture farming stages. 
All data are the mean ± standard deviation (n = 9). Different uppercase letters indicate significant differences across the
three aquaculture farming stages. Asterisks denote significant differences between the ponds within one stage (*p < 0.05;
**p < 0.01; ***p < 0.001).



Figure 3. Contributions (%) of Fe(III) and sulfate reduction, methanogenesis, and unexplained pathway to carbon mineralization in the aquaculture shrimp ponds of the 
Minjiang and Mulanxi estuaries across the three aquaculture farming stages.

Figure 4. The abundance of Geobacter (a), dsrA (b), and mcrA (c) in the aquaculture shrimp ponds of the Minjiang and Mulanxi estuaries across three aquaculture 
farming stages. All data are the mean ± standard deviation (n = 9). Different uppercase letters indicate significant differences across the three aquaculture farming 
stages. Asterisks denote significant differences between the ponds within one stage (*p < 0.05; **p < 0.01; ***p < 0.001).



The redundancy analysis suggested that the variations in the microbial metabolic pathways were affected by the 
concentrations of sulfate, contents of Fe(III) and FeS, and salinity (Figure 7).

The structural equation modeling analysis suggested that salinity indirectly influenced carbon mineralization rates 
by driving environmental factors (Figure 8). Salinity affected the sulfate concentrations and Fe(III) content, which 
further affected the partitioning of the microbial metabolic pathways. Salinity further impacted the properties of 
the organic substrates. Finally, sulfate concentrations, Fe(III) content, the partitioning of the microbial metabolic 
pathways, and properties of the organic substrates determined the carbon mineralization rates.

4. Discussion
4.1. Carbon Mineralization Across the Aquaculture Farming Stages

In line with Hypothesis I, the aquaculture farming activities induced a sharp stimulation in carbon mineralization 
in the aquaculture pond sediments at the farming stages compared to the pre- and post-farming stages (Figure 2d). 
The enhanced carbon mineralization rates may be due to an increase in the quantity and lability of the organic 
substrates during farming.

The hypothesis that carbon mineralization rates are affected by organic substrate quantity was validated by our 
results, which showed that DOC concentrations increased by an average of 29% during farming (Table 2) and 
were correlated with the carbon mineralization rates (Figures 6a and 8). During farming, high aquafeed loads are 

Figure 5. Three-dimensional emission matrix (3D-EEM) contours of the fluorescent components C1–C3 identified using PARAFAC in the aquaculture ponds of the 
Minjiang and Mulanxi estuaries.

Components and description* Ponds

Stages

Factor

Two-way ANOVA

Pre-farming Farming Post-farming Stage Pond Interaction

Humic-like, Low-salinity 0.08 ± 0.04Aa 0.10 ± 0.06Aa 0.09 ± 0.06Aa F 2.491 1.863 0.181

C1 (Raman Unit) High-salinity 0.06 ± 0.01Aa 0.10 ± 0.04Aa 0.07 ± 0.01Aa P 0.094 0.179 0.835

Fulvic-like, Low-salinity 0.12 ± 0.05Aa 0.00 ± 0.01Ba 0.13 ± 0.07Aa F 33.764 2.536 1.254

C2 (Raman Unit) High-salinity 0.11 ± 0.01Aa 0.01 ± 0.01Ba 0.09 ± 0.06Aa P <0.001 0.118 0.297

Tryptophan-like, Low-salinity 0.08 ± 0.02Ba 0.15 ± 0.07Aa 0.09 ± 0.02Ba F 20.958 13.512 0.158

C3 (Raman Unit) High-salinity 0.11 ± 0.01Ba 0.19 ± 0.04Aa 0.13 ± 0.03Ba P <0.001 0.071 0.855

Note. *The identities of the components were inferred using the OpenFluor database (https://openfluor.lablicate.com). C1 (295/430 nm) can be characterized as a 
terrigenous humic-like component and is commonly found in marine environments, wastewater, wetlands, and agricultural environments (Graeber et al., 2012; Yan 
et al., 2020). C2 (230/410 nm) is a fulvic-like component derived from plant material (Coble et al., 1998; Yan et al., 2020). C3 (285/340 nm) is a tryptophan-like 
component (Murphy et  al.,  2011). Different uppercase letters indicate significant differences across the three farming stages. Different lowercase letters indicate 
significant differences between the low- and high-salinity ponds within a single stage.

Table 3 
PARAFAC Component Description and Normalized Maximum Fluorescence Intensity (Fmax) (Mean ± Standard Deviation; n = 9) in the Low- and High-Salinity 
Ponds Across the Three Aquaculture Farming Stages

https://openfluor.lablicate.com/


typically hydrolyzed to DOC, and shrimp excreta is also likely to enrich DOC in low molecular weight, easily 
assimilable organic compounds (Beardsley et  al.,  2011). Previous research has also reported similar correla-
tions between carbon mineralization rates and DOC concentrations in pristine ponds and peatlands (Bertora 
et  al.,  2018; Holgerson,  2015), suggesting that DOC is bioavailable for most heterotrophic microorganisms. 
Therefore, an increase in DOC concentrations could explain the elevated carbon mineralization rates in the aqua-
culture pond sediments during farming.

The effects of the lability of the organic substrates on the carbon mineralization rates were demonstrated by a 
positive relationship between the carbon mineralization rates and C3:(C1+C2+C3) ratios (Figures 6b and 8). To 
obtain high-quality aquatic proteins, aquafeed usually contains high protein components, such as peanut and bean 
dregs (Dawood et al., 2018). These protein-rich aquafeeds were further hydrolyzed into tryptophan, resulting in 
a significant increase in C3 (Table 3). Heterotrophic microorganisms prefer labile substrates such as tryptophan 
to recalcitrant substrates (de Melo et al., 2020). Consequently, the introduction of labile organic substrates also 
contributed to an increase in the carbon mineralization rates during farming.

Figure 6. Relationships between the carbon mineralization rates and dissolved organic carbon (DOC) concentrations, C3:(C1+C2+C3) ratios, and C:N ratios. C1, C2, 
and C3 are fluorescent components derived from the 3D-EEM of PARAFAC.

Figure 7. The redundancy analysis (a) showed variations in the rates of the microbial metabolic pathways relative to 
environmental factors. Panel (b) shows the proportion of each explanatory variable compared to the variations in the rates of 
the microbial metabolic pathways. The asterisks in panel (b) indicate the significance of each explanatory variable (*p < 0.05; 
**p < 0.01; ***p < 0.001). FeRR: Fe(III) reduction rates; SRR: sulfate reduction rates; MGR: methanogenesis rates; C1, C2, 
and C3 are fluorescence components derived from the 3D-EEM of PARAFAC.



4.2. Microbial Fe(III) Reduction Across the Aquaculture Farming Stages

Similar to the carbon mineralization rates (Figure 2d), the rates of microbial Fe(III) increased from before and 
after farming to during farming (Figures  2a–2c). We further found that the contribution of Fe(III) reduction 
during farming (56.9%) was higher than those before and after farming (40.5%–40.8%) (Figure 3). In accordance 
with the contribution of microbial Fe(III) reduction, Geobacter abundance showed a greater increase (159%) 
during farming than before and after farming (Figures 4a–4c). All these results suggested that aquaculture farm-
ing activities enhanced microbial Fe(III) reduction.

Consistent with Hypothesis II, the redundancy analysis and structural equation modeling indicated that the 
promotion for microbial Fe(III) reduction during farming relied on significant changes in Fe(III) content 
(Figures 7 and 8), which increased by 137% during farming compared to before and after farming (Table 2). The 
higher content of Fe(III) during farming could be accounted for by the application of aerators, which could bring 
fresh air oxygen to the surface layer of pond sediments and immediately oxidize Fe(II) to Fe(III) (Chen, Miao, 
et al., 2020). In line with this, higher Fe(III):Fe(II) ratios (1.86–3.07) were observed during farming compared 
with before and after farming (0.31–0.49) (Table 2). The newly yielded Fe(III) is mostly amorphous and highly 
bioavailable, which can supply electron acceptors to iron reducers (Wang et al., 2020). Once Fe(III) is reduced 
to Fe(II), Fe(II) is immediately re-oxidized to Fe(III) instead of being adsorbed on the surface of Fe(III) (Tong, 
Wang, et al., 2021; Wang et al., 2021). This was crucial for maintaining high rates of Fe(III) reduction, as the 
accumulation of Fe(II) may gradually reduce the accessibility of Fe(III) to iron reducers (Weston et al., 2006). 
Accordingly, our results suggest that rapid Fe(III) replenishment facilitates microbial Fe(III) reduction during 
farming.

4.3. Carbon Mineralization Rates in Ponds With Different Salinities

In contrast to Hypothesis III, the high-salinity ponds had lower carbon mineralization rates than the low-salinity 
ponds (Figure 2d). The increases in the sediment C:N ratios as salinity increased may account for the reduction in 
carbon mineralization rates in the high-salinity ponds (Figures 6c and 8). The increased sediment C:N ratios (i.e., 
a decrease in N availability) as salinity increased may have been due to increased NH4 + release with increasing 
salinity (Table 2). This is because cations in saltwater (e.g., Na +, Ca 2+, and K +) may quickly replace NH4 + adsorbed 
in sediments and then release them into the overlying water (Tully et al., 2019). Heterotrophic microorganisms 

Figure 8. A structural equation model assessing the impact of salinity on the rates and pathways of carbon mineralization. 
The numbers on the arrows indicate the coefficients, and the arrow widths indicate their significance. The figures next 
to the variables indicate their explained variance (r 2). FeRR: Fe(III) reduction rates; SRR: sulfate reduction rates; MGR: 
methanogenesis rates; C1, C2, and C3: a fluorescence component derived from the 3D-EEM of PARAFAC.
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prefer organic substrates with a lower C:N ratios because high nitrogen substrates can support rapid microbial 
metabolism (Redmile-Gordon et al., 2015; Zhang et al., 2020). In contrast, high sediment C:N ratios indicate 
that the substrate for microbial metabolism may be N-limited (Cui et al., 2022). Therefore, salinization-induced 
higher C:N ratios could be responsible for the lower carbon mineralization rates in the high-salinity ponds.

The decrease in DOC concentrations with increasing salinity may also explain the lower carbon mineralization 
rates in the high-salinity ponds (Figures 6a and 8). DOC is derived from the hydrolysis of organic carbon in 
sediments by carbon-acquiring enzymes released by microorganisms (Moorhead et al., 2012). Previous studies 
have reported that a significant increase in salinity may reduce carbon-acquiring enzyme activities by destroying 
molecular stability and protein confirmation states (Servais et al., 2019). Therefore, a decrease in carbon-acquiring 
enzyme activities may explain the lower DOC concentrations in the high-salinity ponds. Moreover, increased 
salinity can decrease the solubility of organic carbon (Tully et al., 2019). This occurs because the increase in 
salinity can induce cation (e.g., Ca 2+) bridging between cations and DOC, which creates flocculent organic 
matter and reduces DOC concentrations (Adusei-Gyamfi et al., 2019; Decho & Gutierrez, 2017). However, this 
effect may be limited in the current study because our saline pond sediments were always immersed in saline 
waters. Thus, the solubility of sediment organic carbon between low-salinity and high-salinity ponds might not 
be significantly different.

4.4. Microbial Fe(III) Reduction in Ponds With Different Salinities

Consistent with Hypothesis I, the contribution of Fe(III) reduction in the low-salinity ponds (61.1%) was higher 
than that in the high-salinity ponds (31.1%) (Figure  3). Moreover, the abundance of Geobacter significantly 
decreased from the low-salinity ponds to high-salinity ponds (Figure 4a). There are three probable explanations 
for the decreasing microbial Fe(III) reduction rates with increasing salinity.

First, sulfate reduction should account for the most important contribution to the decline in microbial Fe(III) 
reduction as salinity increased (Figures 7 and 8). Higher sulfate reduction rates were observed in the high-salinity 
ponds compared with the low-salinity ponds (Figure 2b). Although microbial Fe(III) reduction is more ener-
getically favorable than sulfate reduction, the solid phase of Fe(III) greatly limits the competitiveness of Fe(III) 
reduction (Zhou et al., 2017). This is because iron reducers should attach to the surface of Fe(III) (hydro)oxides 
to transfer electron acceptors, whereas it is much easier for sulfate reducers to access liquid sulfate (Hyun 
et al., 2013). Therefore, the intense competition for sulfate reduction should primarily explain the lower microbial 
Fe(III) reduction rates in high-salinity ponds. Second, abiotic Fe(III) reduction may also be responsible for the 
decreasing microbial Fe(III) reduction rates in the higher salinity ponds. When the salinity increased, the product 
of sulfate reduction, that is, ∑H2S, accumulated (Burton et al., 2008). Fe(III) could be abiotically reduced by 
∑H2S and yield FeS (Mohatt et al., 2011; Sheng et al., 2015). This abiotic Fe(III) reduction has larger reaction 
kinetics than microbial Fe(III) reduction and thus could compete for Fe(III) with microbial Fe(III) reduction 
(Kappler et  al.,  2021; Luo et  al.,  2015). We observed FeS accumulation with increasing salinity which was 
negatively related to the microbial Fe(III) reduction rates (Figure 7). This result suggests that the accumulation 
of FeS is also responsible for the decreasing rates of microbial Fe(III) reduction with the increasing salinity. 
Third, oxidation-reduction potential may be responsible for the lower microbial Fe(III) reduction rates as salinity 
increases. In the current study, we found that the sediment ORP was lower in the high-salinity ponds compared 
with the low-salinity ponds (Table 2). This was probably because higher TOC content in the high-salinity ponds 
(Table 2) leads to more depletion of electron acceptors and a more reduced environment than in low-salinity 
ponds (Alongi et al., 1999). Iron reducers prefer a sub-oxic than anaerobic environment (Canfield et al., 1993). 
Therefore, lower sediment ORP led to lower Fe(III) reduction rates in the high-salinity ponds than low-salinity 
ponds (Figure 4a).

Overall, the inhibition of sulfate reduction, abiotic Fe(III) reduction, and lower oxidation-reduction potential were 
all responsible for the decreased rates of microbial Fe(III) reduction in the high-salinity ponds.

4.5. Partitioning of the Carbon Mineralization Pathway in Aquaculture Pond Sediments

To the best of our knowledge, few studies have quantified the partitioning of carbon mineralization pathways 
in coastal earthen aquaculture pond sediments. Our work highlighted that microbial Fe(III) reduction domi-
nated (46.1% ± 19.1%) carbon mineralization in aquaculture pond sediments (Figure 3). These Fe(III) reduction 



contributions were higher than those previously reported in continental shelf and seashore sediments (Canfield 
et al., 1993; Hyun et al., 2017; Jensen et al., 2003; Quintana et al., 2015; Thamdrup & Canfield, 1996), peat-
land (Ye et al., 2012), and tidal freshwater wetland sediments (Keller et al., 2013; Roden & Wetzel, 2002), and 
comparable to those reported in saltmarsh sediments (Gribsholt et al., 2003; Hyun et al., 2009; Luo et al., 2020; 
Neubauer et  al.,  2005), mangrove sediments (Kristensen et  al.,  2000,  2011) and lake sediments (Chen & 
Jiang, 2016; Thomsen et al., 2004), indicating that aquaculture pond sediments are also “hotspots” for microbial 
Fe(III) reduction (Table 4).

Sulfate reduction also contributed to carbon mineralization (39.6% ± 16.8%). The presence of FeS (Table 2) and 
high abundance of sulfate reducers (Figure 4b) also implied the high rates of sulfate reduction in aquaculture pond 
systems. Methanogenesis accounted for <3% of the total carbon mineralization across periods and ponds, indi-
cating a striking suppressive effect of Fe(III) and sulfate reduction on methanogenesis (Roden & Wetzel, 1996). 
“Unexplained pathways” account for 6.5%–20.1% of the carbon mineralization in the aquaculture pond sediments 
(Figure 3). There are two possible explanations for this inconsistency. First, the different methodologies adopted 
for determining the rates of each microbial metabolic pathway can yield errors (von Kamp et al., 2017). Second, 
other carbon mineralization pathways (e.g., such as denitrification) may contribute to the unexplained pathways 
(Kim et al., 2015). However, a previous study reported that denitrification accounted for <1% of carbon miner-
alization in the shrimp aquaculture ponds of the Mekong Delta, Vietnam, owing to limited nitrate concentrations 
(Alongi et al., 1999). In this study, nitrate concentrations ranged from 0.51 to 2.33 μmol L −1, which was much 
lower than the sulfate concentrations (2.49–16.03 mmol L −1) (Table 2). Therefore, the contribution of denitrifi-
cation may be limited in the current study. Nevertheless, additional studies are necessary to explain this missing 
carbon in aquaculture pond systems.

4.6. Limitation and Uncertainty

The current study experienced a limitation. We applied anaerobic incubation to determine the rates of microbial 
Fe(III) and sulfate reduction and methanogenesis in the current study. However, the aerators were operational for 
2–4 hr daily during farming, leading to a relatively oxic environment in the surface sediment. During this period, 

Site Habitat
Depth 
(cm)

Salinity 
(mg g −1)

Rates (μmol g −1 d −1)

Contribution 
(%) Reference

Fe(III) 
reduction

Carbon 
mineralization

Alabama, USA Freshwater wetland 0–3 0 0.36 1.59 23 Roden & Wetzel, 2002

Patuxent River, USA Freshwater wetland 0–30 0.03 0.00–2.30 2.2–7.80 0–29 Keller et al., 2013

Min River Estuary, China Saltmarsh 0–10 2–5 0.17–0.60 0.70–1.20 20–89 Luo et al., 2020

Han River Estuary, Korea Saltmarsh 0–10 13–27 1.00–2.11 1.52–5.85 36–66 Hyun et al., 2009

Skidaway Island, Georgia Saltmarsh 0–20 20–33 0.43–0.94 1.28–1.63 28–54 Gribsholt et al., 2003

Patuxent River, USA Saltmarsh 0–10 0–15 0.10–5.10 1.00–8.00 50–57 Neubauer et al., 2005

Peninsula of Michigan, USA Peatland 0–19 7–35 0.00–0.16 0.08–1.41 0–12 Ye et al., 2012

Bangrong, Thailand Mangrove 0–20 35 0.00–0.10 0.17–1.10 0–39 Kristensen et al., 2000

Ras Dege, Tanzania Mangrove 0–10 2–45 0.31–0.37 0.57–1.00 38–54 Kristensen et al., 2011

Baltic-North Sea Seashore 0–10 20–30 0.01–0.29 0.13–0.40 5–25 Jensen et al., 2003

Ubatuba Bay, Brazilian Seashore 0–20 33–34 0.00–0.24 0.05–0.30 22 Quintana et al., 2015

Skagerrak, Denmark Continental shelf 0–10 15–25 0.02–0.04 0.50–1.05 10–27 Canfield et al., 1993

Ulleung Basin, East Sea Continental shelf 0–20 34–35 0.00–0.24 0.00–0.40 20 Hyun et al., 2017

Conception Bay, Canada Continental shelf 0–10 31–33 0.01–0.03 0.09–0.16 12–29 Thamdrup & Canfield, 1996

Lake Michigan, USA Lake 2–18 0 0.20 0.50 44 Thomsen et al., 2004

Lake Taihu, China Lake 0–16 0 0.78–1.11 1.66–2.46 32–66 Chen & Jiang, 2016

Minjiang and Mulanxi Estuaries, China Aquaculture pond 0–10 2–16 0.24–1.52 1.02–2.17 46.1 ± 19.1 This study

Table 4 
Comparison of the Rates and Contributions of Microbial Fe(III) Reduction in Aquaculture Pond Sediments and Other Aquatic Sediments



the activity of iron and sulfate reducers and methanogens in the surface sediment may be suppressed. When the 
aerator was shut down, the aquaculture pond sediments rapidly became anaerobic because the surface sediments 
were rich in organic matter, and oxygen was utilized rapidly (Alongi et al., 1999). Our sediment ORP data also 
showed that the sediments were anaerobic when the aerator was not operational (Table 2). Consequently, owing to 
the oxidation, our experimental protocol may have led to an overestimation of the in situ rates of Fe(III) reduction, 
sulfate reduction, and methanogenesis during farming.

5. Conclusion
In this study, we reported that microbial Fe(III) reduction played a crucial role in carbon mineralization in the 
sediments of coastal earthen aquaculture shrimp ponds. Our results also highlight that the rates of microbial 
Fe(III) reduction vary spatially and temporally in aquaculture shrimp pond systems. Across the three aquaculture 
farming stages, microbial Fe(III) reduction significantly increased during farming owing to the replenishment 
of Fe(III). Between the high- and low-salinity ponds, microbial Fe(III) reduction rates decreased as salinity 
increased owing to the suppression of microbial sulfate reduction, abiotic Fe(III) reduction with sulfides, and 
lower sediment oxidation-reduction potential. Future models predicting carbon fluxes in aquaculture shrimp pond 
systems should consider the dynamics of microbial Fe(III) reduction.
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1 

1. Dataset of Sediment and porewater properties in the low-salinity and high-salinity ponds across three aquaculture
farming stages.

No Period Pond 
Salinity 

(ppt) 

Sulphate 

(mmol L–1) 

TOC 

(mg g–1) 

C/N 

ratios 

DOC 

(mmol L–1) 

NO3
- 

(μmol L–1) 

NH4+ 

(μmol L–1) 

Fe(III) 

(μmol g–1) 

Non-sulfidic 

Fe(II) 

(μmol g–1) 

FeS 

(μmol g–1) 

Fe(III)/Fe(II) 

ratio 

1 Pre_farming Low_salinity 4.60 1.60 20.25 11.67 14.25 0.71 68.57 36.59 34.15 22.68 0.64 

2 Pre_farming Low_salinity 4.50 1.25 19.08 10.74 9.80 0.72 47.57 28.66 54.32 22.77 0.37 

3 Pre_farming Low_salinity 4.60 0.69 22.62 9.21 15.72 0.73 65.86 43.26 33.72 23.51 0.76 

4 Pre_farming Low_salinity 2.90 2.10 18.89 10.06 11.71 0.63 50.79 26.34 33.72 20.82 0.48 

5 Pre_farming Low_salinity 3.00 3.81 20.89 10.44 13.10 0.53 62.14 27.45 44.93 25.72 0.39 

6 Pre_farming Low_salinity 2.80 4.10 19.99 12.95 7.74 1.27 37.07 36.21 41.09 21.75 0.58 

7 Pre_farming Low_salinity 2.10 4.10 18.16 11.06 10.71 1.04 50.79 23.42 45.84 21.63 0.35 

8 Pre_farming Low_salinity 2.30 2.81 21.99 9.87 11.90 1.13 62.14 27.50 42.31 12.51 0.50 

9 Pre_farming Low_salinity 2.20 5.10 19.22 12.00 8.24 0.57 57.07 20.37 39.44 17.30 0.36 

10 Pre_farming Low_salinity 15.40 14.59 22.35 12.61 13.09 0.71 75.64 19.64 30.50 35.52 0.30 

11 Pre_farming Low_salinity 15.00 12.97 19.08 10.74 10.21 0.43 69.73 19.89 42.02 51.68 0.21 

12 Pre_farming Low_salinity 15.90 12.10 20.29 12.30 9.90 0.71 78.21 24.44 38.09 20.05 0.42 

13 Pre_farming Low_salinity 18.20 18.50 20.56 11.06 8.61 0.84 71.14 18.80 14.00 21.31 0.53 

14 Pre_farming Low_salinity 17.80 17.32 21.86 11.89 9.55 0.27 61.82 24.90 14.00 43.15 0.44 

15 Pre_farming Low_salinity 18.10 16.48 19.92 13.18 5.91 0.13 51.54 17.25 34.00 53.89 0.20 

16 Pre_farming Low_salinity 12.90 18.50 23.63 11.27 13.01 0.84 71.14 21.59 39.90 54.96 0.23 

17 Pre_farming Low_salinity 13.00 17.32 21.68 12.31 9.55 0.27 61.82 13.66 15.49 34.20 0.27 

18 Pre_farming Low_salinity 13.20 16.48 20.97 12.31 9.91 0.43 83.89 13.26 40.93 30.00 0.19 

19 Pre_farming Low_salinity 2.00 2.08 20.04 9.02 14.65 1.71 128.36 92.11 22.78 13.08 2.57 

20 Pre_farming Low_salinity 2.20 1.73 22.96 11.70 19.31 1.64 206.57 68.24 17.35 13.91 2.18 

21 Pre_farming Low_salinity 2.10 2.26 19.77 8.27 15.20 1.29 173.79 82.15 16.48 10.73 3.02 
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22 Pre_farming Low_salinity 0.81 2.84 21.03 10.23 16.20 1.07 168.86 94.93 9.00 9.53 5.12 

23 Pre_farming Low_salinity 1.21 3.20 22.97 9.14 13.92 1.43 152.48 72.84 12.00 15.37 2.66 

24 Pre_farming Low_salinity 0.95 2.52 21.93 10.34 16.24 1.86 166.57 83.59 14.00 13.18 3.08 

25 Pre_farming Low_salinity 4.20 4.64 20.99 11.86 11.12 1.93 183.43 58.89 11.00 12.95 2.46 

26 Pre_farming Low_salinity 4.40 3.58 20.20 9.93 15.16 2.57 131.79 60.15 7.00 10.97 3.35 

27 Pre_farming Low_salinity 4.50 5.29 21.20 10.65 16.24 2.07 175.43 54.79 10.00 7.06 3.21 

28 Pre_farming Low_salinity 18.10 13.48 20.64 10.85 14.44 1.27 226.43 46.16 2.51 22.07 1.88 

29 Pre_farming Low_salinity 18.00 16.05 23.49 11.12 10.49 1.49 207.14 37.20 3.12 21.56 1.51 

30 Pre_farming Low_salinity 18.90 15.52 21.65 10.76 12.47 1.38 212.71 54.64 1.72 21.26 2.38 

31 Pre_farming Low_salinity 14.30 11.66 23.27 11.01 13.55 1.14 157.14 39.89 13.00 21.20 1.17 

32 Pre_farming Low_salinity 14.10 12.38 21.97 12.88 13.65 1.04 146.29 39.44 12.00 27.95 0.99 

33 Pre_farming Low_salinity 14.10 12.71 21.97 12.36 15.52 1.15 223.57 48.80 9.00 10.11 2.55 

34 Pre_farming Low_salinity 10.70 15.67 24.34 10.61 11.61 1.27 187.43 34.90 2.87 13.09 2.19 

35 Pre_farming Low_salinity 10.80 13.58 22.90 9.79 14.58 1.06 143.86 62.25 9.77 12.57 2.79 

36 Pre_farming Low_salinity 10.70 16.08 20.79 11.54 11.60 2.27 192.57 42.06 14.03 17.99 1.31 

37 Pre_farming Low_salinity 1.10 1.17 19.18 10.28 11.51 3.29 217.43 28.00 11.58 27.35 0.72 

38 Pre_farming Low_salinity 1.50 4.90 23.14 9.29 11.02 2.43 128.29 43.03 25.60 30.30 0.77 

39 Pre_farming Low_salinity 1.40 1.63 19.40 10.24 12.42 2.43 202.00 24.97 38.09 23.52 0.41 

40 Pre_farming Low_salinity 2.90 2.51 21.18 10.28 11.22 1.29 171.43 40.60 45.80 26.92 0.56 

41 Pre_farming Low_salinity 3.00 4.24 22.14 9.29 11.31 1.99 199.43 22.24 46.75 24.28 0.31 

42 Pre_farming Low_salinity 3.10 3.23 18.40 11.24 12.42 2.29 206.57 30.85 36.89 25.91 0.49 

43 Pre_farming Low_salinity 3.50 1.61 19.21 10.52 11.82 2.43 149.71 25.44 43.87 30.59 0.34 

44 Pre_farming Low_salinity 3.80 2.09 22.16 11.25 13.22 2.52 138.86 30.22 48.64 31.37 0.38 

45 Pre_farming Low_salinity 3.90 1.04 18.95 10.16 12.10 2.36 188.29 20.63 49.68 25.98 0.27 

46 Pre_farming Low_salinity 12.70 10.20 24.24 10.80 10.51 1.29 202.14 22.27 19.09 50.78 0.32 

47 Pre_farming Low_salinity 12.60 11.92 21.31 12.75 9.96 1.43 214.43 19.91 19.84 59.82 0.25 
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48 Pre_farming Low_salinity 13.10 13.04 19.09 9.93 11.97 2.57 231.29 16.29 21.14 51.48 0.22 

49 Pre_farming Low_salinity 19.70 14.68 20.24 11.80 11.27 1.86 180.43 28.37 19.39 35.37 0.52 

50 Pre_farming Low_salinity 19.30 15.75 18.51 11.72 12.19 1.43 246.14 23.84 23.37 43.70 0.36 

51 Pre_farming Low_salinity 19.50 12.67 23.09 11.13 11.97 2.57 235.86 30.10 24.01 58.92 0.36 

52 Pre_farming Low_salinity 15.60 19.66 21.28 11.30 9.64 1.12 203.86 22.79 22.36 24.53 0.49 

53 Pre_farming Low_salinity 15.50 9.66 22.31 12.59 10.97 2.00 219.29 18.98 20.63 28.11 0.39 

54 Pre_farming Low_salinity 15.60 16.93 21.48 10.68 8.62 2.29 167.00 13.19 19.46 25.07 0.30 

2. Dataset of Microbial Fe(III) and sulfate production rates, methanogenesis rates, and carbon mineralization rates in 
the low-salinity and high-salinity ponds across three aquaculture farming stages. 

No Period Pond 
Microbial Fe(III) 

(μmmol g–1 d–1) 

Sulfate production rates 

(μmmol g–1 d–1) 

Methanogenesis rates 

(μmmol g–1 d–1) 

Carbon mineralization rates 

(μmmol g–1 d–1) 

1 Pre_farming Low_salinity 0.93 0.30 0.03 1.32 

2 Pre_farming Low_salinity 0.67 0.39 0.03 1.23 

3 Pre_farming Low_salinity 1.06 0.33 0.03 1.47 

4 Pre_farming Low_salinity 0.78 0.40 0.04 1.42 

5 Pre_farming Low_salinity 0.62 0.33 0.04 1.37 

6 Pre_farming Low_salinity 1.01 0.30 0.03 1.53 

7 Pre_farming Low_salinity 0.51 0.55 0.03 1.15 

8 Pre_farming Low_salinity 0.78 0.44 0.04 1.39 

9 Pre_farming Low_salinity 0.73 0.41 0.04 1.37 

10 Pre_farming Low_salinity 0.38 0.60 0.00 1.14 

11 Pre_farming Low_salinity 0.24 0.63 0.00 1.02 

12 Pre_farming Low_salinity 0.40 0.56 0.00 1.12 

13 Pre_farming Low_salinity 0.16 0.62 0.00 0.87 

14 Pre_farming Low_salinity 0.27 0.57 0.00 0.86 
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15 Pre_farming Low_salinity 0.20 0.73 0.00 1.32 

16 Pre_farming Low_salinity 0.24 0.67 0.00 0.92 

17 Pre_farming Low_salinity 0.18 0.65 0.00 0.94 

18 Pre_farming Low_salinity 0.11 0.72 0.00 1.01 

19 Pre_farming Low_salinity 1.70 0.46 0.05 2.31 

20 Pre_farming Low_salinity 1.51 0.44 0.05 2.02 

21 Pre_farming Low_salinity 1.82 0.41 0.05 2.13 

22 Pre_farming Low_salinity 1.44 0.39 0.06 2.23 

23 Pre_farming Low_salinity 1.63 0.45 0.06 2.45 

24 Pre_farming Low_salinity 1.53 0.37 0.06 1.97 

25 Pre_farming Low_salinity 1.43 0.52 0.05 2.11 

26 Pre_farming Low_salinity 1.33 0.55 0.04 2.00 

27 Pre_farming Low_salinity 1.25 0.50 0.05 2.28 

28 Pre_farming Low_salinity 0.88 0.63 0.01 1.63 

29 Pre_farming Low_salinity 0.93 0.77 0.01 1.91 

30 Pre_farming Low_salinity 0.80 0.76 0.01 1.74 

31 Pre_farming Low_salinity 0.78 0.70 0.01 1.66 

32 Pre_farming Low_salinity 0.72 1.01 0.01 1.87 

33 Pre_farming Low_salinity 0.91 0.71 0.01 1.75 

34 Pre_farming Low_salinity 0.61 0.96 0.02 1.89 

35 Pre_farming Low_salinity 0.68 0.87 0.01 1.74 

36 Pre_farming Low_salinity 0.59 0.78 0.01 1.65 

37 Pre_farming Low_salinity 1.16 0.25 0.04 1.67 

38 Pre_farming Low_salinity 1.34 0.47 0.05 2.21 

39 Pre_farming Low_salinity 1.08 0.38 0.05 1.94 

40 Pre_farming Low_salinity 0.72 0.56 0.05 1.62 
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41 Pre_farming Low_salinity 0.97 0.39 0.04 1.55 

42 Pre_farming Low_salinity 0.87 0.28 0.04 1.40 

43 Pre_farming Low_salinity 0.74 0.51 0.04 1.57 

44 Pre_farming Low_salinity 0.82 0.55 0.05 1.72 

45 Pre_farming Low_salinity 0.87 0.54 0.04 1.63 

46 Pre_farming Low_salinity 0.33 0.74 0.01 1.30 

47 Pre_farming Low_salinity 0.49 0.60 0.01 1.13 

48 Pre_farming Low_salinity 0.43 0.71 0.01 1.32 

49 Pre_farming Low_salinity 0.32 0.75 0.01 1.30 

50 Pre_farming Low_salinity 0.18 0.58 0.01 1.28 

51 Pre_farming Low_salinity 0.37 0.69 0.01 1.22 

52 Pre_farming Low_salinity 0.22 0.68 0.00 1.34 

53 Pre_farming Low_salinity 0.24 0.78 0.00 1.37 

54 Pre_farming Low_salinity 0.30 0.57 0.01 1.12 

3. Dataset of normalized maximum fluorescence intensity (Fmax) in the low-salinity and high-salinity ponds across 
three aquaculture farming stages. 

No Period Pond 

C1 

(Raman 

Unit) 

C2 

(Raman 

Unit) 

C3 

Raman 

Unit) 

1 Pre_farming Low_salinity 0.04 0.06 0.05 

2 Pre_farming Low_salinity 0.06 0.13 0.11 

3 Pre_farming Low_salinity 0.05 0.09 0.05 

4 Pre_farming Low_salinity 0.13 0.18 0.09 

5 Pre_farming Low_salinity 0.12 0.15 0.08 

6 Pre_farming Low_salinity 0.14 0.20 0.10 

7 Pre_farming Low_salinity 0.06 0.12 0.08 
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8 Pre_farming Low_salinity 0.06 0.11 0.08 

9 Pre_farming Low_salinity 0.06 0.08 0.07 

10 Pre_farming Low_salinity 0.05 0.10 0.12 

11 Pre_farming Low_salinity 0.05 0.10 0.12 

12 Pre_farming Low_salinity 0.05 0.10 0.12 

13 Pre_farming Low_salinity 0.06 0.11 0.09 

14 Pre_farming Low_salinity 0.06 0.12 0.10 

15 Pre_farming Low_salinity 0.06 0.12 0.12 

16 Pre_farming Low_salinity 0.06 0.11 0.11 

17 Pre_farming Low_salinity 0.06 0.09 0.09 

18 Pre_farming Low_salinity 0.06 0.11 0.10 

19 Pre_farming Low_salinity 0.12 0.00 0.15 

20 Pre_farming Low_salinity 0.21 0.01 0.26 

21 Pre_farming Low_salinity 0.19 0.00 0.22 

22 Pre_farming Low_salinity 0.05 0.01 0.11 

23 Pre_farming Low_salinity 0.03 0.02 0.07 

24 Pre_farming Low_salinity 0.03 0.01 0.07 

25 Pre_farming Low_salinity 0.11 0.00 0.20 

26 Pre_farming Low_salinity 0.09 0.00 0.12 

27 Pre_farming Low_salinity 0.09 0.00 0.15 

28 Pre_farming Low_salinity 0.15 0.00 0.19 

29 Pre_farming Low_salinity 0.14 0.00 0.25 

30 Pre_farming Low_salinity 0.14 0.00 0.25 

31 Pre_farming Low_salinity 0.07 0.00 0.17 

32 Pre_farming Low_salinity 0.05 0.02 0.15 

33 Pre_farming Low_salinity 0.05 0.01 0.13 
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34 Pre_farming Low_salinity 0.08 0.02 0.18 

35 Pre_farming Low_salinity 0.08 0.02 0.19 

36 Pre_farming Low_salinity 0.10 0.01 0.18 

37 Pre_farming Low_salinity 0.05 0.07 0.08 

38 Pre_farming Low_salinity 0.05 0.09 0.09 

39 Pre_farming Low_salinity 0.05 0.10 0.08 

40 Pre_farming Low_salinity 0.18 0.25 0.12 

41 Pre_farming Low_salinity 0.19 0.26 0.13 

42 Pre_farming Low_salinity 0.08 0.14 0.11 

43 Pre_farming Low_salinity 0.06 0.07 0.06 

44 Pre_farming Low_salinity 0.06 0.10 0.08 

45 Pre_farming Low_salinity 0.06 0.10 0.08 

46 Pre_farming Low_salinity 0.07 0.00 0.17 

47 Pre_farming Low_salinity 0.06 0.02 0.15 

48 Pre_farming Low_salinity 0.05 0.00 0.11 

49 Pre_farming Low_salinity 0.07 0.10 0.15 

50 Pre_farming Low_salinity 0.07 0.11 0.15 

51 Pre_farming Low_salinity 0.09 0.16 0.16 

52 Pre_farming Low_salinity 0.06 0.11 0.08 

53 Pre_farming Low_salinity 0.08 0.15 0.12 

54 Pre_farming Low_salinity 0.08 0.14 0.12 

4. Dataset of Abundance of Geobacter, dsrA gene and mrcA gene in the low-salinity and high-salinity ponds across 
three aquaculture farming stages. 

No Period Pond 
Geobacter  

(×107 copies g–1) 

dsrA  

(×108 copies g–1) 

mrcA  

(×106 copies g–1) 
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1 Pre_farming Low_salinity 3.69 0.74 1.35 

2 Pre_farming Low_salinity 3.32 0.36 1.45 

3 Pre_farming Low_salinity 7.33 0.82 1.47 

4 Pre_farming Low_salinity 3.15 0.78 1.26 

5 Pre_farming Low_salinity 2.61 0.41 1.26 

6 Pre_farming Low_salinity 1.58 0.82 1.41 

7 Pre_farming Low_salinity 3.83 0.86 1.53 

8 Pre_farming Low_salinity 1.87 0.84 1.09 

9 Pre_farming Low_salinity 3.04 0.86 1.11 

10 Pre_farming Low_salinity 2.89 4.75 0.12 

11 Pre_farming Low_salinity 2.37 3.49 0.19 

12 Pre_farming Low_salinity 2.01 2.94 0.19 

13 Pre_farming Low_salinity 1.90 6.77 0.90 

14 Pre_farming Low_salinity 2.14 6.60 0.73 

15 Pre_farming Low_salinity 1.91 7.03 0.16 

16 Pre_farming Low_salinity 2.41 2.16 0.92 

17 Pre_farming Low_salinity 1.22 2.56 0.76 

18 Pre_farming Low_salinity 2.30 4.68 0.15 

19 Pre_farming Low_salinity 10.41 0.95 1.59 

20 Pre_farming Low_salinity 7.69 1.02 1.44 

21 Pre_farming Low_salinity 8.81 1.24 1.37 

22 Pre_farming Low_salinity 11.70 1.25 2.52 

23 Pre_farming Low_salinity 6.04 1.10 1.17 

24 Pre_farming Low_salinity 8.35 1.36 1.76 

25 Pre_farming Low_salinity 10.21 1.01 2.59 

26 Pre_farming Low_salinity 11.71 0.92 1.42 
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27 Pre_farming Low_salinity 13.09 1.48 0.72 

28 Pre_farming Low_salinity 4.94 5.77 0.66 

29 Pre_farming Low_salinity 5.75 9.09 1.01 

30 Pre_farming Low_salinity 4.47 3.73 0.76 

31 Pre_farming Low_salinity 4.91 4.59 1.18 

32 Pre_farming Low_salinity 8.29 5.41 0.53 

33 Pre_farming Low_salinity 6.10 6.65 0.68 

34 Pre_farming Low_salinity 5.99 5.49 0.68 

35 Pre_farming Low_salinity 7.28 5.26 0.38 

36 Pre_farming Low_salinity 6.97 6.42 0.90 

37 Pre_farming Low_salinity 5.30 0.72 0.71 

38 Pre_farming Low_salinity 4.63 0.57 0.99 

39 Pre_farming Low_salinity 4.48 0.62 2.43 

40 Pre_farming Low_salinity 6.10 0.60 1.44 

41 Pre_farming Low_salinity 4.13 0.42 1.46 

42 Pre_farming Low_salinity 3.67 0.56 1.03 

43 Pre_farming Low_salinity 2.27 0.62 1.55 

44 Pre_farming Low_salinity 4.03 0.65 1.58 

45 Pre_farming Low_salinity 4.06 0.72 1.02 

46 Pre_farming Low_salinity 2.67 5.90 0.49 

47 Pre_farming Low_salinity 3.61 6.73 0.47 

48 Pre_farming Low_salinity 2.34 5.52 0.48 

49 Pre_farming Low_salinity 1.66 2.88 0.35 

50 Pre_farming Low_salinity 1.21 2.74 0.46 

51 Pre_farming Low_salinity 4.36 5.15 0.31 

52 Pre_farming Low_salinity 1.35 3.24 0.59 
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53 Pre_farming Low_salinity 2.43 2.63 0.57 

54 Pre_farming Low_salinity 2.58 5.79 0.60 
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