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We offer a systematic study of rigid analytic motives over general rigid analytic spaces, and we develop their six-functor formalism. A key ingredient is an extended proper base change theorem that we are able to justify by reducing to the case of algebraic motives. In fact, more generally, we develop a powerful technique for reducing questions about rigid analytic motives to questions about algebraic motives, which is likely to be useful in other contexts as well. We pay special attention to establishing our results without noetherianity assumptions on rigid analytic spaces. This is indeed possible using Raynaud's approach to rigid analytic geometry.
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Introduction

In this paper, we study rigid analytic motives over general rigid analytic spaces and we develop a six-functor formalism for them. We have tried to free our treatment from unnecessary hypotheses, and many of our main results hold in great generality, with the notable exception of Theorems 3.3.3(2) and 3.8.1 where we impose étale descent. (This is necessary for the former but might be superfluous for the latter.) In this introduction, we restrict to étale rigid analytic motives with rational coefficients, for which our results are the most complete. 1 The six-functor formalism.

Rigid analytic motives were introduced in [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF] as a natural extension of the notion of a motive associated to a scheme. Given a rigid analytic space S , we denote by RigDA ét (S ; Q) the ∞-category of étale rigid analytic motives over S with rational coefficients. By construction, it is naturally equipped with the structure of a symmetric monoidal ∞-category (see Definition 2.1.15).

Given a morphism of rigid analytic spaces f : T → S , the functoriality of the construction yields an adjunction f * : RigDA ét (S ;

Q) ⇄ RigDA ét (T ; Q) : f * . (0.1)
When f is locally of finite type, we construct in this paper another adjunction (see Definition 4.3.4)

f ! : RigDA ét (T ; Q) ⇄ RigDA ét (S ; Q) : f ! , (0.2) 
i.e., we define the "exceptional direct image" and the "exceptional inverse image" functors associated to f . Our main goal in this paper is to show the following result.

Scholium. The functors f * , f * , f ! , f ! , ⊗ and Hom satisfy the usual properties of a six-functor formalism. These include:
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In fact, everything we say here holds more generally with coefficients in an arbitrary ring when the class of rigid analytic spaces is accordingly restricted. For instance, if one is only considering rigid analytic spaces over Q p of finite étale cohomological dimension, the results discussed in the introduction are valid with Z[p -1 ]-coefficients.

• the compatibility with composition of morphisms (see Proposition 2.1.21 and Corollary 4.3.18); • the localization formula (see Proposition 2.2.3(2));

• the base change theorems (see Proposition 2.2.1(3) for the smooth base change, Theorem 2.7.1 for the quasi-compact base change, Theorem 4.1.4 for the extended proper base change, and Proposition 4.4.26 for the exchange between the "ordinary inverse image" and the "exceptional direct image" functors); • the canonical equivalences f ! ≃ f * , when f is proper (see Example 4.3.6), and the equivalence f ! ≃ f * (d)[2d], 2 when f smooth of pure relative dimension d (see Theorem 4.4.29); • the compatibility with tensor product, the projection formula and duality (see Proposition 2.1.21, and Corollaries 4.1.8, 4.5.3 and 4.5.4).

Of course, our six-functor formalism matches the one developed by Huber [START_REF] Huber | Étale cohomology of rigid analytic varieties and adic spaces[END_REF] for the étale cohomology of adic spaces. (Similar formalisms for étale cohomology were also developed by Berkovich [START_REF] Vladimir | Étale cohomology for non-Archimedean analytic spaces[END_REF] and de Jong-van der Put [START_REF] De | étale cohomology of rigid analytic spaces[END_REF].)

A partial six-functor formalism for rigid analytic motives was obtained in [Ayo15, §1.4] at a minimal cost as an application of the theory developed in [Ayo07a, Chapitre 1]. Given a non-Archimedean field K and a classical affinoid K-algebra A, the assignment sending a finite type A-scheme X to the ∞-category RigDA ét (X an ; Q) gives rise to a stable homotopical functor in the sense of [Ayo07a, Définition 1.4.1]. (Here X an is the analytification of X.) Applying [Ayo07a, Scholie 1.4.2], we have in particular an adjunction as in (0.2) under the assumption that f is algebraizable, i.e., that f is the analytification of a morphism between finite type A-schemes, for some unspecified classical affinoid K-algebra A. Clearly, it is unnatural and unsatisfactory to restrict to algebraizable morphisms, and it is our objective in this paper to remove this restriction. The key ingredient for doing so is Theorem 4.1.4 which we may consider as an extended proper base change theorem for commuting direct images along proper morphisms and extension by zero along open immersions. It is worth noting that in the algebraic setting, the extended proper base change theorem is essentially a reformulation of the usual one, but this is far from true in the rigid analytic setting. In fact, the usual proper base change theorem in rigid analytic geometry is a particular case of the so-called quasi-compact base change theorem (see Theorem 2.7.1) which is an easier property.

The extended proper base change theorem is already known if one restricts to projective morphisms in which case it can be deduced from the partial six-functor formalism developed in [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF]§1.4]. However, in the rigid analytic setting, it is not possible to deduce the general case of proper morphisms from the special case of projective morphisms. Indeed, the classical argument used in [SGAIV3, Exposé XII] for reducing the proper case to the projective case relies on Chow's lemma for which there is no analogue in rigid analytic geometry. (For instance, there are proper rigid analytic tori which are not algebraizable [START_REF] Fresnel | Rigid analytic geometry and its applications[END_REF]§6.6].) Therefore, a new approach was necessary for proving Theorem 4.1.4 in general.

Rigid motives as modules in algebraic motives.
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Strictly speaking, Theorem 4.4.29 only gives that f ! is equivalent to the twist of f * by the Thom space associated to Ω f . However, in the case of RigDA ét (-; Q), Thom spaces are globally given by Tate twists. Indeed, arguing as in [START_REF] Ayoub | La réalisation étale et les opérations de Grothendieck[END_REF]Remarque 11.3], this would follow from the property that the mapping space Map RigDA ét (S ;Q) (Q, Q) ≃ Q π 0 (S ) is coconnective. The latter property can be established using Theorem 3.8.1 and [Ayo14a, Proposition 11.1]. We leave the details for the interested reader.

Our approach is based on another contact point with algebraic geometry: instead of using the analytification functor from schemes to rigid analytic spaces, we go backward and associate to a rigid analytic space X the pro-scheme consisting of the special fibers of the different formal models of X. We now sketch the main idea of our construction, which is detailed in Section 3.4.

Let S be a formal scheme. We may associate to it the ∞-category of formal motives FDA ét (S; Q) which is canonically equivalent to the ∞-category of (algebraic) motives DA ét (S σ ; Q) over the special fiber S σ (see Theorem 3.1.10). The "generic fiber" functor induces a functor ξ S : DA ét (S σ ; Q) ≃ FDA ét (S; Q) → RigDA ét (S rig ; Q) where S rig is the rigid analytic space associated to S. It is immediate to see that ξ S is monoidal and has a right adjoint χ S sending the unit object of RigDA ét (S rig ; Q) to a commutative algebra object χ S Q of DA ét (S σ ; Q). Moreover, the functor χ S admits a factorization RigDA ét (S rig ; Q)

χ S --→ DA ét (S σ ; χ S Q) ff - → DA ét (S σ ; Q)
where DA ét (S σ ; χ S Q) denotes the ∞-category of χ S Q-modules in DA ét (S σ ; Q) and where ff is the forgetful functor. Also, the functor χ S admits a left adjoint ξ S : DA ét (S σ ; χ S Q) → RigDA ét (S rig ; Q)

M → ξ S (M) ⊗ ξ S χ S Q Q.
Now, if S is a quasi-compact and quasi-separated rigid analytic space, we may consider the cofiltered category Mdl(S ) of formal models of S (see Notation 1.1.9). The above construction yields a functor ξ S : colim

S∈Mdl(S )
DA ét (S σ ; χ S Q) → RigDA ét (S ; Q).

One of our main results is the following (see Theorem 3.3.3 and Remark 3.3.5).

Theorem. Restrict to rigid analytic spaces which are quasi-compact, quasi-separated and having finite Krull dimension. The natural transformation ξ exhibits the functor S → RigDA ét (S ; Q) as the étale sheafification of the functor S → colim S∈Mdl(S ) DA ét (S σ ; χ S Q) viewed as a presheaf valued in presentable ∞-categories.

We use the above description of the ∞-categories RigDA ét (S ; Q) to deduce the extended proper base change theorem in rigid analytic geometry (i.e., Theorem 4.1.4) from its algebraic analogue. In fact, it turns out that we only need a formal consequence of this description which happens to be also a key ingredient in its proof, namely Theorem 3.6.1 (see also Theorem 4.1.3). Once Theorem 4.1.4 is proven, it is easy to construct the adjunction (0.2).

We also point out that the commutative algebras χ S Q admit a concrete description. For precise statements, see Theorem 3.8.1 and Remark 3.8.2. Moreover, the special case of the above theorem where we take for S = Spf(k[[π]]) rig , with k a field of characteristic zero, is tightly connected to the main result of [Ayo15, Chapitre 1]. This will be explained in Remark 3.8.3.

Further results and applications.

Besides the six-functor formalism, the paper contains several foundational results on motives of rigid analytic spaces which are of independent interest. In particular, we study the descent property of the ∞-categories RigDA ét (S ; Q) for the étate topology; see Theorem 2.3.4.

Another notable result is Theorem 2.5.1 which, roughly speaking, asserts that RigDA ét (-; Q) transforms limits of certain rigid analytic pro-spaces into colimits of presentable ∞-categories. A similar property is also true for DA ét (-; Q) but the proof in the rigid analytic setting is much more involved and relies on approximation techniques as those used in the proof of [START_REF] Vezzani | A motivic version of the theorem of Fontaine and Wintenberger[END_REF]Proposition 4.5]. We also like to mention that this continuity property for RigDA ét (-; Q) plays a crucial role (along with many of the results described above) in the recent paper [START_REF] Bras | The de Rham-Fargues-Fontaine cohomology[END_REF] where a new relative cohomology theory for rigid analytic varieties over a positive characteristic perfectoid space P is defined and studied. Interestingly, this relative cohomology theory takes values in solid quasicoherent sheaves over the relative Fargues-Fontaine curve associated to P.

Acknowledgments. We thank Tony Yue Yu for asking if there was a good duality theory for the motives of smooth and proper rigid analytic spaces. Answering this question was one of our motivations for this work. We thank Kazuhiro Fujiwara and Fumiharu Kato for clarifying some points in their book "Foundations of Rigid Geometry, I". We also thank Denis Nardin and Marco Robalo for helpful discussions about Proposition 2.8.4, and the referees for their constructive comments and recommendations.

Notation and conventions.

∞-Categories. We use the language of ∞-categories following Lurie's books [START_REF] Lurie | Higher topos theory[END_REF] and [START_REF] Lurie | Higher Algebra[END_REF]. The reader familiar with the content of these books will have no problem understanding our notation pertaining to higher category theory and higher algebra which are often very close to those in loc. cit. Nevertheless, we list below some of these notational conventions which we use frequently.

As usual, we employ the device of Grothendieck universes, and we denote by Cat ∞ the ∞category of small ∞-categories and CAT ∞ the ∞-category of locally small, but possibly large ∞-categories. We denote by CAT L ∞ (resp. CAT R ∞ ) the wide sub-∞-category of CAT ∞ spanned by functors which are left (resp. right) adjoints. Similarly, we denote by Pr L (resp. Pr R ) the ∞category of presentable ∞-categories and left adjoint (resp. right adjoint) functors. We denote by Pr L ω ⊂ Pr L (resp. Pr R ω ⊂ Pr R ) the sub-∞-category of compactly generated ∞-categories and compact-preserving functors (resp. functors commuting with filtered colimits).

1-Categories are typically referred to as just "categories" and viewed as ∞-categories via the nerve construction. For emphasis, we sometimes call them "ordinary categories". We denote by S the ∞-category of small spaces, by Sp the ∞-category of small spectra and by Sp ≥0 ⊂ Sp its full sub-∞-category of connective spectra.

Given an ∞-category C, we denote by Map C (x, y) the mapping space between two objects x and y in C. Given another ∞-category D, we denote by Fun(C, D) the ∞-category of functors from C to D. If C is small, we denote by P(C) = Fun(C op , S) the ∞-category of presheaves on C and by y : C → P(C) the Yoneda embedding.

Monoidal structures. By "monoidal ∞-category" we always mean "symmetric monoidal ∞category", i.e., a coCartesian fibration C ⊗ → Fin * such that the induced functor (ρ i ! ) i : C ⟨n⟩ → 1≤i≤n C ⟨1⟩ is an equivalence for all n ≥ 0. (Recall that Fin * is the category of finite pointed sets, ⟨n⟩ = {1, . . . , n} ∪ { * } and ρ i : ⟨n⟩ → ⟨1⟩ is the unique map such that (ρ i ) -1 (1) = {i}.) If C ⊗ is a monoidal ∞-category, we denote by CAlg(C) the ∞-category of commutative algebras in C. If A ∈ CAlg(C), we denote by Mod A (C) the ∞-category of A-modules. Using Lurie's straightening construction, a monoidal category can be considered as an object of CAlg(CAT ∞ ), i.e., as a commutative algebra in CAT × ∞ .

The ∞-categories Pr L and Pr L ω underly monoidal ∞-categories Pr L, ⊗ and Pr L, ⊗ ω . A monoidal ∞category is said to be presentable (resp. compactly generated) if it belongs to CAlg(Pr L ) (resp. CAlg(Pr L ω )).

Sites and topoi. If C is an ∞-category endowed with a topology τ, we denote by (C, τ) the corresponding site. We denote by Shv τ (C) ⊂ P(C) the full sub-∞-category of τ-sheaves and by Shv ∧ τ (C) ⊂ Shv τ (C) its full sub-∞-category of τ-hypersheaves. We use L τ to denote the τsheafification functor as well as the τ-hypersheafification functor. (The context will make it clear which of the two we mean.) Morphisms of sites (C, τ) → (C ′ , τ ′ ) are underlain by functors in the opposite direction C ′ → C. In particular, a cofiltered inverse system of sites (C α , τ α ) α is underlain by a filtered direct system of ∞-categories, and we write lim α (C α , τ α ) for the site (colim α C α , τ) where τ is the topology generated by the τ α 's in the obvious way.

In the cases of most interest to us, the sites are underlain by ordinary categories. In these cases, we follow the classical terminology and say that a morphism of sites is an equivalence of sites if it induces an equivalence on the associated ordinary topoi. (This will be repeated each time, to avoid any possible confusion.)

Formal and rigid analytic geometries. We use Raynaud's approach to rigid analytic geometry [START_REF] Raynaud | Géométrie analytique rigide d'après Tate[END_REF] which is systematically developed in the books of Abbes [START_REF] Abbes | Éléments de géométrie rigide[END_REF] and Fujiwara-Kato [START_REF] Fujiwara | Foundations of rigid geometry[END_REF]. In fact, we mainly use [START_REF] Fujiwara | Foundations of rigid geometry[END_REF] where rigid analytic spaces are introduced without noetherianness assumptions.

We denote formal schemes by calligraphic letters X, Y, etc., and rigid analytic spaces by roman letters X, Y, etc. Formal schemes are always assumed adic of finite ideal type in the sense of [FK18, Chapter I, Definitions 1.1.14 & 1.1.16]. Morphisms of formal schemes are always assumed adic in the sense of [FK18, Chapter I, Definition 1.3.1]. Given a formal scheme X, we denote by X rig its associated rigid analytic space which we call the Raynaud generic fiber (or simply the generic fiber) of X. Recall that X rig is simply X considered in the localisation of the category of formal schemes with respect to admissible blowups. A general rigid analytic space is locally isomorphic to the generic fiber of a formal scheme. As we show in Corollary 1.2.7, the category of stably uniform adic spaces (see [START_REF] Buzzard | Stably uniform affinoids are sheafy[END_REF]) embeds fully faithfully in the category of rigid analytic spaces.

Given a rigid analytic space X, we denote by |X| the associated topological space (see Notation 1.1.11). This is constructed in [FK18, Chapter II, §3.1] where it is called the Zariski-Riemann space of X. The space |X| is endowed with a sheaf of rings O X , called the structure sheaf, and a subsheaf of rings O + X ⊂ O X , called the integral structure sheaf. (In [FK18, Chapter II, §3.2], the integral structure sheaf is denoted by O int X , but we prefer to follow Huber's notation in [START_REF] Huber | Étale cohomology of rigid analytic varieties and adic spaces[END_REF].)

Motives (algebraic, formal and rigid analytic). We fix a commutative ring spectrum Λ, i.e., an object of CAlg(Sp) which we assume to be connective for simplicity. Given a scheme S , we denote by SH τ (S ; Λ) the Morel-Voevodsky ∞-category of τ-motives on S with coefficients in Λ (see, for example, [START_REF] Jardine | Motivic symmetric spectra[END_REF]). Here τ ∈ {nis, ét} is either the Nisnevich or the étale topology. When τ is the Nisnevich topology, we sometimes omit the subscript "nis" and speak simply of motives over S . If Λ is the Eilenberg-Mac Lane spectrum associated to a commutative dg-ring (also denoted by Λ), we usually write DA τ (S ; Λ) instead of SH τ (S ; Λ).

Given a formal scheme S, we denote by FSH τ (S; Λ) the ∞-category of formal τ-motives on S with coefficients in Λ (see Definition 3.1.1). Similarly, given a rigid analytic space S , we denote by RigSH τ (S ; Λ) the ∞-category of rigid analytic τ-motives on S with coefficients in Λ (see Definition 2.1.11). Here again, τ ∈ {nis, ét} is either the Nisnevich or the étale topology, and when τ is the Nisnevich topology we sometimes omit the subscript "nis". If Λ is the Eilenberg-Mac Lane spectrum associated to a commutative dg-ring (also denoted by Λ), we usually write FDA τ (S; Λ) and RigDA τ (S ; Λ) instead of FSH τ (S; Λ) and RigSH τ (S ; Λ).

We also consider the unstable (aka., effective) and/or hypercomplete variants of these motivic ∞-categories, which we refer to using superscripts "eff" and/or "∧". For example, SH ∧ τ (S ; Λ) is the Morel-Voevodsky ∞-category of hypercomplete τ-motives and SH eff, ∧ τ (S ; Λ) is its effective version. If a statement is equally valid for the T-stable and the effective motivic ∞-categories, we use the superscript "(eff)". For example, the sentence "the ∞-category RigDA (eff) τ (S ; Λ) is presentable" means that both ∞-categories RigDA eff τ (S ; Λ) and RigDA τ (S ; Λ) are presentable. We use the superscripts "(∧)", "(eff, ∧)" in a similar way. For example, the sentence "S → SH (eff, ∧) τ (S ; Λ) is a Pr L -valued τ-(hyper)sheaf" means that we have two τ-sheaves, namely SH eff τ (-; Λ) and SH τ (-; Λ), and two τ-hypersheaves, namely SH eff, ∧ τ (-; Λ) and SH ∧ τ (-; Λ).

Formal and rigid analytic geometry

In this section, we gather a few results in rigid analytic geometry which we need later in the paper. We use Raynaud's approach [START_REF] Raynaud | Géométrie analytique rigide d'après Tate[END_REF] which can be summarised roughly as follows: the category of rigid analytic spaces is the localisation of the category of formal schemes with respect to admissible blowups. This is correct up to imposing the right conditions on formal schemes and slightly enlarging the localised category to allow gluing along open immersions. Raynaud's approach has been systematically developed by Abbes [START_REF] Abbes | Éléments de géométrie rigide[END_REF] and Fujiwara-Kato [START_REF] Fujiwara | Foundations of rigid geometry[END_REF]. We will mainly follow the book [START_REF] Fujiwara | Foundations of rigid geometry[END_REF] where rigid analytic spaces are introduced without noetherianness assumptions. Indeed, one of the aims of the paper is to show that there are reasonable ∞-categories of rigid analytic motives over general rigid analytic spaces. We warn the readers that many results in [START_REF] Fujiwara | Foundations of rigid geometry[END_REF] require noetherianness assumptions, especially when it comes to the study of quasi-coherent sheaves. However, the theory of quasi-coherent sheaves is largely irrelevant for what we do in this paper.

The reader who is only interested in motives of classical rigid analytic varieties in the sense of Tate and who is accustomed with Raynaud's notion of formal models, may skip this section and refer back to it when needed.

Recollections.

Unless otherwise stated, adic rings are always assumed to be complete of finite ideal type in the sense of [FK18, Chapter I, Definitions 1.1.3 & 1.1.6]. (This is also the convention of [Abb10, Définition 1.8.4] and [Hub93, Section 1].) Thus, an adic ring A is a complete linearly topologized ring whose topology is I-adic for some ideal I ⊂ A of finite type. Morphisms between adic rings are always assumed to be adic in the sense of [FK18, Chapter I, Definition 1.1.15]. Thus, a morphism of adic rings A → B is a ring homomorphism such that IB is an ideal of definition of B for one (and hence every) ideal of definition I of A.

A useful basic fact when dealing with adic rings is the existence of I-adic completions in the sense of [FK18, Chapter 0, Definition 7.2.6].

Lemma 1.1.1. Let A be a ring, I ⊂ A a finitely generated ideal and M an A-module. The Hausdorff completion M = lim n∈N M/I n M of the A-module M endowed with the I-adic topology is itself an I-adic topological A-module. More precisely, for m ≥ 0 we have:

• I m M is closed in M and coincides with I m M = lim n∈N I m M/I m+n M, which is the Hausdorff completion of I m M; • M/I m M → M/I m M is an isomorphism.

Proof. This follows from [Bou98, Chapter III, §2 n • 11, Proposition 14 & Corollary 1] when M is finitely generated. See [FK18, Chapter 0, Corollary 7.2.9 & Propositions 7.2.15 & 7.2.16] for general M. □ Notation 1.1.2. If A is an adic ring and T = (T i ) i is a family of indeterminates, we denote by A⟨T ⟩ the algebra of restricted power series in T with coefficients in A, i.e., the I-adic completion of A[T ] for an ideal of definition I ⊂ A. Unless otherwise stated, given an ideal J ⊂ A⟨T ⟩, we denote by A⟨T ⟩/J the I-adically complete quotient, i.e., the quotient of A⟨T ⟩ by the closure of the ideal J.

Unless otherwise stated, formal schemes are always assumed to be adic of finite ideal type in the sense of [FK18, Chapter I, Definitions 1.1.14 & 1.1.16]. Thus, a formal scheme X = (|X|, O X ) is a ringed space with is locally isomorphic to Spf(A), where A is an adic ring (of finite ideal type, as always). Morphisms of formal schemes are assumed to be adic, i.e., are locally of the form Spf(B) → Spf(A), with A → B an adic morphism.

Let X be a formal scheme. An ideal I ⊂ O X is said to be an ideal of definition if locally it is of the form IO Spf(A) where A is an adic ring and I ⊂ A an ideal of definition. In this case, the ringed space (|X|, O X /I) is an ordinary scheme which we simply denote by X/I. By [FK18, Chapter I, Corollary 3.7.12], every quasi-compact and quasi-separated formal scheme admits an ideal of definition which we may assume to be finitely generated.

Definition 1.1.3. Let A be an adic ring. We say that A is of principal ideal type if it admits an ideal of definition which is principal (i.e., generated by a nonzero divisor). We will say that A is of monogenic ideal type if it admits an ideal of definition which is monogenic (i.e., generated by one element). Similarly, we say that a formal scheme is of principal ideal type (resp. of monogenic ideal type) if it admits an ideal of definition which is principal (resp. monogenic). There are also obvious local versions of these notions where we only require that an ideal of definition of a specific type exists locally.

Remark 1.1.4. Let A be an adic ring of monogenic ideal type and π ∈ A a generator of an ideal of definition of A. Then A is of principal ideal type if and only if A is π-torsion-free.

Notation 1.1.5. We denote by FSch the category of formal schemes and by FSch qcqs its full subcategory spanned by quasi-compact and quasi-separated formal schemes (in the sense of [FK18, Chapter I, Definitions 1.6.1 & 1.6.5]). Note that the category Sch (resp. Sch qcqs ) of schemes (resp. of quasi-compact and quasi-separated schemes) can be identified with the full subcategory of FSch (resp. FSch qcqs ) spanned by those formal schemes for which (0) is an ideal of definition.

Notation 1.1.6. The inclusion of the category of reduced schemes into FSch admits a right adjoint which we denote by X → X σ . It commutes with gluing along open immersions and satisfies X σ = (X/I) red whenever X admits an ideal of definition I ⊂ O X . The scheme X σ is called the special fiber of X.

The following notions agree with the ones introduced in [ (1) We say that f is a closed immersion (resp. finite, proper) if locally on X there is an ideal of definition I ⊂ O X such that the induced morphism of schemes Y/I → X/I is a closed immersion (resp. finite, proper). (2) We say that f is an open immersion (resp. adically flat, étale, smooth) if locally on X there is an ideal of definition I ⊂ O X such that the induced morphism of schemes Y/I n → X/I n is an open immersion (resp. flat, étale, smooth) for every n ∈ N.

Let X be a formal scheme. An ideal J ⊂ O X is said to be admissible if, locally on X, it is finitely generated and contains an ideal of definition. An admissible blowup of X is the blowup of an admissible ideal. For more details, see [START_REF] Fujiwara | Foundations of rigid geometry[END_REF] Chapter II, §1.1]. We recall here that the composition X ′′ → X of two admissible blowups X ′′ → X ′ and X ′ → X is itself an admissible blowup if X is quasi-compact and quasi-separated. (This is [FK18, Chapter II, Proposition 1.1.10].) We denote by B(X) the category of admissible blowups and morphisms of formal X-schemes. If X is quasi-compact and quasi-separated, then B(X) is cofiltered (by [FK18, Chapter II, Proposition 1.3.1]) and if U → X is a quasi-compact open immersion, then the obvious functor B(X) → B(U) is surjective (by [FK18, Chapter II, Proposition 1.1.9]).

Notation 1.1.8. (See [FK18, Chapter II, §2]) We denote by RigSpc qcqs the 1-categorical localisation of the category FSch qcqs with respect to admissible blowups. More concretely, there is a functor (-) rig : FSch qcqs → RigSpc qcqs which is a bijection on objects and, given two quasi-compact and quasi-separated formal schemes X and Y, we have Hom RigSpc qcqs (Y rig , X rig ) = colim

Y ′ →Y ∈ B(Y)
Hom FSch qcqs (Y ′ , X).

(1.1)

The objects of RigSpc qcqs are the quasi-compact and quasi-separated rigid analytic spaces (according to [FK18, Chapter II, Definitions 2.1.1 & 2.1.2]). If X is a quasi-compact and quasi-separated formal scheme, X rig is called the Raynaud generic fiber (or simply the generic fiber) of X. For this reason, we sometimes write "X η " instead of "X rig ". A map in RigSpc qcqs is an open immersion if it is isomorphic to the generic fiber of an open immersion in FSch qcqs . General rigid analytic spaces are obtained by gluing along open immersions from objects in RigSpc qcqs as in [FK18, Chapter II, §2.2.(c)]. The resulting category is denoted by RigSpc and its objects are the rigid analytic spaces.

There is also a generic fiber functor (-) rig : FSch → RigSpc extending the one on quasi-compact and quasi-separated formal schemes.

Notation 1.1.9. Let X be a rigid analytic space. A formal model for X is a formal scheme X endowed with an isomorphism X ≃ X rig (see [START_REF] Fujiwara | Foundations of rigid geometry[END_REF] Chapter II, Definition 2.1.7]). Formal models of X form a category which we denote by Mdl(X). When X is quasi-compact and quasi-separated, Mdl(X) is cofiltered by [FK18, Chapter II, Proposition 2.1.10]. Similarly, given a morphism f : Y → X of rigid analytic spaces, we have a category Mdl( f ) of formal models of f whose objects are morphisms of formal schemes ϕ : Y → X together with an isomorphism f ≃ ϕ rig in RigSpc ∆ 1 . When X and Y are quasi-compact and quasi-separated, the category Mdl( f ) is cofiltered.

Remark 1.1.10. If X is a formal scheme and I is an ideal of definition of X, then the admissible blowup of I is locally of principal ideal type (in the sense of Definition 1.1.3). Therefore, every quasi-compact and quasi-separated rigid analytic space X admits formal models which are locally of principal ideal type and these form a cofinal subcategory of Mdl(X) which we denote by Mdl ′ (X).

Notation 1.1.11. Let X be a quasi-compact and quasi-separated rigid analytic space. We define a locally ringed space (|X|, O + X ) by (|X|,

O + X ) = lim X∈Mdl(X) (|X|, O X ).
If X 0 is a formal model of X and I ⊂ O X 0 is an ideal of definition, then IO + X is an invertible ideal in O + X . We set O X = n≥0 (IO + X ) -n . Then O X is a sheaf of rings which does not depend on I and which contains O + X . By gluing along open immersions, the assignment X → (|X|, O X , O + X ) can be extended to any rigid analytic space X. For more details, we refer the reader to [START_REF] Fujiwara | Foundations of rigid geometry[END_REF]Chapter II,§3]. We say that |X| is the topological space associated to X, that O X is the structure sheaf of X, and that O + X is the integral structure sheaf of X. Remark 1.1.12. Let X be a rigid analytic space. The topological space |X| is valuative, in the sense of [FK18, Chapter 0, Definition 2.3.1], and spectral if X is quasi-compact and quasi-separated. The Krull dimension (or simply the dimension) of X is defined to be the Krull dimension of |X|, i.e., the supremum of the lengths of chains of irreducible closed subsets of |X|.

Notation 1.1.13. Let X be a rigid analytic space and x ∈ |X| a point. By [FK18, Chapter II, Proposition 3.2.6], the local ring O + X,x is a prevaluative ring. (Here we use the terminology of [Abb10, Définition 1.9.1].) More precisely, there is a nonzero divisor a ∈ O + X,x with the following properties:

• every finitely generated ideal of O + X,x containing a power of a is principal;

• O + X,x [a -1 ] = O X,x ; • m X,x = n∈N a n O + X,
x where m X,x is the maximal ideal of O X,x ; • O + X,x /m x is a valuation ring of the residue field O X,x /m x . We denote by Γ x its value group (denoted multiplicatively). We let κ + (x) be the a-adic completion of O + X,x , κ(x) its fraction field and κ(x) the residue field of κ + (x). We also let κ • (x) ⊂ κ(x) be the subring of power bounded elements. Then κ • (x) is the unique height 1 valuation ring containing κ + (x). Moreover, κ(x) is a non-Archimedean complete field for the norm induced by κ • (x). Definition 1.1.14. Let f : Y → X be a morphism of rigid analytic spaces.

(1) We say that f is a closed immersion (resp. finite, proper) if, locally on X, f admits a formal model which is a closed immersion (resp. finite, proper). (2) We say that f is a locally closed immersion if it can be written as the composition of a closed immersion Y → U followed by an open immersion U → X.

(3) We say that f is étale (resp. smooth) with good reduction if, locally on X, f admits a formal model which is étale (resp. smooth).

We next discuss the analytification functor following [FK18, Chapter II, §9.1].

Construction 1.1.15. Let A be an adic ring, I ⊂ A an ideal of definition, U = Spec(A) ∖ Spec(A/I) and S = Spf(A) rig . There exists an analytification functor (-) an : Sch lft /U → RigSpc/S , where Sch lft /U is the category of U-schemes locally of finite type. This functor is uniquely determined by the following two properties.

(1) It is compatible with gluing along open immersions.

(2) For a separated finite type U-scheme X with an open immersion X → X into a proper A-scheme, and complement Y = X ∖ X, we have

X an = ( X) rig ∖ ( Y) rig (1.2)
where, for an A-scheme W, W = colim n W ⊗ A A/I n is the I-adic completion of W.

In the second property, one may replace Y with the closure in X of X × A U ∖ X. That (1.2) is independent of the choice of the compactification, follows from [FK18, Chapter II, Propositions 9.1.5 & 9.1.9]. 3 1.2. Relation with adic spaces.

Recall from [Hub96, page 37] that a Tate ring is a topological ring A admitting a topologically nilpotent unit and an open subring A 0 ⊂ A which is adic. (Here, by convention, Tate rings are assumed complete.) The ring A 0 is called a ring of definition. If π ∈ A is a topologically nilpotent unit contained in A 0 , then the topology of A 0 is π-adic, i.e., the π n A 0 form a fundamental system of open neighbourhoods of 0. A morphism of Tate rings f : A → B is a continuous morphism of rings for which there exists rings of definitions A 0 ⊂ A and B 0 ⊂ B with f (A 0 ) ⊂ B 0 .

Notation 1.2.1. Given a Tate ring A, we denote by A • ⊂ A the subring of power bounded elements and A •• ⊂ A • the ideal of topologically nilpotent elements. We say that A is uniform if A • is bounded (which is equivalent to ask that A • is a ring of definition).

A Tate affinoid ring A is a pair (A ± , A + ) where A ± is a Tate ring and A + is an integrally closed open subring of A ± contained in (A ± ) • . Construction 1.2.2.

(1) Let A be an adic ring of principal ideal type and π ∈ A a generator of an ideal of definition. We associate to A a Tate affinoid ring A ♮ = (A ♮± , A ♮+ ) where A ♮± = A[π -1 ] and A ♮+ is the integral closure of A in A[π -1 ].

(2) The functor A → A ♮ , from adic rings of principal ideal type to Tate affinoid rings, admits a ind-right adjoint. The latter associates to a Tate affinoid ring R = (R ± , R + ) the ind-adic ring R ♮ consisting of those rings of definition of R ± contained in R + .

Remark 1.2.3. When the Tate affinoid ring R is uniform, then the associated ind-adic ring R ♮ is isomorphic to an adic ring. In fact, we have R ♮ = R + .

Lemma 1.2.4. The functor R → R ♮ , from the category of Tate affinoid rings to the category of ind-adic rings of principal ideal type, is fully faithful.

Proof. Indeed, let R and R ′ be two Tate affinoid rings and f : R ♮ → R ′ ♮ a morphism of ind-adic rings. There exists rings of definition R 0 ⊂ R ± and R ′ 0 ⊂ R ′± contained in R + and R ′+ such that f restricts to a morphism of adic rings f 0 : R 0 → R ′ 0 . Then f 0 induces a morphism of Tate rings f ± : R ± → R ′± . Since f 0 is the restriction of f , for every ring of definition R 1 ⊂ R ± containing R 0 and contained in R + , there exists a ring of definition R ′ 1 ⊂ R ′± contained in R ′+ and a morphism f 1 : R 1 → R ′ 1 extending f 0 . This shows that f ± maps R + into R ′+ as needed. □ 3 Proposition 9.1.9 of loc. cit. is stated under the assumption that A is topologically universally rigid-noetherian, but this assumption is unnecessary.

Given a Tate affinoid ring A = (A ± , A + ), we denote by Spa(A) = (|Spa(A)|, O Spa(A) , O + Spa(A) ) the preadic space associated to A as in [START_REF] Huber | Étale cohomology of rigid analytic varieties and adic spaces[END_REF]. In general, O + ⊂ O are presheaves of rings on the topological space |Spa(A)| which might fail to be sheaves. Proposition 1.2.5.

(1) Let A be an adic ring of principal ideal type. There Proof. A point x ∈ |Spf(A) rig | determines a morphism of adic rings A → κ + (x), and hence a continuous valuation v x : A → Γ x ∪ {0} landing in Γ +

x ∪ {0}. (Here Γ + x ⊂ Γ denotes the submonoid defined by the inequality ≤ 1.) Since the image of π in κ + (x) is nonzero, v x extends uniquely to a continuous valuation v x : A ♮± → Γ x ∪ {0}. Moreover, v x maps A ♮+ into Γ +

x ∪ {0} since A ♮+ is integral over A. Therefore, v x belongs to Spa(A ♮ ). It is easy to see that x → v x is a bijection, which is continuous and open. More precisely, given elements a 0 , . . . , a n in A generating an admissible ideal of A, the open subset |Spf(A⟨ a 1 a 0 , . . . , a n a 0 ⟩) rig | ⊂ |Spf(A) rig | is mapped bijectively to the rational subset |Spa(A ♮ ⟨ a 1 a 0 , . . . , a n a 0 ⟩)| ⊂ |Spa(A ♮ )|. This also shows that O Spf(A) rig is the sheafification of O Spa(A ♮ ) . Assertion (2) can be deduced from assertion (1) and the fact that the counit map (R ♮ ) ♮ → R identifies the Tate affinoid ring R with the colimit of the ind-Tate affinoid ring (R ♮ ) ♮ . □ Definition 1.2.6. A uniform adic space is a triple X = (|X|, O X , O + X ), consisting of a topological space |X| and sheaves of rings O + X ⊂ O X , which is locally isomorphic to Spa(A), where A is a stably uniform Tate affinoid ring in the sense of [START_REF] Buzzard | Stably uniform affinoids are sheafy[END_REF]]. (This is reasonable since by [BV18, Theorem 7] every stably uniform Tate affinoid ring is sheafy.) Corollary 1.2.7. Let Adic be the category of uniform adic spaces. Then there exists a fully faithful embedding Adic → RigSpc which is compatible with gluing along open immersions and which sends Spa(R) to Spf(R + ) rig .

Proof. It suffices to treat the affinoid case; the general case follows then by gluing along open immersions. Given two stably uniform Tate affinoid rings A and B, the fact that A is sheafy implies that there is a bijection Hom(A, B) ≃ Hom(Spa(B), Spa(A)). It follows from Remark 1.2.3 that there is a functor Spa(A) → Spf(A + ) rig , from affinoid uniform adic spaces to rigid analytic spaces, and it remains to show that the map Hom(A + , B + ) → Hom(Spf(B + ) rig , Spf(A + ) rig ), with A and B as above, is a bijection. An element of the right-hand side can be represented by a morphism Y → Spf(A + ), where Y → Spf(B + ) is an admissible blowup. We may assume that O Y is π-torsion-free, with π a generator of an ideal of definition in B + . We claim that O(Y) = B + which implies that Y → Spf(A + ) factors uniquely through Spf(B + ), finishing the proof.

Let (Y i ) i be an affine open covering of Y and set Y i j = Y i ∩ Y j . Let B i and B i j be the Tate affinoid rings associated to the adic rings O(Y i ) and O(Y i j ) respectively. Then (Spa(B i )) i is an open covering of Spa(B), and Spa(B i j ) = Spa(B i ) ∩ Spa(B j ). Since B is sheafy, we deduce that B + is the equaliser of the usual pair of arrows i B + i ⇒ i j B + i j . Since O Y is π-torsion-free, we have inclusions O(Y i ) ⊂ B + i and O(Y i j ) ⊂ B + i j . This proves that O(Y), which is the equaliser of i O(Y i ) ⇒ i j O(Y i j ), is contained in B + as needed. □ 1.3. Étale and smooth morphisms.

In Definition 1.1.14 we introduced the classes of étale and smooth morphisms with good reduction. These classes are too small, and we need to enlarge them to get the correct notions of étaleness and smoothness in rigid analytic geometry. First, we introduce a notation.

Notation 1.3.1. Let A be an adic ring and J ⊂ A an ideal. We denote by J sat the ideal of A consisting of those elements a ∈ A for which there exists an ideal of definition I ⊂ A such that aI ⊂ J. The ideal J sat is called the saturation of J.

We say that J is saturated if J = J sat . The saturation of an ideal is a saturated ideal.

Remark 1.3.2. If A is an adic ring of principal ideal type and J ⊂ A a saturated ideal, then J is closed and A/J is also of principal ideal type. Moreover, for a closed ideal J ⊂ A, the quotient A/J is of principal ideal type if and only if J is saturated.

Our definition of étaleness uses the Jacobian matrix. Compare with [Fuj95, Definition 1.3.1].

Definition 1.3.3.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is rig-étale over A if there exists a presentation B ≃ A⟨t 1 , . . . , t n ⟩/J and elements f 1 , . . . , f n ∈ J such that ( f 1 , . . . , f n ) sat = J sat and the determinant of the Jacobian matrix det(∂ f i /∂t j ) generates an open ideal in B.

(2) A morphism Y → X of formal schemes is said to be rig-étale if, locally for the rig topology on X and Y (see Definition 1.4.10 below), it is isomorphic to Spf(B) → Spf(A) with B rig-étale over A. (When X and Y are quasi-compact, this simply means that after replacing X and Y by admissible blowups, the resulting morphism is locally isomorphic to Spf(B) → Spf(A) with B rig-étale over A.) (3) A morphism of rigid analytic spaces Y → X is said to be étale if, locally on X and Y, it admits formal models which are rig-étale.

Remark 1.3.4. If the rigid analytic space X is assumed to be universally noetherian (in the sense of [FK18, Chapter II, Definition 2.2.23]), then a morphism f : Y → X is étale if and only if it is flat and neat (i.e., Ω f = 0). This follows from [Hub96, Propositions 1.7.1 and 1.7.5] together with [FK18, Chapter II, Theorem A.5.2]. See also [START_REF] Fujiwara | Theory of tubular neighborhood in étale topology[END_REF]Proposition 5.1.6] which is proven under more restrictive assumptions.

Remark 1.3.5. Let A be an adic ring and B a rig-étale adic A-algebra given by A⟨t 1 , . . . , t n ⟩/J with J containing f 1 , . . . , f n as in Definition 1.3.3. Consider the adic A-algebras B ′ = A⟨t 1 , . . . , t n ⟩/( f 1 , . . . , f n ) and B ′′ = A⟨t 1 , . . . , t n ⟩/( f 1 , . . . , f n ) sat .

We have surjective maps B ′ → B → B ′′ inducing isomorphisms Spf(B ′′ ) rig ≃ Spf(B) rig ≃ Spf(B ′ ) rig . Moreover, B ′ and B ′′ are rig-étale over A. The case of B ′′ is clear. For B ′ , we need to prove the following statement. Let C be an adic ring and c ∈ C an element. Then c generates an open ideal in C if and only if it generates an open ideal in C/(0) sat . Indeed, let I be an ideal of definition and assume that I ⊂ (c) + (0) sat . We need to show that a power of I is contained in (c). Since I is finitely generated, we may find elements v 1 , . . . , v m in (0) sat such that I ⊂ (c) + (v 1 , . . . , v m ). Let r be an integer such that v i I r = 0 for all 1 ≤ i ≤ m. Then clearly I r+1 ⊂ cI r ⊂ (c) as needed.

Lemma 1.3.6. Let A be an adic ring of monogenic ideal type and π ∈ A a generator of an ideal of definition of A. Let B be a rig-étale A-algebra. Then there exists an integer N ∈ N such that for every π-torsion-free adic A-algebra C, the map Hom A (B, C) → Hom A/π N (B/π N , C/π N ) is injective.

Proof. The proof of [Fuj95, Proposition 2.1.1] can be easily adapted to the situation considered in the statement. For the reader's convenience we recall the argument. For m ∈ N, we set A m = A/π m , B m = B/π m and C m = C/π m . Since B is rig-étale over A, there exists an integer c such that Ω 1 B m /A m is annihilated by π c independently of m. (Indeed, if B is given as in Definition 1.3.3, it suffices to take c so that π c belongs to the ideal generated by det(∂ f i /∂t j ).) Now let f, f ′ : B → C be two morphisms of A-algebras inducing the same morphism f m : B m → C m for some m ≥ c + 1. We will show that f m+1 = f ′ m+1 , which suffices to conclude using induction.

We may consider f 2m and f ′ 2m as deformations of f m . The difference between these deformations is classified by an element

ϵ ∈ Hom(C m ⊗ B m Ω 1 B m /A m , π m C/π 2m C). Since π is a nonzero divisor of C and Ω 1 B m /A m annihilated by π c , the image of any C-linear morphism C m ⊗ B m Ω 1 B m /A m → π m C/π 2m C is contained in π 2m-c C/π 2m C. In particular, the map Hom(C m ⊗ B m Ω 1 B m /A m , π m C/π 2m C) → Hom(C m ⊗ B m Ω 1 B m /A m , π m C/π m+1 C
) is identically zero. Since the image of ϵ by this map classifies the difference between f m+1 and f ′ m+1 , we get the equality f m+1 = f ′ m+1 . □ Proposition 1.3.7. Let A be an adic ring of monogenic ideal type and π ∈ A a generator of an ideal of definition of A. Let t = (t 1 , . . . , t n ) be a system of coordinates and f = ( f 1 , . . . , f n ) an n-tuple in A⟨t⟩. Let J ⊂ A⟨t⟩ be an ideal such that ( f ) ⊂ J ⊂ ( f ) sat and set B = A⟨t⟩/J. Assume that det(∂ f i /∂t j ) generates an open ideal in B, so that B is a rig-étale adic A-algebra. Then, there exists a positive integer N such that for every π-torsion-free adic A-algebra C and every integer e ≥ N, the map

Hom A (B, C) → im Hom A/π 2e (B/π 2e , C/π 2e ) → Hom A/π e (B/π e , C/π e ) (1.3)
is bijective. Moreover, the integer N depends continuously on f , i.e., we may find one which works for every n-tuple f ′ = ( f ′ 1 , . . . , f ′ n ) in A⟨t⟩ which is π-adically sufficiently close to f . Proof. For N sufficiently large, the injectivity of (1.3) follows from Lemma 1.3.6. The fact that there is an N which works for all f ′ close enough to f follows from the proof of Lemma 1.3.6. (Indeed, the N depends only on the ideal generated by det(∂ f i /∂t j ).)

For the surjectivity of (1.3), it is enough to solve the following problem: given an n-tuple

c 0 = (c 0,1 , . . . , c 0,n ) in C such that the components of f (c 0 ) belong to π 2e C, find an n-tuple c = (c 1 , . . . , c n ) in C such that f (c) = 0 and the components of c -c 0 belong to π e C. (Indeed, since C is π-torsion- free an n-tuple c such that f (c) = 0 determines an A-morphism B → C.)
This problem can be solved using the Newton method as in the first step of the proof of [Ayo15, Lemme 1.1.52]. In fact, one can also remark that the argument in loc. cit. is valid more generally for non-Archimedean Banach rings, i.e., complete normed rings with a non-Archimedean norm. In particular, it applies with "A", "C" and "R" in loc. cit. replaced with A[π -1 ], B[π -1 ] and C[π -1 ] endowed with the natural norms for which A/(0) sat , B/(0) sat and C = C/(0) sat are the unit balls. (More precisely, for a ∈ A[π -1 ], we set ∥a∥ = e -v(a) where v(a) is the largest integer such that a ∈ π v(a) (A/(0) sat ), and similarly for B and C.) Since π is a nonzero divisor of C, a solution c = (c 1 , . . . , c n ) in (C[π -1 ]) n of the system of equations f = 0, close enough to c 0 , determines a solution in C n . We may take for N an integer which is larger than ln(2M 2 ) with M as in [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF]page 46]. 4 It is clear that N depends π-adically continuously on f . □ Proposition 1.3.8. Let A be an adic ring of monogenic ideal type and π ∈ A a generator of an ideal of definition of A. Let B be a rig-étale adic A-algebra admitting a presentation B = A⟨t⟩/( f ) sat , with t = (t 1 , . . . , t n ) a system of coordinates and f = ( f 1 , . . . , f n ) an n-tuple in A⟨t⟩ such that det(∂ f i /∂t j ) generates an open ideal in B. Then there exists an integer N such that the following holds. For every n-tuple f

′ = ( f ′ 1 , . . . , f ′ n ) in A⟨t⟩ such that f ′ -f belongs (π N A⟨t⟩) n , the adic A-algebra B ′ = A⟨t⟩/( f ′ ) sat is isomorphic to B.
Moreover, there is an isomorphism B ≃ B ′ induced by n-tuple g = (g 1 , . . . , g n ) in A⟨t⟩ such that gt belongs to (πA⟨t⟩) n .

Proof. This follows by applying Proposition 1.3.7 to the rig-étale adic A-algebras B and B ′ . □ Notation 1.3.9. Let A be an adic ring. We denote by E A the category of rig-étale A-algebras and E ′

A its full subcategory spanned by those adic A-algebras whose zero ideal is saturated. (Thus, every object

B ∈ E ′ A admits a presentation B ≃ A⟨t⟩/( f ) sat with t = (t 1 , . . . , t n ) and f = ( f 1 , . . . , f n ) such that det(∂ f i /∂t j ) generates an open ideal in B.) The inclusion E ′
A → E A admits a left adjoint given by B → B/(0) sat . Given a morphism of adic rings A 1 → A 2 , there is are induced functors

E A 1 → E A 2 and E ′ A 1 → E ′ A 2 given by B → A 2 ⊗ A 1 B and B → (A 2 ⊗ A 1 B
)/(0) sat respectively. Corollary 1.3.10. Let (A α ) α be a filtered inductive system of adic rings of monogenic ideal type with colimit A (in the category of adic rings). Then the obvious functor

colim α E ′ A α → E ′ A (1.4)
is an equivalence of categories.

Proof. Let R be the colimit of (A α ) α taken in the category of discrete rings. We may assume that there is a smallest index o and we fix π ∈ A o generating an ideal of definition of A o . Then A = lim n∈N R/π n R, and there is a map of rings R → A with kernel J = n π n R and with dense image R ⊂ A. We split the proof into two steps.

Step 1. First, we prove that (1.4) is essentially surjective. By Proposition 1.3.8, an object B ∈ E ′ A admits a presentation of the form B = A⟨t⟩/( f ) sat where t = (t 1 , . . . , t n ) is a system of coordinates and

f = ( f 1 , . . . , f n ) an n-tuple in R[t] such that g = det(∂ f i /∂t j ) generates an open ideal in B.
Using Remark 1.3.5, we can find an integer N and an element h ∈ A⟨t⟩ such that π Nh g belongs to the closure of the ideal ( f ) ⊂ R[t] in A⟨t⟩. In particular, we may write 

π N -h g = n i=1 a i f i + vπ N+1 with v ∈ A⟨t⟩ and a 1 , . . . , a n ∈ R[t]. Write h = h 0 + h 1 π N+1 with h 0 ∈ R[t]
N -h g -n i=1 a i f i ∈ R[t] belongs to π N+1 R[t]. Said differently, we may also assume that v ∈ R[t]. We now choose a lift f = ( f 1 , . . . , f n ) of f to an n-tuple in R[t] and set g = det(∂ f i /∂t j ).
We also choose lifts h, a 1 , . . . , a n ∈ R[t] of h, a 1 , . . . , a n . Since the elements of J are divisible by any power of π, we may also find a lift

v ∈ R[t] of v such that π N -hg = n i=1 a i f i + vπ N+1 .
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For α sufficiently big, the previous equality can be lifted to an equality

π N -h α g α = n i=1 a α,i f α,i + v α π N+1 in A α [t] with the property that g α = det(∂ f α,i /∂t j ). Since 1 -v α π is invertible in A α ⟨t⟩, it follows that B α = A α ⟨t⟩/( f α ) sat is a rig-étale A α -algebra. Clearly, the functor (1.4) sends B α to B.
Step 2. We now prove that (1.4) is fully faithful. We fix two objects B o , C o ∈ E ′ A o . For an index α, we set B α = (B o ⊗ A o A α )/(0) sat and define C α similarly. We also set B = (B o ⊗ A o A)/(0) sat and define C similarly. We want to show that

colim α Hom A α (B α , C α ) → Hom A (B, C)
is a bijection. (This is enough since we are free to change the smallest index o. We also used that the colimit in (1.4) is filtered in order to describe the hom-set in the domain.) The above map can be rewritten as colim

α Hom A o (B o , C α ) → Hom A o (B o , C).
Since C and the C α 's are π-torsion-free, we may replace B o by any rig-étale

A o -algebra B ′ o such that B o ≃ B ′
o /(0) sat . By Remark 1.3.5, we may choose B ′ o topologically finitely presented. We now apply Proposition 1.3.7: there exists an integer N such that the maps For later use, we record the following two results.

Hom A o (B ′ o , C α ) → im Hom A o /π 2N (B ′ o /π 2N , C α /π 2N ) → Hom A o /π N (B ′ o /π N , C α /π N )
Lemma 1.3.11. Let e : X ′ → X be an étale morphism of rigid analytic spaces, and let s : X → X ′ be a section of e. Then s is an open immersion.

Proof. The question is local on X and around s(X). Thus, we may assume that X = Spf(A) rig with A an adic ring of principal ideal type, that X ′ = Spf(A ′ ) rig with A ′ a rig-étale adic A-algebra, and that s is induced by a morphism of A-algebras h : A ′ → A. Fix a generator π of an ideal of definition of A. By Proposition 1.3.8, we may assume that A ′ = A⟨t⟩/( f ) sat with t = (t 1 , . . . , t n ) a system of coordinates and

f = ( f 1 , . . . , f n ) an n-tuple in A[t] such that det(∂ f i /∂t j ) generates an open ideal in A ′ . Consider the A-algebra C = A[t]/( f ). Then, C[π -1 ] is étale over A[π -1 ] and h induces a morphism of A[π -1 ]-algebras C[π -1 ] → A[π -1 ].
From standard properties of ordinary étale algebras, we deduce that Spec(A

[π -1 ]) → Spec(C[π -1 ]
) is a clopen immersion. Passing to the analytification over A in the sense of Construction 1.1.15, we deduce a clopen immersion Spf(A) rig → Spec(C[π -1 ]) an . But the latter factors as follows:

Spf(A) rig s - → Spf(A ′ ) rig → Spec(C[π -1 ]) an ,
where the second map is an open immersion. This finishes the proof. □ Proposition 1.3.12. Let i : Z → X be a closed immersion of rigid analytic spaces. Let X ′ be an étale rigid analytic X-space and s : Z → X ′ a partial section. Then, locally on X, s extends to a section s : U → X ′ defined on an open neighbourhood U of Z. Moreover, s is an open immersion.

Proof. The question being local on X, we may assume that X = Spf(A) rig with A an adic ring of principal ideal type, and Z = Spf(B) rig with B a quotient of A by a closed ideal I ⊂ A. We may also assume that X ′ = Spf(A ′ ) rig with A ′ a rig-étale A-algebra, and that the section s is induced by a morphism of A-adic rings h : A ′ → B. Let π ∈ A be a generator of an ideal of definition. Without loss of generality, we may assume that B and A ′ are π-torsion-free.

For N ∈ N and J ⊂ I a finitely generated ideal, consider the adic A-algebra C J, N = A⟨J/π N ⟩ given as the π-adic completion of the sub-A-algebra A[J/π N ] ⊂ A[π -1 ] generated by fractions a/π N with a ∈ J. Then B is the filtered colimit in the category of adic rings of the C J, N 's when N and J vary. Applying Corollary 1.3.10 to this inductive system, we can find J and N such that the image of Hom A (A ′ , C J, N ) → Hom A (A ′ , B) contains h. This means that the section s extends to an X-morphism Spf(C J, N ) rig → Spf(A ′ ) rig . Since Spf(C J, N ) rig is an open subspace of X, this proves the existence of s as in the proposition. That s is an open immersion follows from Lemma 1.3.11. □ Definition 1.3.13.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is rig-smooth over A if, locally on B, there exists a rig-étale morphism of adic A-algebras A⟨t 1 , . . . , The next proposition is similar to [Elk73, page 582, Théorème 7], but we do not assume the adic ring A to be noetherian.

t m ⟩ → B. (2) A morphism Y → X of
Proposition 1.3.15. Let A be an adic ring of monogenic ideal type and π ∈ A a generator of an ideal of definition of A. Let B be a rig-étale (resp. rig-smooth) adic A-algebra, and assume that B is π-torsion-free. Then, locally on B, there exists a finitely generated π-torsion-free A-algebra P such that P[π -1 ] is étale (resp. smooth) over A[π -1 ] and its π-adic completion P = lim n∈N P/π n is isomorphic to B.

Proof. According to [Elk73, pages 588-589], the proof of [Elk73, page 582, Théorème 7] can be adapted to cover the above statement. Alternatively, one can use Proposition 1.3.8 as follows. By this proposition, we may assume that the adic A-algebra B is of the form

B = A⟨t 1 , . . . , t m , s 1 , . . . , s n ⟩/( f 1 , . . . , f n ) sat , with f 1 , . . . , f n ∈ A[t 1 , . . . , t m , s 1 , . . . , s n ],
and such that det(∂ f i /∂s j ) generates an open ideal in B. (The rig-étale case corresponds to m = 0.) Consider the A-algebra

P ′ = A[t 1 , . . . , t m , s 1 , . . . , s n ]/( f 1 , . . . , f n ) sat
whose π-adic completion is B. Let e ∈ P ′ be the image of det(∂ f i /∂s j ) in P ′ . By assumption, a power of π is a multiple of e in the π-adic completion of P ′ . Thus, there are elements b, c ∈ B and an integer N such that π N = e • b + cπ N+1 . The A-algebra P = P ′ [(1cπ) -1 ] satisfies the properties required in the statement. □

The following is a variant of Proposition 1.3.12 for smooth morphisms. It will play a crucial role in the proof of the localization property for rigid analytic motives (see Proposition 2.2.3).

Proposition 1.3.16. Let Z → X be a closed immersion of rigid analytic spaces. Let X ′ be a smooth rigid analytic X-space and s : Z → X ′ a partial section. Then, locally on X, we may find an open neighbourhood U ⊂ X of Z, an open neighbourhood U ′ ⊂ X ′ of s(Z) and an isomorphism U ′ ≃ B m U , for some integer m ≥ 0, modulo which s : Z → U ′ is the zero section over Z. Proof. The problem being local on X and around s(Z), we may assume that X ′ is étale over B m X and, by change of coordinates, that the composition

Z s - → X ′ → B m X
is the zero section over Z. Applying Proposition 1.3.12 to the étale morphism X ′ → B m X and the closed immersion Z → B m X given by the zero section over Z, we find locally an open neighbourhood

U ′ ⊂ X ′ of s(Z) such that U ′ → B m
X is also an open immersion. Letting U be the inverse image of U ′ by the zero section X → B m X and replacing U ′ by U ′ × X U, we may assume that U ′ is an open neighbourhood of the zero section of B n U . Since the zero section of B n U admits a system of fundamental neighbourhoods which are m-dimensional relative balls, we may also assume that U ′ is isomorphic to B m U as needed. □

We end this subsection with the following result.

Proposition 1.3.17. Let f : Y → X be a smooth morphism of rigid analytic spaces. Then the induced map

| f | : |Y| → |X| is open. Proof. It is enough to show that f (|Y|) is open in |X|.
The question is local on X and Y. By Proposition 1.3.15 we may assume that X = Spf(A) rig , with A an adic ring of principal ideal type, and Y = Spf(B) rig , with B = P the π-adic completion of a finitely presented A-algebra P such that P[π -1 ] is smooth over A[π -1 ]. (As usual, π is a generator of an ideal of definition of A. Also, note that finite presentation in Proposition 1.3.15 can be assumed if we don't insist on π-torsionfreeness.) By the Raynaud-Gruson platification theorem [RG71, Theorem 5.2.2], and working locally over X, we may further assume that P is flat over A. By [Gro66, Chapitre IV, Théorème 2.4.6], the morphism Spec(P) → Spec(A) is then open, and we denote by U ⊂ Spec(A) its image. Let (a i ) i be a family in A generating the ideal defining the complement of U in Spec(A). Let A i be the π-adic completion of A[a -1 i ] and B i the π-adic completion of

P i = P ⊗ A A i . Set X i = Spf(A i ) rig and Y i = Spf(B i ) rig . By construction, (Y i ) i is an open covering of Y and it is enough to show that f (Y i ) is open in X. We will show more precisely that f (Y i ) = X i , i.e., that Y i → X i is surjective.
Replacing X and Y by X i and Y i , we are reduced to showing that f : Y → X is surjective, for X = Spf(A) rig and Y = Spf(B) rig ≃ Spf( P) rig as above, assuming furthermore that the A-algebra P is faithfully flat. To do so, it will be enough to show the following assertion. If X ′ → Spf(A) is an admissible blowup and Y ′ = (X ′ ⊗ A B)/(0) sat , the induced map Y ′ σ → X ′ σ is surjective. (Indeed, by [FK18, Chapter III, Proposition 3.1.5], the obvious map |Y| → |Y ′ σ | is surjective.) Since P is flat over A, the formal scheme X ′ × Spf(A) Spf(B) is already saturated and we have an isomorphism Y ′ /π ≃ X ′ /π ⊗ A P. In particular, we see that the map Y ′ /π → X ′ /π is faithfully flat, and hence surjective as needed. □ 1.4. Topologies.

Open covers define the Zariski topologies on schemes and formal schemes, and the analytic topology on rigid analytic spaces. In this subsection, we introduce various finer Grothendieck topologies which we use when discussing motives. On schemes, we mainly consider the étale and Nisnevich topologies. These topologies extend naturally to formal schemes: a family (Y i → X) i consisting of étale morphisms is an étale (resp. a Nisnevich) cover if (Y i,σ → X σ ) i is an étale (resp. a Nisnevich) cover.

Notation 1.4.1. Given a scheme S , we denote by Ét/S the category of étale S -schemes. Similarly, given a formal scheme S, we denote by Ét/S the category of étale formal S-schemes.

Lemma 1.4.2. Let S be a formal scheme. The functor X → X σ induces an équivalence of categories Ét/S → Ét/S σ respecting the étale and Nisnevich topologies.

Proof. This follows immediately from [Gro67, Chapitre IV, Théorème 18.1.2]. □ Notation 1.4.3. Given a rigid analytic space S , we denote by Ét/S the category of étale rigid analytic S -spaces (in the sense of Definition 1.3.3). We denote by Ét gr /S the full subcategory of Ét/S spanned by those étale rigid analytic S -spaces with good reduction (in the sense of Definition 1.1.14).

Definition 1.4.4. Let (Y i → X) i be a family of étale morphisms of rigid analytic spaces. We say that this family is a Nisnevich cover if, locally on X and after refinement, it admits a formal model (Y i → X) i which is a Nisnevich cover. Nisnevich covers generate a topology on rigid analytic spaces which we call the Nisnevich topology.

Definition 1.4.5. Let ( f i : Y i → X) i be a family of étale morphisms of rigid analytic spaces. We say that this family is an étale cover if it is jointly surjective, i.e., |X| = i f i (|Y i |). Étale covers generate the étale topology on rigid analytic spaces.

Remark 1.4.6. By means of Proposition 1.2.5 and Remark 1.3.14, we see that the above definition of étale covers agrees with the one for uniform adic spaces in [Hub96, Section 2.1]. Also, note that if X is quasi-compact, then every étale cover of X can be refined by a finite subfamily. This follows from Proposition 1.3.17.

Notation 1.4.7. The étale topology is generally denoted by "ét" and the Nisnevich topology is denoted by "nis". Also, the Zariski topology is generally denoted by "zar" and the analytic topology is denoted by "an".

Remark 1.4.8. If S is a scheme and τ ∈ {nis, ét}, we call ( Ét/S , τ) the small τ-site of S , and similarly for a formal scheme. If S is a rigid analytic space, we call ( Ét gr /S , nis) the small Nisnevich site of S and ( Ét/S , ét) the small étale site of S .

The big smooth sites introduced below are used for constructing the categories of motives.

Notation 1.4.9.

(1) If S is a scheme, we denote by Sch/S the overcategory of S -schemes and Sm/S its full subcategory consisting of smooth objects. For τ ∈ {nis, ét}, we call (Sm/S , τ) the big smooth site of S . (2) If S is a formal scheme, we denote by FSch/S the overcategory of formal S-schemes and FSm/S its full subcategory consisting of smooth objects. For τ ∈ {nis, ét}, we call (FSm/S , τ) the big smooth site of S.

(3) If S is a rigid analytic space, we denote by RigSpc/S the overcategory of rigid analytic S -spaces and RigSm/S its full subcategory consisting of smooth objects (in the sense of Definition 1.3.13). For τ ∈ {nis, ét}, we call (RigSm/S , τ) the big smooth site of S .

We next discuss the class of rig topologies on formal schemes.

Definition 1.4.10. Let (Y i → X) i be a family of morphisms of formal schemes. We say that this family is a rig cover if the induced family (Y rig i → X rig ) i is an open cover. The topology generated by rig covers is called the rig topology and it is denoted by "rig".

Remark 1.4.11. Let X be a quasi-compact and quasi-separated formal scheme. Then every rig cover of X can be refined by the composition of an admissible blowup X ′ → X and a Zariski cover of X ′ .

By "equivalence of sites" we mean a continuous functor inducing an equivalence between the associated ordinary topoi.

Lemma 1.4.12. Consider full subcategories V ⊂ FSch (resp. V ⊂ FSch/S for a formal scheme S) and V ⊂ RigSpc (resp. V ⊂ RigSpc/S with S = S rig ) such that:

• V is stable by admissible blowups and quasi-compact open formal subschemes;

• V contains X rig for every X ∈ V, and every object of V is locally of this form.

Then the functor (-) rig : V → V defines an equivalence of sites (V, an)

∼ - → (V, rig).
In particular, we have an equivalence of sites (RigSpc, an)

∼ - → (FSch, rig) (resp. (RigSpc/S , an) ∼ - → (FSch/S, rig)).
Proof. The statement would have been a particular case of [START_REF] Huber | Étale cohomology of rigid analytic varieties and adic spaces[END_REF]Corollary A.4], except that we don't know a priori that the continuous functor (-) rig defines a morphism of sites and that we do not assume that our categories have finite limits. (In fact, we are particularly interested in the case where V is the category of rig-smooth formal S-schemes, which does not admit finite limits.) Instead of trying to modify the proof of [Hub96, Corollary A.4], we present an independent argument. We only treat the absolute case since the relative case is similar.

By [SGAIV1, Exposé III, Théorème 4.1], we may assume that V ⊂ FSch qcqs and that V is the full subcategory of RigSpc qcqs spanned by objects of the form X rig for X ∈ V. The rig topology on V is not subcanonical (except for very special choices of V). We denote by V ′ the full subcategory of the category of sheaves of sets on (V, rig) spanned by sheafifications of representable presheaves. The obvious functor a : V → V ′ , sending a formal scheme X to the sheaf associated of the presheaf represented by X, induces an equivalence of sites (V ′ , rig) ≃ (V, rig), where the topology of (V ′ , rig) is the one induced from the canonical topology on the topos of sheaves on (V, rig). (This is a well-known fact which follows, for example, from [SGAIV1, Exposé IV, Corollaire 1.2.1]; see also [START_REF] Ayoub | Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique[END_REF]Corollaire 4.4.52].) To prove the lemma, we remark that there is an equivalence of categories V ′ ≃ V which identifies the rig topology on V ′ with the analytic topology on V. Indeed, for an admissible blowup

Y ′ → Y in V, the diagonal map Y ′ → Y ′ × Y Y ′ is
a rig cover, which implies that aY ′ → aY is an isomorphism. Using that the Zariski topology is subcanonical on V, we deduce that Hom V ′ (aY, aX) = colim

Y ′ →Y ∈ B(Y) Hom V (Y ′ , X)
for any X, Y ∈ V. The result follows then by comparison with (1.1). □ Corollary 1.4.13. Let τ ∈ {nis, ét} be one of the topologies introduced above on rigid analytic spaces. Consider full subcategories V ⊂ FSch (resp. V ⊂ FSch/S for a formal scheme S) and V ⊂ RigSpc (resp. V ⊂ RigSpc/S with S = S rig ) satisfying the following conditions.

• If τ = nis, then V is stable by admissible blowups and every étale morphism whose target is in V lies entirely in V. • If τ = ét, then every rig-étale morphism whose target is in V lies entirely in V.

• V contains X rig for every X ∈ V, and every object of V is locally of this form. Then there exists a unique topology rig-τ on V such that the functor (-) rig : V → V defines an equivalence of sites (V, τ) ∼ -→ (V, rig-τ). In particular, we have an equivalence of sites (RigSpc, τ)

∼ - → (FSch, rig-τ) (resp. (RigSpc/S , τ) ∼ - → (FSch/S, rig-τ)).
Remark 1.4.14. Corollary 1.4.13 gives us two more topologies on formal schemes: the rig-Nisnevich topology (denoted by "rignis") and the rig-étale topology (denoted by "rigét"). These topologies can be described more directly by their corresponding notions of covers. A family (Y i → X) i of morphisms of formal schemes is a rig-Nisnevich cover if the induced family (Y rig i → X rig ) i is a Nisnevich cover. In particular, if X is a quasi-compact and quasi-separated formal scheme, then every rig-Nisnevich cover of X can be refined by the composition of an admissible blowup X ′ → X and a Nisnevich cover of X ′ . Proposition 1.4.19 below gives an analogous result for rig-étale covers.

Remark 1.4.15. Summarizing, we have a diagram of morphisms of sites:

(FSch, ét) (FSch, rigét) o o (RigSpc, ét) ∼ o o (FSch, nis) (FSch, rignis) o o (RigSpc, nis) ∼ o o (FSch, zar) (FSch, rig) o o
(RigSpc, an).

∼ o o

Definition 1.4.16.

(1) Let A be an adic ring and B an adic A-algebra. We say that B is finite rig-étale if B is finite over A and étale over Spec(A) ∖ Spec(A/I) for an ideal of definition I of A.

(2) A morphism of formal schemes Y → X is said to be finite rig-étale if it is affine and, locally over X, isomorphic to Spf(B) → Spf(A) with B a finite rig-étale adic A-algebra. (3) A morphism of formal schemes Y → X is said to be a finite rig-étale covering if it is finite rig-étale and the induced morphism

|Y rig | → |X rig | is surjective.
Lemma 1.4.17. Let A be an adic ring and B a finite adic A-algebra. Then Spf(B) → Spf(A) is a finite rig-étale covering if and only if

Spec(B) ∖ Spec(B/IB) → Spec(A) ∖ Spec(A/I) (1.5)
is a finite étale covering, when I is an ideal of definition of A.

Proof. Let X be a quasi-compact and quasi-separated formal scheme. Then every rigétale cover of X can be refined by the composition of an admissible blowup X ′ → X, a Nisnevich cover (Y ′ i → X ′ ) i , and finite rig-étale coverings Z ′ i → Y ′ i . Proof. Let (U j → X) j∈J be a rig-étale cover. We may assume that J is finite (see Remark 1.4.6) and that X = Spf(A) is affine with A an adic ring of principal ideal type. We fix a generator π ∈ A of an ideal of definition of A. By Proposition 1.3.15, we may refine the rig-étale cover and assume that each U j is the adic completion of a finite presentation A-scheme U j which is étale over A[π -1 ]. (Note that finite presentation in Proposition 1.3.15 can be assumed if we don't insist on π-torsionfreeness.) By the Raynaud-Gruson platification theorem [RG71, Theorem 5.2.2], there exists an admissible blowup X ′ → X = Spec(A) such that the strict transform U ′ j → X ′ of U j → X is flat for every j. In particular, the morphism U ′ j → X ′ is also quasi-finite. Let U ′ j and X ′ be the adic completions of U ′ j and X ′ . By construction, we have X ′rig ≃ X rig and U ′rig j ≃ U rig j . Thus, (U ′ j → X ′ ) j is also a rig-étale cover. Since O X ′ and the O U ′ j 's are π-torsion-free, we deduce that the family (U ′ j → X ′ ) j is jointly surjective. Equivalently, the family of quasifinite morphisms (U ′ j /π → X ′ /π) j is jointly surjective. Using standard properties of the Nisnevich topology, we can find a family of étale morphisms (

Y ′ i → X ′ ) i such that: (1) (Y ′ i /π → X ′ /π) i is a Nisnevich cover of X ′ /π;
(2) for every index i there is a index j and a clopen immersion

Z ′ i → U ′ j × X ′ Y ′ i such that Z ′ i → Y ′ i is finite and Z ′ i /π → Y ′ i /π is surjective. In addition to being finite, the morphism Z ′ i → Y ′ i is flat and étale over Y ′ i [π -1 ]. Since Z ′ i /π → Y ′ i /π is surjective, we may replace Y ′ i by an open neighbourhood of Y ′ i /π and assume that Z ′ i → Y ′ i is also surjective. In particular, we see that Z ′ i [π -1 ] → Y ′ i [π -1 ] is a finite étale covering. If Y ′ i and Z ′ i
denote the adic completions of Y ′ i and Z i , Lemma 1.4.17 implies that the morphisms Z ′ i → Y ′ i are finite rig-étale coverings. Moreover, the family (Y ′ i → X ′ ) i is a Nisnevich cover by point (1) above. Finally, the family (Z ′ i → X) i refines the initial rig-étale cover as needed. □

Corollary 1.4.20. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We set S α = S rig α and S = S rig . Then, there is an equivalence of sites ( Ét/S , ét) ≃ lim α ( Ét/S α , ét).

Proof. Without loss of generality, we may assume that the indexing category of the inverse system (S α ) α admits a final object o. We may replace S o by the blowup of a finitely generated ideal of definition and each S α by its strict transform, and assume that the S α 's are locally of principal ideal type. The question being local for the Zariski topology on S o , we may assume that the formal schemes S α 's are affine of principal ideal type. We set A α = O(S α ) and A = O(S ), and we employ Notation 1.3.9. Using Corollary 1.4.13, it is enough to show that the morphism of sites

(E ′ A , rigét) → lim α (E ′ A α , rigét)
is an equivalence. Corollary 1.3.10 gives an equivalence on the underlying categories and it remains to show that the topologies match. For this, we need to show that every rig-étale cover in E ′ A can be refined by the image of a rig-étale cover in E ′ A α for α small enough. This follows readily from Proposition 1.4.19. □ Remark 1.4.21. Keeping the notation of Corollary 1.4.20, we similarly have an equivalence of sites ( Ét gr /S , nis) ≃ lim α ( Ét gr /S α , nis). This is easier to prove: one reduces to the analogous statement for the small Nisnevich sites of formal schemes, and then further to the analogous statement for the small Nisnevich sites of ordinary schemes using Lemma 1.4.2.

We end this subsection with a short discussion of points in the rigid analytic setting.

Definition 1.4.22. A rigid point s is a rigid analytic space of the form Spf(V) rig where V is an adic valuation ring of principal ideal type; compare with [FK18, Chapter II, Definition 8.2.1]. We also write s for the unique closed point of |s|. Using Notation 1.1.13, we then have V = κ + (s). Also, κ(s) is the fraction field of V, κ(s) is the residue field of V and κ Definition 1.4.24. Let s be a rigid point.

(1) We say that s is nis-geometric if the valuation ring κ + (s) is Henselian.

(2) We say that s is ét-geometric (or, simply, geometric) if the field κ(s) is algebraically closed.

Remark 1.4.25. Let S be a rigid analytic space.

(1) A point s ∈ S determines a rigid point, which we denote again by s, given by Spf(κ + (s)) rig . Moreover, we have an obvious morphism of rigid analytic spaces s → S sending the closed point of |s| to s ∈ |S |. (2) A morphism of rigid analytic spaces s → S from a rigid point s is called a rigid point of S .

It factors uniquely as s → s → S , where s ∈ |S | is the image of the closed point of |s|. By abuse of language, we say that "s is the image of s → S " or that "s is over s". We say that a rigid point s → S of S is algebraic if the morphism of rigid points s → s is algebraic.

(See Remark 1.4.23.)

Lemma 1.4.26. Let S be a formal scheme and set S = S rig .

(1) Given a point s ∈ S , there is a canonical isomorphism

Spf(κ + (s)) ≃ lim Spf(κ + (s))→U→S U,
where the limit is over factorizations of Spf(κ + (s)) → S with U affine and such that U rig is an open neighbourhood of s in S .

(2) Given an algebraic rigid point s → S , there is a canonical isomorphism

Spf(κ + (s)) ≃ lim Spf(κ + (s))→U→S U,
where the limit is over factorizations of Spf(κ + (s)) → S with U affine and rig-étale over S.

Proof. Assertion (1) follows immediately from [FK18, Chapter II, Proposition 3.2.6] and the definition of κ + (s); see Notation 1.1.13. To prove assertion (2), we may assume that S = Spf(A) is affine and prove that the A-algebra κ + (s) is a filtered colimit of rig-étale adic A-algebras in the category of adic rings. Let s ∈ S be the image of s. Using assertion (1), we may write

κ + (s) = colim α A α ,
in the category of adic rings, where A α are adic A-algebras such that the Spf(A α ) rig are open neighbourhoods of s in S = Spf(A) rig . Applying Corollary 1.3.10 to the inductive system (A α ) α , we see that every rig-étale κ + (s)-algebra whose zero ideal is saturated is a filtered colimit in the category of adic rings of rig-étale adic A-algebras. Thus, it is enough to show that κ + (s) is a filtered colimit of adic rig-étale κ + (s)-algebras. This follows immediately from Remark 1.4.23 and the following fact. If L/κ(s) is a finite separable extension and R ⊂ L is a sub-κ + (s)-algebra of finite type with fraction field L, then R is a rig-étale κ + (s)-algebra. (We leave it to the reader to find a presentation of R as in Definition 1.3.3(1).) □ Construction 1.4.27. Let τ ∈ {nis, ét}. Let S be a rigid analytic space and let s ∈ S be a point. We may construct an algebraic τ-geometric rigid point s → S over s as follows.

(1) (The case τ = nis) Let κ(s)/ κ(s) be a separable extension and denote by κ + (s) the Henselisation of κ + (s) at the point Spec( κ(s)) → Spec(κ + (s)). Then κ + (s) is again a valuation ring. (This follows from [Bou98, Chapter VI, §8, n • 6, Proposition 6].) We denote by κ + (s) the adic completion of κ + (s) and set s = Spf(κ + (s)) rig . We have an obvious map s → S , which factors through s → S . The map s → S is a nis-geometric rigid point of S . (2) (The case τ = ét) Let κ(s) be a separably closed algebraic extension of κ(s). (We do not require this extension to be separable.) Let κ + (s) ⊂ κ(s) be a valuation ring which extends κ + (s) ⊂ κ(s). We denote by κ + (s) the adic completion of κ + (s) and set s = Spf(κ + (s)) rig . (As mentioned above, by [BGR84, Proposition 3.4.1/6], the fraction field κ(s) of κ + (s) is always algebraically closed.) We have an obvious map s → S which factors through s → S . The map s → S is an étale geometric rigid point of S . In the situation of (1) (resp. (2)), given a presheaf F on Ét gr /S (resp. Ét/S ) with values in an ∞-category admitting filtered colimits, we set:

F s = colim s→U→S F(U),
where the colimit is over the étale neighbourhoods with good reduction (resp. étale neighbourhoods) of s in S . The object F s is called the stalk of F at s. Remark 1.4.28. The functors F → F s introduced in Construction 1.4.27 admit a more basic version for the analytic topology, given by F → F s = colim s∈U⊂X F(U), where the colimit is over the open neighbourhoods of s in S .

Proposition 1.4.29. Let S be a rigid analytic space.

(1) The site ( Ét gr /S , nis) admits a conservative family of points given by F → F s , where s → S run over the nis-geometric rigid points as in Construction 1.4.27(1). (2) The site ( Ét/S , ét) admits a conservative family of points given by F → F s , where s → S run over the geometric rigid points as in Construction 1.4.27(2).

Proof. We only treat the second part. By a standard argument, one reduces to prove the following two assertions.

(1) Every étale cover of a geometric rigid point s splits.

(2) A family (Y i → X) i in Ét/S is an étale cover if, for every geometric rigid point s → S and every S -morphism s → X, there exists i and an X-morphism s → Y i .

The first assertion follows from Proposition 1.4.19 (and Corollary 1.4.13). The second assertion follows from Definition 1.4.5. □ Corollary 1.4.30. Let S be a rigid analytic space and U ⊂ S a nonempty open subspace. Assume that U and S are quasi-compact. Then, every étale cover of U can be refined by the base change of an étale cover of S .

Proof. Fix an étale cover (U i → U) i of U with U i quasi-compact and quasi-separated. Given an algebraic geometric rigid point s → S , we consider u = s × S U. This is a quasi-compact open rigid analytic subspace of s. Thus, u is either empty or u → U is an algebraic geometric rigid point of U. In both cases, the morphism u → U factors through U i for some i. Using Corollary 1.4.20 and Lemma 1.4.26, there exists an étale neighbourhood V s → S of s such that V s × S U factors through U i . This shows that the base change of the étale cover (V s → S ) s refines (U i → U) i as needed. □

Rigid analytic motives

In this section, we recall the construction of rigid analytic motives following [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF] and prove some of their basic properties. In particular, we prove in Subsection 2.3 that the functor RigSH τ (-; Λ), sending a rigid analytic space S to the ∞-category of rigid analytic motives over S , is a τ-sheaf with values in Pr L . An important result obtained in this section is Theorem 2.5.1 asserting that this sheaf transforms certain limits of rigid analytic spaces into colimits of presentable ∞-categories. This result plays an important role at several places in the paper, notably for constructing direct images with compact support in Subsection 4.3. In Subsection 2.8, we use this result for computing the stalks of RigSH τ (-; Λ).

The construction.

From now on, we fix a connective commutative ring spectrum Λ ∈ CAlg(Sp ≥0 ) and denote by Mod Λ the ∞-category of Λ-modules. Connectivity of Λ is assumed here for convenience. It implies that Mod Λ admits a t-structure whose heart is the ordinary category of π 0 Λ-modules. Examples of Λ include localisations of the sphere spectrum at various primes and Eilenberg-Mac Lane spectra of ordinary rings such as Z, Z/n, Q, etc. Notation 2.1.1. Given an ∞-category C, we denote by P(C) the ∞-category of presheaves on C with values in the ∞-category S of Kan complexes. If C is endowed with a Grothendieck topology τ, we denote by Shv (∧) τ (C) the full sub-∞-category of P(C) spanned by the τ-(hyper)sheaves. Thus, Shv τ (C) is the ∞-topos associated to the site (C, τ) as in [Lur09, Definition 6.2.2.6] and Shv ∧ τ (C) is its hypercompletion in the sense of [Lur09, §6.5.2].

Notation 2.1.2. Given an ∞-category C, we denote by PSh(C; Λ) the ∞-category of presheaves of Λ-modules on C, i.e., contravariant functors from C to Mod Λ . If C is endowed with a Grothendieck topology τ, we denote by Shv (∧) τ (C; Λ) the full sub-∞-category of PSh(C; Λ) spanned by the τ-(hyper)sheaves. (For the precise meaning, see Definition 2.3.1 below.) We denote by

L τ : PSh(C; Λ) → Shv (∧) τ (C; Λ) (2.1)
the left adjoint to the obvious inclusion. This functor is called τ-(hyper)sheafification. We also denote by (-

) ∧ : Shv τ (C; Λ) → Shv ∧ τ (C; Λ) (2.
2) the left adjoint to the obvious inclusion. This functor is called hypercompletion.

Remark 2.1.3. The ∞-category Shv (∧) τ (C; Λ) is stable and admits a t-structure whose truncation functors are denoted by τ ≥m and τ ≤n , and whose heart is the category of ordinary sheaves of π 0 Λmodules on the homotopy category of C. An object F ∈ Shv (∧) τ (C; Λ) is said to be m-connective (resp. n-coconnective) if the natural map τ ≥m F → F (resp. F → τ ≤n F) is an equivalence. As usual, when m = 0 (resp. n = 0) we say that F is connective (resp. coconnective).

We record the following lemma which we will use at several occasions. Lemma 2.1.4. Consider two sites (C, τ) and (C ′ , τ ′ ) where C and C ′ are ordinary categories, and let F : C → C ′ be a functor. Assume the following conditions.

(1) The topologies τ and τ ′ are induced by pretopologies Cov τ and Cov τ ′ in the sense of

[SGAIV1, Exposé II, Définition 1.3]. (2) For X ∈ C, F takes a family in Cov τ (X) to a family in Cov τ ′ (F(X)). Moreover, if a : U → X
is an arrow which is a member of a family belonging to Cov τ (X) and b : V → X a second arrow in C, we have F(U × X V) ≃ F(U) × F(X) F(V). Then, the inverse image functors on presheaves induce by sheafification the following functors:

F * : Shv (∧) τ (C) → Shv (∧) τ ′ (C ′ ) and F * : Shv (∧) τ (C; Λ) → Shv (∧) τ ′ (C ′ ; Λ). (2.3) Moreover, if F defines an equivalence of sites F : (C ′ , τ ′ ) ∼ - → (C, τ), i.e.
, induces an equivalence between the associated ordinary topoi, then the functors (2.3) are equivalences of ∞-categories.

Proof. The case of (hyper)sheaves of Λ-modules follows from the case of (hyper)sheaves of Kan complexes using, for example, Remark 2.3.3(2) below. To construct F * : Shv (∧) τ (C) → Shv (∧) τ ′ (C ′ ), we need to show that F * : P(C) → P(C ′ ) takes a τ-(hyper)cover to a τ ′ -(hyper)cover which follows immediately from conditions (1) and (2).

It remains to prove the last statement. The case of hypersheaves follows from the case of sheaves. Therefore, it is enough to show that F * : Shv τ (C) → Shv τ ′ (C ′ ) is an equivalence. Since C and C ′ are ordinary categories, the Yoneda functors composed with sheafification factorize through the sub-∞-categories Shv τ (C) ≤0 ⊂ Shv τ (C) and Shv τ ′ (C ′ ) ≤0 ⊂ Shv τ ′ (C ′ ) of 0-truncated objects. By hypothesis, the functor F * induces an equivalence of ordinary topoi Shv τ (C) ≤0 ≃ Shv τ ′ (C ′ ) ≤0 . Thus, there exists a functor u : C ′ → Shv τ (C) making the triangles

C 5 5 F C ′ u G G Shv τ (C) C ′ u G G 6 6 Shv τ (C) F * Shv τ ′ (C ′ )
commutative. Let u : P(C ′ ) → Shv τ (C) be the left Kan extension of u along the Yoneda embedding y :

C ′ → P(C ′ ). Given X ′ ∈ C ′ and a covering sieve R ′ ⊂ y(X ′ ) generated by a family (Y ′ i → X ′ ) i in Cov τ ′ (X ′ ), the induced map u(R ′ ) → uy(X ′ ) = u(X ′
) is an equivalence. Indeed, R ′ is equivalent to the colimit of the Čech nerve associated to the family (Y ′ i → X ′ ) i . It follows that u(R ′ ) is equivalent to the colimit in Shv τ (C) of the Čech nerve in Shv τ (C) ≤0 associated to the family (u(Y ′ i ) → u(X ′ )) i . (Here, we use that the functor u : C ′ → Shv τ (C) ≤0 preserves representable fiber products.) The family (u(Y ′ i ) → u(X ′ )) i is jointly effectively epimorphic since its image by the equivalence Shv τ (C) ≤0 ≃ Shv τ ′ (C ′ ) ≤0 is jointly effectively epimorphic. (Here we use [Lur09, Proposition 7.2.1.14] which insures that effective epimorphisms can be detected after 0-truncation.) This proves that u(R ′ ) is equivalent to u(X ′ ) as needed.

From the above discussion, we deduce from [Lur09, Proposition 5.5.4.20] that u factors uniquely through the τ ′ -sheafification L τ ′ :

P(C ′ ) → Shv τ ′ (C ′ ) yielding a functor Shv τ ′ (C ′ ) → Shv τ (C).
That the latter is a two-sided inverse to F * follows from the above two triangles and the universal property of the Yoneda functors C → Shv τ (C) and C ′ → Shv τ (C ′ ). □

Below and elsewhere in this paper, "monoidal" always means "symmetric monoidal".

Remark 2.1.5. Recall that Mod Λ underlies a monoidal ∞-category Mod ⊗ Λ . Applying [Lur09, Proposition 3.1.2.1] to the coCartesian fibration Mod ⊗ Λ → Fin * , we deduce that Fun(C op , Mod ⊗ Λ ) × Fun(C op , Fin * ) Fin * → Fin * defines a monoidal ∞-category PSh(C; Λ) ⊗ whose underlying ∞-category is PSh(C; Λ). By [Lur17, Proposition 2.2.1.9], Shv (∧) τ (C; Λ) underlies a unique monoidal ∞-category Shv (∧) τ (C; Λ) ⊗ such that (2.1) lifts to a monoidal functor.

Remark 2.1.6. There is a monoidal functor Λ ⊗ -: S × → Mod ⊗ Λ sending a Kan complex to the associated free Λ-module. (More precisely, this is the composition of the infinite suspension functor Σ ∞ : S × → Sp ⊗ with the change of algebra functor Λ ⊗ -: Sp ⊗ → Mod ⊗ Λ provided by [Lur17, Theorem 4.5.3.1].) It induces monoidal functors

P(C) × → PSh(C; Λ) ⊗ and Shv (∧) τ (C) × → Shv (∧) τ (C; Λ) ⊗ .
Composing with the Yoneda functors y : C → P(C) and L τ • y : C → Shv (∧) τ (C), we get functors Λ(-) : C → PSh(C; Λ) and Λ τ (-) : C → Shv (∧) τ (C; Λ). If C has finite direct products, the above functors lift to monoidal functors from C × to PSh(C; Λ) ⊗ and Shv (∧) τ (C; Λ) ⊗ . In particular, the monoidal structure on PSh(C; Λ) described in Remark 2.1.5 coincides with the one given by Day convolution according to [START_REF] Lurie | Higher Algebra[END_REF] ω underlies a monoidal ∞-category Pr L, ⊗ ω and the inclusion Pr L ω → Pr L lifts to a monoidal functor Pr L, ⊗ ω → Pr L, ⊗ . (3) A monoidal ∞-category M ⊗ is said to be presentable (resp. compactly generated) if the underlying ∞-category M is presentable (resp. compactly generated) and the endofunctor A ⊗is a left adjoint functor for all A ∈ M (resp. is a left adjoint compact-preserving functor for all compact A ∈ M). This is equivalent to say that M ⊗ belongs to CAlg(Pr L ) (resp. CAlg(Pr L ω )). Remark 2.1.8. The ∞-categories PSh(C; Λ) and Shv (∧) τ (C; Λ) are presentable (by [Lur09, Proposition 5.5.3.6 & Remark 5.5.1.6]) and they are respectively generated under colimits by the objects Λ(X) and Λ τ (X), for X ∈ C. In fact, the objects Λ(X) are compact, so that PSh(C; Λ) is compactly generated. More is true: the monoidal ∞-categories PSh(C; Λ) ⊗ and Shv (∧) τ (C; Λ) ⊗ are presentable, and, if C has finite direct products, PSh(C; Λ) ⊗ is even compactly generated.

To define the ∞-category of rigid analytic motives over a rigid analytic space S , we consider the case where (C, τ) is the big smooth site (RigSm/S , τ) with τ ∈ {nis, ét}. (See Notation 1.4.9(3).) Before proceeding to the definition, we make a remark concerning these sites.

Remark 2.1.9. The category RigSm/S is not small, and some care is needed when speaking about presheaves and τ-(hyper)sheaves on it. In fact, the only problem that one needs to keep in mind is that the ∞-category PSh(RigSm/S ; Λ) is not locally small. However, this problem disappears when passing to the sub-∞-category Shv (∧) τ (RigSm/S ; Λ). Indeed, it is easy to see that this ∞-category is equivalent to Shv (∧) τ ((RigSm/S ) <α ; Λ), where α is an infinite cardinal and (RigSm/S ) <α ⊂ RigSm/S is the full subcategory spanned by those rigid analytic S -spaces that can be covered by < α opens which are quasi-compact and quasi-separated. (This uses Lemma 2.1.4.) Clearly, (RigSm/S ) <α is essentially small and thus Shv (∧) τ (RigSm/S ; Λ) is a presentable ∞category. The same remark applies to other sites such as ( Ét/S , τ), etc. Below, whenever we need to speak about general presheaves on RigSm/S , Ét/S , etc., we implicitly fix an infinite cardinal α and replace these categories by (RigSm/S ) <α , ( Ét/S ) <α , etc. We will use the following notation.

Notation 2.1.10.

(1) Let X be a formal scheme. We denote by A n X the relative n-dimensional affine space given by Spf(O X ⟨t 1 , . . . , t n ⟩). By abuse of notation, we also write "X × A n " instead of "A n X " although FSch has no direct products (nor a final object).

(2) Let X be a rigid analytic space. If X admits a formal model X, we set B n X = (A n X ) rig . This is independent of the choice of X and, in general, we may define B n X by gluing along open immersions. The rigid analytic X-space B n X is called the relative n-dimensional ball. By abuse of notation, we also write "X × B n " instead of "B n X " although RigSpc has no direct products (nor a final object).

(3) If X is a rigid analytic space, we denote by

U 1 X ⊂ B 1 X the open rigid analytic subspace of B 1
X which is locally given by Spf(O X ⟨t, t -1 ⟩) ⊂ Spf(O X ⟨t⟩). The rigid analytic X-space U 1 X is called the relative unit circle. 5 We fix a rigid analytic space S and τ ∈ {nis, ét}.

Definition 2.1.11. Let RigSH eff, (∧) τ (S ; Λ) be the full sub-∞-category of Shv (∧) τ (RigSm/S ; Λ) spanned by those objects which are local with respect to the collection of maps of the form Λ τ (B 1 X ) → Λ τ (X), for X ∈ RigSm/S , and their desuspensions. Let L B 1 : Shv (∧) τ (RigSm/S ; Λ) → RigSH eff, (∧) τ (S ; Λ) (2.4) 5

In [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF], the relative unit circle is denoted by ∂B 1 X and, in other places in the literature, it is denoted by T 1 X .

be the left adjoint to the obvious inclusion. This is called the B 1 -localisation functor. We also set L B 1 , τ = L B 1 •L τ with L τ the τ-(hyper)sheafification functor, see (2.1). The functor L B 1 , τ is called the (B 1 , τ)-localisation functor. Given a smooth rigid analytic S -space X, we set M eff (X) = L B 1 (Λ τ (X)). This is the effective motive of X.

Remark 2.1.12. The defining condition for a τ-(hyper)sheaf of Λ-modules F to belong to the sub-∞-category RigSH eff, (∧) τ (S ; Λ) is equivalent to the condition that F is B 1 -invariant in the following sense: for every X ∈ RigSm/S , the map of Λ-modules F(X) → F(B 1 X ) is an equivalence. Since F is a τ-(hyper)sheaf, it is enough to ask this condition for X varying in a subcategory C ⊂ RigSm/S such that every object of RigSm/S admits a τ-hypercover by objects in C which is moreover truncated in the non-hypercomplete case.

Remark 2.1.13. The ∞-category RigSH eff, (∧) τ (S ; Λ) is stable and, by [Lur17, Proposition 2.2.1.9], it underlies a unique monoidal ∞-category RigSH eff, (∧) τ (S ; Λ) ⊗ such that L B 1 lifts to a monoidal functor. Moreover, this monoidal ∞-category is presentable, i.e., belongs to CAlg(Pr L ), since we localise with respect to a small set of morphisms.

Remark 2.1.14. There is another site that one can use for constructing RigSH eff, (∧) τ (S ; Λ), at least when S admits a formal model S (e.g., S quasi-compact and quasi-separated). Indeed, by Corollary 1.4.13, the site (RigSm/S ; τ) is equivalent to the site (FRigSm/S; rig-τ) where FRigSm/S denotes the full subcategory of FSch/S whose objects are the rig-smooth formal S-schemes. (See Definition 1.3.13 and Remark 1.4.14). Using Lemma 2.1.4, we deduce an equivalence of ∞-categories Shv (∧) rig-τ (FRigSm/S; Λ) ≃ Shv (∧) τ (RigSm/S ; Λ)

and RigSH eff, (∧) τ (S ; Λ) is equivalent to the sub-∞-category of Shv (∧) rig-τ (FRigSm/S; Λ) spanned by those objects which are local with respect to the collection of maps Λ rig-τ (A 1 X ) → Λ rig-τ (X), with X ∈ FRigSm/S, and their desuspensions.

Definition 2.1.15. Let T S (or simply T if S is clear from the context) be the image by L B 1 of the cofiber of the split inclusion Λ τ (S ) → Λ τ (U 1 S ) induced by the unit section. With the notation of [Rob15, Definition 2.6], we set

RigSH (∧) τ (S ; Λ) ⊗ = RigSH eff, (∧) τ (S ; Λ) ⊗ [T -1 S ]. (2.5)
More precisely, there is a morphism Σ ∞ T : RigSH eff, (∧) τ (S ; Λ) ⊗ → RigSH (∧) τ (S ; Λ) ⊗ in CAlg(Pr L ), sending T S to a ⊗-invertible object, and which is initial for this property. We denote by Ω ∞ T :

RigSH (∧) τ (S ; Λ) → RigSH eff, (∧) τ (S ; Λ) the right adjoint to Σ ∞ T .
Given a smooth rigid analytic Sspace X, we set M(X) = Σ ∞ T M eff (X). This is the motive of X. Definition 2.1.16. Objects of RigSH (∧) τ (S ; Λ) are called rigid analytic motives over S . We will denote by Λ (or Λ S if we need to be more precise) the monoidal unit of RigSH (∧) τ (S ; Λ). For any n ∈ N, we denote by Λ(n) the image of T ⊗n S [-n] by Σ ∞ T , and by Λ(-n) the ⊗-inverse of Λ(n). For n ∈ Z, we denote by M → M(n) the Tate twist given by tensoring with Λ(n).

Remark 2.1.17. The object T S is symmetric in the sense of [START_REF] Robalo | K-theory and the bridge from motives to noncommutative motives[END_REF]Definition 2.16]. (See, for example, [Jar00, Lemma 3.13] whose proof extends immediately to the rigid analytic setting.) By [Rob15, Corollary 2.22], it follows that the ∞-category RigSH (∧) τ (S ; Λ) underlying (2.5) is equivalent to the colimit in Pr L of the N-diagram whose transition maps are given by tensoring with T S . Also, by [Rob15, Corollary 2.23], the monoidal ∞-category (2.5) is stable.

Remark 2.1.18. When Λ is the Eilenberg-Mac Lane spectrum associated to an ordinary ring, also denoted by Λ, the ∞-category RigSH (eff, ∧) τ (S ; Λ) is more commonly denoted by RigDA (eff, ∧) τ (S ; Λ). Also, when τ is the Nisnevich topology, we sometimes drop the subscript "nis".

Remark 2.1.19. There is a more traditional description of the ∞-category RigSH (eff, ∧) τ (S ; Λ) using the language of model categories. This is the approach taken in [Ayo15, §1.4.2].

Assume that Λ is given as a symmetric S 1 -spectrum, and denote by Mod ∆ (Λ) the simplicial category of Λ-modules which we endow with the model structure described in [HSS00, Corollary 5.4.2]. Note that the ∞-category Mod Λ is equivalent to the simplicial nerve of the full subcategory of Mod ∆ (Λ) consisting of cofibrant-fibrant objects. Let PSh ∆ (RigSm/S ; Λ) be the simplicial category whose objects are the presheaves on RigSm/S with values in Mod ∆ (Λ), which we endow with its projective global model structure. The projective (B 1 , τ)-local structure on PSh ∆ (RigSm/S ; Λ), also known as the motivic model structure, is obtained from the latter via the Bousfield localization with respect to the union of the following classes of maps:

(1) morphisms of presheaves inducing isomorphisms on the τ-sheaves associated to their homotopy presheaves;

(2) morphisms of the form To obtain the T-stable version, we form the category Spt T (PSh ∆ (RigSm/S ; Λ)) of T -spectra of presheaves of Λ-modules on RigSm/S . (Here T is any cofibrant replacement of Λ(U 1 S )/Λ(S ).) The (B 1 , τ)-local model structure induces the stable (B 1 , τ)-local model structure on T -spectra, which is also known as the motivic model structure. The ∞-category RigSH ∧ τ (S ; Λ) is equivalent to the simplicial nerve of the full simplicial subcategory of Spt T (PSh ∆ (RigSm/S ; Λ)) consisting of motivically cofibrant-fibrant objects. This follows from [Rob15, Theorem 2.26].

Λ(B 1 X )[n] → Λ(X)[n] induced
The above discussion can be adapted to the non-hypercomplete case. One only needs to replace the class of maps in (1) above by a smaller one, namely the class of maps of the form hocolim

[n] ∈ ∆ Λ(Y n ) → Λ(Y -1
) where Y • is a truncated τ-hypercover of Y -1 ∈ RigSm/S . In both cases, the weak equivalences of the (stable) (B 1 , τ)-local model structure are called the (stable) (B 1 , τ)-local equivalences.

Lemma 2.1.20. The monoidal ∞-category RigSH (eff, ∧) τ (S ; Λ) ⊗ is presentable and its underlying ∞-category is generated under colimits, and up to desuspension and negative Tate twists when applicable, by the motives M (eff) (X) with X ∈ RigSm/S quasi-compact and quasi-separated.

Proof. That the monoidal ∞-category of the statement is presentable was mentioned above. The claim about the generators follows from Remark 2.1.8 in the effective case. In the T-stable case, we then use the universal property of ⊗-inversion given by [START_REF] Robalo | K-theory and the bridge from motives to noncommutative motives[END_REF] (S ; Λ) introduced in Subsection 2.1. The results that we discuss here were obtained in [Ayo15, §1.4] under the assumption that S is of finite type over a non-Archimedean field. However, the proofs apply also to the general case with very little modification.

Proposition 2.2.1. Let f : Y → X be a smooth morphism of rigid analytic spaces.

(1) The functor f * , as in Notation 2.1.22, admits a left adjoint

f ♯ : RigSH (eff, ∧) τ (Y; Λ) → RigSH (eff, ∧) τ (X; Λ)
sending the motive of a smooth rigid analytic Y-space V to the motive of V considered as a smooth rigid analytic X-space in the obvious way. (2) (Smooth projection formula) The canonical map

f ♯ ( f * M ⊗ N) → M ⊗ f ♯ N is an equivalence for all M ∈ RigSH (eff, ∧) τ (X; Λ) and N ∈ RigSH (eff, ∧) τ (Y; Λ).
(3) (Smooth base change) Let g : X ′ → X be a morphism of rigid analytic spaces and form a Cartesian square

Y ′ f ′ g ′ G G Y f X ′ g G G X. The natural transformations f ′ ♯ • g ′ * → g * • f ♯ and f * • g * → g ′ * • f ′ * , between functors from RigSH (eff, ∧) τ (Y; Λ) to RigSH (eff, ∧)
τ (X ′ ; Λ) and back, are equivalences.

Proof. The functor f * : RigSm/X → RigSm/Y admits a left adjoint f ♯ sending a smooth rigid analytic Y-space V to V considered as a smooth rigid analytic X-space. The adjunction ( f ♯ , f * ) induces an adjunction between categories of motives. This is discussed in [Ayo15, Théorèmes 1.4.13 & 1.4.16] using the language of model categories. For the second assertion, we refer to the proof of [Ayo07b, Proposition 4. (2) (Localization) The counit of the adjunction ( j ♯ , j * ) and the unit of the adjunction (i * , i * ) form a cofiber sequence j ♯ j * → id → i * i * (2.7) of endofunctors of RigSH (eff, ∧) τ (X; Λ). In particular, the pair (i * , j * ) is conservative. (3) (Closed projection formula) The canonical map

M ⊗ i * N → i * (i * M ⊗ N) (2.8)
is an equivalence for all M ∈ RigSH (eff, ∧) τ (X; Λ) and N ∈ RigSH (eff, ∧) τ (Z; Λ). (4) (Closed base change) Let g : X ′ → X be a morphism of rigid analytic spaces and form a Cartesian square

Z ′ i ′ g ′ G G Z i X ′ g G G X.
The natural transformation g

* • i * → i ′ * • g ′ * , between functors from RigSH (eff, ∧) τ (Z; Λ) to RigSH (eff, ∧) τ (X ′ ; Λ), is an equivalence. If moreover g is smooth, then the natural transfor- mation g ♯ • i ′ * → i * • g ′ ♯ , from RigSH (eff, ∧) τ (Z ′ ; Λ) to RigSH (eff, ∧) τ (X; Λ), is an equivalence.
Proof. Assertion (2) implies all the others. Indeed, applying i * to the cofiber sequence (2.7) and using that i * j ♯ ≃ 0 (which follows from Proposition 2.2.1(3)), we deduce that i * i * i * → i * is an equivalence. Assertion (1) follows then from Lemma 2.2.5 below. We may check that (2.8) is an equivalence after applying i * and j * . Assertion (3) follows then by using that j * i * ≃ 0 (by Proposition 2.2.1(2)) and i * i * ≃ id (by assertion (1)). Similarly, to prove assertion (4) we use that the pairs (i * , j * ) and (i ′ * , j ′ * ) are conservative (with j ′ : U ′ → X ′ the base change of j), and the equivalences j * i * ≃ 0, j ′ * i ′ * ≃ 0, i * i * ≃ id and i ′ * i ′ * ≃ id, and smooth base change as in Proposition 2.2.1(3) for the second natural transformation.

We now discuss the proof of assertion (2). When X is of finite type over a non-Archimedean field, assertion (2) can be found in [Ayo15, §1.4.3]. (See [Ayo15, Théorème 1.4.20] for the effective case and the proof of [Ayo15, Corollaire 1.4.28] for the T-stable case.) We claim that the proofs of loc. cit. extend to general rigid analytic spaces.

The key step is to show that [Ayo15, Théorème 1.4.20] is still valid for general rigid analytic spaces, i.e., that assertion (2) holds true in the effective case. This is the statement that for any F in RigSH eff, (∧) τ (X; Λ), the square

j ♯ j * F G G F 0 G G i * i * F (2.9)
is coCartesian in RigSH eff, (∧) τ (X; Λ). Using Lemma 2.1.20 and Lemma 2.2.5 below, we may assume that F = L B 1 , τ Λ(X ′ ) with X ′ ∈ RigSm/X. (See Definition 2.1.11.) Using Lemma 2.2.4 below, we have an equivalence

i * i * L B 1 , τ Λ(X ′ ) ≃ L B 1 , τ i * Λ t ∅ (X ′ Z )
where X ′ Z = X ′ × X Z and t ∅ the topology on RigSpc generated by one family, namely the empty family considered as a cover of the empty rigid analytic space. Thus, it is enough to show that L B 1 , τ transforms the square

Λ t ∅ (X ′ U ) G G Λ t ∅ (X ′ ) 0 G G i * Λ t ∅ (X ′ Z
) into a coCartesian one. Using the analogues of [Ayo07b, Corollaire 4.5.40 & Lemme 4.5.41], we reduce to show that [Ayo15, Proposition 1.4.21] is valid for general rigid analytic spaces. More precisely, given a partial section s : Z → X ′ defined over Z, we need to show that the morphism T X ′ , s ⊗ Λ → { * } ⊗ Λ is a (B 1 , τ)-equivalence (i.e., becomes an equivalence after applying L B 1 , τ ). Here T X ′ , s is the presheaf of sets on RigSm/X given by

T X ′ , s (P) = Hom X (P, X ′ ) × Hom Z (P× X Z, X ′ ) { * } if P × X Z ∅, { * } if P × X Z = ∅.
Arguing as in the first and second steps of the proof of [Ayo15, Proposition 1.4.21] one proves that the problem is local on X and around s(Z) for the analytic topology. (In loc. cit., we only consider hypersheaves, but the reader can easily check that hypercompletion is not used in this reduction.) Using Proposition 1.3.16, it is thus enough to treat the case X ′ = B m X and s the zero section restricted to Z. In this case, we may use an explicit homotopy to conclude as in the third step of the proof of [Ayo07b, Proposition 4.5.42]. Now that assertion (2) is proven in the effective case, we explain how it extends to the T-stable case. Since assertion (2) in the effective case implies assertion (3) in the effective case, the functor i * : RigSH eff, (∧) τ (Z; Λ) → RigSH eff, (∧) τ (X; Λ) commutes with tensoring with T, i.e., there is an equivalence of functors T X ⊗ i * (-) ≃ i * (T Z ⊗ -). (See Definition 2.1.15.) Using Remark 2.1.17 and the fact that i * belongs to Pr L (by Lemma 2.2.5 below), we deduce that i * commutes with Σ ∞ T , i.e., there is an equivalence

Σ ∞ T • i * ≃ i * • Σ ∞ T . Therefore, applying Σ ∞
T to the coCartesian squares (2.9), we deduce that Proof. This is a generalisation of [Ayo15, Lemma 1.4.18]. For the proof of loc. cit. to extend to our context, we need to show the following property. Given a smooth rigid analytic X-space X ′ such that X ′ Z = X ′ × X Z is nonempty, every τ-cover of X ′ Z can be refined by the inverse image of a τ-cover of X ′ . To prove this, we may assume that X ′ = X. The question is local on X. Thus, we may assume that X = Spf(A) rig , with A an adic ring of principal ideal type, and Z = Spf(B) rig with B a quotient of A by a saturated closed ideal I. Let π be a generator of an ideal of definition of A. Then B is the filtered colimit in the category of adic rings of C J, N = A⟨J/π N ⟩ where N ∈ N and J ⊂ I is a finitely generated ideal. Set Y J, N = Spf(C J, N ) rig .

j ♯ j * M G G M 0 G G i * i * M is coCartesian for any M in the image of Σ ∞ T (-)
By Corollary 1.4.20 and Remark 1.4.21, every τ-cover (V i → Z) i can be refined by the restriction to Z of a τ-cover (U j → Y J, N ) j for well chosen J and N. We get a τ-cover of X with the required property by adding to the family (U j → X) j the open inclusion X ∖ Z → X. □ Lemma 2.2.5. Let i : Z → X be a closed immersion of rigid analytic spaces.

(1) The functor i * : RigSH (eff, ∧) τ (Z; Λ) → RigSH (eff, ∧) τ (X; Λ) commutes with colimits. Thus, it admits a right adjoint which we denote by i ! .

(2) The image of the functor i * :

RigSH (eff, ∧) τ (X; Λ) → RigSH (eff, ∧) τ (Z; Λ) generates the ∞- category RigSH (eff, ∧) τ (Z; Λ) by colimits.
Proof. In the effective case, assertion (1) follows from Lemma 2.2.4. Indeed, for a rigid analytic space S , the colimit of a diagram in RigSH (eff, ∧) τ (S ; Λ) is computed by applying L B 1 , τ to the colimit of the same diagram in Shv t ∅ (RigSm/S ; Λ). So, it is enough to show that (2.10) commutes with colimits, which is obvious. The passage from the effective case to the T-stable case follows from Remark 2.1.17 and the commutation T X ⊗ i * (-) ≃ i * (T Z ⊗ -). (This relies on assertion (2) of Proposition 2.2.3, but only in the effective case, so there is no vicious circle.)

We now prove assertion (2). By Lemma 2.1.20, it is enough to show that the motive M (eff) (V) of a smooth rigid analytic Z-space V is a colimit of objects in the image of i * . The problem is local on X and V, so we may assume that X = Spf(A) rig , Z = Spf(B) rig and V = Spf(F) rig where A is an adic ring of principal ideal type, B a quotient of A by a saturated closed ideal and F ∈ E ′ B⟨s⟩ with s = (s 1 , . . . , s m ) a system of coordinates. (For the definition of the category E ′ B⟨s⟩ , see Notation 1.3.9.) Writing B as the colimit of C J, N as in the proof of Lemma 2.2.4, we may apply Corollary 1.3.10 to find E ∈ E ′ C J, N ⟨s⟩ , for some J and N, such that E ⊗ C J, N B/(0) sat ≃ F. Thus, U = Spf(E) rig is a smooth rigid analytic X-space such U × X Z ≃ V, and we have i * M (eff) (U) ≃ M (eff) (V) as needed.

□

One of the aims of this paper is to define the full six-functor formalism for rigid analytic motives. We have seen above that the functors f * , f * , f ♯ , ⊗ and Hom can be defined with little effort. We now state what was known so far concerning the exceptional functors f ! and f ! following [Ayo15, §1.4.4] (see also [BV21, Theorem 2.9]).

Remark 2.2.6. Let A be an adic ring, I ⊂ A an ideal of definition, and U = Spec(A) ∖ Spec(A/I). Recall from Construction 1.1.15 that there exists an analytification functor (-) an : Sch lft /U → RigSpc/U an (2.11) Proposition 2.2.7 gives access to the results developed in [Ayo07a, Ayo07b, Chapitres 1-3] yielding a limited six-functor formalism for rigid analytic motives. We will not list explicitly all the properties that form this formalism since a full six-functor formalism will be obtained later in Section 4. We content ourselves with the following preliminary statement which we actually need in establishing the full six-functor formalism for rigid analytic motives.

from
Corollary 2.2.9. Keep the notation as in Remark 2.2.6. Given a morphism f : Y → X between quasi-projective U-schemes, there is an adjunction

f an ! : RigSH (∧) τ (Y an ; Λ) ⇄ RigSH (∧)
τ (X an ; Λ) : f an, ! Moreover, the following properties are satisfied.

(1) The assignments f → f an ! and f → f an, ! are compatible with composition. 6 (2) Given a Cartesian square of quasi-projective U-schemes

Y ′ g ′ G G f ′ Y f X ′ g G G X,
there is an equivalence g an, * • f an ! ≃ f ′an ! • g ′an, * . (3) There is a natural transformation f an ! → f an * which is an equivalence if f is projective. (4) If f is smooth, there are equivalences f an, ! ≃ Th(Ω f )• f an, * and f an ! ≃ f an ♯ •Th -1 (Ω f ) where Th(Ω f ) and Th -1 (Ω f ) are the Thom equivalences associated to Ω f as in [Ayo07a, §1.5.3].

Proof. This follows from Proposition 2.2.7 and [Ayo07a, Scholie 1.4.2]. □ Remark 2.2.10. Thom equivalences can be defined for any O X -module M which is locally free of finite rank on a rigid analytic space X. Indeed, M determines a vector bundle p : M → X whose fiber at a point x ∈ X is given by Spec(κ(x)[M x ]) an . We set Th(M) = p ♯ s * and Th -1 (M) = s ! p * , where s :

X → M is the zero section. If M is free of rank m, then Th(M) ≃ (-)(m)[2m] and Th -1 (M) ≃ (-)(-m)[-2m].
That said, we may write "Th(Ω f an )" instead of "Th(Ω f )" in Corollary 2.2.9(4). (If h is a smooth morphism of rigid analytic spaces, there is an associated O-module Ω h which is locally free of finite rank. It can be defined locally as the cokernel of the Jacobian matrix.)

Definition 2.2.11.

6

Here, we only claim the compatibility with composition up to non-coherent homotopies. A more structured version of this will be obtained later in a more general situation; see Theorem 4.4.2.

(1) If S is a rigid analytic space, we denote by P n S the relative n-dimensional projective space over S . If S = Spf(A) rig , for an adic ring A, then P n S = (P n Spf(A) ) rig , and for general S , P n S is defined by gluing. If A and U are as in Remark 2.2.6, we also have P n U an ≃ (P n U ) an . (2) Let f : Y → X be a morphism of rigid analytic spaces. We say that f is locally projective if, locally on X, f can be factored as a closed immersion followed by a projection of the form P n X → X. For later use, we also record the following statement.

Proposition 2.2.12. Let f : Y → X be a locally projective morphism of rigid analytic spaces.

(1) (Projective projection formula)

The canonical map M ⊗ f * N → f * ( f * M ⊗ N) is an equiva- lence for all M ∈ RigSH (∧) τ (X; Λ) and N ∈ RigSH (∧) τ (Y; Λ).
(2) (Projective extended base change) Let g : X ′ → X be a morphism of rigid analytic spaces and form a Cartesian square

Y ′ g ′ G G f ′ Y f X ′ g G G X. The natural transformation g * • f * → f ′ * • g ′ * , between functors from RigSH (∧) τ (Y; Λ) to RigSH (∧) τ (X ′ ; Λ), is an equivalence. If moreover g is smooth, then the natural transforma- tion g ♯ • f ′ * → f * • g ′ ♯ , from RigSH (∧) τ (Y ′ ; Λ) to RigSH (∧) τ (X; Λ), is an equivalence. Proof. If f = f 1 • f 2 ,
then the assertions for f follow from their analogues for f 1 and f 2 . Also, the assertions can be checked locally on X. Thus, it is enough to treat the case of a closed immersion i : Z → X and the case of p : P n X → X. The case of a closed immersion follows from Proposition 2.2.3. For p : P n X → X, we use Corollary 2.2.9 which provides us with a canonical equivalence p * ≃ p ! = p ♯ • Th -1 (Ω p ). The result follows then from Proposition 2.2.1.

□

We now go back to the notation introduced in Remark 2.2.6. Given a U-scheme X which is locally of finite type, the analytification functor (2.11) induces a premorphism of sites An : (RigSm/X an , τ) → (Sm/X, τ).

(2.12) (Indeed, the analytification of an étale cover is an étale cover, and the analytification of a Nisnevich cover can be refined by an open cover; see [Ayo15, Théorème 1.2.39] whose proof can be adapted to our context.) By the functoriality of the construction of the ∞-categories of motives, (2.12) induces a functor An * :

SH (eff, ∧) τ (X; Λ) → RigSH (eff, ∧) τ (X an ; Λ).
(2.13) In [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF], this functor is denoted by Rig * . Proposition 2.2.13. The functors (2.13) are part of a morphism of CAlg(Pr L )-valued presheaves

SH (eff, ∧) τ (-; Λ) ⊗ → RigSH (eff, ∧) τ ((-) an ; Λ) ⊗ (2.14)
on Sch lft /U. In particular, the functors An * are monoidal and commute with the inverse image functors. Moreover, if f is a smooth morphism in Sch lft /U, the natural transformation

f an ♯ • An * → An * • f ♯ is an equivalence.
Proof. One argues as in [Rob14, §9.1] for the first assertion. The second assertion is clear. □ Proposition 2.2.14. Let f : Y → X be a proper morphism in Sch lft /U. Then, the natural transformation An * • f * → f an * • An * , between functors from SH (∧) τ (Y; Λ) to RigSH (∧) τ (X an ; Λ), is invertible. Proof. We split the proof into two steps.

Step 1. Here we assume that f is projective. It is enough to prove the claim when f is a closed immersion and when f is the projection P n X → X. In the first case, one uses Proposition 2.2.3 and its algebraic analogue. In the second case, one uses Corollary 2.2.9 and its algebraic analogue to reduce to show that f an ♯ • An * ≃ An * • f ♯ which holds by Proposition 2.2.13.

Step 2. Here we deal with the general case. We may assume that X is quasi-compact and quasiseparated. Using Proposition 2.2.13, we reduce easily to show that

An * • f * • j ♯ → f an * • j an ♯ •
An * is an equivalence for every open immersion j : V → Y, with V affine. By the refined version of Chow's lemma given in [Con07, Corollary 2.6], there is a blowup e : Y ′ → Y, with centre disjoint from V, such that f ′ : Y ′ → X is projective. Let j ′ : V → Y ′ be the obvious inclusion. by Proposition 2.2.12(2) and its algebraic version, we have equivalences e * • j ′ ♯ ≃ j ♯ and e an * • j ′an ♯ ≃ j an ♯ . Thus, it is enough to prove the proposition for f ′ = f • e. Since this morphism is projective, we may conclude by the first step. □ Remark 2.2.15. The method used in the second step of the proof of Proposition 2.2.14 will be used again in the second part of the proof of Proposition 4.1.1 below to deduce the proper base change theorem for SH (∧) τ (-; Λ) from its special case for projective morphisms which is covered by [Ayo07a, Corollaire 1.7.18]. (For a slightly different method using the usual version of Chow's lemma but requiring the schemes to be noetherian, see the proof of [CD19, Proposition 2.3.11(2)].) Similarly, this method can be used to generalise Proposition 2.2.12 to the case where f is locally the analytification of a proper morphism of schemes. However, our aim is to prove a more substantial generalisation of that proposition which cannot be reached using this method. This will be achieved in Theorem 4.1.4 below.

Descent.

In this subsection, we prove that the functor S → RigSH (eff, ∧) τ (S ; Λ), f → f * , whose existence is claimed in Proposition 2.1.21, admits (hyper)descent for the topology τ. This can be considered as a folklore theorem, but we reproduce the proof here for completeness. For a comparable result in the algebraic setting, see [START_REF] Hoyois | The six operations in equivariant motivic homotopy theory[END_REF]Proposition 4.8].

For later use, we recall the precise definition of a (hyper)sheaf valued in a general ∞-category. (Compare with [Dre18, Definition 2.1].) Definition 2.3.1. Let (C, τ) be a site and let V be an ∞-category admitting all limits. A functor F : C op → V is called a τ-(hyper)sheaf (or is said to satisfy τ-(hyper)descent) if its right Kan extension F : P(C) op → V, along the Yoneda embedding, factors through the opposite of the localisation functor L τ : P(C) → Shv (∧) τ (C). This is equivalent to the condition that F induces an equivalence F(X -1 )

∼ - → lim [n]∈∆ F(X n ) (2.15)
for every effective τ-hypercover X • . (An effective τ-hypercover X • is an augmented simplicial object of P(C) such that L τ (X • ) is an effective hypercovering of the ∞-topos Shv (∧) τ (C) /L τ X -1 , in the sense of [Lur09, Definition 6.5.3.2].) We denote by Shv (∧) τ (C; V) the full sub-∞-category of PSh(C; V) = Fun(C op , V) spanned by τ-(hyper)sheaves. When V is the ∞-category S of spaces, we get back the ∞-topos Shv (∧) τ (C). We gather a few facts about (hyper)sheaves with values in general ∞-categories. We refer the reader to [START_REF] Drew | Motivic Hodge modules[END_REF]§2] for proofs and more details.

Remark 2.3.2. Keep the notation as in Definition 2.3.1.

(1) In the hypercomplete case, every τ-hypercover is effective. Therefore, for F to be a τ- (1) Let ϕ : V → V ′ be a limit-preserving functor between ∞-categories admitting all limits.

Then the induced functor Φ : PSh(C; V) → PSh(C; V ′ ) preserves τ-(hyper)sheaves. If moreover ϕ detects limits, then Φ detects τ-(hyper)sheaves.

(2) Assume that V is presentable. Then the ∞-category Shv (∧) τ (C; V) is an accessible left-exact localization of PSh(C; V). In particular, it is also presentable. We denote by L τ : PSh(C; V) → Shv (∧) τ (C; V) the τ-(hyper)sheafification functor defined as the left adjoint to the obvious inclusion. (This was introduced in Notation 2.1.2 for V = Mod Λ .) With respect to the monoidal structure on Pr L of [Lur17, §4.8.1], we have Shv (∧) τ (C; V) ≃ Shv (∧) τ (C) ⊗ V; see [Dre18, Proposition 2.4(1)] whose proof is also valid in the non-hypercomplete case.

(3) If (C, τ) is a Verdier site (in the sense of [DHI04, Definition 9.1]) satisfying the assumptions (1-3) of [DHI04, §10], the condition of F being a τ-(hyper)sheaf can be expressed without recourse to its right Kan extension F. More precisely, F is a τ-(hyper)sheaf if F transforms representable coproducts in C into products in V and if for every internal τ-hypercover X • (in the sense of [DHI04, Definition 10.1]) which is effective, F induces an equivalence

F(X -1 ) ∼ - → lim [n]∈∆ F(X n ).
(As explained in Remark 2.3.2, in the hypercomplete case, effectivity is an empty condition and, in the non-hypercomplete case, we may replace it with the condition that X • is truncated or better with the condition that X • is the Čech nerve of a basal morphism X 0 → X -1 which is a τ-cover.) This is proven in [Dre18, Proposition 2.7] in the hypercomplete case and is clear in the non-hypercomplete case. It applies to the sites we consider in this paper, such as the big smooth sites of Notation 1.4.9.

The main result of this subsection is the following. Before we can give the proof of Theorem 2.3.4 we need a digression about general (hyper)sheaves on general sites. Let C be a small ∞-category and X an object of C. Composition with the obvious projection j X : C /X → C induces a functor j * X : P(C) → P(C /X ) which preserves limits and colimits. We denote by j X, ! the left adjoint of j * X and j X, * its right adjoint. A topology τ on C induces a topology on C /X which we also denote by τ. It is easy to see that j * X and j X, * preserve τ-(hyper)sheaves. (For j X, * , note that modulo the equivalence P(C /X ) ≃ P(C) /y(X) , the functor j X, * takes a presheaf F on C /X to the presheaf U → Map P(C) /y(X) (y(U) × y(X), F).) We get in this way an adjunction j * X : Shv (∧) τ (C) ⇄ Shv (∧) τ (C /X ) : j X, * where j * X commutes with all limits and colimits. In particular, j * X admits a left adjoint (on the level of (hyper)sheaves) which we denote by j τ X, ! . It is related to j X, ! by an equivalence j τ X, ! •L τ ≃ L τ •(j X ) ! . The following lemma is well-known. We include a proof for completeness.

Lemma 2.3.6. Let (C, τ) be a site and X ∈ C. The functor j τ X, ! factors through an equivalence e X : Shv (∧) τ (C /X )

∼ - → Shv (∧) τ (C) /L τ y(X) . Proof. The functor j τ X, ! : Shv (∧) τ (C /X ) → Shv (∧) τ (C) sends the final object L τ y(id X ) of Shv (∧) τ (C /X
) to L τ y(X). This gives the functor e X . By construction, we have a commutative square

P(C/X) e ′ X G G L τ P(C) /y(X) L ′ τ Shv (∧) τ (C/X) e X G G Shv (∧) τ (C) /L τ y(X)
. By [Lur09, Corollary 5.1.6.12], e ′ X is an equivalence. Note that L ′ τ is essentially surjective on objects. Indeed, given a morphism of τ-(hyper)sheaves F → L τ y(X), there is an equivalence F ≃ L τ (F × L τ y(X) y(X)) since L τ is exact and idempotent. To finish the proof, it will suffice to show that e X is fully faithful. Let f X be a right adjoint to e X and f ′ X a right adjoint to e ′ X . We know that the unit id → f ′ X •e ′ X is an equivalence, and we need to prove that the unit id → f X •e X is an equivalence. By [Lur09, Proposition 5.2.5.1], f X sends a map F → L τ y(X) to the fiber product j * X F × j * X L τ y(X) { * } and f ′ X sends a map F ′ → y(X) to the fiber product j * X F ′ × j * X y(X) { * }. Since (hyper)sheafification is exact, we deduce that the natural transformation L

τ • f ′ X → f X • L ′ τ is an equivalence. Using the commutative square L τ G G ∼ f X • e X • L τ ∼ L τ • f ′ X • e ′ X ∼ G G f X • L ′ τ • e ′ X , if follows that the natural transformation L τ → f X • e X • L τ is an equivalence, which is enough to conclude since L τ is essentially surjective. □
We denote by Top L the ∞-category of ∞-topoi and exact left adjoint functors, as defined in [Lur09, Definition 6.3.1.5].

Proposition 2.3.7. Let (C, τ) be a site. The functor Shv (∧) τ (C /(-) ) : C op → Top L , taking an object X of C to the ∞-topos Shv (∧) τ (C /X ) and a morphism f in C to the functor j * f , is a τ-(hyper)sheaf.

Proof. Every ∞-topos X determines a Top L -valued sheaf on itself: by [Lur09, Proposition 6.3.5.14], the functor χ : X op → Top L , sending X ∈ X to X /X , preserves limits. Take X = Shv (∧) τ (C). Since L τ : P(C) → X preserves colimits, we deduce that χ • L τ : P(C) op → Top L preserves limits. It follows that the functor χ

• L τ is a right Kan extension of χ • L τ • y : C op → Top L . Since χ • L τ clearly factors through Shv (∧) τ (C), the functor χ • L τ • y is a τ-(hyper)sheaf. Now, by Lemma 2.3.6, the functor χ • L τ • y is equivalent to the one sending X ∈ C to Shv (∧) τ (C /X ). □ Corollary 2.3.8. Let (C, τ) be a site and V a presentable ∞-category. The functor Shv (∧) τ (C /(-) ; V) : C op → Pr L , taking an object X of C to the ∞-category Shv (∧)
τ (C /X ; V) and a morphism f in C to the functor j * f , is a τ-(hyper)sheaf. Proof. By Proposition 2.3.7, the result holds when V is the ∞-category of spaces S, and we want to reduce to this case. We denote by X(-; V) : C op → Pr L the functor sending X ∈ C to Shv (∧) τ (C /X ; V). By Remark 2.3.3, we have an equivalence of functors X(-; S) ⊗ V ∼ -→ X(-; V), where the tensor product is taken in Pr L (see [Lur17, §4.8.1]). Moreover, for any f : Y → X in C, the functor j * f : X(X; S) → X(Y; S) commutes with all limits. It follows from Lemma 2.3.9 below that there is an equivalence of functors

X(-; S) ⊗ V ≃ Fun lim (V op , X(-; S)).
Thus, it is enough to show that Fun lim (V op , X(-; S))

: C op → CAT ∞ is a τ-(hyper)sheaf.
This follows from Proposition 2.3.7 since the endofunctor Fun lim (V op , -) of CAT ∞ preserves limits. □ Lemma 2.3.9. Let Pr LR be the wide sub-∞-category of Pr L where morphisms are the limitpreserving left adjoints. Let D be a presentable ∞-category. Then the functor D ⊗ -: Pr LR → CAT ∞ , obtained by restriction from the tensor product of Pr L , is equivalent to the functor

Fun lim (D op ; -) : Pr LR → CAT ∞ ,
where Fun lim (-, -) ⊂ Fun(-, -) indicates the full sub-∞-category of limit-preserving functors.

Proof. The endofunctor D ⊗of Pr L induces an endofunctor of Pr R given by the composition of

Pr R ∼ - → (Pr L ) op D⊗- ---→ (Pr L ) op ∼ - → Pr R .
By [Lur17, Proposition 4.8.1.17], this coincides with the endofunctor Fun lim (D op , -) of Pr R . It follows that the endofunctor D ⊗of Pr L is given by the composition of

Pr L ∼ - → (Pr R ) op Fun lim (D op ,-) ---------→ (Pr R ) op ∼ - → Pr L .
It remains to show that the composition of

Pr LR → Pr L ∼ - → (Pr R ) op Fun lim (D op ,-) ---------→ (Pr R ) op ∼ - → Pr L → CAT ∞
is also given by Fun lim (D op , -). On objects, this is clear. On morphisms, this is also true by the following observation: if F : E → E ′ is in Pr LR with right adjoint G, then Fun lim (D op , F) is left adjoint to Fun lim (D op , G). To address higher coherences, we employ the formalism of Cartesian fibrations.

Let S be a simplicial set and p : M → S a coCartesian fibration classified by a map l : S → Pr LR . Then p is also a Cartesian fibration which is classified by a map r : S → (Pr R ) op equivalent to the composition of S l -→ Pr L ∼ -→ (Pr R ) op . Moreover, p-Cartesian and p-coCartesian edges of M are preserved by small limits in the following sense. Let a : s → s ′ be an edge in S , e : K ◁ → M s and e ′ : K ◁ → M s ′ limit diagrams, and f : e → e ′ an edge in Fun(K ◁ , M) over a. If f (k) is p-coCartesian (resp. p-Cartesian) for every k ∈ K, then the same is true for f (∞), where ∞ ∈ K ▷ is the cone point. This is simply a reformulation of the fact that l (resp. r) takes an edge of S to a limit-preserving functor. Consider the simplicial set N = M D op × S D op S whose n-simplices correspond to pairs consisting of an nsimplex [n] → S and an S -morphism [n] × D op → M. Let N ′ ⊂ N be the largest simplicial subset whose vertices correspond to limit-preserving functors D op → M s , for some s ∈ S . Let q : N → S and q ′ : N ′ → S be the obvious projections. By [Lur09, Proposition 2.4.2.3(2) & Proposition 3.1.2.1], q is again a coCartesian fibration, classified by Fun(D op , -) • l : S → CAT ∞ , and a Cartesian fibration classified by Fun(D op , -) • r : S → (CAT ∞ ) op . Since p-coCartesian (resp. p-Cartesian) edges are preserved by small limits, it follows readily that a q-coCartesian (resp. q-Cartesian) edge whose domain (resp. target) belongs to N ′ lies entirely in N ′ . This shows that q ′ is a coCartesian fibration, classified by l ′ = Fun lim (D op , -) • l : S → CAT ∞ , and a Cartesian fibration classified by

r ′ = Fun lim (D op , -) • r : S → (CAT ∞ ) op . It follows that l ′ factors through CAT L ∞ , r ′ factors through CAT R
∞ , and l ′ coincides with the composition of

S op r ′ -→ (CAT R ∞ ) op ∼ - → CAT L ∞ .

Unravelling the definitions, this gives what we want. □

Proof of Theorem 2.3.4. It suffices to prove that for every rigid analytic space S , the functor

RigSH (eff, ∧) τ (-; Λ) : ( Ét/S ) op → Pr L ,
is a τ-(hyper)sheaf. (When τ = nis, one can restrict further to ( Ét gr /S ) op , but this does not change the argument.) This functor transforms coproducts in Ét/S into products in Pr L . Thus, it suffices to show that it admits descent with respect to internal hypercovers of ( Ét/S , τ), which are truncated in the non-hypercomplete case. For U ∈ Ét/S , we have (RigSm/S )/U ≃ RigSm/U. Corollary 2.3.8 implies that the functor Shv (∧) τ (RigSm/-; Λ) : ( Ét/S ) op → Pr L is a τ-(hyper)sheaf. Let U • be an internal hypercover of ( Ét/S , τ) which we assume to be truncated in the non-hypercomplete case. For all n ≥ -1, RigSH eff, (∧)

τ (U n ; Λ) is a full sub-∞-category of Shv (∧)
τ (RigSm/U n ; Λ). Since limits in CAT ∞ preserve fully faithful embeddings, we deduce that lim

[n]∈∆ RigSH eff, (∧) τ (U n ; Λ) can be naturally identified with the sub-∞-category of Shv (∧) τ (RigSm/U -1 ; Λ) ≃ lim [n]∈∆ Shv (∧) τ (RigSm/U n ; Λ) spanned by the objects F ∈ Shv (∧) τ (RigSm/U -1 ; Λ) such that f * F belongs to RigSH eff, (∧) τ (U 0 ; Λ), with f : U 0 → U -1 .
Thus, to prove that RigSH eff, (∧) τ (-; Λ) has descent for the τ-hypercover U • , we need to check the following property: if F is a τ-(hyper)sheaf on RigSm/S such that f * F is B 1 -invariant, then so is F. This follows immediately from the equivalence Hom(B 1

U 0 , f * F) ≃ f * Hom(B 1
U -1 , F) and the fact that f * is conservative.

We now explain how to deduce the T-stable case from the effective case. We temporarily denote by RigSH (eff, ∧) τ (-; Λ) * (resp. RigSH (eff, ∧) τ (-; Λ) * ) the presheaf (resp. copresheaf) given informally by U → RigSH (eff, ∧) τ (-; Λ) and f → f * (resp. f → f * ). Recall from Remark 2.1.17 that the presheaf RigSH (∧) τ (-; Λ) * can be defined as the colimit in PSh( Ét/S ; Pr L ) of the N-diagram of presheaves:

RigSH eff, (∧) τ (-; Λ) * T⊗- ---→ RigSH eff, (∧) τ (-; Λ) * T⊗- ---→ • • • .
It follows from [Lur09, Corollary 5.5.3.4 &Theorem 5.5.3.18] that the copresheaf RigSH (∧) τ (U; Λ) * , can be computed as the limit in Fun( Ét/S , CAT ∞ ) of the N op -diagram of copresheaves

• • • Hom(T,-) ------→ RigSH eff, (∧) τ (-; Λ) * Hom(T,-) ------→ RigSH eff, (∧) τ (-; Λ) * .
Given that the natural transformation f * Hom(T, -) → Hom(T, -) • f * is an equivalence for f étale, we deduce that the presheaf RigSH (∧) τ (-; Λ) * can also be computed as the limit in PSh( Ét/S ; CAT ∞ ) of the N op -diagram of presheaves

• • • Hom(T,-) ------→ RigSH eff, (∧) τ (-; Λ) * Hom(T,-) ------→ RigSH eff, (∧) τ (-; Λ) * .
Since RigSH eff, (∧) τ (-; Λ) * was proven to be a τ-(hyper)sheaf, this finishes the proof. □

Compact generation.

In this subsection, we formulate conditions (in terms of Λ, S and τ) insuring that the ∞-category RigSH (eff, ∧) τ (S ; Λ) of rigid analytic motives over S is compactly generated. Similar results in the algebraic setting were developed in [Ayo07b, §4.5.5] and [Ayo14a, pages 29-30].

Remark 2.4.1. Let X be an ∞-topos. An abelian group object of X ≤0 endowed with the structure of a π 0 Λ-module is called a discrete sheaf of π 0 Λ-modules on X. The n-th cohomology group of X with coefficients in a discrete sheaf of π 0 Λ-modules F is defined in [Lur09, Definition 7.2.2.14] and will be denoted by H n (X; F).

Recall the following notions. (Compare with [Lur09, Definition 7.2.2.18].) Definition 2.4.2. Let X be an ∞-topos.

(1) The Λ-cohomological dimension of an object X ∈ X is the smallest d ∈ N ⊔ {-∞, ∞} such that for every discrete sheaf of π 0 Λ-modules F on X /X , the cohomology groups H n (X /X ; F)

vanish for n > d. The global Λ-cohomological dimension of X is the Λ-cohomological dimension of a final object of X. (2) The local Λ-cohomological dimension of X is the smallest d ∈ N⊔{-∞, ∞} such that every object X ∈ X admits a cover (Y i → X) i such that Y i is of Λ-cohomological dimension ≤ d for all i. (Recall that (Y i → X) i is a cover if i Y i → X is an effective epimorphism in the sense of [Lur09, §6.2.3].)
Remark 2.4.3. Keep the notation as in Definition 2.4.2. A discrete sheaf of π 0 Λ-modules F on X /X is a hypersheaf, i.e., belongs to (X /X ) ∧ ≃ (X ∧ ) /X ∧ . Thus, there are isomorphisms

H i (X /X ; F) ≃ H i (X /X ∧ ; F) ≃ H i ((X ∧ ) /X ∧ ; F).
In particular, the Λ-cohomological dimension of an object X is equal to the Λ-cohomological dimension of its hypercompletion X ∧ considered as an object of X or X ∧ . Similarly, the global (resp. local) Λ-cohomological dimensions of X and X ∧ coincide.

Remark 2.4.4. We define the local (resp. global) Λ-cohomological dimension of a site (C, τ) to be the local (resp. global) Λ-cohomological dimension of the topos Shv τ (C) (or, equivalently, Shv ∧ τ (C)). Similarly, we define the Λ-cohomological dimension of an object X of a site (C, τ) to be the Λ-cohomological dimension of the image of X in Shv τ (C) (or, equivalently, Shv ∧ τ (C)). By Lemma 2.3.6, this coincides with the global Λ-cohomological dimension of the site (C /X , τ).

We gather some well-known consequences of the finiteness of the local Λ-cohomological dimension in the following statement. (See Remark 2.1.3.) Lemma 2.4.5. Let (C, τ) be a site of finite local Λ-cohomological dimension.

(1) Postnikov towers in Shv ∧ τ (C; Λ) converge, i.e., the obvious map

F → lim n∈N τ ≤n F is an equivalence for every τ-hypersheaf of Λ-modules F on C. (2) If F is a connective τ-hypersheaf of Λ-modules on C and X ∈ C is of Λ-cohomological dimension ≤ d, then the Λ-module F(X) is (-d)-connective.
(3) Assume that C is an ordinary category admitting fiber products and that every object of

C is quasi-compact in the sense of [SGAIV2, Exposé VI, Définitions 1.1]. If X ∈ C is of finite Λ-cohomological dimension, then the functor Shv ∧ τ (C; Λ) → Mod Λ , F → F(X) commutes with arbitrary colimits. In particular, Λ τ (X) is a compact object of Shv ∧ τ (C; Λ). Proof.
We may replace (C, τ) with any site that gives rise to the same hypercomplete topos. Thus, we may assume that every object of C has Λ-cohomological dimension ≤ d. Property (2), for every object X ∈ C, follows from [Ayo07b, Proposition 4.5.58] when (C, τ) is an ordinary site and Λ the unit spectrum. However, the proof of loc. cit. can be adapted without difficulty to our setting. That proof gives also property (1). (Note that (1) can be deduced from (2), but usually these two properties are proven together.) Since F → F(X) is an exact functor between stable ∞-categories, it preserves pushouts. By [Lur09, Proposition 4.4.2.7], to prove property (3) it is enough to show that this functor commutes with filtered colimits. This follows from property (2) as in the proof of [START_REF] Ayoub | Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique[END_REF]Corollaire 4.5.61]. (The extra conditions on C are used via [SGAIV2, Exposé VI, Corollaire 5.3] and can be substantially weakened.)

For a modern and more general treatment of this type of question, we refer the reader to [CM21, §2]. In particular, property (1) follows from [CM21, Proposition 2.10] (see also [START_REF] Clausen | Hyperdescent and étale K-theory[END_REF]Example 2.11]). Property (3) can be deduced from [CM21, Proposition 2.23]. Finally, we mention [Lur09, Proposition 7.2.1.10], which is obviously related to property (1). □ Corollary 2.4.6. Let (C, τ) be a site, and assume the following conditions:

(1) Λ is eventually coconnective (i.e., its homotopy groups π i Λ vanish for i big enough);

(2) (C, τ) has finite local Λ-cohomological dimension and C is an ordinary category with fiber products; (3) there exists a full subcategory C 0 ⊂ C stable under fiber products, spanned by quasicompact objects of finite Λ-cohomological dimension, and such that every object of C admits a τ-cover by objects of C 0 . Then every τ-sheaf of Λ-modules on C is a τ-hypersheaf, i.e., we have Shv ∧ τ (C; Λ) = Shv τ (C; Λ). Proof. By Lemma 2.1.4, we may replace C with C 0 and assume that every object of C is quasicompact, quasi-separated and of finite Λ-cohomological dimension. For X ∈ C, the τ-sheaf Λ τ (X) is hypercomplete since Λ is eventually coconnective. Thus, it is enough to show that τ-hypersheaves are stable under colimits in Shv τ (C; Λ). The result then follows from [CM21, Proposition 2.23] but we can also deduce it formally from Lemma 2.4.5 as follows. Indeed, let p : K → Shv ∧ τ (C; Λ) be a diagram of τ-hypersheaves of Λ-modules. The colimit of p in Shv τ (C; Λ) is the τ-sheafification of the colimit of p in PSh(C; Λ). So it is enough to show that the colimit of p in PSh(C; Λ) is already a τ-hypersheaf. This follows immediately from Lemma 2.4.5(3).

□ We now give some estimates for the local and global Λ-cohomological dimensions of the various small sites associated to a rigid analytic space.

Lemma 2.4.7. Let X be a rigid analytic space of Krull dimension ≤ d. The local Λ-cohomological dimension of ( Ét gr /X, nis) is ≤ d. If X is quasi-compact and quasi-separated, the same is true for the global Λ-cohomological dimension.

Proof. Since every object of Ét gr /X can be covered by quasi-compact and quasi-separated rigid analytic spaces of Krull dimension ≤ d, it is enough to prove the assertion concerning the global Λ-cohomological dimension. In particular, we may assume that X is quasi-compact and quasiseparated. The site ( Ét gr /X, nis) is then equivalent to the limit of the Nisnevich sites ( Ét/X σ , nis), for X ∈ Mdl ′ (X) (see Remark 1.1.10). It follows from [SGAIV2, Exposé VII, Théorème 5.7] that the global Λ-cohomological dimension of the site ( Ét gr /X, nis) is smaller than the supremum of the global Λ-cohomological dimensions of the sites ( Ét/X σ , nis), for X ∈ Mdl ′ (X). But if X is a formal model of X belonging to Mdl ′ (X), the closed map |X| → |X σ | is surjective. Thus, the dimension of X σ is smaller than the dimension of X, and we conclude using [CM21, Theorem 3.17 Let k be a field with absolute Galois group G k . The (virtual) Λ-cohomological dimension of k is defined to be the (virtual) Λ-cohomological dimension of G k .

Remark 2.4.9. Let k be a field. The following are classical facts about Galois cohomology.

(1) If the Λ-cohomological dimension of k is different from its virtual Λ-cohomological dimension, then k admits a real embedding and 2 is not invertible in Definition 2.4.10. Let X be a scheme or a rigid analytic space. We denote by pvcd Λ (X) ∈ N ⊔ {-∞, ∞} the supremum of the virtual Λ-cohomological dimensions of the fields κ(x) for x ∈ |X|. This number is called the punctual virtual Λ-cohomological dimension of X.

π 0 Λ. (2) If k has (virtual) Λ-cohomological dimension ≤ d and K/k is an extension of transcendence degree ≤ e, then K has (virtual) Λ-cohomological dimension ≤ d + e. ( 
Lemma 2.4.11. Let X be a rigid analytic space of Krull dimension ≤ d and of punctual virtual Λ-cohomological dimension ≤ e. Then, the local Λ-cohomological dimension of the site ( Ét/X, ét) is ≤ d + e. The same is true for the global Λ-cohomological dimension if X is quasi-compact and quasi-separated, and if the Λ-cohomological dimension of the residue field of every point of X coincides with the virtual one.

Proof. Replacing X by a suitable étale cover (e.g., by

X[ 1 2 , √ -1] → X and X[ 1 3 , 3 √ 1] → X)
, we may assume that the Λ-cohomological dimension of the residue field of each point of X coincides with the virtual one. We may also assume that X is quasi-compact and quasi-separated. Under these conditions, we will show that the global Λ-cohomological dimension of ( Ét/X, ét) is ≤ d + e, which suffices to conclude.

Denote by π : ( Ét/X, ét) → ( Ét gr /X, nis) the obvious morphism of sites. Given an étale sheaf F of π 0 Λ-modules on Ét/X, we denote by Rπ * F its (derived) direct image. Using Lemma 2.4.7, we are reduced to showing that Rπ * F is (-e)-connective. We check this on stalks at Nisnevich geometric rigid points of X as in Construction 1.4.27. Let s ∈ S be a point and t → S a Nisnevich geometric rigid point over s. Thus, t = Spf(κ + (t)) with κ + (t) the adic completion of the Henselisation of κ + (s) at a morphism Spec( κ(t)) → Spec(κ + (s)) associated to a separable finite extension κ(t)/ κ(s). It follows from Corollary 1.4.20 that (Rπ * F) t is equivalent to RΓ ét (t; (t → S ) * F). Thus, it is sufficient to show that the global Λ-cohomological dimension of ( Ét/t, ét) is smaller than e. Since κ + (t) is Henselian, every étale cover of t can be refined by one of the form Spf(V) rig → t where V is the normalisation of κ + (t) in a finite separable extension of κ(t). Thus, the global cohomology of ( Ét/t, ét) coincides with the Galois cohomology of κ(t). Since the field κ(t) is the completion of an algebraic extension of κ(s), we deduce that its Λ-cohomological dimension is ≤ e as needed.

□

The following is a corollary of the proof of Lemma 2.4.11.

Corollary 2.4.12. Let X be a rigid analytic space, and let F be a discrete sheaf of Q-vector spaces on ( Ét/X, ét). Then the natural map H * nis (X; F) → H * ét (X; F) is an isomorphism. Proof. Arguing as in the proof of Lemma 2.4.11, the result follows from the vanishing of the higher Galois cohomology groups with rational coefficients. □ Corollary 2.4.13. Let X be a rigid analytic space of Krull dimension ≤ d. If Λ is a Q-algebra, then the local Λ-cohomological dimension of the site ( Ét/X, ét) is ≤ d. If X is quasi-compact and quasi-separated, the same is true for the global Λ-cohomological dimension.

Definition 2.4.14. Let S be a scheme or a rigid analytic space.

(1) We say that S is (Λ, ét)-admissible if there exists an open covering (S i ) i of S such that each S i has finite Krull dimension and finite punctual virtual Λ-cohomological dimension.

For convenience, we also say that S is (Λ, nis)-admissible when S is locally of finite Krull dimension.

(2) If 2 is not invertible in π 0 Λ, we say that S is (Λ, ét)-good if O(S ) contains a primitive n-th root of unity for some n ≥ 3. For convenience, we agree that S is always (Λ, τ)-good if 2 is invertible in π 0 Λ or if τ is the Nisnevich topology.

Remark 2.4.15. If S is (Λ, ét)-good, then the Λ-cohomological dimension of the residue field of each of its points coincides with the virtual one. This follows from Remark 2.4.9.

Lemma 2.4.16. Let Y → X be a morphism of rigid analytic spaces which is locally of finite type, and let y ∈ Y be a point with image x ∈ X. If the (virtual) Λ-cohomological dimension of κ(x) is finite, then so is the (virtual) Λ-cohomological dimension of κ(y).

Proof. We use the fact that κ(y)/κ(x) is topologically of finite type, i.e., that κ(y) is the completion of a finite type extension of κ(x). It follows that the absolute Galois group of κ(y) can be identified with a closed subgroup of the absolute Galois group of a finite type extension of κ(y). We then conclude using Remark 2.4.9(2). Alternatively, one can deduce the result from [Hub96, Lemma 2.8.4]. □

Corollary 2.4.17. Let τ ∈ {nis, ét}. Let f : T → S be a morphism of rigid analytic spaces which is locally of finite type. If S is (Λ, τ)-admissible, then so is T .

Proof. This follows immediately from Lemma 2.4.16. □ Lemma 2.4.18. Let τ ∈ {nis, ét} and let S be a (Λ, τ)-admissible rigid analytic space.

(1) (Case τ = nis) Every Nisnevich sheaf of Λ-modules on Ét gr /S is a Nisnevich hypersheaf, i.e., we have Shv ∧ nis ( Ét gr /S ; Λ) = Shv nis ( Ét gr /S ; Λ). The same statement is true with " Ét gr /S " replaced with " Ét/S " or "RigSm/S ".

(2) (Case τ = ét) Assume that Λ is eventually coconnective. Then every étale sheaf of Λmodules on Ét/S is an étale hypersheaf, i.e., we have Shv ∧ ét ( Ét/S ; Λ) = Shv ét ( Ét/S ; Λ). The same statement is true with " Ét/S " replaced with "RigSm/S ".

Proof. If F is a τ-sheaf of Λ-modules on RigSm/S whose restriction to Ét/X (or Ét gr /X if applicable) is a τ-hypersheaf for every quasi-compact and quasi-separated X ∈ RigSm/S , then F is a τ-hypersheaf. (Indeed, if this holds, the morphism F → F ∧ induces equivalences F(X) ≃ F ∧ (X) for every X ∈ RigSm qcqs /S , so it is itself an equivalence.) Therefore, using Corollary 2.4.17, it is enough to treat the cases of the small sites of S , with S quasi-compact and quasi-separated. The case of ( Ét/S , ét) follows then from Corollary 2.4.6 and Lemma 2.4.11. The case of ( Ét gr /S , nis) needs a special treatment. For this, we remark that if (X α ) α is a cofiltered inverse system of quasicompact and quasi-separated schemes of dimension ≤ d (with d independent of α), then the proof of [CM21, Theorem 3.17] can be adapted to show that the site lim α ( Ét/X α , nis) is locally of homotopy dimension ≤ d, which implies that the associated topos is hypercomplete by [Lur09, Corollary 7.2.1.12]. Applying this to the inverse system (S σ ) S∈Mdl ′ (S ) gives the result. □ Proposition 2.4.19. Let τ ∈ {nis, ét} and let S be a (Λ, τ)-admissible rigid analytic space. When τ is the étale topology, assume that Λ is eventually coconnective. Then, we have

RigSH (eff), ∧ τ (S ; Λ) = RigSH (eff)
τ (S ; Λ). Proof. This follows immediately from Lemma 2.4.18. □ Proposition 2.4.20. Let τ ∈ {nis, ét} and let S be a rigid analytic space.

(1) The ∞-category Shv τ (RigSm/S ; Λ) is compactly generated if τ is the Nisnevich topology or if Λ is eventually coconnective. A set of compact generators is given, up to desuspension, by the Λ τ (X) for X ∈ RigSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

(2) The ∞-category Shv ∧ τ (RigSm/S ; Λ) is compactly generated if S is (Λ, τ)-admissible. A set of compact generators is given, up to desuspension, by the Λ τ (X) for X ∈ RigSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

The above statements are also true with "RigSm/S " replaced with " Ét/S " and " Ét gr /S " when applicable (i.e., when τ is the Nisnevich topology).

Proof. In each situation, we only need to show that Λ τ (X) is a compact object assuming that X is quasi-compact and quasi-separated. The problem being local on X, we may actually assume that X = Spf(A) rig for an adic ring A of principal ideal type. Saying that Λ τ (X) is compact is equivalent to saying that the functor F → F(X) commutes with filtered colimits. This can be checked by first restricting to the small site of X. Therefore, we may replace S by X and assume that S = Spf(A) rig for an adic ring A. Moreover, it is enough to show the versions of the above statements for Ét/S , when τ = ét, and for Ét gr /S , when τ = nis. (Here we implicitly rely on Corollary 2.4.17.) We split the proof into two steps. (The reduction to S = Spf(A) rig is only needed in the second step.)

Step 1. Here we prove the second statement. We concentrate on the étale topology; the case of the Nisnevich topology is similar. Thus, we need to show that Λ ét (X) is a compact object of Shv ∧ ét ( Ét/S ; Λ) when X ∈ Ét/S is quasi-compact, quasi-separated and (Λ, ét)-good. This follows from combining Lemmas 2.4.5 and 2.4.11, and using Remark 2.4.15.

Step 2. Here we prove the first statement. Let π ∈ A be a generator of an ideal of definition. We may write A as the colimit of a cofiltered inductive system (A α ) α where each A α is an adic Z[[π]]-algebra which is topologically of finite type. Set S α = Spf(A α ) rig . Since the inclusion functor Pr L ω → Pr L commutes with filtered colimits by [Lur09, Proposition 5.5.7.6], it is enough by Lemma 2.4.21 below to show the first statement for each S α . Said differently, we may assume that S is of finite type over Spf(Z[[π]]) rig , and hence (Λ, τ)-admissible. Since Λ is eventually coconnective when τ = ét, Lemma 2.4.18 implies that Shv ét ( Ét/S ; Λ) is equivalent to Shv ∧ ét ( Ét/S ; Λ) and similarly for the small Nisnevich site. We may now use the first step to conclude. □ Lemma 2.4.21. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We set S α = S rig α and S = S rig . Then there is an equivalence

colim α Shv ét ( Ét/S α ; Λ) ≃ Shv ét ( Ét/S ; Λ) (2.16)
in Pr L , where the colimit is also taken in Pr L . A similar result is also true for the small Nisnevich sites.

Proof. We only discuss the étale case. We have an equivalence of ∞-categories

colim α PSh( Ét/S α ; Λ) ≃ PSh(colim α Ét/S α ; Λ) (2.17)
where the first colimit is taken in Pr L . (This is clear for P(-) instead of PSh(-; Λ) by the universal property of ∞-categories of presheaves, and we deduce the formula for PSh(-; Λ) using the equivalence PSh(-; Λ) ≃ P(-)⊗Mod Λ .) Using Remark 2.3.2, the fact that every cover in lim α ( Ét/S α , ét) is the image of a cover in ( Ét/S α , ét) for some α, and the universal property of localisation given by [Lur09, Proposition 5.5.4.20], we deduce from (2.17) an equivalence of ∞-categories

colim α Shv ét ( Ét/S α ; Λ) ≃ Shv ét (colim α Ét/S α ; Λ) (2.18)
where the first colimit is taken in Pr L . On the other hand, by Corollary 1.4.20, we have an equivalence of sites ( Ét/S , ét) ≃ lim α ( Ét/S α , ét). Applying Lemma 2.1.4 we get an equivalence of ∞-categories Shv ét (colim

α Ét/S α ; Λ) ≃ Shv ét ( Ét/S ; Λ). (2.19)
We conclude by combining (2.18) and (2.19).

□

Proposition 2.4.22. Let τ ∈ {nis, ét} and let S be a rigid analytic space.

(1) The ∞-category RigSH (eff) τ (S ; Λ) is compactly generated if τ is the Nisnevich topology or if Λ is eventually coconnective. A set of compact generators is given, up to desuspension and negative Tate twists when applicable, by the M (eff) (X) for X ∈ RigSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

(2) The ∞-category RigSH (eff), ∧ τ (S ; Λ) is compactly generated if S is (Λ, τ)-admissible. A set of compact generators is given, up to desuspension and negative Tate twists when applicable, by the M (eff) (X) for X ∈ RigSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

Moreover, under the stated assumptions, the monoidal ∞-category RigSH (eff, ∧) τ (S ; Λ) ⊗ belongs to CAlg(Pr L ω ) and, if f : T → S is a quasi-compact and quasi-separated morphism of rigid analytic spaces with T assumed (Λ, τ)-admissible in the hypercomplete case, the functor f * :

RigSH (eff, ∧) τ (S ; Λ) → RigSH (eff, ∧) τ (T ; Λ) is compact-preserving, i.e., belongs to Pr L ω .
Proof. Using Lemma 2.1.20, we are left to show that the objects M (eff) (X) are compact, for X as in the statement. In the effective case, this would follow from [Lur09, Corollary 5.5.7.3] and Proposition 2.4.20 if we knew that RigSH eff, (∧) τ (S ; Λ) is stable under filtered colimits in Shv (∧) τ (RigSm/S ; Λ). But this is indeed the case by Proposition 2.4.20 and Remark 2.1.12. The T-stable case follows from the effective case using Remark 2.1.17 and [Lur09, Proposition 5.5.7.6]. □ Remark 2.4.23. A similar statement with a similar proof is also true for the ∞-category SH (eff, ∧) τ (S ; Λ) of algebraic motives over a scheme S , generalising [Ayo14a, Proposition 3.19].

Continuity, I. A preliminary result.

The goal of this subsection and the next one is to prove the continuity property for the functor RigSH (eff) τ (-; Λ) which, roughly speaking, asserts that this functor transforms limits of certain cofiltered inverse systems of rigid analytic spaces into filtered colimits of presentable ∞-categories. The precise statement is given in Theorem 2.5.1 below. (Note that we do not claim that S is the limit of (S α ) α in the categorical sense.) Later, in Subsection 2.8, we will generalise Theorem 2.5.1 to include more general inverse systems and a weaker notion of limits; see Theorem 2.8.15 below.

We let τ ∈ {nis, ét} be a topology on rigid analytic spaces.

Theorem 2.5.1. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We set S α = S rig α and S = S rig . We assume one of the following two alternatives. (1) We work in the non-hypercomplete case.

(2) We work in the hypercomplete case, and S and the S α 's are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S α ) are bounded independently of α. (See Definition 2.4.10.)

Then the obvious functor

colim α RigSH (eff, ∧) τ (S α ; Λ) → RigSH (eff, ∧) τ (S ; Λ), (2.20)
where the colimit is taken in Pr L , is an equivalence. 

(eff) τ (S α ; Λ) ⊗ ≃ RigSH (eff) τ (S ; Λ) ⊗ (2.21)
in CAlg(Pr L ), where the colimit is also taken in CAlg(Pr L ).

Remark 2.5.3. The two alternatives considered in the statement of Theorem 2.5.1 have a nontrivial intersection given as follows.

(2 ′ ) We work in the hypercomplete case and we assume that the S α 's and S are (Λ, τ)admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective. Indeed, by Proposition 2.4.19, we have in this case RigSH (eff), ∧ τ (S α ; Λ) = RigSH (eff) τ (S α ; Λ), and similarly for S in place of the S α 's. Said differently, the alternative (1) covers the alternative (2) except when Λ is not eventually coconnective, in which case we need a strong assumption on the punctual virtual Λ-cohomological dimensions of the S α 's.

Remark 2.5.4. Theorem 2.5.1 in the non-hypercomplete case is a motivic version of Lemma 2.4.21. The conclusion of this lemma holds also in the hypercomplete case under the alternative (2) as shown in corollary 2.5.10 below.

The proof of Theorem 2.5.1 spans the entire subsection and the next one. In fact, we will obtain this theorem as a combination of two other results, namely Propositions 2.5.8 and 2.5.12, which are both interesting in their own right. The proof of Proposition 2.5.12 will be given in Subsection 2.6. Notation 2.5.5. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated rigid analytic spaces. We define the ∞-category RigSH (eff, ∧) τ ((S α ) α ; Λ), of rigid analytic motives over the rigid analytic pro-space (S α ) α , in the usual way from the limit site lim α (RigSm/S α , τ), that is, from the ordinary category RigSm/(S α ) α = colim α RigSm/S α endowed with the limit topology τ. More precisely, one repeats Definitions 2.1.11 and 2.1.15 with "RigSm/S " replaced with "RigSm/(S α ) α ". We denote also by

M (eff) : RigSm/(S α ) α → RigSH (eff, ∧) τ ((S α ) α ; Λ)
the obvious functor.

Remark 2.5.6. Let Pro(RigSpc) be the category of rigid analytic pro-spaces and consider the overcategory Pro(RigSpc)/(S α ) α of (S α ) α -objects. There is a fully faithful embedding RigSm/(S α ) α → Pro(RigSpc)/(S α ) α and we will identify RigSm/(S α ) α with its essential image by this functor. Thus, we may think of an object of RigSm/(S α ) α as a pro-object (X α ) α≤α 0 , where X α 0 is a smooth rigid analytic S α 0 -space and, for α ≤ α 0 , X α ≃ X α 0 × S α 0 S α . If (S α ) α is as in Theorem 2.5.1, given such a pro-object (X α ) α≤α 0 , we denote by X the rigid analytic S -space defined as follows. Assume first that there is a formal model X α 0 of X α 0 over S α 0 . Let (X α ) α≤α 0 be the formal pro-scheme given by X α = X α 0 × S α 0 S α . We set X = X rig where X = lim α≤α 0 X α . This is independent of the choice of X α 0 and the formation of X is compatible with gluing rigid analytic S α 0 -spaces along open immersions. Thus, the construction of X can be extended to the general case where we do not assume the existence of a formal model for X α 0 .

Lemma 2.5.7. Let (S α ) α and S be as in Theorem 2.5.1 and assume that S is (Λ, τ)-admissible.

Then, the ∞-category Shv ∧ τ (RigSm/(S α ) α ; Λ) is compactly generated, up to desuspension, by the Λ τ ((X α ) α≤α 0 ) with X α 0 quasi-compact, quasi-separated and (Λ, τ)-good.

Proof. This can be shown by adapting the proof of Proposition 2.4.20(2). The key point is to show that lim α≤α 0 ( Ét/X α , τ) has finite local and global Λ-cohomological dimensions. By Corollary 1.4.20, this limit site is equivalent to ( Ét/X, τ). Thus, we may use Lemma 2.4.11 to conclude. □ Proposition 2.5.8. Let (S α ) α and S be as in Theorem 2.5.1 and assume one of the alternatives (1) or (2) of that theorem. Then the obvious functor

colim α RigSH (eff, ∧) τ (S α ; Λ) → RigSH (eff, ∧) τ ((S α ) α ; Λ), (2.22)
where the colimit is taken in Pr L , is an equivalence.

Proof. We first work under the alternative (1), i.e., in the non-hypercomplete case. Here, the result is quite straightforward. Arguing as in the proof of Lemma 2.4.21, we get an equivalence of ∞-

categories colim α Shv τ (RigSm/S α ; Λ) ≃ Shv τ (RigSm/(S α ) α ; Λ), (2.23) 
where the colimit is taken in Pr L . Using the universal property of localisation given by [Lur09, Proposition 5.5.4.20], we deduce from (2.23) that (2.22) is an equivalence in the effective case. We then deduce the T-stable case using Remark 2.1.17 and commutation of colimits with colimits. Next, we work under the alternative (2). Arguing as before, we see that it is enough to prove the hypercomplete analogue of the equivalence (2.23), i.e., it is enough to show that

colim α Shv ∧ τ (RigSm/S α ; Λ) → Shv ∧ τ (RigSm/(S α ) α ; Λ), (2.24)
is an equivalence. It follows from Lemma 2.5.7 that the functor (2.24) belongs to Pr L ω and that it takes a set of compact generators to a set of compact generators. Thus, it remains to show that this functor is fully faithful on compact objects. Explicitly, we need to show the following assertion. Given two compact objects M and N in Shv ∧ τ (RigSm/S α 0 ; Λ), for some index α 0 , the natural map colim

α≤α 0 Map( f * α≤α 0 M, f * α≤α 0 N) → Map( f * α 0 M, f * α 0 N) (2.25)
is an equivalence. Here f α≤α 0 : S α → S α 0 and f α 0 : (S α ) α → S α 0 are the obvious morphisms.

Let I be the indexing category of the inverse system (S α ) α . We denote by S : I → RigSpc the diagram of rigid analytic spaces defining the pro-object (S α ) α , i.e., sending α to S α . We define the site (RigSm/ S , τ) in the usual way, i.e., by adapting the beginning of [Ayo07b, §4.5.1]. We have a premorphism of sites (in the sense of [Ayo07b, Définition 4.4.46])

ρ : (RigSm/(S α ) α , τ) → (RigSm/ S , τ) (2.26) induced by the functor RigSm/ S → RigSm/(S α ) α given by (β, X) → (X × S β S α ) α≤β . The inverse image functor ρ * is given, informally, by ρ * (K) = colim β ((S α ) α → S β ) * K β , where K β is the restriction of K to RigSm/S β . The inclusion RigSm/S α 0 ⊂ RigSm/ S induces a functor Shv (∧) τ (RigSm/S α 0 ; Λ) → Shv (∧) τ (RigSm/ S ; Λ). (2.27)
We may assume that M = Λ τ (X α 0 ) with X α 0 ∈ RigSm/S α 0 quasi-compact, quasi-separated and (Λ, τ)-good. We let R be the image of N by the functor (2.27). Arguing as in the proof of [Ayo14a, Proposition 3.20], the assertion that (2.25) is an equivalence would follow if we show that the functor ρ * : PSh(RigSm qcqs / S ; Λ) → PSh(RigSm qcqs /(S α ) α ; Λ)

takes R to a presheaf ρ * (R) whose restriction to Ét qcqs /(X α≤α 0 ) α is a τ-hypersheaf. This follows from Lemma 2.5.9 below. (Compare with [Ayo14a, Lemme 3.21].) □ Lemma 2.5.9. Let X : I → FSch be a diagram of quasi-compact and quasi-separated formal schemes, with I a cofiltered category, and with affine transition morphisms. Let (X α ) α be the associated pro-object and X its limit. Set X = X rig , X α = X rig α and X = X rig . Assume that the alternative (2) in Theorem 2.5.1 is satisfied with "(X α ) α " and "X" instead of "(S α ) α " and "S ". Assume also that the X α 's are (Λ, τ)-good. Then the functor

ρ * : PSh( Ét qcqs / X; Λ) → PSh( Ét qcqs /(X α ) α ; Λ) takes τ-hypersheaves to τ-hypersheaves.
Proof. We split the proof into three steps. Below K is a τ-hypersheaf of Λ-modules on Ét qcqs / X.

Step 1. We first deal with the case where Λ is eventually coconnective. The proof in this case is similar to that of [Ayo14a, Lemme 3.21]. First, one considers the case where K is discrete, i.e., is the Eilenberg-Mac Lane spectrum associated to an ordinary sheaf of π 0 Λ-modules. This case follows from [SGAIV2, Exposé VII, Théorème 5.7]. By induction, one can then treat the case where K is bounded (i.e., where the discrete sheaves π i (K) vanish for |i| big enough). Finally, we deduce the general case from the bounded case as follows. A general K can be written as a colimit of objects of the form Λ τ (α 0 , U), for U ∈ Ét qcqs /X α 0 . Since Λ is eventually coconnective, Λ τ (α 0 , U) is bounded. The result for K follows then from the bounded case and Lemma 2.4.5(3) which implies that colimits in PSh( Ét qcqs /(X α ) α ; Λ) preserve τ-hypersheaves. (Here, we use that the site ( Ét qcqs /(X α ) α , τ) has finite local Λ-cohomological dimension as explained in the proof of Lemma 2.5.7.)

Step 2. We next consider the case of the Nisnevich topology. The site ( Ét qcqs /(X α ) α , nis) is equivalent to ( Ét qcqs /X, nis). Thus, by Lemma 2.4.18(1), every Nisnevich sheaf on Ét qcqs /(X α ) α is a Nisnevich hypersheaf. Thus, to check that ρ * K is a Nisnevich hypersheaf, it is enough to prove that ρ * K has the Mayer-Vietoris property for the image in Ét qcqs /(X α ) α of a Nisnevich square in Ét qcqs /X α , for some α. This is easily checked using exactness of filtered colimits on Mod Λ and the formula ρ

* K = colim β ((X α ) α → X β ) * K β .
The details are left to the reader.

Step 3. We now treat the case of the étale topology assuming that the numbers pvcd Λ (X α ) are bounded independently of α. In fact, since the X α 's are (Λ, ét)-good, there is a common bound e for the Λ-cohomological dimensions of the residue fields of all the X α 's.

Denote by π the morphism of sites of the form ( Ét/(-), ét) → ( Ét/(-), nis) and by π * the induced functor on ∞-categories of hypersheaves of Λ-modules. Also, denote by ρ * nis : Shv ∧ nis ( Ét qcqs / X; Λ) → Shv ∧ nis ( Ét qcqs /(X α ) α ; Λ) the inverse image functor on Nisnevich hypersheaves. By the second step, ρ * nis coincides with ρ * on Nisnevich hypersheaves of Λ-modules.

By Lemma 2.4.5(3), the property that ρ * K is an étale hypersheaf is stable by colimits in K. Since K ≃ colim n τ ≥-n K, we may assume that K is bounded from above, and even connective. By Lemma 2.4.5(1), we have an equivalence K ≃ lim n τ ≤n K yielding an equivalence π * K ≃ lim n π * τ ≤n K. The proof of Lemma 2.4.11 shows that π * τ ≤n+1 K → π * τ ≤n K induces an isomorphism on homotopy Nisnevich sheaves in degrees ≤ ne, and the same is true for ρ * nis π * τ ≤n+1 K → ρ * nis π * τ ≤n K. Since X and X α 's have finite Krull dimensions, we deduce that the morphisms

lim n π * τ ≤n K → π * τ ≤m K and lim n ρ nis π * τ ≤n K → ρ nis π * τ ≤m K
induce isomorphisms on homotopy Nisnevich sheaves in degrees ≤ me, for any integer m. It follows that the natural map

ρ * nis π * K = ρ * nis lim n π * τ ≤n K → lim n ρ * nis π * τ ≤n K (2.28)
induces isomorphisms on homotopy Nisnevich sheaves. Since both sides are Nisnevich hypersheaves, we deduce that (2.28) is an equivalence. Thus, we are left to show that ρ * nis π * τ ≤n K is an étale hypersheaf for every n. This follows from the first step since τ ≤n K is naturally an étale hypersheaf of τ ≤n Λ-modules. □ Lemma 2.5.9 has the following consequence which we state for completeness.

Corollary 2.5.10. Let (S α ) α and S be as in Theorem 2.5.1 and assume one of the alternatives (1) or (2) of that theorem. Then the obvious functor

colim α Shv (∧) τ ( Ét/S α ; Λ) → Shv (∧) τ ( Ét/S ; Λ), (2.29)
where the colimit is taken in Pr L , is an equivalence.

Proof. The non-hypercomplete case is already stated in Lemma 2.4.21. The hypercomplete case follows from Lemma 2.5.9 by arguing as in the proof of [Ayo14a, Proposition 3.20]. □

The proof of Proposition 2.5.8, adapted to the algebraic setting gives the following generalisation of [Ayo14a, Proposition 3.20] and [Hoy14, Proposition C.12(4)].

Proposition 2.5.11. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated schemes with affine transition maps, and let S = lim α S α be the limit of this system. We assume one of the following two alternatives.

(1) We work in the non-hypercomplete case.

(2) We work in the hypercomplete case, and S and the S α 's are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S α ) are bounded independently of α. Then the obvious functor

colim α SH (eff, ∧) τ (S α ; Λ) → SH (eff, ∧) τ (S ; Λ),
where the colimit is taken in Pr L , is an equivalence.

Proof. Indeed, in the algebraic setting, Sm qcqs /S is equivalent to colim α Sm qcqs /S α . □ Theorem 2.5.1 follows by combining Proposition 2.5.8 and the next result.

Proposition 2.5.12. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We set S α = S rig α and S = S rig . Then the obvious functor

RigSH (eff, ∧) τ ((S α ) α ; Λ) → RigSH (eff, ∧) τ (S ; Λ) (2.30)
is an equivalence.

The proof of Proposition 2.5.12 is given in the next subsection.

2.6. Continuity, II. Approximation up to homotopy. The goal of this section is to prove Proposition 2.5.12. The proof is similar to that of [Vez19, Proposition 4.5], but some new ingredients are necessary to deal with the generality considered in this paper. We start with some reductions.

Lemma 2.6.1. It is enough to prove Proposition 2.5.12 in the effective, non-hypercomplete case and for τ the Nisnevich topology. Said differently, it is enough to show that the obvious functor

RigSH eff nis ((S α ) α ; Λ) → RigSH eff nis (S ; Λ) (2.31)
is an equivalence.

Proof. The T-stable case follows from the effective case using Remark 2.1.17 and commutation of colimits with colimits. Assume that (2.31) is an equivalence, and let's show that

RigSH eff, (∧) τ ((S α ) α ; Λ) → RigSH eff, (∧) τ (S ; Λ) (2.32)
is also an equivalence for τ ∈ {nis, ét}. There are three cases to consider:

(1) the Nisnevich topology in the hypercomplete case;

(2) the étale topology in the non-hypercomplete case;

(3) the étale topology in the hypercomplete case. In each case, we will prove that the source and the target of (2.32) are obtained from the source and the target of (2.31) by localisation with respect to a set of morphisms and its image by the equivalence (2.31), which suffices to conclude. These sets consist respectively, up to desuspension, of maps of the form colim

[n]∈∆ M eff ((U n, α ) α≤α n ) → M eff ((U -1, α ) α≤α -1 ) where (U •, α ) α≤α • is:
(1) a hypercover in the limit site lim α≤α -1 ( Ét gr /U -1, α , nis);

(2) a Čech nerve associated to a cover in the limit site lim α≤α -1 ( Ét/U -1, α , ét);

(3) a hypercover in the limit site lim α≤α -1 ( Ét/U -1, α , ét). Localising the source of (2.31) by one of these sets yield the source of (2.32) by construction. We now show that localising the target of (2.31) by the image of one of these sets yield the target of (2.32). This relies on the following two facts.

(a) Given an object (Y α ) α≤β in RigSm/(S α ) α and defining Y as in Remark 2.5.6, we have an equivalence of sites

( Ét/Y, τ) ≃ lim α≤β ( Ét/Y α , τ)
and similarly for " Ét gr " instead of " Ét" when applicable. (b) Every X ∈ RigSm/S is locally for the analytic topology in the essential image RigSm ′ /S of the functor RigSm/(S α ) α → RigSm/S . In particular, we have an equivalence of sites

(RigSm/S , τ) ≃ (RigSm ′ /S , τ)
which is subject to Lemma 2.1.4. Thus, the ∞-category RigSH eff, (∧) τ (S ; Λ) can be defined using the site (RigSm ′ /S , τ). Property (a) follows from Corollary 1.4.20 and Remark 1.4.21. To prove (b), we may assume that the inverse system (S α ) α is affine, induced by an inductive system of adic rings (A α ) α with colimit A, and that X = Spf(B) rig with B a rig-étale adic A⟨t⟩-algebra with t = (t 1 , . . . , t n ) a system of coordinates. Then the result follows from Corollary 1.3.10. □ Lemma 2.6.2. It is enough to prove that (2.31) is an equivalence assuming that the formal schemes S α are affine of principal ideal type.

Proof. Without loss of generality, we may assume that there is a final object o in the indexing category of the inverse system (S α ) α . Replacing S o by the blowup of an ideal of definition, and the S α 's by their strict transforms, we may assume that the S α 's are locally of principal ideal type for every α. We now introduce a notation that we keep using until the end of the proof of Proposition 2.5.12.

Notation 2.6.3. Let (S α ) α be a cofiltered inverse system of affine formal schemes, and let S = lim α S α . Denote by S ′ α the smallest closed formal subscheme of S α containing the image of S → S α . (Said differently, O(S ′ α ) is the quotient of O(S α ) by the kernel of O(S α ) → O(S) which is a closed ideal.) Then, we have a cofiltered inverse system of affine formal schemes (S ′ α ) α and a morphism (S ′ α ) α → (S α ) α of inverse systems given by closed immersions and inducing an isomorphism lim α S ′ α ≃ lim α S α on the limit.

Although, in general, the pro-objects (S ′ α ) α and (S α ) α are not isomorphic, we have the following.

Lemma 2.6.4. Let (S α ) α be a cofiltered inverse system of affine formal schemes. Let S α and S ′ α be the rigid analytic spaces associated to S α and S ′ α . Then, the obvious functor

RigSH eff nis ((S α ) α ; Λ) → RigSH eff nis ((S ′ α ) α ; Λ) (2.33)
is an equivalence.

Proof. It will be more convenient to use Proposition 2.5.8 and prove that colim

α RigSH eff nis (S α ; Λ) → colim α RigSH eff nis (S ′ α ; Λ) (2.34)
is an equivalence in Pr L . We set U α = S α ∖ S ′ α and denote by j α : U α → S α the obvious inclusion. For each α, RigSH eff nis (S α ; Λ) → RigSH eff nis (S ′ α ; Λ) is a localisation functor with respect to the class of maps of the form 0 → j α, ♯ M where M ∈ RigSH eff nis (U α ; Λ). This follows from the localisation theorem for rigid analytic motives; see Proposition 2.2.3. Moreover, by Lemma 2.1.20, we may assume that M is, up to desuspension, of the form M eff (X) with X ∈ RigSm/U α quasi-compact and quasi-separated.

It follows from the universal property of localisation (given by [Lur09, Proposition 5.5.4.20]) that (2.34) is also a localisation functor with respect to the images of the maps 0 → j α, ♯ M, with M as above. Thus, it is enough to show that, for X ∈ RigSm/U α quasi-compact and quasi-separated, there exists β ≤ α such that X × S α S β = ∅. This follows from the fact that X lies over a quasicompact open subset V ⊂ U α and that, for β ≤ α small enough, we have S β × S α V = ∅ by, for example, [FK18, Chapter 0, Proposition 2.2.10]. □ Notation 2.6.5. Let FSch af, pr be the category of affine formal schemes of principal ideal type, and Pro(FSch af, pr ) the category of pro-objects in FSch af, pr . We have an idempotent endofunctor of Pro(FSch af, pr ) given by (S α ) α → (S ′ α ) α . We define a new category Pro ′ (FSch af, pr ), having the same objects as Pro(FSch af, pr ) and where morphisms are given by Hom Pro ′ (FSch af, pr ) ((T β ) β , (S α ) α ) = Hom Pro(FSch af, pr ) ((T ′ β ) β , (S ′ α ) α ) ≃ Hom Pro(FSch af, pr ) ((T ′ β ) β , (S α ) α ). The obvious functor Pro(FSch af, pr ) op → Pro ′ (FSch af, pr ) op , given by the identity on objects, is a localisation functor and its right adjoint is given on objects by (S α ) α → (S ′ α ) α . Corollary 2.6.6. The functor RigSH eff nis ((-) rig ; Λ) : Pro(FSch af, pr ) op → Pr L extends uniquely to Pro ′ (FSch af, pr ) op .

Proof. Indeed, Pro(FSch af, pr ) op → Pro ′ (FSch af, pr ) op is a localisation functor and RigSH eff nis ((-) rig ; Λ) transforms the morphisms (S ′ α ) α → (S α ) α into equivalences by Lemma 2.6.4. Thus, the result follows from [Lur09, Proposition 5.2.7.12]. □ Remark 2.6.7. In the remainder of this subsection, we use the construction of RigSH eff nis (S ; Λ) as a localisation of the ∞-category of presheaves of Λ-modules on FRigSm/S as explained in Remark 2.1.14. In fact, we will rather use the full subcategory of the latter, denoted by FRigSm af, pr /S, spanned by formal S-schemes which are affine and of principal ideal type. (If S is of principal ideal type and π a generator of an ideal of definition, then the second condition is equivalent to having a π-torsion-free structure sheaf.) We are free to do so since the obvious inclusion induces an equivalence of sites (FRigSm/S, rignis) ≃ (FRigSm af, pr /S, rignis). We will also need the analogous fact for RigSH eff nis ((S α ) α ; Λ): It can be constructed as a localisation of the ∞-category of presheaves of Λ-modules on FRigSm af, pr /(S α ) α = colim α FRigSm af, pr /S α .

The above category will be endowed with the limit rig-Nisnevich topology so that the resulting site is equivalent to the one used in Notation 2.5.5 (with τ = nis). Moreover, (2.31) is induced from the obvious functor FRigSm af, pr /(S α ) α → FRigSm af, pr /S by the naturality of the construction of categories of motives.

Remark 2.6.8. (See Remark 2.5.6.) Given a cofiltered inverse system of affine formal schemes of principal ideal type (S α ) α , we denote by Pro(FSch af, pr )/(S α ) α the overcategory of (S α ) α -objects. There is a fully faithful embedding FRigSm af, pr /(S α ) α → Pro(FSch af, pr )/(S α ) α

(2.35) and we will identify FRigSm af, pr /(S α ) α with its essential image by this functor. Thus, we may think of an object of FRigSm af, pr /(S α ) α as a pro-object (X α ) α≤α 0 , where X α 0 is a rig-smooth formal S α 0 -scheme and, for α ≤ α 0 , X α ≃ X α 0 × S α 0 S α /(0) sat . We set S = lim α S α , and for an object (X α ) α≤α 0 as before, we set X = lim α≤α 0 X α .

We now introduce a new category of formal pro-schemes over (S α ) α where, roughly speaking, the endofunctor introduced in Notation 2.6.5 becomes an equivalence. We will also consider the ∞-category of motives associated to this new category of formal pro-schemes, and use it to divide the sought after equivalence into two which are easier to establish. Notation 2.6.9. Keep the assumptions as in Remark 2.6.8. We denote by FRigSm ′ af, pr /(S α ) α the full subcategory of Pro ′ (FSch af, pr )/(S α ) α spanned by the objects which belong to the image of ( 2 Proposition 2.6.11. Let (S α ) α be a cofiltered inverse system of affine formal schemes of principal ideal type. The functor (X α ) α≤α 0 → M eff ((X rig α ) α≤α 0 ) extends naturally to a functor M ′eff (-) : FRigSm ′ af, pr /(S α ) α → RigSH eff nis ((S α ) α ; Λ).

(As usual, we set S α = S rig α .)

Proof. By Corollary 2.6.6, there is a functor

RigSH eff nis ((-) rig ; Λ) : (FRigSm ′ af, pr /(S α ) α ) op → Pr L . For every (X α ) α≤α 0 in FRigSm ′ af, pr /(S α ) α , with structure morphism f : (X α ) α≤α 0 → (S α ) α , the associated inverse image functor f * admits a left adjoint f ♯ . Moreover, the motive M eff ((X rig α ) α≤α 0 ) is equivalent to f ♯ f * Λ. Hence, the result follows by applying Lemma 2.6.12 below. □ Lemma 2.6.12. Let C be an ∞-category and F : C op → CAT ∞ a functor. Given a morphism f : Y → X in C, we denote by f * : F(X) → F(Y) the induced functor. Assume that C admits a final object ⋆ and that for every object X ∈ C, the functor π * X , associated to π X : X → ⋆, admits a left adjoint π X, ♯ . Then, there is a functor C → Fun(F(⋆), F(⋆)) sending X ∈ C to the endofunctor π X, ♯ π * X and a morphism f : Y → X to the composition of

π Y, ♯ π * Y ≃ π Y, ♯ f * π * X η - → π Y, ♯ f * π * X π X, ♯ π * X ≃ π Y, ♯ π * Y π X, ♯ π * X δ - → π X, ♯ π * X ,
where η is the unit of the adjunction (π X, ♯ , π * X ) and δ is the counit of the adjunction (π Y, ♯ , π * Y ). Proof. Let p : M → C be the Cartesian fibration associated to the functor F by Lurie's unstraightening construction [Lur09, §3.2]. Since ⋆ is a final object of C, we have a natural transformation F(⋆) cst → F, where F(⋆) cst : C op → CAT ∞ is the constant functor with value F(⋆). This natural transformation induces a morphism of Cartesian fibrations

F(⋆) × C G G G q 6 6 M p C.
The fiber of G over an object X ∈ C is the functor π * X : F(⋆) → F(X), which admits a left adjoint by assumption. By [Lur17, Proposition 7.3.2.6], the functor G admits a left adjoint F relative to C, in the sense of [Lur17, Definition 7.3.2.2]. Thus, we have a commutative triangle

F(⋆) × C q 6 6 M p F o o
C and a natural transformation id → G • F over C which is a unit map. Moreover, the fiber of F over an object X ∈ C is the functor π X, ♯ : F(X) → F(⋆).

Composing the endofunctor F • G of F(⋆) × C with the projection to F(⋆) yields a functor F(⋆) × C → F(⋆) and, by adjunction, a functor C → Fun(F(⋆), F(⋆)). We leave it to the reader to check that the latter satisfies the informal description given in the statement. □ Remark 2.6.13. Let (S α ) α be a cofiltered inverse system of affine formal schemes of principal ideal type and S = lim α S α . We set S α = S rig α and S = S rig . (1) There is a commutative diagram

FRigSm af, pr /(S α ) α G G M eff ((-) rig ) A A FRigSm ′ af, pr /(S α ) α G G M ′eff (-) FRigSm af, pr /S M eff ((-) rig ) RigSH eff nis ((S α ) α ; Λ) G G RigSH eff nis (S ; Λ).
This is not completely obvious. One needs to check that Lemma 2.6.12 applied to the contravariant functor RigSH eff nis ((-) rig ; Λ) defined on FRigSm af /(S α ) α and FRigSm af /S gives back the functor M eff ((-) rig ). To do so, one reduces to a similar question, but for the contravariant functor RigSm/(-) rig , which can be easily handled.

(2) It follows from the commutative triangle inside the diagram in (1) that M ′eff admits descent for the rig-Nisnevich topology, i.e., it takes a truncated hypercover for the rig-Nisnevich topology to a colimit diagram. (See Remark 2.6.10.) (3) By the universal properties of presheaf categories and localisation, the commutative diagram in (1) gives rise to a commutative diagram in Pr L :

RigSH eff nis ((S α ) α ; Λ) G G RigSH ′eff nis ((S α ) α ; Λ) A A RigSH eff nis ((S α ) α ; Λ) G G RigSH eff nis (S ; Λ)
where RigSH ′eff nis ((S α ) α ; Λ) is defined from the site (FRigSm ′ af, pr /(S α ) α , rignis) in the usual way, i.e., by adapting Definition 2.1.11. Thus, to finish the proof of Proposition 2.5.12, it suffices to show Proposition 2.6.14 below.

Proposition 2.6.14. Let (S α ) α be a cofiltered inverse system of affine formal schemes of principal ideal type and S = lim α S α . We set S α = S rig α and S = S rig . Then the obvious functor RigSH ′eff nis ((S α ) α ; Λ) → RigSH eff nis (S ; Λ) (2.37) is an equivalence.

Notation 2.6.15. From now on, we fix a cofiltered inverse system (S α ) α of affine formal schemes of principal ideal type, and we let S = lim α S α . We define (S ′ α ) α as in Notation 2.6.3, and we set S α = S rig α , S ′ α = S ′rig α and S = S rig . We set

A α = O(S α ), A ′ α = O(S ′ α ) and A = O(S). We identify A ′ α with a subring of A and set A ′ ∞ = α A ′
α which is a dense subring of A. We also assume that there is an element π, which "belongs" to all the A α 's and generates an ideal of definition in each A α . (This is not a restrictive assumption since it is clearly satisfied when the indexing category of (S α ) α admits a final object.) Given (X α ) α≤α 0 in FRigSm af, pr /(S α ) α , we use similar notations:

B α = O(X α ), B ′ α = O(X ′ α ), B = O(X) and B ′ ∞ = α≤α ′ B ′
α which is a dense subring of B. Remark 2.6.16. The ∞-category RigSH ′eff nis ((S α ) α ; Λ) is compactly generated, up to desuspension, by M ′eff ((X α ) α≤α 0 ) where (X α ) α≤α 0 belongs to FRigSm ′ af, pr /(S α ) α . (This can be proven by adapting the proof of Proposition 2.4.22. The key point is that the small rig-Nisnevich site of (X α ) α≤α 0 is equivalent to the small Nisnevich site of X; see Remark 2.6.10.) Using Proposition 2.4.22, we deduce that the functor (2.37) belongs to Pr L ω . This functor also sends a set of compact generators to a set of compact generators. Indeed, by Proposition 1.3.8, a set of compact generators for RigSH eff nis (S ; Λ) is given, up to desuspension, by motives of smooth rigid S -affinoids X = Spf(B) rig with B of the form B = A⟨s 1 , . . . , s m , t 1 , . . . , t n ⟩/(P 1 , . . . , P n ) sat with P i ∈ A ′ ∞ [s 1 , . . . , s m , t 1 , . . . , t n ] such that det(∂P i /∂t j ) generates an open ideal in B. Clearly, Spf(B) is in the image of FRigSm af, pr /(S α ) α → FRigSm af, pr /S. In particular, to prove that the functor (2.6.14) is an equivalence, it remains to show that it is fully faithful.

Before continuing with the proof, we recall the following two statements from [START_REF] Vezzani | A motivic version of the theorem of Fontaine and Wintenberger[END_REF].

Proposition 2.6.17. Let R be an adic ring of principal ideal type and π ∈ R a generator of an ideal of definition. Let s = (s 1 , . . . , s m ) and t = (t 1 , . . . , t n ) be two systems of coordinates and let P = (P 1 , . . . , P n ) be an n-tuple of polynomials in R[s, t] with no constant term, i.e., such that P| s=0, t=0 = (0, . . . , 0). Assume also that det(∂P i /∂t j )| s=0, t=0 generates an open ideal in R. Then, there exists a unique n-tuple

F = (F 1 , . . . , F n ) of formal power series in (R[π -1 ])[[s]] such that P(s, F(s)) = 0. Moreover, for N large enough, the F i 's belong to the subring R[[π -N s]].
Proof. This is a slight generalisation of [Vez19, Proposition A.1] and one can easily check that the proof of loc. cit. still works in the present context. More precisely, instead of a Banach K-algebra, with K a complete non-Archimedean field, as in loc. cit., we consider the Banach ring R[π -1 ] endowed with the norm described in the proof of Proposition 1. We introduce some further notations.

Notation 2.6.19. We fix two π-torsion-free rig-smooth adic A α 0 -algebras B α 0 and C α 0 . For α ≤ α 0 , we set Lemma 2.6.20. Given a morphism of formal schemes f : Y → X, there exists an A 1 -homotopy

B α = A α ⊗ A α 0 B α 0 /(0) sat , C α = A α ⊗ A α 0 C α 0 /(0) sat , X α = Spf(B α ) and Y α = Spf(C α ). Similarly, we set B = A ⊗ A α 0 B α 0 /(0) sat , C = A ⊗ A α 0 C α 0 /(0) sat , X = Spf(B)
H : A 1 Y = Spf(C⟨τ⟩) → X from f = H • i 0 to a map f = H • i 1 such that f : Y → X descends to a unique map Y ′ α → X α for α ≤ α 0 small enough.
Proof. Indeed, suppose that f corresponds to a morphism of adic A-algebras B → C given by s i → c i , for 1 ≤ i ≤ m, and t j → d j , for 1 ≤ j ≤ n, where the c = (c 1 , . . . , c m ) and d = (d 1 , . . . , d n ) are tuples of elements of C satisfying P(c, d) = 0. Let F = (F 1 , . . . , F n ) be the n-tuple of power series in C[π -1 ][[sc]] associated by Corollary 2.6.18 to the n-tuple of polynomials P = (P 1 , . . . , P n ) (considered with coefficients in C via the map A α 0 → C) and their common zero (c, d). By the same corollary, for c = (c 1 , . . . , cm ) an m-tuple of elements in A close enough to c, the expressions F i (c + (cc) • τ) are well-defined elements of C⟨τ⟩, and the assignment

s → c + (c -c) • τ, t → F(c + (c -c) • τ)
gives rise to a map of A-algebras B → C⟨τ⟩, and hence to a morphism

H : A 1 Y → X of formal schemes. By construction, H•i 0 = f , and it remains to show that f = H•i 1 descends to a morphism Y ′ α → X α for a well-chosen m-tuple c. (The uniqueness is clear since C ′ α → C is injective.
) This is the case when the ci 's belong to the dense subring

C ′ ∞ = α≤α 0 C ′ α of C.
Indeed, refining α 0 , we may assume that the ci 's belong to C ′ α 0 . Consider the map Y ′ α 0 → S α 0 × A m = Spf(A α ⟨s⟩) induced by c. We have a rig-étale morphism X α 0 → S α 0 × A m and the morphism f : Y → X gives rise to a section σ of the rig-étale projection X α 0 × S α 0 ×A m , c Y → Y. Then f descends to a morphism Y ′ α → X α if and only if the section σ descends to a section of the rig-étale projection (X

α 0 × S α 0 ×A m , c Y ′ α ) → Y ′ α .
That this is true follows from Corollary 1.3.10. □ Corollary 2.6.21. Keep the notation as above. Fix a system of coordinates u = (u 1 , . . . , u r ) for A r . Given a finite collection f 1 , . . . , f N in Hom S (Y × A r , X) we can find a collection H 1 , . . . , H N in Hom S (Y × A r × A 1 , X) and some index α ≤ α 0 such that:

(1) For all 1 ≤ k ≤ N, we have

f k = H k • i 0 and the map fk = H k • i 1 descends to a unique map Y ′ α × A r → X α over S α . (2) If f k • d i,ϵ = f k ′ • d i,ϵ for some 1 ≤ k, k ′ ≤ N and some (i, ϵ) ∈ {1, . . . , r} × {0, 1} then H k • d i,ϵ = H k ′ • d i,ϵ . (3) If for some 1 ≤ k ≤ N and some γ ≤ α 0 the map f k • d 1,1 ∈ Hom S (Y × A r-1 , X) comes from Hom S γ (Y ′ γ × A r-1 , X γ ), then the homotopy H k • d 1,1 ∈ Hom S (Y × A r-1 × A 1 , X) is constant, i.e., factors through the projection on Y × A r-1 .
Proof. Suppose that f k corresponds to a morphism of adic A-algebras B → C⟨u⟩ given by (s, t) → (c k , d k ) where c k = (c k1 , . . . , c km ) and d k = (d k1 , . . . , d kn ) are tuples of elements of C⟨u⟩ satisfying P(c k , d k ) = 0. By Lemma 2.6.20, there are n-tuples of formal power series 1), for some α ≤ α 0 , when the cki 's are close enough to the c ki 's and belong to the dense subring C ′ ∞ ⟨u⟩ = α≤α 0 C ′ α ⟨u⟩ of C⟨u⟩. It remains to explain how to choose the ck 's so that the conditions (2) and (3) above are also satisfied. To do so, we apply [Vez19, Proposition A.5] to the c ki 's. (This result of [START_REF] Vezzani | A motivic version of the theorem of Fontaine and Wintenberger[END_REF] is stated for Banach algebras over a non-Archimedean field and a sequence of complete subalgebras, but holds more generally for Banach rings and a filtered family of complete subrings; and we apply it here to C[π -1 ] and the family C ′ α [π -1 ], for α ≤ α 0 .) Thus we may find elements cki ∈ C ′ ∞ ⟨u⟩, which are arbitrary close to the c ki 's, and satisfying the following properties:

F k = (F k1 , . . . , F kn ) associated to the f k 's such that (s, t) → (c k + (c k -c) • τ, F k (c k + (c k -c k ) • τ)) defines a morphism H k : Y × B r × B 1 → X satisfying condition (
(2

′ ) If c k | u i =ϵ = c k ′ | u i =ϵ for some 1 ≤ k, k ′ ≤ N and some (i, ϵ) ∈ {1, . . . , r} × {0, 1} then ck | u i =ϵ = ck ′ | u i =ϵ . (3 ′ ) If for some 1 ≤ k ≤ N and some γ ≤ α 0 , c k | u 1 =1 belongs to C ′ γ ⟨u 2 , . . . , u r ⟩, then ck | u 1 =1 = c k | u 1 =1 .
With these cki 's, it is easy to see that conditions (2) and (3) are satisfied. Indeed, suppose that

f k • d i,ϵ = f k ′ • d i,ϵ for some i ∈ {1, . . . , r} and ϵ ∈ {0, 1}. This means that c k | u i =ϵ = c k ′ | u i =ϵ and d k | u i =ϵ = d k ′ | u i =ϵ ;
we denote by c and d their respective common values. This implies that both F k | u i =ϵ and F k ′ | u i =ϵ are two n-tuples of formal power series F with coefficients in C⟨u 2 , . . . , u r ⟩ converging around c and such that P(s, F(s)) = 0 and F(c) = d. By the uniqueness of such power series stated in Corollary 2.6.18, we conclude that they coincide. Moreover, by property (2 ′ ), we have ck | u i =ϵ = ck ′ | u i =ϵ ; we denote by c the common value. It follows that

F k (c k + (c k -c k ) • τ)| u i =ϵ = F(c + ( c -c) • τ) = F k ′ (c k ′ + (c k ′ -c k ′ ) • τ)| θ r =ϵ and thus H k • d i,ϵ = H k ′ • d i,ϵ
proving property (2). Property (3) follows immediately from property (3 ′ ) and the definition of H k . □ Proof of Proposition 2.6.14. We split the argument into two steps.

Step 1. Consider the A 1 -localisation functor L A 1 on the ∞-categories of presheaves of Λ-modules PSh(FRigSm ′ af, pr /(S α ) α ; Λ) and PSh(FRigSm af, pr /S; Λ).

For a presheaf F of Λ-modules, L A 1 (F) is given by the colimit of the simplicial presheaf Hom(∆ • , F) where ∆ r refers to the r-th algebraic simplex and

Hom(∆ r , F)(-) = F((-)⟨u 0 , . . . , u r ⟩/(u 0 + • • • + u r -1)).
Indeed, the map F → colim Hom(∆ • , F) is an A 1 -equivalence by [MV99, §2.3, Corollary 3.8]. On the other hand, using [MV99, §2.3, Proposition 3.4] and the fact that the endofunctor Hom(∆ 1 , -) preserves colimits, we have equivalences

colim Hom(∆ • , F) ≃ colim Hom(∆ • × ∆ 1 , F) ≃ Hom(∆ 1 , colim Hom(∆ • , F))
showing that colim Hom(∆

• , F) is A 1 -local.
With (X α ) α≤α 0 and (Y α ) α≤α 0 as in Notation 2.6.19, we claim that the natural map

L A 1 Λ((X α ) α≤α 0 ) ((Y α ) α≤α 0 ) → (L A 1 Λ(X)) (Y) (2.38)
is an equivalence. By the commutation of colimits with tensor products, it is enough to prove this when Λ is the sphere spectrum. (Here we use the explicit model for the A 1 -localisation recalled above.) Similarly, since tensoring with the Eilenberg-Mac Lane spectrum of Z is conservative on connective spectra, we reduce to prove this when Λ is the (Eilenberg-Mac Lane spectrum associated to the) ring Z. In this case, we may use another model for the A 1 -localisation functor L A 1 , namely the one taking F to the normalised complex associated to the cubical presheaf of complexes of abelian groups Hom(A • , F) where, as above, Hom(A r , F)(-) = F((-)⟨u 1 , . . . , u r ⟩).

(This is proven by adapting the method used for the simplicial presheaf Hom(∆ • , F). See also [Ayo14b, Théorème 2.23] for a closely related result.) Thus, we are reduced to showing that the morphism of cubical abelian groups

Hom(A • , Z((X α ) α≤α 0 )) ((Y α ) α≤α 0 ) → Hom(A • , Z(X)) (Y) (2.39)
induces an isomorphism on the associated normalised complexes. This follows from Corollary 2.6.21 by arguing as in [Vez19, Proposition 4.2]. Note that, since Z((X α ) α≤α 0 ) is considered as a presheaf on FRigSm ′ af, pr /(S α ) α , the elements of the left-hand side of (2.39) are linear combinations of (S α ) α -morphisms of formal pro-schemes from (Y ′ α × A r ) α≤α 0 to (X α ) α≤α 0 .

Step 2. Let ϕ : (FRigSm af, pr /S, rignis) → (FRigSm ′ af, pr /(S α ) α , rignis) be the premorphism of sites that gives rise to the adjunction ϕ * mot : RigSH ′eff nis ((S α ) α ; Λ) ⇄ RigSH eff nis (S ; Λ) : ϕ mot, * . Our goal is to show that ϕ * mot is an equivalence, and by Remark 2.6.16 it remains to see that ϕ * mot is fully faithful. We will prove that the unit morphism id → ϕ mot, * ϕ * mot is an equivalence. In order to do so, we note that the functor ϕ * : PSh(FRigSm af, pr /S; Λ) → PSh(FRigSm ′ af, pr /(S α ) α ; Λ) preserves (A 1 , rignis)-local equivalences. Preservation of rignis-local equivalences follows immediately from Remark 2.6.10. Preservation of A 1 -local equivalences is an easy consequence of the fact that A 1 is an interval. (This is used to construct an explicit A 1 -homotopy between the identity of ϕ * Λ((-) × A 1 ) and the endomorphism induced by the zero section.) As a consequence, we are left to show that the morphism F → ϕ * ϕ * F is an (A 1 , rignis)-local equivalence for all presheaves of Λ-modules F on FRigSm ′ af, pr /(S α ) α . Since ϕ * and ϕ * commute with colimits, and since (A 1 , rignis)local equivalences are preserved by colimits, we may assume that F = Λ((X α ) α≤α 0 ) with (X α ) α≤α 0 as in Notation 2.6.19. In this case, the morphism F → ϕ * ϕ * F can be rewritten as follows:

Λ((X α ) α≤α 0 ) → ϕ * Λ(X).
(2.40)

We claim that this morphism is an A 1 -local equivalence. Indeed, if we apply L A 1 to (2.40) and if we evaluate at an object (Y α ) α≤α 0 of FRigSm ′ af, pr /(S α ) α , we get precisely the map (2.38) which we know to be an equivalence. □ 2.7. Quasi-compact base change.

We prove here the so-called quasi-compact base change theorem for rigid analytic motives. This will be obtained as an application of the continuity property for RigSH (eff, ∧) τ (-; Λ) proved in Theorem 2.5.1. Our quasi-compact base change theorem can be compared with [Hub96, Proposition 4.4.1] and [dJvdP96, Theorems 5.3.1].

Theorem 2.7.1 (Quasi-compact base change). Consider a Cartesian square of rigid analytic spaces

Y ′ g ′ G G f ′ Y f X ′ g G G X
with f quasi-compact and quasi-separated. Let τ ∈ {nis, ét}, and assume one of the following two alternatives.

(1) We work in the non-hypercomplete case. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective. (2) We work in the hypercomplete case, and X, X ′ , Y and Y ′ are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore one of the following conditions:

• Λ is eventually coconnective;

• locally on X and X ′ , one can find formal models X and X ′ such that X ′ is a limit of a cofiltered inverse system of finite type formal X-schemes (X α ) α with affine transition morphisms and such that the numbers pvcd Λ (X rig α ) are bounded independently of α. (For example, this holds if g is locally of finite type.) Then, the commutative square

RigSH (eff, ∧) τ (X; Λ) f * G G g * RigSH (eff, ∧) τ (Y; Λ) g ′ * RigSH (eff, ∧) τ (X ′ ; Λ) f ′ * G G RigSH (eff, ∧) τ (Y ′ ; Λ)
is right adjointable, i.e., the natural transformation g * • f * → f ′ * • g ′ * is an equivalence. Proof. Using Proposition 2.2.1(3), the problem is local on X and X ′ . In particular, we may assume that X and X ′ are quasi-compact and quasi-separated. This implies the same for Y and Y ′ . We split the proof into two parts. In the first part, we assume that g is of finite type and, in the second part, we explain how to remove this assumption. Part 1. Here we assume that g is of finite type. Since the problem is local on X and X ′ , we may assume that g factors as a closed immersion followed by a smooth morphism. Using the base change theorem for smooth morphisms of Proposition 2.2.1, we reduce to the case where g is a closed immersion. Thus, we may assume that X = Spf(A) rig and X ′ = Spf(A ′ ) rig where A is an adic ring of principal ideal type and A ′ a quotient of A by a closed saturated ideal I ⊂ A. If π ∈ A generates an ideal of definition, then A ′ is the filtered colimit in the category of adic rings of the A-algebras A J, N = A⟨J/π N ⟩ where N ∈ N and J ⊂ I is a finitely generated ideal.

Set X = Spf(A) and X ′ = Spf(A ′ ). Choose a formal model Y of Y which is a formal X-scheme and set Y ′ = Y × X X ′ . Let K be the indexing category of the filtered inductive system (A J, N ) J, N , and write "α" instead of "J, N" for the objects of K. We denote by o ∈ K the initial object

(corresponding to N = 0 and J = (0)). Set X α = Spf(A α ), Y α = Y × X X α , X α = X rig α and Y α = Y α rig . For α → β in K, we have Cartesian squares of rigid analytic spaces Y β g ′ βα G G f β Y α f α X β g βα G G X α
where the horizontal arrows are open immersions. (Note that f o = f .) We deduce commutative squares of ∞-categories

RigSH (eff, ∧) τ (X α ; Λ) f * α G G g * βα RigSH (eff, ∧) τ (Y α ; Λ) g ′ * βα RigSH (eff, ∧) τ (X β ; Λ) f * β G G RigSH (eff, ∧) τ (Y β ; Λ).
(2.41)

In fact, we have a functor K → Fun(∆ 1 , Pr L ω ) sending α ∈ K to f * α and α → β to the commutative square (2.41). Moreover, since the squares (2.41) are right adjointable by Proposition 2.2.1(3), this functor factors through the sub-∞-category

Fun RAd (∆ 1 , Pr L ω ) = Fun(∆ 1 , Pr L ω ) ∩ Fun RAd (∆ 1 , CAT ∞ ), where Fun RAd (∆ 1 , CAT ∞ ) is the ∞-category introduced in [Lur17, Definition 4.7.4.16]. Consider a colimit diagram K ▷ → Fun(∆ 1 , Pr L
ω ) extending the one described above. Since all the ∞-categories we are considering are stable, Lemma 2.7.2 below implies that this diagram factors also through the sub-∞-category Fun RAd (∆ 1 , Pr L ω ). Evaluating the functor K ▷ → Fun(∆ 1 , Pr L ω ) at the edge o → ∞, where ∞ ∈ K ▷ is the cone point, we obtain a commutative square in Pr L ω

RigSH (eff, ∧) τ (X o ; Λ) f * o G G colim α g * αo RigSH (eff, ∧) τ (Y o ; Λ) colim α g ′ * αo colim α RigSH (eff, ∧) τ (X α ; Λ) colim α f * α G G colim α RigSH (eff, ∧) τ (Y α ; Λ)
which is right adjointable. By Theorem 2.5.1, this square is equivalent to the one in the statement. Part 2. We now assume that g is not necessarily of finite type. We may assume that g is induced by a morphism Spf(A ′ ) → Spf(A) of affine formal schemes. Set X = Spf(A) and X ′ = Spf(A ′ ). Let Y be a quasi-compact and quasi-separated formal X-scheme such that Y = Y rig , and let

Y ′ = Y × X X ′ so that Y ′rig = Y ′ . Write A ′ as a filtered colimit A ′ = colim α A α of finitely generated adic A-algebras A α . Set also X α = Spf(A α ), Y α = Y × X X α , X α = X rig α and Y α = Y rig α .
If τ is the étale topology and Λ is not eventually coconnective, we may assume that the numbers pvcd Λ (X α ) are bounded independently of α.

As in the first part of the proof, we have a diagram K → Fun(∆ 1 , Pr L ω ) sending α → β to squares of the form (2.41). Since the morphisms g βα : X β → X α are of finite type, these squares are right adjointable as shown in the first part of the proof. The result follows again by considering a colimit diagram K ▷ → Fun(∆ 1 , Pr L ω ), and using Lemma 2.7.2 and Theorem 2.5.1. □

The following lemma, which was used in the proof of Theorem 2.7.1, is well-known. We include a proof for completeness. (Recall that we are using the notation Fun RAd following [Lur17, Definition 4.7.4.16].) Lemma 2.7.2. Let K be a simplicial set. Let C : K ▷ → Fun(∆ 1 , Pr L ) be a colimit diagram and let C be its restriction to K. Assume the following conditions:

(1) C factors through Fun RAd (∆ 1 , Pr L ) = Fun(∆ 1 , Pr L ) ∩ Fun RAd (∆ 1 , CAT ∞ );

(2) for every s ∈ K, the right adjoint to the functor f s : C 0 (s) → C 1 (s), associated to s by C, is colimit-preserving. (Note that the second condition is satisfied if f s is compact-preserving, and the ∞-categories C 0 (s) and C 1 (s) are stable and compactly generated.) Then, C also factors through Fun RAd (∆ 1 , Pr L ). Moreover, the resulting map

K ▷ → Fun RAd (∆ 1 , Pr L ) is a colimit diagram.
Proof. Using the equivalence Pr L ≃ (Pr R ) op , we deduce a limit diagram

C ′ : (K op ) ◁ → Fun(∆ 1, op , Pr R ).
We denote by C ′ the restriction of C ′ to K op . Applying C and C ′ to an edge e : s → t in K ▷ , we get the following commutative squares of ∞-categories

C(e) : C 0 (s) f s G G C 1 (s) C 0 (t) f t G G C 1 (t)
and C ′ (e) : 

C 0 (s) C 1 (s) g s o o C 0 (t) y y C 1 (t)
(∧) τ (X; Λ) f * G G g * Shv (∧) τ (Y; Λ) g ′ * Shv (∧) τ (X ′ ; Λ) f ′ * G G Shv (∧) τ (Y ′ ; Λ)
is also right adjointable. This is proven by the same method: instead of using Theorem 2.5.1, we use the much easier Corollary 2.5.10. There is also an unstable version of this result, asserting that Shv (∧) τ (X)

f * G G g * Shv (∧) τ (Y) g ′ * Shv (∧) τ (X ′ ) f ′ * G G Shv (∧) τ (Y ′ )
is right adjointable under some assumptions. This holds for instance when τ is the Nisnevich topology, and X, X ′ , Y and Y ′ locally of finite Krull dimension. When τ is the étale topology, we have a weaker result: under the same assumption on the Krull dimensions, the base change morphism g * • f * → f ′ * • g ′ * is an isomorphism when evaluated at truncated étale sheaves and, in particular, at étale sheaves of sets. A proof of this can be obtained by adapting the proof of Theorem 2.7.1. Indeed, Corollary 2.5.10 is still true for the ∞-categories of n-truncated S-valued sheaves Shv τ (-) ≤n . (In this case, there is no distinction between sheaves and hypersheaves.) Similarly, if h : T → S is a quasi-compact morphism between rigid analytic spaces locally of finite Krull dimension, the associated functor h * : Shv τ ( Ét/S ) ≤n → Shv τ ( Ét/T ) ≤n belongs to Pr L ω . 2.8. Stalks.

In this subsection, we determine under some mild hypotheses the stalks of RigSH (eff, ∧) τ (-; Λ), which is a τ-(hyper)sheaf by Theorem 2.3.4. We then use this to generalise Theorem 2.5.1. We start with a general fact on presheaves with values in a compactly generated ∞-category.

Proposition 2.8.1. Let (C, τ) be a site having enough points and let V be a compactly generated ∞-category. For a morphism f : F → G in PSh(C; V), the following conditions are equivalent:

(1)

L τ ( f ) : L τ (F) → L τ (G) is an equivalence in Shv ∧ τ (C; V); (2) f x : F x → G x is
an equivalence in V for all x in a conservative family of points of (C, τ).

Proof. By [Dre18, Proposition 2.5], condition (1) holds if and only if, for all compact objects A ∈ V, the maps of presheaves of spaces

Map V (A, f ) : Map V (A, F) → Map V (A, G)
induce equivalences after τ-hypersheafification. This is the case if and only if for every x as in (2), the induced maps on stalks

Map V (A, f ) x : Map V (A, F) x → Map V (A, G) x .
are equivalences. Since the A's are compact and stalks are computed by filtered colimits, the above maps are equivalent to

Map V (A, f x ) : Map V (A, F x ) → Map V (A, G x ).
Since V is compactly generated and A varies among all compact objects, our condition is equivalent to asking that the maps f x : F x → G x are equivalences as needed. □

Later we use Proposition 2.8.1 with V = Pr L ω . This is indeed possible by Proposition 2.8.4 below, whose proof relies on two technical lemmas. The first one is a variant of the characterisation of presentability given in [Lur09, Theorem 5.5.1.1(6)] which is certainly well-known. We provide an argument because we couldn't find a reference. Lemma 2.8.2. Let C be a locally small ∞-category admitting small colimits. Assume that there exists a regular cardinal κ and a set S ⊂ C of κ-compact objects such that C coincides with its smallest full sub-∞-category containing S and stable under colimits. Then C is κ-compactly generated (in the sense of [Lur09, Definition 5.5.7.1]).

Proof. The difference with [Lur09, Theorem 5.5.1.1(6)] is that we do not assume that every object of C is a colimit of a diagram with values in the full sub-∞-category spanned by S .

Let E ⊂ C be the smallest sub-∞-category of C containing S and stable under κ-small colimits. The ∞-category E can be constructed from S by transfinite induction as follows. Let E 0 be the full sub-∞-category of C spanned by S and, for an ordinal ν > 0, let E ν be the full sub-∞-category of C spanned by colimits of κ-small diagrams in µ<ν E µ . Then E = ν<κ E ν . This shows that E is essentially small and that every object of E is κ-compact (by [Lur09, Corollary 5.3.4.15]). By [Lur09, Proposition 5.3.5.11], the inclusion E → C extends uniquely to a functor ϕ : Ind κ (E) → C preserving κ-filtered colimits, and this functor is fully faithful. In fact, by [Lur09, Proposition 5.3.6.2 and Example 5.3.6.8], Ind κ (E) admits small colimits and the functor ϕ is colimit-preserving. Using that the essential image of ϕ contains S , we deduce that ϕ is an equivalence of ∞-categories. Since Ind κ (E) is presentable by [Lur09, Theorem 5.5.1.1], this finishes the proof. (Note that Ind κ (E) is κ-accessible by definition, see [Lur09, Definition 5.4.2.1].) □ Lemma 2.8.3. Let C and D be ∞-categories such that C is compactly generated and D admits small colimits. Assume that there is a functor G : D → C with the following properties:

(1) it admits a left adjoint;

(2) it is conservative;

(3) it commutes with filtered colimits.

Then D is compactly generated. Moreover, if F is a left adjoint to G, then F takes a set of compact generators of C to a set of compact generators of D.

Proof. Since G commutes with filtered colimits, the functor F takes a compact object of C to a compact object of D. Let C 0 be the full sub-∞-category of C spanned by compact objects, and let D ′ ⊂ D be the smallest sub-∞-category containing F(C 0 ) and stable under colimits. By Lemma 2.8.2, D ′ is compactly generated since C 0 is essentially small. Thus, it suffices to show that the inclusion functor U : D ′ → D is an equivalence. By [Lur09, Corollary 5.5.2.9 & Remark 5.5.2.10], the functor U admits a right adjoint V and it is enough to show that V is conservative. This follows from the hypothesis that G is conservative. Indeed, we have G ≃ G ′ • V where G ′ is right adjoint to the functor F ′ : C → D ′ induced by F (which exists by [Lur09, Corollary 5.5.2.9]). □ Proposition 2.8.4. The ∞-category Pr L ω is compactly generated.

Proof. This is probably well-known, but we couldn't find a reference. We include a proof here for completeness. Denote by Cat rex, idem ∞ the sub-∞-category of Cat ∞ whose objects are the idempotent complete small ∞-categories admitting finite colimits and whose morphisms are the right exact functors. By [Lur17, Lemma 5.3.2.9(1)], the functor C → Ind ω (C) induces an equivalence of ∞categories between Cat rex, idem ∞ and Pr L ω . Thus, it is enough to show that Cat rex, idem ∞ is compactly generated. Since Pr L ω admits small colimits by [Lur09, Proposition 5.5.7.6], the same is true for Cat rex, idem ∞ which is moreover obviously locally small. We will show that Cat rex, idem ∞ is compactly generated by applying Lemma 2.8.3 to the inclusion functor Cat rex, idem ∞ → Cat ∞ . First, note that Cat ∞ is compactly generated. Indeed, Cat ∞ is the ∞category associated to the combinatorial simplicial model category Set + ∆ of marked simplicial sets where the cofibrations are generated by monomorphisms with compact domain and codomain, and where fibrant objects are stable by filtered colimits. We record the following lemma for later use.

Lemma 2.8.5. Let (C, τ) be a site and let F :

C op → CAT ∞ be a presheaf on C. Set E = lim C op F.
(If C admits a final object ⋆, then E ≃ F(⋆).) Given an object X ∈ C, we denote by A → A X the obvious functor E → F(X).

(1) Assume that F is a τ-(hyper)sheaf. Then, for A, B ∈ E, the presheaf on C, given informally by X → Map F(X) (A X , B X ), is a τ-(hyper)sheaf.

(2) Assume that F is a τ-hypersheaf and that the limit diagram (C ▷ ) op → CAT ∞ extending F factors through Pr L ω . Assume also that (C, τ) admits a conservative family of points (x i ) i . Then, the family of functors (E → F x i ) i , where the stalks F x i are computed in Pr L ω , is conservative.

Proof. We denote by M : (CAT ∞ ) ∂∆ 1 / → S the copresheaf corepresented by ∂∆ 1 → ∆ 1 . The functor M commutes with limits and admits the following informal description. It sends an ∞category Q together with a functor q : ∂∆ 1 → Q to the mapping space Map Q (q(0), q(1)). This is indeed a consequence of [DS11, Proposition 1.2].

To give a precise construction of the presheaf described informally in (1), we consider E as an object of (CAT ∞ ) ∂∆ 1 / using the functor e : ∂∆ 1 → E mapping 0 to A and 1 to B. By the definition of E, the presheaf F lifts to a (CAT ∞ ) E/ -valued presheaf F ′ . The functor e gives rise to a functor

(CAT ∞ ) E/ → (CAT ∞ ) ∂∆ 1 /
and we denote by F ′′ the (CAT ∞ ) ∂∆ 1 / -valued presheaf obtained from F ′ by composing with this functor. By construction, F ′′ is a lift of F admitting the following informal description. It sends an object X ∈ C to the ∞-category F(X) together with the functor ∂∆ 1 → F(X) mapping 0 to A X and 1 to B X . The presheaf X → Map F(X) (A X , B X ) in (1) is then defined to be M • F ′′ . That said, the conclusion of assertion (1) is now clear. Indeed, the projection (CAT ∞ ) ∂∆ 1 / → CAT ∞ preserves and detects limits by [Lur09, Proposition 1.2.13.8] and, as mentioned above, the functor M is limit-preserving. Thus, the conclusion follows from Remark 2.3.3(1).

Given a point x of (C, τ), we denote by A → A x the functor E → F x . To prove the second assertion, we fix a morphism f : A → B in E inducing equivalences A x i ≃ B x i for all i. We need to prove that f is an equivalence. Since E is compactly generated, it is enough to show that f induces an equivalence Map E (C, A) → Map E (C, B) for every compact object C ∈ E. The compositions with the f X 's, for X ∈ C, induce a morphism of presheaves

(X → Map F(X) (C X , A X )) → (X → Map F(X) (C X , B X )),
(2.42) whose construction we leave to the reader. By assertion (1), this is actually a morphism of τhypersheaves. Thus, to conclude, it is enough to show that the morphism (2.42) induces equivalences on stalks at x i for every i. Since C is compact, the stalk at x i of this morphism is given by the map Map

F x i (C x i , A x i ) → Map F x i (C x i , B x i ) which is indeed an equivalence since A x i ≃ B x i . □
By Theorem 2.3.4, the Pr L -valued presheaf RigSH (eff), ∧ τ (-; Λ) has τ-hyperdescent. Therefore, it is particularly useful to determine its stalks. The next theorem shows that, under some mild 7 Corollary 4.4.5.21 can be found in the electronic version of [START_REF] Lurie | Higher topos theory[END_REF] on the author's webpage, but not in the published version.

hypotheses, these stalks can also be understood as ∞-categories of rigid analytic motives over rigid points (in the sense of Definition 1.4.22).

Theorem 2.8.6. Let S be a rigid analytic space and let s → S be an algebraic rigid point of S . (See Remark 1.4.25.) Let τ ∈ {nis, ét}, and assume one of the following two alternatives.

(1) We work in the non-hypercomplete case.

(2) We work in the hypercomplete case and S is (Λ, τ)-admissible. Then there is an equivalence of ∞-categories

RigSH (eff, ∧) τ (-; Λ) s ≃ RigSH (eff, ∧) τ (s; Λ),
where the left-hand side is the stalk of RigSH (eff, ∧) τ (-; Λ) at s, i.e., the colimit, taken in Pr L , of the diagram

(s → U → S ) → RigSH (eff, ∧) τ (U; Λ) with U ∈ Ét/S .
Proof. We need to show that the obvious functor

colim s→U→S RigSH (eff, ∧) τ (U; Λ) → RigSH (eff, ∧) τ (s; Λ)
is an equivalence. The question being local on S around the image of s, we may assume that S is quasi-compact and quasi-separated. In particular, S admits a formal model S. The functor

(Spf(κ + (s)) → U → S) → (s → U rig → S ),
with U affine and rig-étale over S, is cofinal. Moreover, by Lemma 1.4.26, we have a canonical isomorphism of formal schemes

Spf(κ + (s)) ≃ lim Spf(κ + (s))→U→S U.
The result follows now from Theorem 2.5.1. Indeed, if S is (Λ, τ)-admissible then so are s and every étale rigid analytic S -space U. (For s, use that the absolute Galois group of κ(s) is a closed subgroup of the absolute Galois group of κ(s); for U, use Corollary 2.4.17 Corollary 2.8.8. Let S be a rigid analytic space. Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case, and S is locally of finite Krull dimension. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective (2) We work in the hypercomplete case, and S is (Λ, τ)-admissible. Then, the functors Definition 2.8.10. Let (S α ) α be a cofiltered inverse system of rigid analytic spaces, with quasicompact and quasi-separated transition maps. Let S be a rigid analytic space endowed with a map of pro-objects ( f α ) α : S → (S α ) α , i.e., with an element ( f α ) α ∈ lim α Hom(S , S α ). We say that S is a weak limit of (S α ) α and write S ∼ lim α S α if the following two conditions are satisfied:

RigSH (eff, ∧) τ (S ; Λ) → RigSH (eff
(1) the map

|S | → lim α |S α | is a homeomorphism; (2) for every s ∈ |S | with images s α ∈ |S α |, the morphism colim α κ + (s α ) → κ + (s),
where the colimit is taken in the category of adic rings, is an isomorphism.

Example 2.8.11. Let (S α ) α be a cofiltered inverse system of formal schemes with affine transition maps and let S = lim α S α be its limit. Set S = S rig and S α = S rig α . Then S is a weak limit of (S α ) α . Indeed, condition (1) follows from commutation of limits with limits, see Notation 1.1.11. The point is that any admissible blowup of S can be obtained as the strict transform of S with respect to an admissible blowup of an S α for some α. Condition (2) follows from Lemma 1.4.26(1).

Example 2.8.12. Let X be a rigid analytic space and Z ⊂ X a closed subspace. Let (U α ) α be an inverse system of open neighbourhoods of Z in X such that, locally at every point of Z, this inverse system is cofinal in the system of all neighbourhoods of Z in X. (When X is quasi-compact, this is equivalent to saying that (U α ) α is cofinal in the system of all neighbourhoods of Z in X.) Then, Z is a weak limit of (U α ) α . Indeed, condition (2) is obvious and, for condition (1), we need to show that |Z| = α |U α |. This follows easily from the fact that |X| is a valuative topological space (in the sense of [FK18, Chapter 0, Definition 2. Then, conditions (2) and (2 ′ ) are equivalent. Moreover, if condition (2) is satisfied, then conditions (1) and (1 ′ ) are equivalent.

Proof. We identify κ + (s α ) with a subring of κ + (s) and κ(s α ) with a subfield of κ(s). We may assume that there is an element π ∈ κ + (s) which belongs to all the κ + (s α )'s and generates an ideal of definition in each one of them. If (2) is satisfied, then κ + (s) is the π-adic completion of α κ + (s α ), which implies that α κ(s α ) is dense in κ(s). Conversely, if (2 ′ ) is satisfied, then κ + (s) is the Hausdorff completion of κ + (s)∩ α κ(s α ). Then condition (2) follows from the following equalities π n κ + (s) ∩ α κ(s α ) = α π n κ + (s α ) which are easily checked using the valuation on κ(s).

Clearly, (1) implies (1 ′ ). We next assume that (2) is satisfied, and show that (1 ′ ) implies (1). Using that the f α 's and the transition morphisms of the inverse system (S α ) α are quasi-compact and quasi-separated, we may reduce to the case where S and all the S α 's are quasi-compact and quasiseparated. By [Sta20, Lemma 09XU], it is then enough to show that the bijection |S | ≃ lim α |S α | detects generisations. Given s ∈ |S | with images s α ∈ |S α |, the generisations of s are the points of Spf(κ + (s)) while the generisations of (s α ) α are the points of lim α Spf(κ + (s α )). Thus, condition (2) implies that f induces a bijection between the generisations of s and those of (s α ) α .

□

The following can be compared with [Hub96, Remark 2.4.3(ii)] and [Sch12, Proposition 7.16].

Lemma 2.8.14. Let (S α ) α be a cofiltered inverse system of rigid analytic spaces, with quasicompact and quasi-separated transition maps, and admitting a weak limit S . Let X be a rigid analytic S α 0 -space for some index α 0 . Then X × S α 0 S is a weak limit of (X × S α 0 S α ) α≤α 0 .

Proof. We reduce easily to the case where S , the S α 's and X are quasi-compact and quasiseparated. We will check that condition (1 ′ ) of Lemma 2. To prove this assertion, choose a formal model X → S α 0 of X → S α 0 and use Example 2.8.11 and the isomorphism of formal schemes X × S α 0 Spf(κ + (s)) ≃ lim α≤α 0 X × S α 0 Spf(κ + (s α )). □ Theorem 2.8.15. Let (S α ) α be a cofiltered inverse system of rigid analytic spaces, with quasicompact and quasi-separated transition maps, and admitting a weak limit S . Let τ ∈ {nis, ét}, and assume one of the following two alternatives.

(1) We work in the non-hypercomplete case, and S and the S α 's are locally of finite Krull dimension. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective.

(2) We work in the hypercomplete case, and S and the S α 's are (Λ, τ)-admissible (see Definition 2.4.14). When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that, for every s ∈ |S | with images s α ∈ |S α |, the Λ-cohomological dimensions of the residue fields κ(s α ) are bounded independently of α.

Then, the obvious functor

colim α RigSH (eff, ∧) τ (S α ; Λ) → RigSH (eff, ∧) τ (S ; Λ), (2.43)
where the colimit is taken in Pr L , is an equivalence.

Proof. Let U α 0 , • → S α 0 be a hypercover of S α 0 in the analytic topology with U α 0 , n a disjoint union of a family (U α 0 , n, i ) i∈I n of open subspaces of S α 0 . Set U α, n, i = U α 0 , n, i × S α 0 S α and U n, i = U α 0 , n, i × S α 0 S . We have hypercovers U α, • → S α and U • → S with U α, n = i∈I n U α, n, i and similarly for U n . By [Lur17, Proposition 4.7.4.19], there is an equivalence of ∞-categories

colim α lim [n]∈∆ i∈I n RigSH (eff, ∧) τ (U α, n, i ; Λ) ≃ lim [n]∈∆ i∈I n colim α RigSH (eff, ∧) τ (U α, n, i ; Λ).
(2.44)

The right adjointability of the squares that is needed for [Lur17, Proposition 4.7.4.19] holds by the base change theorem for open immersions, which is a special case of Proposition 2.2.1(3). The presheaf RigSH (eff, ∧) τ (-; Λ) admits descent for the hypercovers U • → S and U α, • → S α by Theorem 2.3.4. (In the non-hypercomplete case, we use the assumption that S and the S α 's have locally finite Krull dimension so that descent implies hyperdescent by [CM21, Theorem 3.12] and [Lur09, Corollary 7.2.1.12].) Therefore, the equivalence (2.44) shows that it is enough to prove the theorem for the inverse systems (U α, n, i ) α≤α 0 . In particular, we may assume that the S α 's are quasi-compact and quasi-separated.

Denote by Op qcqs /S the category of quasi-compact and quasi-separated open subspaces of S , and similarly for other rigid analytic spaces. Given that Op qcqs /S = colim α Op qcqs /S α , there exists a Pr L -valued presheaf R on Op qcqs /S given by

R(U) = colim α≥α 0 RigSH (eff, ∧) τ (U α ; Λ) for any U α 0 ∈ Op qcqs /S α 0 such that U = U α 0 × S α 0 S . (As usual, we set U α = U α 0 × S α 0 S α .) Moreover,
we have a morphism of Pr L -valued presheaves

ϕ : R → RigSH (eff, ∧) τ (-; Λ)
on Op qcqs /S . Since S belongs to Op qcqs /S , it suffices to show that ϕ is an equivalence of presheaves. We will achieve this by showing the following two properties:

(1) R and RigSH (eff, ∧) τ (-; Λ) are hypersheaves on Op qcqs /S for the analytic topology; (2) ϕ induces an equivalence on stalks for the analytic topology at every point s ∈ |S |. This suffices indeed by Propositions 2.8.1 and 2.8.4, since the presheaves R and RigSH (eff, ∧) τ (-; Λ) on Op qcqs /S take values in Pr L ω by Proposition 2.4.22. First, we prove (1). That RigSH (eff, ∧) τ (-; Λ) is a hypersheaf on Op qcqs /S was mentioned above. To handle the case of R, we use again [CM21, Theorem 3.12] and [Lur09, Corollary 7.2.1.12] which insure that a sheaf on Op qcqs /S is automatically a hypersheaf. Thus, it is enough to show that R admits descent for truncated hypercovers U • in Op qcqs /S . We may assume that U -1 = S . Every such hypercover, is the inverse image of a truncated hypercover U α 0 , • with U α 0 ,-1 = S α 0 . We may then use the equivalence (2.44) to conclude.

Next, we prove (2). Fix s ∈ |S | with images s α ∈ |S α |. Since every quasi-compact and quasiseparated open neighbourhood of s is the inverse image of a quasi-compact and quasi-separated open neighbourhood of s α , for α small enough, the functor ϕ s can be rewritten as follows:

colim α RigSH (eff, ∧) τ (-; Λ) s α → RigSH (eff, ∧) τ (-; Λ) s .
Using Theorem 2.8.6 (and Remark 2.8.7), this functor is equivalent to

colim α RigSH (eff, ∧) τ (s α ; Λ) → RigSH (eff, ∧) τ (s; Λ).
By Theorem 2.5.1, the latter is an equivalence. □ 2.9. (Semi-)separatedness.

In this subsection, we discuss two basic properties of the functor RigSH (eff, ∧) τ (-; Λ), namely semi-separatedness and separatedness. Definition 2.9.1. Let e : X ′ → X be a morphism of rigid analytic spaces.

(1) We say that e is radicial if |e| : |X ′ | → |X| is injective and, for every x ′ ∈ |X ′ | with image

x ∈ |X|, the residue field κ(x ′ ) contains a dense purely inseparable extension of κ(x).

(2) We say that e is a universal homeomorphism if it is quasi-compact, quasi-separated, surjective and radicial. (See Remark 2.9.2 below.)

Remark 2.9.2.

(1) Radicial morphisms and universal homeomorphisms are stable under base change.

(2) If e : X ′ → X is a universal homeomorphism, then |e| : |X ′ | → |X| is a quasi-compact and quasi-separated bijection which detects generisation. By [Sta20, Lemma 09XU], this implies that |e| : |X ′ | → |X| is a homeomorphism of topological spaces. Moreover, by (1), this property is preserved by base change, which explains our terminology. (3) A morphism of schemes e : X ′ → X is called a universal homeomorphism if every base change of e induces a homeomorphism on the underlying topological spaces. By [Gro67, Chapitre IV, Corollaire 18.12.13], this is equivalent to saying that e is entire, surjective and radicial.

Lemma 2.9.3. Let e : X ′ → X be a universal homeomorphism of rigid analytic spaces. The induced morphism e : ( Ét/X ′ , τ) → ( Ét/X, τ) is an equivalence of sites, i.e., induces an equivalence between the associated ordinary topoi, for τ ∈ {an, nis, ét}. In particular, we have an equivalence of ∞-categories Shv (∧) τ ( Ét/X ′ ; Λ) ≃ Shv (∧) τ ( Ét/X; Λ).

Proof. The second assertion follows from the first one using Lemma 2.1.4. To prove the first assertion, we need to show that the unit id → e * e * and counit e * e * → id are equivalences on τsheaves of sets (i.e., on discrete τ-sheaves). For x ∈ |X|, we have a morphism of sites ( Ét/x, τ) → ( Ét/X, τ), and we denote by x * the associated inverse image functor. Then, the functors x * , for x ∈ |X|, are jointly conservative on τ-sheaves of sets. The same discussion is equally valid for points of X ′ . Thus, we are left to show that the natural transformations x * → x * e * e * and x ′ * e * e * → x ′ * are equivalences on τ-sheaves of sets for all x ∈ |X| and x ′ ∈ |X ′ |. Assuming that x is the image of x ′ , these natural transformations are equivalent to x * → e x, * e * x x * and e * x e x, * x ′ * → x ′ * , where e x : x ′ → x is the obvious morphism. This follows from Remark 2.7.3 and the fact that the morphism x ′ → X ′ × X x identifies x ′ with (X ′ × X x) red . Thus, we are reduced to prove the lemma for rigid points. Since κ(x ′ ) contains a dense purely inseparable extension of κ(x), the functor Ét/x → Ét/x ′ is an equivalence of categories which respects the analytic, Nisnevich and étale topologies. □ Remark 2.9.4. Lemma 2.9.3 admits a variant for universal homeomorphisms of schemes which is well-known, see [SGAIV2, Exposé VIII, Théorème 1.1].

Corollary 2.9.5. Let e : S ′ → S be a universal homeomorphism of rigid analytic spaces. Then, for τ ∈ {nis, ét}, we have a coCartesian square in Pr L RigSH (eff) nis (S ; Λ)

e * G G
RigSH (eff) nis (S ′ ; Λ)

RigSH (eff, ∧) τ (S ; Λ) e * G G RigSH (eff, ∧) τ (S ′ ; Λ).
Said differently, RigSH (eff) nis (S ′ ; Λ) → RigSH (eff, ∧) τ (S ′ ; Λ) is a localisation functor with respect to the image by e * of morphisms of the form colim [n]∈∆ M (eff) (U • ) → M (eff) (U -1 ), and their desuspensions and negative Tate twists when applicable, with U • a τ-hypercover in RigSm/S which we assume to be truncated in the non-hypercomplete case.

Proof. Using Remark 2.1.17, one reduces easily to the effective case. From the construction, one sees immediately that RigSH eff nis (S ′ ; Λ) → RigSH eff, (∧) τ (S ′ ; Λ) is the localisation functor with respect to morphisms of the form α ′ * n F ′ → α ′ * n G ′ where:

• α ′ n : (RigSm/S ′ , τ) → ( Ét/B n S ′ , τ
) is the premorphism of sites given by the obvious functor; and Lemma 2.9.3 which insures that the upper horizontal arrow is an equivalence of ∞-categories respecting τ-local equivalences (in both the hypercomplete and non-hypercomplete cases). □ Theorem 2.9.6 (Semi-separatedness). Let τ ∈ {nis, ét}. Let e : X ′ → X be a universal homeomorphism of rigid analytic spaces. Assume that X has locally finite Krull dimension. Assume also that every prime number is invertible in either O X or π 0 Λ. Then the functor e * :

• F ′ → G ′ is a morphism in Shv nis ( Ét/B n S ′ ; Λ) inducing an equivalence in Shv (∧) τ ( Ét/B n S ′ ; Λ). For example, F ′ → G ′ could be colim [n]∈∆ Λ nis (U ′ • ) → Λ nis (U ′ -1 ) with U ′ • a τ-hypercover in ( Ét/B n S ′ ,
RigSH (∧) τ (X; Λ) → RigSH (∧) τ (X ′ ; Λ) is an equivalence of ∞-categories.
Proof. By Corollary 2.9.5, we may assume that τ is the Nisnevich topology. Since X and X ′ are locally of finite Krull dimension, we are automatically working in the non-hypercomplete case by Proposition 2.4.19. We need to show that the unit id → e * e * and the counit e * e * → id are equivalences. By Corollary 2.8.8, it is enough to show that the natural transformations x * → x * e * e * and x ′ * e * e * → x ′ * are equivalences for all points x ∈ |X| and x ′ ∈ |X ′ |. (Here, we denote by x the morphism of rigid analytic spaces x → X associated to the point x ∈ |X|, and similarly for x ′ .) Assuming that x is the image of x ′ , these natural transformations are equivalent to x * → e x, * e * x x * and e *

x e x, * x ′ * → x ′ * , where e x : x ′ → x is the obvious morphism. This follows from Theorem 2.7.1 and the fact that the morphism x ′ → X ′ × X x identifies x ′ with (X ′ × X x) red . Thus, we are reduced to prove the result for the morphism e x : x ′ → x of rigid points. Moreover, we can write x ′ ∼ lim α x α with (x α ) α the cofiltered inverse system of rigid analytic x-points such that κ(x α ) is a finite purely inseparable extension of κ(x) contained in κ(x ′ ). Using Theorem 2.8.15, we reduce to show that e * is an equivalence for a morphism of rigid points e : x ′ → x such that κ(x ′ )/κ(x) is a finite purely inseparable extension.

Arguing as in [Ayo14a, Sous-lemme 1.4], we see that e * e * ≃ id. Thus, we only need to check that id → e * e * is an equivalence. Since e * and e * commute with colimits (by Proposition 2.4.22), it is enough to show that id → e * e * is an equivalence when applied to a set of compact generators. Such a set is given, up to desuspension and negative Tate twists, by objects of the form f ♯ Λ with f : Spf(A) rig → x where A a rig-smooth κ + (x)-adic algebra. Set A ′ = A ⊗ κ + (x) κ + (x ′ ), and let e ′ : Spf(A ′ ) rig → Spf(A) rig and f ′ : Spf(A ′ ) rig → x ′ be the obvious morphisms. Using Propositions 2.2.1 and 2.2.12(2), we have equivalences e * e * f ♯ ≃ e * f ′ ♯ e ′ * ≃ f ♯ e ′ * e ′ * . Thus, to finish the proof, we only need to show that Λ → e ′ * e ′ * Λ is an equivalence in RigSH nis (Spf(A) rig ; Λ). Recall that there is a morphism of Pr L -valued presheaves An * : SH nis (-; Λ) → RigSH nis ((-) an ; Λ) on Sch lft /U, with U = Spec(A[π -1 ]) where π ∈ κ + (x) a generator of an ideal of definition. Calling e ′′ : Spec(A ′ [π -1 ]) → Spec(A[π -1 ]) the obvious morphism, we have, by Proposition 2.2.14, equivalences An * e ′′ * e ′′ * ≃ e ′ * e ′ * An * . Thus, it is enough to show that Λ → e ′′ * e ′′ * Λ is an equivalence in SH nis (Spec(A[π -1 ]); Λ). This follows from Theorem 2.9.7 below. □ Theorem 2.9.7. Let τ ∈ {nis, ét}. Let e : X ′ → X be a universal homeomorphism of schemes. Assume that every prime number is invertible in either O X or π 0 Λ. Then the functor

e * : SH (∧) τ (X; Λ) → SH (∧) τ (X ′ ; Λ) is an equivalence of ∞-categories.
Proof. Using the algebraic analogue of Corollary 2.9.5, we may assume that τ is the Nisnevich topology and we may work in the non-hypercomplete case. Then, the statement is [EK20, Theorem 2.1.1]. Alternatively, we may remark that the proof of [Ayo14a, Théorème 3.9] can be extended easily to the case of SH nis (-; Λ). We explain this below.

The problem is local on X, so we may assume that X is affine. By [Sta20, Lemma 0EUJ], X ′ is the limit of a cofiltered inverse system of finitely presented X-schemes (X ′ α ) α , with X ′ α → X universal homeomorphisms. Using Proposition 2.5.11, we thus reduce to the case where e is assumed to be of finite presentation. In this case, writing X as the limit of a cofiltered inverse system (X α ) α consisting of Z-schemes which are essentially of finite type, the scheme X ′ is the limit of (X ′ α 0 × X α 0 X α ) α≤α 0 for a finite universal homeomorphism X ′ α 0 → X α 0 . Using Proposition 2.5.11 again and base change for finite morphisms, we reduce to the case where X is of finite type over Z. In conclusion, we may assume that X has finite Krull dimension and that X ′ → X is finite.

Arguing as in the beginning of the proof of Theorem 2.9.6, and using Remark 2.8.9 instead of Corollary 2.8.8 and base change for finite morphisms instead of Theorem 2.7.1, we reduce to the case where X is the spectrum of a field K, and X ′ the spectrum of a finite purely inseparable extension K ′ /K. If K has characteristic zero, then K = K ′ and there is nothing left to prove. So, we may assume that K has positive characteristic p. We then write Spec(K) as the limit of a cofiltered inverse system of finite type F p -schemes (X α ) α and Spec(K ′ ) as the limit of (X ′ α 0 × X α 0 X α ) α≤α 0 for a finite universal homeomorphism X ′ α 0 → X α 0 . Thus, as before, we are finally reduced to treat the case where X and X ′ are of finite type over F p . This case follows from [Ayo14a, Théorème 1.2]. Indeed, the condition (SS p ) of loc. cit. is satisfied for SH nis (-; Λ), when p is invertible in π 0 Λ, as shown in [Ayo14a, Annexe C]. In fact, in loc. cit., this is stated explicitly in [Ayo14a, Théorème C.1] for DA ∧ ét (-; Λ), but the proofs apply also to SH nis (-; Λ). Indeed, the main point is to show that elevation to the power p n on the multiplicative group G m induces an autoequivalence of M(G m ) in SH(F p ; Λ); see [START_REF] Ayoub | La réalisation étale et les opérations de Grothendieck[END_REF]Lemme C.4]. This follows from the fact that elevation to the power m on G m induces the endomorphism of Λ(1) given by multiplication by the element m ϵ = m i=1 ⟨(-1) i-1 ⟩ in K MW 0 (F p ); see [START_REF] Morel | A 1 -algebraic topology over a field[END_REF]Lemma 3.14]. That this element is invertible in the endomorphism ring of Λ(1) when m = p n is proven in [EK20, Lemma 2.2.8]. □ Remark 2.9.8. In the statement of Theorem 2.9.6, we made the assumption that the rigid analytic space X has locally finite Krull dimension, whereas the analogous assumption was not necessary for Theorem 2.9.7. This is because we do not know if the analogue of [Sta20, Lemma 0EUJ] holds for rigid analytic spaces. This is indeed the only obstacle for removing the assumption on the Krull dimension in Theorem 2.9.6. Said differently, semi-separatedness for rigid analytic motives holds for a universal homeomorphism e : X ′ → X when, locally on X, this morphism can be obtained as a weak limit of a cofiltered inverse system of universal homeomorphisms (e α : X ′ α → X α ) α where the X α 's have finite Krull dimension.

Proposition 2.9.9 (Separatedness). Let f : Y → X be a morphism of rigid analytic spaces. Assume that X is (Λ, ét)-admissible, and that for every point x ∈ |X|, there is a point y ∈ |Y| mapping to x and such that κ(y) contains a dense algebraic extension of κ(x). Then the functor

f * : RigSH (eff), ∧ ét (X; Λ) → RigSH (eff), ∧ ét (Y; Λ) is conservative.
Proof. Using Corollary 2.8.8, we reduce to the case of rigid points. More precisely, we need to prove that a morphism f : y → x of rigid points, with κ(y) containing a dense algebraic extension of κ(x), induces a conservative functor

f * : RigSH (eff), ∧ ét (x; Λ) → RigSH (eff), ∧ ét (y; Λ).
To do so, we may obviously replace y by any rigid x-point y ′ admitting an x-morphism y ′ → y. Since the completion of a separable closure of κ(x) is algebraically closed, we may take for y ′ a rigid x-point x as in Construction 1.4.27(2): κ(x) is the completion of a separable closure κ(x) of κ(x) and κ + (x) is the completion of a valuation ring κ + (x) ⊂ κ(x) extending κ + (x). In this case, we have x ∼ lim α x α where (x α ) α is the inverse system of rigid x-points such that κ(x α ) is a finite subextension of κ(x)/κ(x). By Theorem 2.8.6, we have an equivalence:

RigSH (eff), ∧ ét (-; Λ) x ≃ RigSH (eff), ∧ ét (x; Λ)
where the left-hand side is the stalk of RigSH (eff), ∧ ét (-; Λ) at the point x of the site ( Ét/x, ét). Since this point is conservative, we deduce from Lemma 2.8.5(2) that the functor

RigSH (eff), ∧ ét (x; Λ) → RigSH (eff), ∧ ét (x; Λ)
is conservative, as needed. □ Corollary 2.9.10. Let X be a (Λ, ét)-admissible rigid analytic space, and let f : Y → X be a locally of finite type surjective morphism. Then the functor

f * : RigSH (eff), ∧ ét (X; Λ) → RigSH (eff), ∧ ét (Y; Λ) is conservative.
Proof. For every point x ∈ |X|, we may find a point y ∈ |Y| mapping to x and such that κ(y)/κ(x) is a finite extension. (This follows from [FK18, Chapter II, Proposition 8.2.6] by a standard argument.) Thus, the result is a particular case of Proposition 2.9.9. □ Corollary 2.9.11. Let e : X ′ → X be a universal homeomorphism of rigid analytic spaces, and assume that X is (Λ, ét)-admissible. Then, the functor

e * : RigSH (eff), ∧ ét (X; Λ) → RigSH (eff), ∧ ét (X ′ ; Λ)
is an equivalence of ∞-categories.

Proof. The morphism (X ′ ) red → (X ′ × X X ′ ) red is a closed immersion and a universal homeomorphism, hence it is an isomorphism. Arguing as in [Ayo14a, Sous-lemme 1.4], we deduce that e * e * ≃ id. Since e * is conservative by Proposition 2.9.9, the result follows. □ Remark 2.9.12. Of course, the T-stable case of Corollary 2.9.11 is already covered by Theorem 2.9.6 under weaker assumptions. The content of this corollary is that semi-separatedness holds also for effective étale motives. It is worth noting that the algebraic analogue of this result is unknown.

Remark 2.9.13. Corollary 2.9.11 can be used to improve on the main result of [START_REF] Vezzani | Effective motives with and without transfers in characteristic p[END_REF]. Indeed, given a rigid variety B over a non-Archimedean field K, Corollary 2.9.11 implies that RigDA eff, (∧) ét (B; Q) is equivalent to the ∞-category RigDA eff, (∧) Frobét (B Perf ; Q) introduced in [Vez17, Definition 3.5]. Thus, assuming that B is normal, [Vez17, Theorem 4.1] can be stated more naturally as an equivalence of ∞-categories

RigDA eff, (∧) ét (B; Q) ≃ RigDM eff, (∧) ét (B; Q).
In fact, this equivalence can be obtained more directly by arguing as in the proof of loc. cit., without mentioning the ∞-category RigDA eff, (∧) Frobét (B Perf ; Q). We leave the details to the interested reader. 2.10. Rigidity.

Here, we discuss the rigidity property for rigid analytic motives. Rigidity is the property that the ∞-category of torsion étale motives over a base is equivalent to the ∞-category of torsion étale sheaves on the small étale site of the same base. Rigidity for rigid analytic motives was obtained in [BV21, Theorem 2.1] for RigDA ∧ ét (S ; Λ), with S of finite type over a non-Archimedean field and Λ an ordinary torsion ring. Rigidity in the algebraic setting was obtained in [Ayo14a, Théorème 4.1] for DA ∧ ét (-; Λ), with Λ an ordinary torsion ring, and in [Bac21a, Theorem 6.6] for SH ∧ ét (-; Λ), with Λ the sphere spectrum. In the recent preprint [START_REF] Bachmann | Remarks on étale motivic stable homotopy theory[END_REF], Bachmann proved rigidity for effective motives and removed all finiteness assumptions on the base scheme. We shall revisit these results in this subsection, mainly following [START_REF] Bachmann | Rigidity in étale motivic stable homotopy theory[END_REF][START_REF] Bachmann | Remarks on étale motivic stable homotopy theory[END_REF].

Notation 2.10.1. Let C be a stable presentable ∞-category and ℓ a prime number. An object

A of C is said to be ℓ-nilpotent if the zero object of C is a colimit of the N-diagram A ℓ•id --→ A ℓ•id --→ A ℓ•id --→ • • • . An object A of C is said to be ℓ-complete if the zero object of C is a limit of the N op -diagram • • • ℓ•id --→ A ℓ•id --→ A ℓ•id --→ A.
We denote by C ℓ-nil ⊂ C and C ℓ-cpl ⊂ C the sub-∞-categories spanned by ℓ-nilpotent and ℓ-complete objects respectively. Given an object A of C, we denote by A/ℓ n the cofiber of the map

ℓ n • id : A → A.
Since multiplication by ℓ 2n is zero on A/ℓ n , it is both ℓ-nilpotent and ℓ-complete.

We gather a few facts concerning the notions of ℓ-nilpotent and ℓ-complete objects in the following remark. We refer the reader to [Lur18, Part II, Chapter 7] where these notions are developed in greater generality. See also [Bac21a, §2.1].

Remark 2.10.2. Let C be a stable presentable ∞-category and ℓ a prime number. We denote by C[ℓ -1 ] the full sub-∞-category of C spanned by those objects for which multiplication by ℓ is an equivalence.

(1) The ∞-category C ℓ-nil is stable, presentable and generated under colimits by the objects of the form A/ℓ n , for A ∈ C. The inclusion functor C ℓ-nil → C commutes with colimits and finite limits. If C is compactly generated, then so it is C ℓ-nil .

(2) The ∞-category C ℓ-cpl is the localisation of C with respect to the maps 0 → A, for A ∈ C[ℓ -1 ]. We denote by (-) ∧ ℓ : C → C ℓ-cpl the left adjoint to the inclusion functor. This is called the ℓ-completion functor.

(3) The ℓ-completion functor induces an equivalence of ∞-categories

(-) ∧ ℓ : C ℓ-nil ∼ - → C ℓ-cpl .
In particular, we see that C ℓ-cpl is stable, presentable and generated under colimits by the objects of the form A/ℓ n , for

A ∈ C. If C is compactly generated, then so is C ℓ-cpl . (4) If C underlies a presentable symmetric monoidal ∞-category C ⊗ , then there is an essentially unique morphism C ⊗ → C ⊗ ℓ-cpl in CAlg(Pr L ) whose underlying functor is (-) ∧ ℓ : C → C ℓ-cpl . (5) Suppose that C is given as a colimit in Pr L of an inductive system (C α ) α of stable pre- sentable ∞-categories. Then C[ℓ -1 ] is also the colimit of the inductive system (C α [ℓ -1 ]) α in Pr L .
(This uses the fact that a colimit in Pr L can be computed as a limit in Pr R .) In particular, C[ℓ -1 ] is generated under colimits by the images of the functors

C α [ℓ -1 ] → C[ℓ -1 ].
It follows from (2) and the universal property of localisations (see [Lur09, Proposition 5.5.4.20]) that C ℓ-cpl is the colimit in Pr L of the inductive system (C α, ℓ-cpl ) α . Using (3), we deduce that C ℓ-nil is also the colimit in Pr L of the inductive system (C α, ℓ-nil ) α .

Theorem 2.10.3 (Rigidity). Let S be a rigid analytic space and ℓ a prime number which is invertible in κ(s) for every s ∈ |S |. Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case and Λ is eventually coconnective.

(2) We work in the hypercomplete case. Then the obvious functor

Shv (∧) ét ( Ét/S ; Λ) ℓ-cpl → RigSH (eff, ∧) ét (S ; Λ) ℓ-cpl (2.45)
is an equivalence of ∞-categories. (The same is true with "ℓ-nil" instead of "ℓ-cpl".)

We also have the algebraic analogue of Theorem 2.10.3 which can be stated as follows.

Theorem 2.10.4. Let S be a scheme and ℓ a prime number which is invertible on S . Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case and Λ is eventually coconnective.

(2) We work in the hypercomplete case. Then the obvious functor

Shv (∧) ét ( Ét/S ; Λ) ℓ-cpl → SH (eff, ∧) ét (S ; Λ) ℓ-cpl (2.46)
is an equivalence of ∞-categories. (The same is true with "ℓ-nil" instead of "ℓ-cpl".)

Proof. We first consider the alternative (1). We may assume that S is affine and given as the limit of a cofiltered inverse system (S α ) α of affine schemes of finite type over Z. By the algebraic analogue of Lemma 2.4.21 and Proposition 2.5.11, it is enough to prove the conclusion for the S α 's. Thus, me may assume that S is of finite type over Z and hence (Λ, ét)-admissible. By the algebraic analogue of Lemma 2.4.18(2) and Proposition 3.2.2 below, we are then automatically working in the hypercomplete case. This means that we only need to consider the alternative (2). In that case, the result is essentially [Bac21a, Theorem 6.6] improved in [Bac21b, Theorem 3.1]. □ Remark 2.10.5. Arguing as above, we only need to prove Theorem 2.10.3 under the second alternative. Indeed, by Lemma 2.4.21 and Theorem 2.5.1 we may assume that S is (Λ, ét)-admissible. In this case, there is no distinction between the hypercomplete and the non-hypercomplete cases by Lemma 2.4.18(2) and Proposition 2.4.19.

Our proof of Theorem 2.10.3 follows the arguments in [START_REF] Bachmann | Rigidity in étale motivic stable homotopy theory[END_REF][START_REF] Bachmann | Remarks on étale motivic stable homotopy theory[END_REF] and relies on some of the key steps in loc. cit. We start with a reduction to the (Λ, ét)-admissible case.

Lemma 2.10.6. To prove Theorem 2.10.3, we may work in the hypercomplete case and assume that S is (Λ, ét)-admissible.

Proof. We said already that it is enough to work under the second alternative. Assume that Theorem 2.10.3 is known in the hypercomplete case when the base is (Λ, ét)-admissible. To prove the theorem in general, we argue as in the proof of [Bac21b, Theorem 3.1]. We may assume that S = S rig where S is an affine formal scheme given as the limit of an affine formal pro-scheme (S α ) α such that the S α 's are of finite type over Z[ℓ -1 ][[π]]. We set S α = S rig α ; these are (Λ, ét)-admissible rigid analytic spaces. By Lemma 2.4.21, Theorem 2.5.1 and Remark 2.10.2(5), we have a commutative square

colim α Shv nis (S α ; Λ) ℓ-cpl ∼ G G Shv nis (S ; Λ) ℓ-cpl colim α RigSH (eff) nis (S α ; Λ) ℓ-cpl ∼ G G RigSH (eff) nis (S ; Λ) ℓ-cpl
where the horizontal arrows are equivalences of ∞-categories. It follows that in the analogous commutative square

colim α Shv ∧ ét (S α ; Λ) ℓ-cpl G G ∼ Shv ∧ ét (S ; Λ) ℓ-cpl colim α RigSH (eff), ∧ ét (S α ; Λ) ℓ-cpl G G RigSH (eff), ∧ ét (S ; Λ) ℓ-cpl ,
the horizontal arrows are localisation functors, whereas, by assumption, the left vertical arrow is an equivalence. This shows that

Shv ∧ ét (S ; Λ) ℓ-cpl → RigSH (eff), ∧ ét (S ; Λ) ℓ-cpl (2.47)
is a localisation functor. To finish the proof, it remains to see that (2.47) is conservative. Given a geometric rigid point s → S , we have a commutative square

Shv ∧ ét (S ; Λ) ℓ-cpl G G RigSH (eff), ∧ ét (S ; Λ) ℓ-cpl Shv ∧ ét (s; Λ) ℓ-cpl ∼ G G RigSH (eff), ∧ ét (s; Λ) ℓ-cpl ,
and the bottom arrow is an equivalence, again by assumption, since s is (Λ, ét)-admissible. This proves that the functor (-) s : Shv ∧ ét (S ; Λ) ℓ-cpl → (Mod Λ ) ℓ-cpl factors through (2.47). We conclude using Propositions 1.4.29 and 2.8.1.

□

We now introduce some notations.

Notation 2.10.7. Let S be a rigid analytic space. The ℓ-completion of the constant étale sheaf Λ ∈ Shv (∧) ét ( Ét/S ; Λ) will be denoted simply by Λ ℓ . This is the unit object of Shv (∧) ét ( Ét/S ; Λ) ℓ-cpl endowed with its natural monoidal structure. We denote by ι * S : Shv (∧) ét ( Ét/S ; Λ) → RigSH eff, (∧) ét (S ; Λ)

the obvious functor, and by ι S , * its right adjoint. Similarly, we denote by

ι * S , ℓ : Shv (∧) ét ( Ét/S ; Λ) ℓ-cpl → RigSH eff, (∧) ét (S ; Λ) ℓ-cpl
the functor induced by ι * S on ℓ-completed objects, and by ι S , ℓ, * its right adjoint. We denote by Σ ∞ T, ℓ : RigSH eff, (∧) ét (S ; Λ) ℓ-cpl → RigSH (∧) ét (S ; Λ) ℓ-cpl the functor induced by Σ ∞ T on ℓ-completed objects, and by Ω ∞ T, ℓ its right adjoint. (See Definition 2.1.15.) The functor (2.45) is given by ι * S , ℓ in the effective case and by Σ ∞ T, ℓ • ι * S , ℓ in the T-stable case. These notations apply also when S is a scheme.

Recall that U 1 S is the relative unit sphere over the rigid analytic space S . (See Notation 2.1.10(3).) Lemma 2.10.8. Let S be a rigid analytic space and ℓ a prime number which is invertible in κ(s) for every s ∈ |S |. There is a ⊗-invertible object Λ ℓ (1) in Shv ∧ ét (S ; Λ) ℓ-cpl together with a morphism σ : Λ ℓ → Λ ℓ (1) [1] (2.48)

in Shv ∧ ét ( Ét/U 1 S ; Λ) ℓ-cpl endowed with a trivialisation (i.e., a homotopy to the null morphism) over the unit section 1 S ⊂ U 1 S . Moreover, the induced morphism σ :

T ∧ ℓ → ι * S , ℓ (Λ ℓ (1)[1]) is an equiva- lence in RigSH eff, ∧ ét (S ; Λ) ℓ-cpl .
Proof. We may construct Λ ℓ (1) and σ : Λ ℓ → Λ ℓ (1)[1] locally on S provided that the construction is compatible with base change. Assume that S = Spf(A) rig with A an adic ring. Let I ⊂ A be an ideal of definition and set U = Spec(A) ∖ Spec(A/I). We denote by Λ ℓ (1) ∈ Shv ∧ ét ( Ét/U; Λ) ℓ-cpl the ⊗-invertible object obtained from the one introduced in [Bac21a, Definition 3.9] by extension of scalars to Λ. Also, let σ : Λ ℓ → Λ ℓ (1)[1] be the morphism in Shv ∧ ét ( Ét/A 1 U ∖ 0 U ; Λ) ℓ-cpl obtained from the one introduced in [Bac21a, Definition 3.13] by extension of scalars to Λ. As explained in the beginning of [Bac21a, §6], a trivialisation of σ above 1 S gives rise to a morphism T

∧ ℓ → ι * U, ℓ Λ ℓ (1)[1] in SH eff, ∧ ét (U; Λ) ℓ-cpl .
As explained in the beginning of the proof of [Bac21b, Theorem 3.1], this morphism is an equivalence (see also [START_REF] Bachmann | Rigidity in étale motivic stable homotopy theory[END_REF]Theorem 6.5] in the T-stable case). The lemma follows now from the existence of a commutative square of stable presentable ∞-categories

Shv ∧ ét ( Ét/U; Λ) ι * U G G SH eff, ∧ ét (U; Λ) Shv ∧ ét ( Ét/S ; Λ) ι * S G G RigSH eff, ∧ ét (S ; Λ)
where the vertical arrows are induced by the analytification functor. □ Corollary 2.10.9. Let S be a rigid analytic space and ℓ a prime number which is invertible in κ(s) for every s ∈ |S |. Then the obvious functor

Σ ∞ T, ℓ : RigSH eff, ∧ ét (S ; Λ) ℓ-cpl → RigSH eff, ∧ ét (S ; Λ) ℓ-cpl
is an equivalence of ∞-categories. (The same is true with "ℓ-nil" instead of "ℓ-cpl".)

Proof. Indeed, by Remarks 2.1.17 and 2.10.2(5), RigSH ∧ ét (S ; Λ) ℓ-cpl is the colimit in Pr L of the Ndiagram whose transition maps are given by tensoring with T ∧ ℓ in RigSH eff, ∧ ét (S ; Λ) ℓ-cpl . The result follows since T ∧ ℓ is ⊗-invertible by Lemma 2.10.8. □ Lemma 2.10.10. Let S be a (Λ, ét)-admissible rigid analytic space and ℓ a prime number which is invertible in κ(s) for every s ∈ |S |. Then the obvious functor

Shv ∧ ét ( Ét/S ; Λ) ℓ-cpl → RigSH (eff), ∧ ét (S ; Λ) ℓ-cpl (2.49)
is fully faithful. (The same is true with "ℓ-nil" instead of "ℓ-cpl".)

Proof. By Corollary 2.10.9, we only need to treat the effective case. The functor ι * S : PSh( Ét/S ; Λ) → PSh(RigSm/S ; Λ) is fully faithful and its right adjoint commutes with étale hypersheafification. It follows that the induced functor on étale hypersheaves ι * S : Shv ∧ ét ( Ét/S ; Λ) → Shv ∧ ét (RigSm/S ; Λ) is also fully faithful, and the same is true for the induced functor on ℓ-complete objects

ι * S , ℓ : Shv ∧ ét ( Ét/S ; Λ) ℓ-cpl → Shv ∧ ét (RigSm/S ; Λ) ℓ-cpl .
We claim that the functor ι * S , ℓ takes values in the sub-∞-category RigSH eff, ∧ ét (S ; Λ) ℓ-cpl spanned by B 1 -local objects; this would finish the proof. Indeed, let F be an ℓ-complete étale hypersheaf of Λmodules on Ét/S . Saying that ι * S , ℓ F is B 1 -local is equivalent to saying that for every X ∈ RigSm/S , the map Γ(X; F| X ) → Γ(B 1 X ; F| B 1 X ) is an equivalence. (Here, we denote by F| X the ℓ-complete inverse image of F along the morphism X → S , and similarly for F| B 1 X .) Since X is (Λ, ét)-admissible, the claim follows from Lemma 2.10.11(1) below (see also [Hub96, Example 0.1.1(2)]). □ Lemma 2.10.11. Let X be a (Λ, ét)-admissible rigid analytic space and ℓ a prime number which is invertible in κ(x) for every x ∈ |X|. Let p : B 1 X → X be the obvious projection and let F be an ℓ-complete étale hypersheaf on Ét/X. Then the map F → p * p * F is an equivalence.

Proof. It is enough to prove the results on the stalks for all geometric algebraic rigid points x → X. Using Remark 2.7.3, we reduce to show the following. Given a geometric rigid point s = Spf(V) rig and an ℓ-complete étale hypersheaf of Λ-modules F on Ét/s, the map F(s) → Γ(B 1 s ; F| B 1 s ) is an equivalence. Using Lemmas 2.4.5 and 2.4.11, we reduce to the case where F is bounded. By an easy induction, we reduce to the case where F is discrete, and we may then assume that F is an ordinary étale sheaf of Z/ℓ n -modules. The site ( Ét/s, ét) is equivalent to (FRig Ét/Spf(V), rigét) and, since s is geometric, it is also equivalent to ( Ét/Spec(V ′ ), ét), where V ′ = V/ √ (π) with π a generator of an ideal of definition of V. Thus, we may consider F as an ordinary étale sheaf on FRig Ét/Spf(V) and on Ét/Spec(V ′ ). We then have equivalences:

RΓ ét (B 1 s ; F| B 1 s ) ≃ RΓ rigét (A 1 V ; F| A 1 V ) ≃ RΓ ét (A 1 V ′ ; i * j * (Z/ℓ n ) ⊗ Z/ℓ n F| A 1 V ′ ).
(2.50)

Here i denotes the closed immersion Spec(V ′ ) → Spec(V) and its base changes, and j denotes the open complement of i and its base changes. The second equivalence in (2.50) follows from [Hub96, Corollary 3.5.16]. (More precisely, we reduce to the case where F is of the form i ′ * Z/ℓ n with i ′ : Spec(V ′′ ) → Spec(V ′ ) a closed immersion, and we remark that [Hub96, Corollary 3.5.16] is still valid if we replace the closed point of Spec(V) by a closed subscheme contained in Spec(V ′ ).) Using the smooth base change theorem in étale cohomology [SGAIV3, Exposé XVI, Théorème 1.1] and the fact that the fraction field of V is algebraically closed, we deduce that i * j * Z/ℓ n ≃ Z/ℓ n on A 1 V ′ . Thus, the last term in (2.50) is equivalent to RΓ ét (A 1

V ′ ; F| A 1 V ′ ) which, by homotopy invariance of étale cohomology [SGAIV3, Exposé XV, Corollaire 2.2], is equivalent to F(V ′ ) ≃ F(s). This proves that F(s) is indeed equivalent to RΓ(B 1 s ; F| B 1 s ) as needed. □
Proof of Theorem 2.10.3. Using Lemmas 2.10.6 and 2.10.10, it remains to see that the functor (2.49) is essentially surjective (still under the assumption that S is (Λ, ét)-admissible). Moreover, it is enough to do so in the T-stable case, by Corollary 2.10.9. We follow the argument used in the proof of [BV21, Theorem 2.1]. The question being local on S , we may assume that S = Spf(A) rig with A an adic ring of principal ideal type. Let π ∈ A be a generator of an ideal of definition and set U = Spec(A[π -1 ]). It is enough to show that the image of the functor (2.49), in the T-stable case, contains a set of generators of RigSH ∧ ét (S ; Λ) ℓ-cpl . Such a set of generators is given, up to shift and Tate twists, by M(V)/ℓ n where n ∈ N and V = Spf(B) rig with B a rig-étale adic A-algebra satisfying the conclusion of Proposition 1.3.15. Thus, there exists a smooth affine U-scheme X and an open immersion v : V → X an . Since we are allowed to replace V by the components of an analytic hypercover, we may assume that Ω X/U is free. Fix a projective compactification j : X → P over U and denote by f : X → U and p : P → U the structural morphisms. Thus, we have a commutative diagram

V v G G g 3 3 v 3 3 X an j an G G f an P an p an | | S . The motive M(V) is equivalent to g ♯ Λ ≃ f an ♯ v ♯ Λ.
Using Corollary 2.2.9, we see that M(V) is equivalent, up to shift and Tate twist, to f an ! v ♯ Λ ≃ p an ! j an ♯ v ♯ Λ ≃ p * v ♯ Λ. Using Lemmas 2.10.8 and 2.10.10, the image of the functor (2.49), in the T-stable case, is closed under shift and Tate twists. Therefore, it remains to see that the latter image contains p an * v ♯ Λ/ℓ n .

Clearly, v ♯ Λ/ℓ n belongs to the image of Σ ∞ T, ℓ • ι * P an , ℓ : Shv ∧ ét ( Ét/P an ; Λ) ℓ-cpl → RigSH ∧ ét (P an ; Λ) ℓ-cpl . Thus, it is enough to show that the natural transformation

Σ ∞ T, ℓ • ι * S , ℓ • p an * → p an * • Σ ∞ T, ℓ • ι * P an , ℓ is

an equivalence. (The first p an

* is the direct image functor on étale hypersheaves, and the second p an * is the direct image functor on rigid analytic motives.) Using Corollary 2.10.9, it is enough to show that the natural transformation ι * S , ℓ • p an * → p an * • ι * P an , ℓ is an equivalence. Given an ℓ-complete étale hypersheaf F on Ét/P an , the evaluation of ι * S , ℓ p an * F → p an * ι * P an F on a smooth rigid analytic S -space Y is given by Γ(Y; g * p an * F) → Γ(Y × S P an , g ′ * F) = Γ(Y; p ′ * g ′ * F) where p ′ and g ′ are as in the Cartesian square

Y × S P an g ′ G G p ′ P an p an Y g G G S .
The result follows now from the quasi-compact base change theorem, see Remark 2.7.3. □

Rigid analytic motives as modules in formal motives

This section contains one of the key results of the paper which, roughly speaking, gives a description of the functor RigSH (∧) τ (-; Λ) in terms of the functor SH (∧) τ (-; Λ). This can be considered as a vast generalisation of [Ayo15, Scholie 1.3.26]. In fact, we prefer to work with the functor FSH (∧) τ (-; Λ), sending a formal scheme to the ∞-category of formal motives, instead of the functor SH (∧) τ (-; Λ), but this is a merely aesthetic difference, by Theorem 3.1.10. For a precise form of the description alluded to, we refer the reader to Theorems 3.3.3 and 3.8.1.

We start by recalling the definition and the basic properties of the ∞-category FSH (eff, ∧) τ (S; Λ) of formal motives over a formal scheme S.

Formal and algebraic motives.

Recall that we denote by FSch the category of formal schemes and that, given a formal scheme S, we denote by FSm/S the category of smooth formal S-schemes. (Notations 1.1.5 and 1.4.9.) The ∞-category of formal motives over a formal scheme is constructed as in Definitions 2.1.11 and 2.1.15.

We fix a formal scheme S and τ ∈ {nis, ét}.

Definition 3.1.1. Let FSH eff, (∧) τ (S; Λ) be the full sub-∞-category of Shv (∧) τ (FSm/S; Λ) spanned by those objects which are local with respect to the collection of maps of the form Λ τ (A 1 X ) → Λ τ (X), for X ∈ FSm/S, and their desuspensions. Let L A 1 : Shv (∧) τ (FSm/S; Λ) → FSH eff, (∧) τ (S; Λ) (3.1) be the left adjoint to the obvious inclusion. This is called the A 1 -localisation functor. Given a smooth formal S-scheme X, we set M eff (X) = L A 1 (Λ τ (X)). This is the effective motive of X.

Remark 3.1.2. By [Lur17, Proposition 2.2.1.9], FSH eff, (∧) τ (S; Λ) underlies a unique monoidal ∞category FSH eff, (∧) τ (S; Λ) ⊗ such that L A 1 lifts to a monoidal functor. Moreover, this monoidal ∞category is presentable, i.e., belongs to CAlg(Pr L ). Definition 3.1.3. Let T S (or simply T if S is clear from the context) be the image by L A 1 of the cofiber of the split inclusion Λ τ (S) → Λ τ (A 1 S ∖ 0 S ) induced by the unit section. With the notation of [Rob15, Definition 2.6], we set

FSH (∧) τ (S; Λ) ⊗ = FSH eff, (∧) τ (S; Λ) ⊗ [T -1 S ]. (3.2)
More precisely, there is a morphism Σ ∞ T : FSH eff, (∧) τ (S; Λ) ⊗ → FSH (∧) τ (S; Λ) ⊗ in CAlg(Pr L ), sending T S to a ⊗-invertible object, and which is initial for this property. We denote by Ω ∞ T : FSH (∧) τ (S; Λ) → FSH eff, (∧) τ (S; Λ) the right adjoint to Σ ∞ T . Given a smooth formal S-scheme X, we set M(X) = Σ ∞ T M eff (X). This is the motive of X. Definition 3.1.4. Objects of FSH (∧) τ (S; Λ) are called formal motives over S. We will denote by Λ (or Λ S if we need to be more precise) the monoidal unit of FSH (∧) τ (S; Λ). For any n ∈ N, we denote by Λ(n) the image of T ⊗n S [-n] by Σ ∞ T , and by Λ(-n) the ⊗-inverse of Λ(n). For n ∈ Z, we denote by M → M(n) the Tate twist given by tensoring with Λ(n).

Remark 3.1.5.

(1) Remark 2.1.17 applies also in the case of formal motives: the ∞-category FSH (∧) τ (S; Λ) underlying (3.2) is equivalent to the colimit in Pr L of the N-diagram whose transition maps are given by tensoring with T S in FSH eff, (∧) τ (S; Λ).

(2) When Λ is the Eilenberg-Mac Lane spectrum associated to an ordinary ring, also denoted by Λ, the category FSH (eff, ∧) τ (S; Λ) is more commonly denoted by FDA (eff, ∧) τ (S; Λ). Also, when τ is the Nisnevich topology, we sometimes drop the subscript "nis".

(3) Just as in Remark 2.1.19, there is a more traditional description of the ∞-category FSH (eff, ∧) τ (S; Λ) using the language of model categories. This is the approach taken in [Ayo15, §1.4.2]. (4) If S is an ordinary scheme considered as a formal scheme in the obvious way, i.e., such that the zero ideal is an ideal of definition, then the ∞-category FSH (eff, ∧) τ (S ; Λ) is the usual ∞category SH (eff, ∧) τ (S ; Λ) of algebraic motives over S . More generally, by Theorem 3.1.10 below, the ∞-categories introduced in Definitions 3.1.1 and 3.1.3 are always equivalent to ∞-categories of algebraic motives. Lemma 3.1.6. The monoidal ∞-category FSH (eff, ∧) τ (S; Λ) ⊗ is presentable and its underlying ∞category is generated under colimits, and up to desuspension and negative Tate twists when applicable, by the motives M (eff) (X) with X ∈ FSm/S quasi-compact and quasi-separated. Notation 3.1.9. Recall that we denote by X σ the special fiber of a formal scheme X. (See Notation 1.1.6.) The functor X → X σ induces a functor (-) σ : FSm/S → Sm/S σ which is continuous for the topology τ. By the functoriality of the construction of ∞-categories of motives, we deduce an adjunction σ * : FSH (eff, ∧) τ (S; Λ) ⇄ SH (eff, ∧) τ (S σ ; Λ) : σ * .

(3.4) In fact, modulo the identification of Remark 3.1.5(4), σ * is simply the inverse image functor associated to the morphism of formal schemes X σ → X. Proof. This is [Ayo15, Corollaires 1.4.24 & 1.4.29] under the assumption that S is of finite type over Spf(k • ), with k • a complete valuation ring of height ≤ 1. However, this assumption is not used in the proofs of these results. □ Remark 3.1.11. Let f : Y → X be a morphism of formal schemes. Modulo the equivalences of Theorem 3.1.10, the operations f * and f * coincide with the operations f * σ and f σ, * associated to the morphism of schemes f σ : Y σ → X σ . When f σ is locally of finite type, we denote by f ! and f ! the operations on formal motives corresponding to the operations f σ,! and f ! σ on algebraic motives modulo the equivalences of Theorem 3.1.10 (in the T-stable case). Similarly, if f σ is smooth, we denote by f ♯ the operation corresponding to f σ, ♯ . Notation 3.1.12. Recall that we denote by X rig the generic fiber of a formal scheme X. (See Notation 1.1.8.) The functor X → X rig induces a functor (-) rig : FSm/S → RigSm/S rig which is continuous for the topology τ. By the functoriality of the construction of ∞-categories of motives, we deduce an adjunction These adjunctions will play an important role in this section.

Proposition 3.1.13. The functors ξ S , for S ∈ FSch, are part of a morphism of CAlg(Pr L )-valued presheaves ξ : FSH (eff, ∧) τ (-; Λ) ⊗ → RigSH (eff, ∧) τ ((-) rig ; Λ) ⊗ (3.7) on FSch. In particular, the functors ξ S are monoidal and commute with the inverse image functors. Moreover, if f : T → S is a smooth morphism in FSch, the natural transformation

f rig ♯ • ξ T → ξ S • f ♯ is an equivalence.
Proof. One argues as in [Rob14, §9.1] for the first assertion. The second assertion is clear. □

In the rest of this subsection we use the above constructions to produce a convenient conservative family of functors for the ∞-category RigSH (eff, ∧) τ (S ; Λ), for S a rigid analytic space. This family is rather big: it is indexed by formal models of smooth rigid analytic S -spaces. For a better result, we refer the reader to Corollary 3.7.20 below. We start by recording the following general fact. Proposition 3.1.14. Let (F i : C i → D) i be a small family of functors in Pr L having the same target D. Let G i be the right adjoint of F i . Then the following conditions are equivalent:

(1) the family (G i : D → C i ) i∈I is conservative;

(2) D is generated under colimits by objects of the form F i (A), with A ∈ C i .

Proof. Assume first that (2) is satisfied. Let f : X → Y be a map in D such that G i ( f ) is an equivalence for every i. We want to show that f is an equivalence. To do so, consider the full sub-∞-category D 0 ⊂ D spanned by objects E such that Map D (E, X) → Map D (E, Y) is an equivalence. Clearly, D 0 is stable under arbitrary colimits and contains the images of the F i 's. By (2), it follows that D 0 = D, and thus f is an equivalence by the Yoneda lemma.

We now assume that (1) is satisfied. Denote by D ′ ⊂ D the smallest full sub-∞-category containing the images of the F i 's and stable under arbitrary colimits. We need to show that D ′ = D. We claim that the ∞-category D ′ is presentable. Indeed, as the F i 's are colimit-preserving and the C i 's are presentable, D ′ is the smallest sub-∞-category of D stable under colimits and containing a certain small set of objects (namely the union of images of sets of generators for the C i 's). These objects are κ-compact for κ large enough. Thus, our claim follows from Lemma 2.8.2. Using [Lur09, Corollary 5.5.2.9], we may thus consider the right adjoint ρ to the inclusion functor D ′ → D. Fix an object X ∈ D. We will show that ρ(X) → X is an equivalence, which will finish the proof. Since the G i 's form a conservative family, it is enough to show that the maps G i (ρ(X)) → G i (X) are equivalences. By the Yoneda lemma, it is enough to show that the maps

Map C i (A, G i (ρ(X))) → Map C i (A, G i (X))
are equivalences for all A ∈ C i . By adjunction, these maps are equivalent to

Map D (F i (A), ρ(X)) → Map D (F i (A), X),
which are equivalences since the F i (A)'s belong to D ′ . □ Proposition 3.1.15. Let S be a rigid analytic space. For every U ∈ RigSm qcqs /S , denote by f U : U → S the structural morphism and choose a formal model U of U. Then, the functors

χ U • f * U : RigSH (eff, ∧) τ (S ; Λ) → FSH (eff, ∧) τ (U; Λ),
for U ∈ RigSm qcqs /S , form a conservative family. In fact, the same is true if we restrict to those U's admitting affine formal models of principal ideal type.

Proof. The functor χ U • f * U has a left adjoint f U, ♯ • ξ U sending the monoidal unit of FSH (eff, ∧) τ (U; Λ) to M (eff) (U). We conclude by Lemma 2.1.20 and Proposition 3.1.14. □ 3.2. Descent, continuity and stalks, I. The case of formal motives.

In this subsection, we gather a few basic properties of the functor S → FSH (eff, ∧) τ (S; Λ), f → f * , from Proposition 3.1.7. We fix a topology τ ∈ {nis, ét}. Proof. The proof is similar to that of Theorem 2.3.4. It suffices to prove that for every formal scheme S, the functor FSH (eff, ∧) τ (-; Λ) : ( Ét/S) op → Pr L , is a τ-(hyper)sheaf. One reduces, by an essentially formal argument, to show that the functor Shv (∧) τ (FSm/-; Λ) : ( Ét/S) op → Pr L is a τ-(hyper)sheaf, and this follows from Corollary 2.3.8. The formal argument alluded to can be found in the proof of Theorem 2.3.4, and we will not repeat it here. □

A formal scheme S is said to be (Λ, τ)-admissible (resp. (Λ, τ)-good) if the scheme S σ is (Λ, τ)admissible (resp. (Λ, τ)-good) in the sense of Definition 2.4.14. Proposition 3.2.2. Let τ ∈ {nis, ét} and let S be a (Λ, τ)-admissible formal scheme. When τ is the étale topology, assume that Λ is eventually coconnective. Then, we have

FSH (eff), ∧ τ (S; Λ) = FSH (eff) τ (S; Λ).
Proof. This is proven in the same way as Proposition 2.4.19. □ Proposition 3.2.3. Let S be a formal scheme.

(1) The ∞-category FSH (eff) τ (S; Λ) is compactly generated if τ is the Nisnevich topology or if Λ is eventually coconnective. A set of compact generators is given, up to desuspension and negative Tate twists when applicable, by the M (eff) (X) for X ∈ FSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

(2) The ∞-category FSH (eff), ∧ τ (S; Λ) is compactly generated if S is (Λ, τ)-admissible. A set of compact generators is given, up to desuspension and negative Tate twists when applicable, by the M (eff) (X) for X ∈ FSm/S quasi-compact, quasi-separated and (Λ, τ)-good.

Moreover, under the stated assumptions, the monoidal ∞-category FSH (eff, ∧) τ (S; Λ) ⊗ belongs to CAlg(Pr L ω ) and, if f : T → S is a quasi-compact and quasi-separated morphism of formal schemes with T assumed (Λ, τ)-admissible in the hypercomplete case, the functor f * :

FSH (eff, ∧) τ (S; Λ) → FSH (eff, ∧) τ (T; Λ) is compact-preserving, i.e., belongs to Pr L ω .
Proof. This is proven in the same way as Proposition 2.4.22. □ Given a formal scheme S, we write "pvcd Λ (S)" instead of "pvcd Λ (S σ )"; see Definition 2.4.10. Our next statement is an analogue of Theorem 2.5.1 for formal motives. Proposition 3.2.4. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We assume one of the following two alternatives.

(1) We work in the non-hypercomplete case.

(2) We work in the hypercomplete case, and S and the S α 's are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S α ) are bounded independently of α.

Then the obvious functor

colim α FSH (eff, ∧) τ (S α ; Λ) → FSH (eff, ∧) τ (S; Λ),
where the colimit is taken in Pr L , is an equivalence.

Proof. This follows immediately from Proposition 2.5.11 and Theorem 3.1.10. □

We will use Proposition 3.2.4 to compute the stalks of FSH (eff, ∧) τ (-; Λ) for the topology rig-τ on FSch. (See Corollary 1.4.13). We first describe a conservative family of points for this topology.

Remark 3.2.5. Let S be a formal scheme. A rigid point of S is a morphism s : Spf(V) → S where V is an adic valuation ring of principal ideal type. We sometimes also denote by s the formal scheme Spf(V). The assignment (Spf(V) → S) → (Spf(V) rig → S rig ) is an equivalence of groupoids between rigid points of S and those of S rig . (See Remark 1.4.25.) We will say that a rigid point s : Spf(V) → S is algebraic (resp. τ-geometric) if the associated rigid point of S rig is algebraic (resp. τ-geometric). See Remarks 1.4.23 and 1.4.25, and Definition 1.4.24. Proposition 3.2.6. Let S be a formal scheme. We denote by FRig Ét/S the category of rig-étale formal S-schemes. Then, the site (FRig Ét/S, rig-τ) admits a conservative family of points indexed by τ-geometric algebraic rigid points s = Spf(V) → S. To such a rigid point s, the associated topos-theoretic point is given by

F → F s = colim Spf(V)→U→S F(U)
where the colimit is over rig-étale neighbourhoods U of s. Moreover, one may restrict to those rigid points of S rig as in Construction 1.4.27.

Proof. This follows from Corollary 1.4.13 and Proposition 1.4.29. □ Proposition 3.2.7. Let S be a formal scheme and let s → S be an algebraic rigid point of S. Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case.

(2) We work in the hypercomplete case, and S and S rig are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S ′ ), for admissible blowups S ′ → S, are bounded independently of S ′ . Then there is an equivalence of ∞-categories

FSH (eff, ∧) τ (-; Λ) s ≃ FSH (eff, ∧) τ (s; Λ)
where the left-hand side is the stalk of FSH (eff, ∧) τ (-; Λ) at s, i.e., the colimit, taken in Pr L , of the diagram (s → U → S) → FSH (eff, ∧) τ (U; Λ) with U ∈ FRig Ét/S.

Proof. This follows from Proposition 3.2.4. Indeed, the condition that S rig is (Λ, τ)-admissible implies that s is (Λ, τ)-admissible. Moreover, if the numbers pvcd Λ (S ′ ) are bounded independently of S ′ for admissible blowups S ′ → S, then the same is true for the numbers pvcd Λ (U) for the saturated rig-étale neighbourhoods s → U → S. □

Statement of the main result.

Let S be a formal scheme. By Proposition 3.1.13, we have a monoidal functor

ξ ⊗ S : FSH (eff, ∧) τ (S; Λ) ⊗ → RigSH (eff, ∧) τ (S rig ; Λ) ⊗ .
From Corollary 3.4.2 below, we deduce that χ S Λ underlies a commutative algebra in the monoidal ∞-category FSH (eff,∧) τ (S; Λ) ⊗ , which we also denote by χ S Λ. Moreover, the functor χ S admits a factorization

RigSH (eff, ∧) τ (S rig ; Λ) χ S --→ FSH (eff, ∧) τ (S; χΛ) ff - → FSH (eff, ∧) τ (S; Λ),
where FSH (eff, ∧) τ (S; χΛ) is the ∞-category of χ S Λ-modules in FSH (eff, ∧) τ (S; Λ) ⊗ and ff is the forgetful functor. The functor χ S admits a left adjoint ξ S : FSH (eff, ∧) τ (S; χΛ) → RigSH (eff, ∧) τ (S rig ; Λ) that sends a χ S Λ-module M to ξ S (M) ⊗ ξ S χ S Λ Λ. It will be important for us to know that the functors ξ S , for S ∈ FSch, are part of a morphism

ξ ⊗ : FSH (eff, ∧) τ (-; χΛ) ⊗ → RigSH (eff, ∧) τ ((-) rig ; Λ) ⊗
in the ∞-category PSh(FSch; CAlg(Pr L )) of presheaves on FSch valued in CAlg(Pr L ). The construction of ξ ⊗ will be carried in Subsection 3.4 below. Before stating the main result of this section, we introduce the following assumptions.

Assumption 3.3.1. We assume (at least) one of the following four alternatives:

(i) τ is the Nisnevich topology;

(ii) π 0 Λ is a Q-algebra;

(iii) we work in the non-hypercomplete case, Λ is eventually coconnective and every prime number which is not invertible in π 0 Λ is invertible on every formal scheme we consider; (iv) we work in the hypercomplete case, every formal scheme we consider is (Λ, τ)-admissible and its generic fiber is also (Λ, τ)-admissible, and every prime number which is not invertible in π 0 Λ is invertible on every formal scheme we consider. Moreover, under one of the alternatives (iii) or (iv), when we write "FSch", we actually mean the full subcategory of formal schemes satisfying the properties in (iii) or (iv) respectively. Assumption 3.3.2. We assume that τ is the étale topology and that one of the two alternatives (iii) or (iv) above is satisfied.

Theorem 3.3.3.

(1) We work under Assumption 3.3.1. Given a formal scheme S, the functor ξ S : FSH (∧) τ (S; χΛ) → RigSH (∧) τ (S rig ; Λ) is fully faithful.

(2) We work under Assumption 3.3.2. The morphism of CAlg(Pr L )-valued presheaves ξ ⊗ : FSH (∧) ét (-; χΛ) ⊗ → RigSH (∧) ét ((-) rig ; Λ) ⊗ exhibits RigSH (∧) ét ((-) rig ; Λ) ⊗ as the rig-étale sheaf associated to FSH (∧) ét (-; χΛ) ⊗ . Remark 3.3.4. Our proof of Theorem 3.3.3 relies crucially on T-stability. Therefore, we do not expect this theorem to hold for the effective ∞-categories of motives.

Remark 3.3.5. One can reformulate Theorem 3.3.3(2) as an equivalence between functors defined on rigid analytic spaces. Indeed, by Corollary 1.4.13, we have an equivalence of sites

(RigSpc qcqs , ét) ∼ - → (FSch qcqs , rigét).
Moreover, the left Kan extension of the CAlg(Pr L )-valued presheaf FSH (∧) ét (-; χΛ) ⊗ along the functor (-) rig : FSch qcqs → RigSpc qcqs is easily seen to be given by S → colim S∈Mdl(S ) FSH (∧) ét (S; χΛ) ⊗ .

(3.8) (See Notation 1.1.9.) Thus, Theorem 3.3.3(2) implies that the morphism of CAlg(Pr L )-valued presheaves given by colim

S∈Mdl(S )
FSH (∧) ét (S; χΛ) ⊗ → RigSH (∧) ét (S ; Λ) ⊗ exhibits RigSH (∧) ét (-; Λ) ⊗ as the étale sheafification of the CAlg(Pr L )-valued presheaf (3.8).

Construction of ξ ⊗ .

We denote by Fin * the category of finite pointed sets. Up to isomorphism, the objects of Fin * are the pointed sets ⟨n⟩ = {1, . . . , n} ∪ { * }, for n ∈ N. For 1 ≤ i ≤ n, we denote by ρ i : ⟨n⟩ → ⟨1⟩ the unique map such that (ρ i ) -1 (1) = {i}. Recall that a symmetric monoidal ∞-category is a coCartesian fibration C ⊗ → Fin * such that the induced functor (ρ i ! ) i : C ⟨n⟩ → 1≤i≤n C ⟨1⟩ is an equivalence for all n ≥ 0. We usually write "C ⟨n⟩ " instead of "C ⊗ ⟨n⟩ " to denote the fiber of C ⊗ → Fin * at ⟨n⟩. The ∞-category C ⟨1⟩ is called the underlying ∞-category of C ⊗ and is denoted by C. Recall also that a monoidal functor is a morphism of coCartesian fibrations between symmetric monoidal ∞categories, i.e., a functor over Fin * which preserves coCartesian edges.

We remind the reader that "monoidal" always means "symmetric monoidal" in this paper. We denote by CAlg(CAT ∞ ) the ∞-category of (possibly large) monoidal ∞-categories and monoidal functors between them. The following lemma is well-known.

Lemma 3.4.1. Let F ⊗ : C ⊗ → D ⊗ be a monoidal functor between monoidal ∞-categories. Then the following conditions are equivalent.

(1) The underlying functor F admits a right adjoint G : D → C;

(2) The functor F ⊗ admits a right adjoint G ⊗ making the following triangle commutative

C ⊗ p 3 3 D ⊗ q | | G ⊗ o o
Fin * with p and q the defining coCartesian fibrations. Moreover, if these conditions are satisfied, we have the following two extra properties.

(a) The natural transformations

p → p • G ⊗ • F ⊗ = p and q = q • F ⊗ • G ⊗ → q,
induced by the unit and the counit of the adjunction (F ⊗ , G ⊗ ), are the identity natural transformations of p and q. (b) The functor G ⊗ is a right-lax monoidal functor (i.e., preserves coCartesian edges over the arrows ρ i : ⟨n⟩ → ⟨1⟩ for 1 ≤ i ≤ n) and its underlying functor G ⟨1⟩ is equivalent to G.

Proof. This is contained in [Lur17, Propositions 7.3.2.5 & 7.3.2.6, & Corollary 7.3.2.7]. We also remark that property (a) is automatic. In fact, more generally, every invertible natural transformation of p is the identity, and similarly for q. □ Corollary 3.4.2. Let F ⊗ : C ⊗ → D ⊗ be a monoidal functor between monoidal ∞-categories, and assume that F admits a right adjoint G. Then the induced functor

CAlg(F) : CAlg(C) → CAlg(D)
admits also a right adjoint, which is given by CAlg(G). More precisely, for S ∈ FSch, the functor F S = CAlg(ξ S ) admits a right adjoint, which is given by CAlg(χ S ). (Note that χ ⊗ S is a right-lax monoidal functor.) Applying [Lur17, Proposition 7.3.2.6], we deduce that F admits a right adjoint G making the following triangle

Ξ 0 p 0 5 5 Ξ 1 G o o p 1 { { FSch op
commutative and such that, for every S ∈ FSch, the functor G S is equivalent to CAlg(χ S ).

We now consider the ∞-categories Sect(p 0 ) and Sect(p 1 ) of sections of p 0 and p 1 . The functor G induces a functor G ′ : Sect(p 1 ) → Sect(p 0 ). We have an obvious object 1 ∈ Sect(p 1 ), such that 1 S ∈ CAlg(RigSH (eff, ∧) τ (S rig ; Λ)) is the initial algebra for every S ∈ FSch. We set:

A = G ′ (1).
By construction, A is a section of the coCartesian fibration p 0 such that A S is equivalent to χ S Λ considered as an object of CAlg(FSH (eff, ∧) τ (S; Λ)). For a morphism f : T → S of formal schemes, the induced morphism A S → A T in Ξ 0 corresponds to a morphism f * A S → A T . This is the morphism induced by the natural transformation f * • χ S → χ T • f rig, * which one obtains by adjunction from the equivalence f rig, * • ξ S ≃ ξ T • f * . The following fact, which we record for later use, follows easily from this description. Lemma 3.4.3. Let f : T → S be a morphism of formal schemes. For f to be sent to a p 0 -coCartesian edge by A, it suffices that the commutative square

FSH (eff, ∧) τ (S; Λ) ξ S G G f * RigSH (eff, ∧) τ (S rig ; Λ) f rig, * FSH (eff, ∧) τ (T; Λ) ξ T G G RigSH (eff, ∧) τ (T rig ; Λ)
is right adjointable. This happens when f is smooth.

Proof. Only the last assertion requires a proof. If f is smooth, then there is a commutative square

FSH (eff, ∧) τ (T; Λ) ξ T G G f ♯ RigSH (eff, ∧) τ (T rig ; Λ) f rig ♯ FSH (eff, ∧) τ (S; Λ) ξ S G G RigSH (eff, ∧) τ (S rig ; Λ)
by Proposition 3.1.13. The natural transformation f * • χ S → χ T • f rig, * deduced from the square of the statement via the adjunctions (ξ S , χ S ) and (ξ T , χ T ) coincides with the natural equivalence deduced from the above square via the adjunctions (ξ

S • f ♯ , f * • χ S ) and ( f rig ♯ • ξ T , χ T • f rig, *
). □ Before going further, we need a small digression about algebras and modules in general monoidal ∞-categories. Let C ⊗ be a monoidal ∞-category and p : C ⊗ → Fin * the defining coCartesian fibration. By [Lur17, §3.3.3], we may associate to C ⊗ a functor

f : Mod(C) ⊗ → Fin * × CAlg(C) (3.9)
such that, for each commutative algebra A of C ⊗ , the induced functor

f A : Mod A (C) ⊗ = Mod(C) ⊗ × CAlg(C) {A} → Fin * (3.10)
makes Mod A (C) ⊗ into an ∞-operad. This is the ∞-operad of A-modules, which is a monoidal ∞category whenever C admits enough colimits, and these colimits are compatible with the monoidal structure. We recall below the construction of the simplicial set Mod(C) ⊗ which is a particular case of [Lur17, Construction 3.3.3.1].

Construction 3.4.4. Recall that a map γ : ⟨m⟩ → ⟨n⟩ is said to be inert (resp. semi-inert) if the induced map γ -1 ({1, . . . , n}) → {1, . . . , n} is a bijection (resp. an injection). The map γ is said to be null if its image is the base-point of ⟨n⟩. Let K ⊂ Fun(∆ 1 , Fin * ) be the full subcategory spanned by the semi-inert maps. We have two obvious functors e 0 , e 1 : K → Fin * induced by the inclusions {0}, {1} ⊂ ∆ 1 . Given ⟨m⟩ ∈ Fin * , a morphism δ in the fiber e -1 0 (⟨m⟩) of e 0 at ⟨m⟩ is said to be inert if the map e 1 (δ), which belongs to Fin * , is inert.

We define a simplicial set Mod(C) ⊗ as follows. Giving a map ∆ n → Mod(C) ⊗ is equivalent to giving a map ∆ n → Fin * , and a functor ∆ n × Fin * , e 0 K → C ⊗ making the triangle

∆ n × Fin * , e 0 K G G e 1 •pr K 7 7 C ⊗ p Fin *
commutative and such that the following condition is satisfied. For every vertex {i} ⊂ ∆ n , the induced functor {i} × Fin * , e 0 K → C ⊗ takes an inert map to a p-coCartesian morphism.

There is a full inclusion Fin * ×Fin * → K, sending a pair of objects to the null morphism between them, which is a section to (e 0 , e 1 ). This induces the functor (3.9). That the functor (3.10) defines an ∞-operad is a particular case of [Lur17, Theorem 3.3.3.9]. According to [Lur17, Theorem 4.5.3.1], the functor (3.9) is a coCartersian fibration when C admits geometric realisations which are moreover compatible with the monoidal structure. In this case, the functor (3.10) is also a coCartesian fibration and thus the ∞-operad Mod A (C) ⊗ is a monoidal ∞-category. (This is also stated explicitly in [Lur17, Theorems 4.5.2.1].) Remark 3.4.5. It follows from Construction 3.4.4 that Mod(-) ⊗ defines a functor from CAlg(CAT ∞ ) to CAT ∞ endowed with a natural transformation f : Mod(-) ⊗ → Fin * × CAlg(-). In fact, Construction 3.4.4 shows more: Mod(-) ⊗ and f naturally extend to a larger ∞-category of monoidal ∞-categories where the morphisms are given by right-lax monoidal functors. Now, we go back to the situation we are interested in. We start again with our morphism ξ ⊗ in Fun(FSch op , CAlg(CAT ∞ )). Applying the functors Mod(-) ⊗ and CAlg(-), we obtain a commutative square in Fun(FSch op , CAT ∞ ):

Mod(FSH (eff, ∧) τ (-; Λ)) ⊗ Mod(ξ) ⊗ G G f 0 Mod(RigSH (eff, ∧) τ ((-) rig ; Λ)) ⊗ f 1 Fin * × CAlg(FSH (eff, ∧) τ (-; Λ)) CAlg(ξ) G G Fin * × CAlg(RigSH (eff, ∧) τ ((-) rig ; Λ)).

Applying Lurie's unstraightening construction [Lur09, §3.2], we get a commutative diagram

M ⊗ 0 H ⊗ G G q 0 M ⊗ 1 q 1 Fin * × Ξ 0 F G G p 0 9 9 Fin * × Ξ 1 p 1 w w Fin * × FSch op .
The functors p 0 , p 1 , q 0 , q 1 , p 0 • q 0 and p 1 • q 1 are coCartesian fibrations. Indeed, for p 0 and p 1 , this is by construction. For the remaining functors, this follows from the Lemma 3. in Fun(C, CAT ∞ ). We assume the following conditions:

• for every X ∈ C, the ∞-category E(X) admits geometric realisations and these are compatible with the monoidal structure;

• for every morphism f : X → Y, the induced functor E( f ) commutes with geometric realisations. Then r is a coCartesian fibration.

Proof. By [Lur17, Theorem 4.5.3.1], the morphism r X : M ⊗ X → Fin * ×D X is a coCartesian fibration for every X ∈ C. Using [Lur09, Proposition 2.4.2.11], we deduce that r is a locally coCartesian fibration. By [Lur09, Proposition 2.4.2.8], it remains to check that locally r-coCartesian morphisms are stable under composition. Consider a commutative triangle in Fin * × D that we depict informally as

(⟨n 0 ⟩, X 0 , R 0 ) (γ 02 , f 02 ,ϕ 02 ) G G (γ 01 , f 01 ,ϕ 01 ) @ @ (⟨n 2 ⟩, X 2 , R 2 ) (⟨n 1 ⟩, X 1 , R 1 ). (γ 12 , f 12 ,ϕ 12 )
T T Here X i , for 0 ≤ i ≤ 2, are objects of C and f i j : X i → X j , for 0 ≤ i < j ≤ 2, are morphisms of C, each R i is a commutative algebra in E(X i ) and each ϕ i j : E( f i j )(R i ) → R j is a morphism of commutative algebras in E(X j ), and the γ i j 's are maps in Fin * . From this triangle, we deduce a triangle of ∞-categories

Mod R 0 (E(X 0 )) ⟨n 0 ⟩ (γ 02 , f 02 ,ϕ 02 ) ! G G (γ 01 , f 01 ,ϕ 01 ) ! 9 9 Mod R 2 (E(X 2 )) ⟨n 2 ⟩ Mod R 1 (E(X 1 )) ⟨n 1 ⟩ (γ 12 , f 12 ,ϕ 12 ) ! U U
and we need to show that this triangle commutes up to equivalence. Using that the E( f i j )'s commute with the tensor product of modules, one reduces easily to the case where n 0 = n 1 = n 2 = 1 and γ i j are the identity maps. We are then left to check that

E( f 12 )(E( f 01 )(-) ⊗ E( f 01 )(R 0 ) R 1 ) ⊗ E( f 12 )(R 1 ) R 2 ≃ E( f 02 )(-) ⊗ E( f 02 )(R 0 ) R 2 ,
which follows again from the fact that the E( f i j )'s commute with the tensor product of modules. □ Recall that we have constructed a section A : FSch op → Ξ 0 together with a morphism FA → 1. Using Lemma 3.4.6 and [Lur09, Proposition 2.4.2.3(2)], we get coCartesian fibrations

Φ 0 = M ⊗ 0 × Ξ 0 , 1→A (∆ 1 × FSch op ) → ∆ 1 × Fin * × FSch op , Φ 1 = M ⊗ 1 × Ξ 1 , 1→FA→1 (∆ 2 × FSch op ) → ∆ 2 × Fin * × FSch op , and a morphism Φ 0 → Φ 1 × ∆ 2 ∆ {0,1}
induced by H ⊗ . Let us pause and describe informally what we have constructed. For S ∈ FSch, the coCartesian fibration (Φ 0 ) S → ∆ 1 × Fin * is classified by the monoidal functor -⊗ Λ χΛ : FSH (eff, ∧) τ (S; Λ) ⊗ → FSH (eff, ∧) τ (S; χΛ) ⊗ . Similarly, the coCartesian fibration (Φ 1 ) S → ∆ 2 × Fin * is classified by the commutative triangle

RigSH (eff, ∧) τ (S rig ; Λ) ⊗ -⊗ Λ ξχΛ G G RigSH (eff, ∧) τ (S rig ; ξχΛ) ⊗ -⊗ ξχΛ Λ RigSH (eff, ∧) τ (S rig ; Λ) ⊗ .
Finally, applying Lurie's straightening construction [Lur09, §3.2], we get the following commutative diagram in the ∞-category Fun(FSch op , CAlg(CAT ∞ )):

FSH (eff, ∧) τ (-; Λ) ⊗ -⊗ Λ χΛ G G ξ ⊗ FSH (eff, ∧) τ (-; χΛ) ⊗ ξ ⊗ RigSH (eff, ∧) τ (-; Λ) ⊗ -⊗ Λ ξχΛ G G RigSH (eff, ∧) τ (-; ξχΛ) ⊗ -⊗ ξχΛ Λ G G RigSH (eff, ∧) τ (-; Λ) ⊗ .
The morphism ξ ⊗ is then defined as the composition of

ξ ⊗ : FSH (eff, ∧) τ (-; χΛ) ⊗ ξ ⊗ -→ RigSH (eff, ∧) τ (-; ξχΛ) ⊗ -⊗ ξχΛ Λ -----→ RigSH (eff, ∧) τ (-; Λ) ⊗ .
3.5. Descent, continuity and stalks, II. The case of χΛ-modules.

We gather here a few basic properties of the functor FSH (eff, ∧) τ (-; χΛ) ⊗ and the natural transformation ξ ⊗ constructed in Subsection 3.4. Proof. Fix an internal hypercover U • in the site (FSch, τ), with U n → U -1 étale for every n ∈ N, and which we assume to be truncated in the non-hypercomplete case. We need to show that

FSH (eff,∧) τ (U • ; χΛ) : ∆ + = ∆ ◁ → CAT ∞ is a limit diagram.
To do so, we use the fact that FSH (eff, ∧) τ (U • ; Λ) is a limit diagram (by Proposition 3.2.1) and exhibit a natural transformation

FSH (eff, ∧) τ (U • ; χΛ) → FSH (eff, ∧) τ (U • ; Λ) (3.11)
satisfying the hypotheses of [Lur17, Corollary 5.2.2.37]. To do so, we start with the obvious natural transformation -⊗ Λ χΛ : FSH (eff, ∧) τ (-; Λ) → FSH (eff, ∧) τ (-; χΛ), that we restrict to Ét/U -1 , and consider the morphism of coCartesian fibrations

F F G G p 4 4 G q | | Ét/U -1
associated to this natural transformation by Lurie's unstraightening construction [Lur09, §3.2]. Fiberwise, F admits right adjoints. By [Lur17, Proposition 7.3.2.6], we deduce that F admits a right adjoint G : G → F making the triangle

F p 4 4 G G o o q | | Ét/U -1
commutative and which is fiberwise given by the forgetful functor. We claim that G is in fact a morphism of coCartesian fibrations, i.e., takes a q-coCartesian edge to a p-coCartesian edge, and thus determines a natural transformation

FSH (eff, ∧) τ (-; χΛ) → FSH (eff, ∧) τ (-; Λ) (3.12)
on Ét/U -1 given objectwise by the forgetful functor. To prove this, we need to check that the square

FSH (eff, ∧) τ (V; Λ) -⊗ Λ χΛ G G e * FSH (eff, ∧) τ (V; χΛ) e * FSH (eff, ∧) τ (V ′ ; Λ) -⊗ Λ χΛ G G FSH (eff, ∧) τ (V ′ ; χΛ)
is right adjointable for every map e : V → V ′ in Ét/U -1 . This follows from Lemma 3.4.3 which implies that e * χ V Λ → χ V ′ Λ is an equivalence. That said, we define (3.11) to be the restriction of (3.12). That the hypotheses of [ 

FSH (eff, ∧) τ (V; χΛ) e * G G FSH (eff, ∧) τ (V ′ ; χΛ) FSH (eff, ∧) τ (V; Λ) e * G G FSH (eff, ∧) τ (V ′ ; Λ),
for e : V ′ → V in Ét/U -1 , is clear by construction. This completes the proof. □ Lemma 3.5.2. The natural transformation

ξ ⊗ : FSH (eff, ∧) τ (-; χΛ) ⊗ → RigSH (eff, ∧) τ ((-) rig ; Λ) ⊗
is a morphism in Fun(FSch op , CAlg(Pr L )). Moreover, in the following two cases, if we restrict this natural transformation to the subcategory V ⊂ FSch, we get a morphism in Fun(V op , CAlg(Pr L ω )).

(1) We work in the non-hypercomplete case and, if τ is the étale topology, we assume that Λ is eventually coconnective. In this case, we may take V to be the wide subcategory of FSch consisting of quasi-compact morphisms.

(2) We work in the hypercomplete case. In this case, V is the subcategory whose objects are those formal schemes S such that S rig is (Λ, τ)-admissible and whose morphisms are the quasi-compact and quasi-separated ones.

Proof. By [Lur17, Theorem 3.4.4.2], FSH (eff, ∧) τ (S; χΛ) ⊗ is a presentable monoidal ∞-category for every S ∈ FSch. Moreover, the image of -⊗ Λ χΛ : FSH (eff, ∧) τ (S; Λ) → FSH (eff, ∧) τ (S; χΛ) generates FSH (eff, ∧) τ (S; χΛ) by colimits. This follows from Proposition 3.1.14 since the right adjoint to -⊗ Λ χΛ is conservative by [START_REF] Lurie | Higher Algebra[END_REF]Corollary 4.2.3.2]. By [Lur17, Corollary 3.4.4.6], this right adjoint also preserves all colimits, which implies that -⊗ Λ χΛ preserves compact objects. In particular, we see that FSH (eff, ∧) τ (S; χΛ) is compactly generated when FSH (eff, ∧) τ (S; Λ) is. Thus, the second part of the statement follows easily from Propositions 2.4.22 and 3.2.3. □

where the vertical left arrow is the diagonal map given by i → (i, i) and q is the diagram obtained by composing q with the map L → K given by (i, j) → j. Let p : L → Mod(C) be the relative left Kan extension (in the sense of [Lur09, Definition 4.3.2.2]). Setting A i = q(i) and M i = p(i), we have informally p(i, j) = A j ⊗ A i M i . The diagrams p and p have the same colimits, so it is enough to show that ff(colim p) ≃ colim ff • p. Now, a colimit over L can be computed as a double colimit

colim (i, j)∈L ≃ colim i∈K colim j∈K i/ .
Moreover, since the diagram i → colim j∈K i/ p(i, -) lands in Mod A ∞ (C), its colimit commutes with ff A ∞ as mentioned above. Thus, it is enough to prove the statement for the diagrams p(i, -) : K i/ → Mod(C). Said differently, we may assume that p takes an edge of K to a coCartesian edge of the coCartesian fibration Mod(C) → CAlg(C). We may assume that K has an initial object o ∈ K. We have a natural transformation between the following two functors Mod A o (C) → C.

(1) The first one sends

M ∈ Mod A o (C) to the colimit in C of the diagram i → ff A i (A i ⊗ A o M).
(2) The second one sends

M ∈ Mod A o (C) to ff A ∞ (A ∞ ⊗ A o M).
We want to show that this natural transformation is an equivalence. (Together with the description of colimits in Mod(C) given at the beginning, this would complete the proof.) To do so, we remark that the two functors above are colimit-preserving. Using [Lur17, Proposition 4.7.3.14], we reduce to show that this natural transformation is an equivalence on A o -modules of the form A o ⊗ M, with M ∈ C. In this case, we have to show that the morphism For proving Theorem 3.5.3, we will use the following general result. Lemma 3.5.6. Assume that C is filtered and set E ⊗ ∞ = colim C E ⊗ . (Here and below, the colimit is taken in CAlg(Pr L ).) Let A : C → CAlg(E ∞ ) be the composition of the section A with the obvious functor D → CAlg(E ∞ ), and set A ∞ = colim A. Then there is an equivalence

colim i∈K ff(A i ⊗ M) → ff(A ∞ ⊗ M)
colim C Mod A (E) ⊗ ≃ Mod A ∞ (E ∞ ) ⊗ .
(3.14)

Proof. By [Lur17, Corollary 3.2.3.2], the forgetful functor CAlg(Pr L ) → Pr L detects filtered colimits. Therefore, it is enough to prove that

colim Mod A (E) → Mod A ∞ (E ∞ )
is an equivalence, where the colimit is taken in Pr L . By [Lur17, Corollary 4.5.1.6], the ∞-category 

Mod A(c) (E(c)) is equivalent to the ∞-category LMod A(c) (E(c)) of left-A(c)-
M ′⊗ r ′ G G q ′ 3 3 D ′ p ′ C.
Then, the functor LMod A (E) is obtained by applying Lurie's straightening construction [Lur09, §3.2] to the coCartesian fibration

M ′ A = M ′ × D ′ , A C → C.
That said, we are left to show that colim

C LMod A (E) → LMod A ∞ (E ∞ ) (3.15)
is an equivalence, where the colimit is taken in Pr L . Using the functor Θ : Pr Alg → Pr Mod of [Lur17, Construction 4.8.3.24 & Notation 4.8.5.10] and the forgetful functor ff : Pr Mod → Pr L , we may rewrite (3.15) as colim

C ff • Θ(E, A) → ff • Θ(E ∞ , A ∞ ). (3.16)
We give below an informal description of the objects we have just introduced and refer the reader to loc. cit. for the precise definitions:

• Pr Alg is the ∞-category whose objects are pairs (X ⊗ , R) consisting of a presentable monoidal ∞-category X ⊗ and an associative algebra R ∈ Alg(X);

• Pr Mod ≃ LMod(Pr L ) is the ∞-category whose objects are pairs (X ⊗ , Y) consisting of a presentable monoidal ∞-category X ⊗ and an X ⊗ -module Y in Pr L, ⊗ ; • Θ sends (X ⊗ , R) to (X ⊗ , Mod R (X)) and ff sends (X ⊗ , Y) to Y;
• (E, A) denotes the functor C → Pr Alg given informally by c → (E(c), A(c)). By Lemma 3.5.5, the functor ff commutes with filtered colimits. Using [Lur17, Theorem 4.8.5.11] and [Lur09, Proposition 4.4.2.9], we deduce that Θ commutes also with filtered colimits. Since colim C (E, A) ≃ (E ∞ , A ∞ ), this proves that (3.16) is an equivalence. □ Using Proposition 3.2.4, Lemma 3.5.6 and the construction of the functor FSH (eff, ∧) τ (-; χΛ), we see that Theorem 3.5.3 is a consequence of the following lemma. where the colimits are also taken in Pr L ω . (See Propositions 2.4.22 and 3.2.3.) In particular, the ∞-category FSH (eff, ∧) τ (S; Λ) is compactly generated and it suffices to show that a compact object M in this ∞-category induces an equivalence

Map FSH (eff, ∧) τ (S;Λ) (M, colim α f * α χ S α Λ) → Map FSH (eff, ∧) τ (S;Λ) (M, χ S Λ).
(3.19)

For β ≤ α, we denote by f βα : S β → S α the transition map in the inverse system (S α ) α . Since M is compact, there exists an index ρ and a compact object

M ρ ∈ FSH (eff, ∧) τ (S ρ ; Λ) such that M ≃ f * ρ M ρ . We have canonical equivalences: Map FSH (eff, ∧) τ (S; Λ) (M, colim α f * α χ S α Λ) (1) ≃ colim α Map FSH (eff, ∧) τ (S; Λ) (M, f * α χ S α Λ) (2) ≃ colim α≤ρ colim β≤α Map FSH (eff, ∧) τ (S β ; Λ) ( f * βρ M ρ , f * βα χ S α Λ) (3) ≃ colim β≤ρ Map FSH (eff, ∧) τ (S β ; Λ) ( f * βρ M ρ , χ S β Λ) (4) ≃ colim β≤ρ Map RigSH (eff, ∧) τ (S rig β ; Λ) ( f rig, * βρ ξ S ρ M ρ , Λ) (5) ≃ Map RigSH (eff, ∧) τ (S rig ; Λ) ( f rig, * ρ ξ S ρ M ρ , Λ) (6) 
≃ Map FSH (eff, ∧) τ (S; Λ) (M, χ S Λ) where

(1) follows from the assumption that M is compact, (2) follows from the fact that the colimit in (3.18) is taken in Pr L ω , (3) follows from the cofinality of the diagonal map β → (β ≤ β), (4) follows from the adjunction (ξ S β , χ S β ) and the commutation ξ S β f * βρ ≃ f rig, * βρ ξ S ρ , (5) follows from the fact that the colimit in (3.17) is taken in Pr L ω , (6) follows from the commutation f rig, * ρ ξ S ρ ≃ ξ S f * ρ and the adjunction (ξ S , χ S ). It is easy to see that the composition of the above equivalences coincide with the map (3.19). □ Remark 3.5.8. Lemma 3.5.7 admits a useful extension as follows. Keep the notation and assumptions of Theorem 3.5.3. Let I be the indexing category of the inverse system (S α ) α and let α → N α be a section of the coCartesian fibration associated to the functor

I op → CAT ∞ , α → RigSH (eff, ∧) τ (S rig α ; Λ). Let N ∈ RigSH (eff, ∧) τ (S rig ; Λ) be the colimit of the f rig, * α N α 's. Then there is an equivalence colim α f * α χ S α N α ∼ - → χ S N
in FSH (eff, ∧) τ (S; Λ). This is shown using exactly the same reasoning as in the proof of Lemma 3.5.7.

We finish this subsection with a computation of the stalks of FSH (eff, ∧) τ (-; χΛ) for the topology rig-τ on FSch.

Theorem 3.5.9. Let S be a formal scheme and let s → S be an algebraic rigid point of S. Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case and, if τ is the étale topology, we assume that Λ is eventually coconnective. (2) We work in the hypercomplete case, and S and S rig are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S ′ ), for admissible blowups S ′ → S, are bounded independently of S ′ .

Then there is an equivalence of ∞-categories

FSH (eff, ∧) τ (-; χΛ) s ≃ FSH (eff, ∧) τ (s; χΛ)
where the left-hand side is the stalk of FSH (eff, ∧) τ (-; χΛ) at s, i.e., the colimit, taken in Pr L , of the diagram

(s → U → S) → FSH (eff, ∧) τ (U; χΛ) with U ∈ FRig Ét/S.
Proof. This follows from Theorem 3.5.3. Indeed, the condition that S rig is (Λ, τ)-admissible implies that s is (Λ, τ)-admissible. Moreover, if the numbers pvcd Λ (S ′ ) are bounded independently of S ′ for admissible blowups S ′ → S, then the same is true for the numbers pvcd Λ (U) for the saturated rig-étale neighbourhoods s → U → S. □ 3.6. Proof of the main result, I. Fully faithfulness.

Our goal in this subsection is to prove the first part of Theorem 3.3.3 concerning the fully faithfulness of the functor ξ S . (The second part of this theorem will be proved in the next subsection.) A key ingredient is a projection formula for the functor χ S as in the following statement. This projection formula is also a key ingredient in the proof of the extended proper base change theorem for rigid analytic motives, see Theorem 4.1.4 below.

Theorem 3.6.1. We work under Assumption 3.3.1. Let S be a formal scheme and set S = S rig . Then, for M ∈ RigSH (∧) τ (S ; Λ) and N ∈ FSH (∧) τ (S; Λ), the obvious map

χ S (M) ⊗ N → χ S (M ⊗ ξ S (N)) (3.20)
is an equivalence.

We first prove the following reduction.

Lemma 3.6.2. To prove Theorem 3.6.1, it is enough to consider the alternatives (i), (ii) and (iv) of Assumptions 3.3.1. Moreover, when working under the alternative (iv), we may assume the following extra conditions:

(1) τ is the étale topology;

(2) Λ is the Eilenberg-Mac Lane spectrum associated to the ring Z/ℓ, with ℓ a prime number invertible on S;

(3) M and N are compact objects.

Proof. We split the proof into two parts.

Part 1. Here we show that the conclusion of Theorem 3.6.1 holds under (iii) if it holds under (iv).

We work under the alternative (iii). The problem is local on S. Thus, we may assume that S is affine, given as a limit of a cofiltered inverse system (S α ) α of affine formal schemes such that the S α 's and their generic fibers S α = S rig α are (Λ, τ)-admissible. By Theorem 2.5.1 and Proposition 3.2.4, we have equivalences Since the functors ξ S α and χ S α belong to Pr L and are in adjunction, and since ξ S is the colimit of the ξ S α 's, we deduce that χ S is the colimit of the χ S α 's. (Here we use Propositions 2.4.22 and 3.2.3 to view ξ S and the ξ S α 's as functors in Pr L ω with colimit-preserving right adjoints.) Considering χ S (-) ⊗ (-) and χ S (-⊗ ξ S (-)) as functors from RigSH τ (S ; Λ) ⊗ FSH τ (S; Λ) to FSH τ (S; Λ), and similarly with "S α " instead of "S", it follows that the natural transformation χ S (-) ⊗ (-) → χ S (-⊗ ξ S (-)) is the colimit of the natural transformations χ S α (-) ⊗ (-) → χ S α (-⊗ ξ S α (-)). This reduces us to treat the case where S and S are (Λ, τ)-admissible. But in this case, we have RigSH τ (S ; Λ) ≃ RigSH ∧ τ (S ; Λ) and FSH τ (S; Λ) ≃ FSH ∧ τ (S; Λ) by Propositions 2.4.19 and 3.2.2. Therefore, this case is covered by the alternative (iv). Part 2. Here we assume that the conclusion of Theorem 3.6.1 holds under (i) and (ii), and we show that we may assume conditions (1), ( 2) and (3) when proving Theorem 3.6.1 under (iv).

Assume the alternative (iv). If τ is the Nisnevich topology, then there is nothing to prove since Theorem 3.6.1 holds under (i). Thus, we may assume that τ is the étale topology. By Propositions 2.4.22 and 3.2.3, the ∞-categories RigSH ∧ ét (S ; Λ) and FSH ∧ ét (S; Λ) are compactly generated, and the functor χ S commutes with colimits (since its left adjoint is compact-preserving). This will be used freely in the discussion below.

Let M Q = M ⊗ Q and N Q = N ⊗ Q be the rationalisations of M and N, and let M tor and N tor be the fibers of M → M Q and N → N Q . Since Theorem 3.6.1 holds under the alternative (ii), we deduce that the morphism (3.20) becomes an equivalence if we replace M by M Q or N by N Q . Thus, it remains to show that the morphism (3.20) becomes an equivalence if we replace M and N by M tor and N tor . Now, M tor is a coproduct of ℓ-nilpotent objects, where ℓ varies among the prime numbers which are not invertible in π 0 Λ, and similarly for N tor . Moreover, every ℓ-nilpotent object is a colimit of compact ℓ-nilpotent objects. Thus, it is enough to show that the morphism (3.20) is an equivalence when M and N are ℓ-nilpotent compact objects.

By Theorems 2.10.3, 2.10.4 and 3.1.10, we have equivalences of ∞-categories

Shv ∧ ét ( Ét/S ; Λ) ℓ-nil ≃ RigSH ∧ ét (S ; Λ) ℓ-nil and Shv ∧ ét ( Ét/S; Λ) ℓ-nil ≃ FSH ∧ ét (S; Λ) ℓ-nil .
We denote by M 0 and N 0 the objects of Shv ∧ ét ( Ét/S ; Λ) ℓ-nil and Shv ∧ ét ( Ét/S; Λ) ℓ-nil corresponding to M and N by these equivalences. It is enough to show that

χ S (M 0 ) ⊗ Λ N 0 → χ S (M 0 ⊗ Λ ξ S (N 0 )) (3.21)
is an equivalence. (Here ξ S is the inverse image functor associated to the morphism of sites ( Ét/S , ét) → ( Ét/S, ét) given by (-) rig , and χ S is its right adjoint.) Since M 0 and N 0 are compact, they are eventually connective. It follows from Lemmas 2.4.5 and 2.4.11 (and the analogue of the latter for schemes) that we have equivalences

χ S (M 0 ) ⊗ Λ N 0 ≃ lim r χ S (M 0 ⊗ Λ τ ≤r Λ) ⊗ Λ N 0 χ S (M 0 ⊗ Λ ξ S (N 0 )) ≃ lim r χ S ((M 0 ⊗ Λ τ ≤r Λ) ⊗ Λ ξ S (N 0 )).
Thus, it is enough to show that (3.21) becomes an equivalence if we replace M 0 by M 0 ⊗ Λ τ ≤r Λ. The latter, being a compact object of Shv ∧ ét ( Ét/S ; τ ≤r Λ), is eventually connective and coconnective. Thus, if we momentarily renounce on having M 0 compact, which we do, we may assume that M 0 is eventually connective and coconnective. By an easy induction, we may even assume that M 0 is in the heart of Shv ∧ ét ( Ét/S ; Λ) and that ℓ acts by 0 on M 0 , i.e., M 0 is an ordinary étale sheaf of π 0 Λ/ℓ-modules.

Furthermore, we may take N 0 = Λ ét (U)/ℓ, with U an étale formal S-scheme, since the objects of this form and their desuspensions generate Shv ∧ ét ( Ét/S; Λ) under colimits. In this case, we have

χ S (M 0 ) ⊗ Λ N 0 ≃ χ S (M 0 ) ⊗ Z Z ét (U)/ℓ ≃ χ S (M 0 ) ⊗ Z/ℓ (Z ét (U)/ℓ ⊕ Z ét (U)/ℓ[1]), χ S (M 0 ⊗ Λ ξ S (N 0 )) ≃ χ S (M 0 ⊗ Z ξ S (Z ét (U)/ℓ)) ≃ χ S (M 0 ⊗ Z/ℓ ξ S (Z ét (U)/ℓ ⊕ Z ét (U)/ℓ[1])).
This shows that we may assume that Λ = Z/ℓ as claimed. It remains to replace M 0 by a compact étale sheaf of Z/ℓ-modules to finish the proof. □

To prove Theorem 3.6.1, we need some preliminaries. We start by introducing a new ∞-category of motives. Let S be a formal scheme and fix a topology τ ∈ {nis, ét}. Remark 3.6.4. There are functors relating FSH (eff, ∧) τ (S; Λ) to other ∞-categories of motives considered before. Below, we set as usual S = S rig .

(1) The inclusion functor ι S : FSm/S → FRigSm/S induces an adjunction

ι * S : FSH (eff, ∧) τ (S; Λ) ⇄ FSH (eff, ∧) τ (S; Λ) : ι S, * .
The functor ι S, * is induced by the restriction functor along ι S , and the functor ι * S is fully faithful and underlies a monoidal functor.

(2) The functor (-) rig : FRigSm/S → RigSm/S induces an adjunction

ξ S : FSH (eff, ∧) τ (S; Λ) ⇄ RigSH (eff, ∧) τ (S ; Λ) : χ S .
By Remark 2.1.14, ξ S is a localisation functor, and χ S is fully faithful and identifies the ∞-category RigSH which is a left adjoint and underlies a monoidal functor. Moreover, we have natural equivalences

f * • ι * S ≃ ι * T • f * and f rig, * • ξ S ≃ ξ T • f * .
When f is rig-smooth, f * admits a left adjoint f ♯ and there is a natural equivalence

ξ S • f ♯ ≃ f rig ♯ •ξ T . If f is smooth, we also have a natural equivalence ι * S • f ♯ ≃ f ♯ • ι * T .
We now state the main technical result needed for proving Theorem 3.6.1. Proposition 3.6.7. Let S be a formal scheme and set S = S rig . Let M and N be objects of RigSH (∧) τ (S ; Λ) and FSH (∧) τ (S; Λ) respectively. We work under one the alternatives (i), (ii) or (iv) of Assumption 3.3.1 and, when working under (iv), we assume the conditions (1), (2) and (3) of Lemma 3.6.2. Then, the obvious morphism

χ S (M) ⊗ ι * S (N) → χ S (M ⊗ ξ S (N)) (3.27)
is an equivalence in FSH (∧) τ (S; Λ).

We first explain how Theorem 3.6.1 follows from Proposition 3.6.7.

Proof of Theorem 3.6.1. By Lemma 3.6.2, we may work under one the alternatives (i), (ii) or (iv) of Assumption 3.3.1, and assume the conditions (1), ( 2) and (3) of Lemma 3.6.2 when working under (iv). Then, we have a chain of equivalences

χ S (M) ⊗ N (1) ≃ ι S, * (χ S (M)) ⊗ ι S, * (ι * S (N)) (2) ≃ ι S, * (χ S (M) ⊗ ι * S (N)) (3) ≃ ι S, * (χ S (M ⊗ ξ S (N))) (4) ≃ χ S (M ⊗ ξ S (N))
where

(1) follows from the equivalence χ S ≃ ι S, * • χ S and the fully faithfulness of ι * S , (2) follows from Lemma 3.6.5, (3) follows from Proposition 3.6.7, (4) follows from the equivalence χ S ≃ ι S, * • χ S .

It is easy to see that the composition of the above equivalences coincides with the natural morphism χ S (M) ⊗ N → χ S (M ⊗ ξ S (N)). □

Proof of Proposition 3.6.7. The morphism (3.27) is given by the following composition

χ S (M) ⊗ ι * S (N) (1) --→ χ S ξ S (χ S (M) ⊗ ι * S (N)) (2) ≃ χ S (ξ S χ S (M) ⊗ ξ S ι * S (N)) (3) ≃ χ S (M ⊗ ξ S (N))
where the equivalence (2) follows from the fact that ξ S is monoidal, and the equivalence (3) follows from the fact that χ S is fully faithful and the equivalence ξ S ≃ ξ S • ι * S . Thus, to prove the proposition, it remains to show that the morphism (1) is an equivalence. This would follows if the object E = χ S (M) ⊗ ι * S (N) belongs to the image of the functor χ S . Recall that the latter identifies RigSH (∧) τ (S ; Λ) with the full sub-∞-category of FSH (∧) τ (S; Λ) spanned by those objects admitting rig-τ-(hyper)descent. Thus, we need to show that E is local with respect to morphisms of the form colim

[n]∈∆ M(U • ) → M(U -1 ), (3.28)
and their desuspensions and negative Tate twists, where U • is a rig-τ-hypercover which we assume to be truncated in the non-hypercomplete case. (Here U -1 is a rig-smooth formal S-scheme and U n , for n ∈ N, are rig-étale over U -1 .) Since M and N are general objects of RigSH (∧) τ (S ; Λ) and FSH (∧) τ (S; Λ), it is enough to show that E is local with respect to (3.28) without worrying about desuspensions and negative Tate twists. By a standard argument, the case of a rig-τ-hypercover U follows if we can treat the cases of a rig-τ-hypercover U ′ refining U and its base change to each of the U n 's. Using the description of rig-τ-covers given in Remark 1.4.14 and Proposition 1.4.19, we may thus assume that U • satisfies the following, according to the cases τ = nis and τ = ét.

(nis) The morphism of formal simplicial schemes U • → U -1 (here • ≥ 0) factors through an admissible blowup U -1 → U -1 and the resulting morphism U • → U -1 is a Nisnevich hypercover of U -1 which is truncated in the non-hypercomplete case.

(ét) The morphism of formal simplicial schemes U • → U -1 (here • ≥ 0) factors through an admissible blowup U -1 → U -1 and the resulting morphism

U • → U -1 factors as U • (2) --→ U • (1) --→ U -1
where (1) is a Nisnevich hypercover of U -1 which is truncated in the non-hypercomplete case and (2) is a relative hypercover for the topology generated by finite rig-étale coverings (in the sense of Definition 1.4.16(3)) which is also truncated in the non-hypercomplete case. We denote by "rigf ét" the topology on formal schemes generated by finite rig-étale coverings. Since E admits Nisnevich (hyper)descent by construction, we see that the result would follow if we can prove the following two properties (where we denote by M : FRigSm/S → FSH (∧) τ (S; Λ) the "associated motive" functor as in Definitions 2.1.15 and 3.1.3):

(A) E is local with respect to morphisms M(V) → M(U), where V → U is an admissible blowup; (B) if τ is the étale topology, then E is local with respect to morphisms of the form colim

[n]∈∆ M(V • ) → M(V -1 ), (3.29)
where V • is a hypercover for the topology rigf ét, which we assume to be truncated in the non-hypercomplete case. We split the rest of the proof into several parts. In the first part, we prove property (A). In the second part, we establish a preliminary fact for proving property (B). In the remaining parts, we prove property (B) assuming one of the alternatives (ii) or (iv) in Assumption 3.3.1. Part 1. Here we prove property (A). We start by introducing some notations. We denote by f : U → S the structural morphism and by e : V → U the admissible blowup, and we set g = f • e. Since M(U) = f ♯ Λ and M(V) = g ♯ Λ (see Remark 3.6.6), it is enough to show that the obvious morphism Map

FSH (∧) τ (U; Λ) (Λ, f * E) → Map FSH (∧) τ (V; Λ) (Λ, g * E
) is an equivalence. This map can be identified with

Map FSH (∧) τ (U; Λ) (Λ, ι U, * f * E) → Map FSH (∧) τ (V; Λ) (Λ, ι V, * g * E) which is induced by a morphism ι U, * f * E → e * ι V, * g * E in FSH (∧)
τ (U; Λ), and it is enough to show that the latter is an equivalence. We have a chain of equivalences

ι U, * f * E = ι U, * f * (χ S (M) ⊗ ι * S (N)) (1) ≃ (ι U, * f * χ S (M)) ⊗ (ι U, * f * ι * S (N)) (2) ≃ χ U ( f rig, * (M)) ⊗ f * (N)
where (1) follows from Lemma 3.6.5 and (2) follows from the natural equivalences

f * • χ S ≃ χ U • f rig, * , ι U, * • χ U ≃ χ U , f * • ι * S ≃ ι * U • f * and ι U, * • ι * U ≃ id.
The same applies with "V" and "g" instead of "U" and " f ". Thus, we are left to show that the morphism

χ U ( f rig, * (M)) ⊗ f * (N) → e * (χ V (g rig, * (M)) ⊗ g * (N))
is an equivalence. Since e σ is a projective morphism, we may use Theorem 3.1.10 and the projective projection formula for algebraic motives (see [Ayo07a, Théorème 2.3.40] and Proposition 2.2.12(1) in the rigid analytic setting) to rewrite the above morphism as

χ U ( f rig, * (M)) ⊗ f * (N) → e * (χ V (g rig, * (M))) ⊗ f * (N).
The result follows now from the commutation e * • χ V ≃ χ U • e rig * and the fact that e rig : V rig → U rig is an isomorphism (which implies that e rig * • g rig, * ≃ f rig, * ). Part 2. Until the end of the proof, τ will be the étale topology. In this part, we formulate a property which implies property (B) for a fixed hypercover V • ; see property (B ′ ) below.

For n ≥ -1, we denote by g n : V n → S and e n : V n → V -1 the obvious morphisms. As in the first part, we need to prove that

Map FSH (∧) τ (V -1 ; Λ) (Λ, ι V -1 , * g * -1 E) → lim [n]∈∆ Map FSH (∧) τ (V n ; Λ) (Λ, ι V n , * g * n E)
is an equivalence. As explained in the first part, we have an equivalence

ι V n , * g * n E ≃ χ V n (g rig, * n (M)) ⊗ g * n (N)
, and it is enough to prove that

χ V -1 (g rig, * -1 (M)) ⊗ g * -1 (N) → lim [n]∈∆ e n, * χ V n (g rig, * n (M)) ⊗ g * n (N)
is an equivalence in FSH (∧) ét (V -1 ; Λ). Since e n, σ is a finite morphism, we may use Theorem 3.1.10 and the projective projection formula for algebraic motives to rewrite the above morphism as

χ V -1 (g rig, * -1 (M)) ⊗ g * -1 (N) → lim [n]∈∆ e n, * (χ V n (g rig, * n (M))) ⊗ g * -1 (N) ≃ lim [n]∈∆ χ V -1 (e rig n, * (g rig, * n (M))) ⊗ g * -1 (N) ≃ lim [n]∈∆ χ V -1 (e rig n, * e rig, * n (g rig, * -1 (M))) ⊗ g * -1 (N) .
Since g rig, * -1 (M) belongs to RigSH (∧) ét (V rig -1 ; Λ), it admits (hyper)descent with respect to V rig • . Using that χ V -1 is a right adjoint functor, we deduce that the morphism

χ V -1 (g rig, * -1 (M)) → lim [n]∈∆ χ V -1 (e rig n, * e rig, * n (g rig, * -1 (M)))
. is an equivalence. Thus, we see that property (B) follows from the following property:

(B ′ ) Set A • = χ V -1 (e rig •, * e rig, * • (g rig, * -1 (M))
) and B = g * -1 (N). Then, the obvious morphism ( lim

[n]∈∆ A n ) ⊗ B → lim [n]∈∆ (A n ⊗ B) (3.30)
is an equivalence in FSH (∧) ét (V -1 ; Λ). Part 3. Here we prove property (B) assuming that π 0 Λ is a Q-algebra.

For a formal scheme X, the site (FRig Ét/X, rigf ét) has zero global and local Λ-cohomological dimensions. Indeed, let F be an ordinary rigf ét-sheaf of Q-vector spaces on FRig Ét/X. For every finite rig-étale covering X ′′ → X ′ in FRig Ét/X, there is a normalised transfer map F(X ′′ ) → F(X ′ ) which is a section to the restriction map. (This map can be constructed rigf ét-locally on X ′ , and thus we may assume that X ′′ is isomorphic to a finite coproduct of copies of X ′ .) Using these normalised transfer maps, one can show that the Čech cohomology of X with values in F vanishes in degrees ≥ 1. More precisely, given a finite rig-étale cover X ′ → X, one can build, using the normalised transfer maps, a contracting homotopy from F(X ′ • ), where X ′ • is the Čech nerve of Proof. This is clear under the alternatives (iii) and (iv) which imply that ξ S belongs to Pr L ω by Propositions 2.4.22 and 3.2.3. Thus, it is enough to consider the alternatives (i) and (ii).

By Lemma 3.6.5, the functor ι S, * preserves colimits. Since χ S = ι S, * • χ S , it is enough to show that the functor χ S preserves colimits. The latter is fully faithful with essential image the fullsubcategory of FSH (∧) τ (S; Λ) spanned by those objects admitting rig-τ-(hyper)descent. Thus, it is enough to show that the property of admitting rig-τ-(hyper)descent is preserved under colimits.

Let E : I → FSH (∧) τ (S; Λ) be a diagram with colimit E(∞) and such that E(α) admits rig-τ-(hyper)descent for every α ∈ I. We need to show that E(∞) admits rig-τ-(hyper)descent. As in the proof of Proposition 3.6.7, we reduce to show the following two properties:

(A) E(∞) is local with respect to morphisms M(V) → M(U), where V → U is an admissible blowup; (B) if τ is the étale topology, then E(∞) is local with respect to morphisms of the form colim [n]∈∆ M(V • ) → M(V -1 ),
where V • is a hypercover for the topology rigf ét, which we assume to be truncated in the non-hypercomplete case. We split the rest of the proof into two parts. Part 1. Here we prove property (A). We start by introducing some notations. We denote by f : U → S the structural morphism and by e : V → U the admissible blowup, and we set g = f • e. We need to show that the obvious morphism

Map FSH (∧) τ (U; Λ) (Λ, f * E(∞)) → Map FSH (∧) τ (V; Λ) (Λ, g * E(∞)
) is an equivalence. As in the first part of the proof of Proposition 3.6.7, it is enough to show that

ι U, * f * E(∞) → e * ι V, * g * E(∞)
is an equivalence. Since the objects E(α) admit rig-τ-(hyper)descent, for α ∈ I, we deduce that the morphisms ι U, * f * E(α) → e * ι V, * g * E(α) are equivalences. Since the functors f * , g * , ι U, * and ι V, * preserve colimits (see Lemma 3.6.5), it suffices to show that the functor e * : FSH (∧) τ (V; Λ) → FSH (∧) τ (U; Λ) preserves colimits. By Theorem 3.1.10, it is equivalent to show that the functor e σ, * : SH (∧) τ (V σ ; Λ) → SH (∧) τ (U σ ; Λ) preserves colimits. This follows from the fact that e σ is projective which implies that e σ, * ≃ e σ, ! admits a right adjoint e ! σ ; see [Ayo07a, Théorème 1.7.17]. Part 2. Here we prove property (B). In particular, we work under the alternative (ii) and assume that τ is the étale topology.

For n ≥ -1, we denote by g n : V n → S and e n : V n → V -1 the obvious morphisms. As in the second part of the proof of Proposition 3.6.7, we need to show that

ι V -1 , * g * -1 E(∞) → lim [n]∈∆ e n, * ι V n , * g * n E(∞)
is an equivalence. Since the objects E(α) admit rigét-(hyper)descent, for α ∈ I, we deduce that the morphisms

ι V -1 , * g * -1 E(α) → lim [n]∈∆
e n, * ι V n , * g * n E(α) are equivalences. For n ≥ -1, the functors g * n , ι V n , * and e n, * commute with colimits. (For the second one, we use Lemma 3.6.5 and, for the third one, we use that e n, σ is finite which implies that e n, σ, * ≃ e n, σ, ! admits a right adjoint e ! n, σ ; see [Ayo07a, Théorème 1.7.17].) Therefore, it is enough to show that the obvious morphism

colim α∈I lim [n]∈∆ e n, * ι V n , * g * n E(α) → lim [n]∈∆ colim α∈I e n, * ι V n , * g * n E(α) (3.33)
is an equivalence. Now, as explained in the third part of the proof of Proposition 3.6.7, we may assume from the beginning that V • is of the form (3.31). In this case, the morphism (3.33) can be rewritten as follows:

colim α∈I (e 0, * ι V 0 , * g * 0 E(α)) G → (colim α∈I e 0, * ι V 0 , * g * 0 E(α)) G .
That this is an equivalence follows from the fact that taking the "G-invariant subobject" in a Qlinear ∞-category is equivalent to taking the image of the projector |G| -1 g∈G g. □ With Theorem 3.6.1 and Proposition 3.6.8 at hand, we can prove the first assertion in Theorem 3.3.3.

Proof of Theorem 3.3.3(1). We need to show that the unit map id → χ S • ξ S is an equivalence. Clearly, ξ S preserves colimits and the same is true for χ S by Proposition 3.6.8 combined with [Lur17, Corollary 3.4.4.6(2)]. It is thus enough to show that M → χ S ξ S M is an equivalence for M varying in a set of objects generating FSH (∧) τ (S; χΛ) under colimits. Thus, we may assume that M is a free χ S Λ-module, i.e., that M ≃ χ S (Λ) ⊗ N for some N ∈ FSH (∧) τ (S; Λ). In this case, the unit map coincides with the obvious map χ S (Λ) ⊗ N → χ S ξ S (N) which is an equivalence by Theorem 3.6.1. □ 3.7. Proof of the main result, II. Sheafification. Our goal in this subsection is to prove the second part of Theorem 3.3.3. Using [Lur09, Corollaries 3.2.2.5 & 3.2.3.2], this is equivalent to proving the following statement.

Theorem 3.7.1. We work under Assumption 3.3.2. The morphism of Pr L -valued presheaves ξ : FSH (∧) ét (-; χΛ) → RigSH (∧) ét ((-) rig ; Λ) exhibits RigSH (∧) ét ((-) rig ; Λ) as the rig-étale sheaf associated to FSH (∧) ét (-; χΛ). Remark 3.7.2. In the hypercomplete case, Theorem 3.7.1, combined with Theorem 2.3.4, shows that the étale sheafification of FSH ∧ ét (-; χΛ) is already an étale hypersheaf. Remark 3.7.3. Let S be a formal scheme.

(1) Recall that a sieve H ⊂ S is a sub-presheaf of S considered as a presheaf on FSch. A formal H-scheme is a formal S-scheme such that the structural morphism T → S factors through H. We say that H is generated by a family (S i → S) i if H is equal to the union of the images of the morphisms S i → S considered as morphisms of presheaves on FSch. Equivalently, H is the smallest sieve of S such that the S i 's are formal H-schemes.

(2) We say that a sieve H ⊂ S is a rig-étale sieve if the inclusion H ⊂ S becomes an isomorphism after rig-étale sheafification. Equivalently, H contains the sieve generated by a rig-étale cover of S. (Of course, this also makes sense for any other topology.)

We will need the following definition.

Definition 3.7.4. Let S be a formal scheme.

(1) A formal S-scheme U is said to be nearly smooth (resp. étale) if, locally on U, it is of finite type and there exists a finite morphism U ′ → U from a smooth (resp. étale) formal S-scheme U ′ inducing an isomorphism U ′rig ≃ U rig on generic fibers. (2) Let H ⊂ S be a sieve. A formal S-scheme U is said to be H-potentially nearly smooth (resp. étale) if U × S T is nearly smooth (resp. étale) over T for every formal H-scheme T.

If H is generated by a family (S i → S) i , it is enough to ask that U × S S i is nearly smooth (resp. étale) over S i for every i. (3) A formal S-scheme U is said to be potentially nearly smooth (resp. étale) if it is Hpotentially nearly smooth (resp. étale) for some rig-étale sieve H ⊂ S. As usual, we say that a morphism of formal schemes T → S is (H-potentially, potentially) nearly smooth if the formal S-scheme T is so.

Remark 3.7.5. It follows immediately from the definition that the class of nearly smooth (resp. étale) morphisms is stable under base change and composition. Similarly, the class of potentially nearly smooth (resp. étale) morphisms is stable under base change. It follows from Proposition 3.7.7 below that the class of potentially nearly étale morphisms is also stable under composition if we restrict to quasi-compact and quasi-separated formal schemes. However, this is not the case for the class of potentially nearly smooth morphisms.

We gather a few properties concerning the notion of (potentially) nearly étale morphisms in the following proposition. Proposition 3.7.6.

(1) A nearly étale morphism of formal schemes is rig-étale.

(2) Let f : T → S be a potentially nearly étale morphism of formal schemes. Then, there exists a rig-étale cover g : T ′ → T such that f • g is rig-étale. 8 (3) A quasi-compact and quasi-separated rig-étale morphism of formal schemes is potentially nearly étale.

Proof. Assertion (1) is clear. Indeed, the notion of rig-étaleness is local for the rig topology (see Definition 1.3.3(2)) and a finite morphism U ′ → U as in Definition 3.7.4(1) is a rig cover. We now prove (2). By assumption, there is a rig-étale cover e : S ′ → S such that f ′ : T ′ = T × S S ′ → S ′ is nearly étale. By (1), we know that f ′ is rig-étale. If follows that e • f ′ : T ′ → S is also rig-étale. Now, remark that g : T ′ → T, which is a base change of e, is a rig-étale cover. This proves the second assertion.

It remains to prove (3). Let f : T → S be a quasi-compact and quasi-separated rig-étale morphism. Our goal is to show that f is potentially nearly étale. The problem is local on S for the rig-étale topology and, since f is quasi-compact and quasi-separated, it is local for the Zariski topology on T. Thus, we may assume that S = Spf(A), with A an adic ring of principal ideal type, and T = Spf(B), with B a rig-étale adic A-algebra such that the zero ideal of B is saturated. We fix a generator π ∈ A of an ideal of definition.

We will show that every algebraic geometric rigid point s : Spf(V) → S admits a rig-étale neighbourhood U s such that T × S U s is nearly étale over U s . This suffices to conclude. Fix s as above. Consider the rig-étale V-algebra W = V ⊗ A B/(0) sat . Arguing as in the proof of Proposition 1.4.19, we see that Spf(W) is the completion of a quasi-finite affine flat V-scheme, necessarily of finite presentation by [FK18, Chapter 0, Corollary 9.2.8]. From Zariski's main theorem 8 It is plausible that f itself is rig-étale, but we didn't strive to prove this since we do not need it. 110 [Gro66, Chapitre IV, Théorème 8.12.6], we deduce that Spf(W) is an open formal subscheme of Spf(W ′ ) where W ′ is a finite flat V-algebra. Moreover since V[π -1 ] is an algebraically closed field it follows that W ′ [π -1 ] is a finite direct product of copies of V[π -1 ]. Replacing S with a rig-étale neighbourhood of s and T with an open covering, we may assume that W is the completion of a localisation of W ′ , i.e., there exists u ∈ W ′ which is invertible in

W ′ [π -1 ] and such that W is the completion of W ′ [u -1 ]. Using that W ′ [π -1 ] is a direct product of copies of V[π -1 ],
we may find a morphism of V-algebras

V[t]/((t -a 1 ) • • • (t -a r )) → W ′ ,
inducing an isomorphism after inverting π, where the a i 's belong to V and such that two distinct a i 's differ additively by an invertible element of V[π -1 ]. We may extend this morphism into a presentation

V⟨t, s 1 , . . . , s m ⟩/((t -a 1 ) • • • (t -a r ), π N s 1 -P 1 , . . . , π N s m -P m ) sat ≃ W ′ (3.34)
where N ∈ N is large enough and the P i 's are polynomials in V[t]. The left-hand side of the isomorphism (3.34) gives a presentation of the rig-étale V-algebra W ′ as in Definition 1.3.3. Using Proposition 1.3.8 and Lemma 1.4.26, we may assume that the a i 's and the coefficients of the P j 's belong to the image of the map colim

Spf(V)→U→S O(U) → V, (3.35) 
where the colimit is over affine rig-étale neighbourhoods of s in S. Similarly, we may assume that u ∈ W ′ is the image of a polynomial Q ∈ A[t, s 1 , . . . , s m ] with coefficients in the image of (3.35). Thus, we may find a rig-étale neighbourhood U s = Spf(A s ) of s and lifts a i 's, P j 's and Q to A s of the a i 's, P j 's and Q. We then set

C ′ s = A s ⟨t, s 1 , . . . , s m ⟩/((t -a 1 ) • • • (t -a r ), π N s 1 -P 1 , . . . , π N s m -P m ) sat and C s = C ′ s ⟨v⟩/(v • Q -1).
Refining U s , we may assume that two a i 's differ by an invertible element of A s [π -1 ]. This insures that C ′ s is a rig-étale A s -algebra. By construction, we have an isomorphism

V ⊗ A s C s /(0) sat ≃ W ≃ V ⊗ A B/(0) sat .
Using Corollary 1.3.10, we may refine U s and assume that

C s ≃ A s ⊗ A B/(0) sat .
Therefore, to conclude, it is enough to see that Spf(C ′ s ) is nearly étale over Spf(A s ) for U s sufficiently small. After refining U s if necessary, we may assume that the classes of the P i 's in the ring

A s [t]/((t -a 1 ) • • • (t -a r ))
, divided by π N , are algebraic over this ring. (Indeed, the P i 's satisfy the analogous property.) In this case, the claim is clear since the normalisation of

C ′ s in C ′ s [π -1 ] is then a finite direct product of copies of the normalisation of A s in A s [π -1 ].
□ Proposition 3.7.7. Let T → S be a quasi-compact and quasi-separated potentially nearly étale morphism of formal schemes. Let V be a potentially nearly smooth formal T-scheme. Then V is also potentially nearly smooth as a formal S-scheme.

Proof. The problem is local on S for the rig-étale topology. Thus, we may assume that S and T are quasi-compact and quasi-separated, and that the morphism T → S is nearly étale. The problem is also local on T. Thus, we may assume that there is a finite morphism T 1 → T from an étale formal S-scheme T 1 inducing an isomorphism on generic fibers. It is clearly enough to show that the formal S-scheme T 1 × T V is potentially nearly smooth over S. Thus, we may replace T with T 1 and V with T 1 × T V, and assume that T → S is étale. Let T ′ → T be a rig-étale cover such that V × T T ′ is nearly smooth over T ′ . By Lemma 3.7.8 below, there is a rig-étale cover S ′ → S and and a morphism of formal T-schemes T × S S ′ → T ′ . We claim that the formal S ′ -scheme V × S S ′ is nearly smooth. Indeed, we have an isomorphism V × S S ′ ≃ V × T (T × S S ′ ) and the formal T × S S ′ -scheme V × T (T × S S ′ ) is nearly smooth since it is a base change of the formal T ′ -scheme V × T T ′ . The structural morphism of the formal S ′ -scheme V × S S ′ is thus the composition of two nearly smooth morphisms

V × T (T × S S ′ ) → T × S S ′ → S ′ .
This finishes the proof since nearly smooth morphisms are preserved under composition. □ Lemma 3.7.8. Let T → S be a quasi-compact and quasi-separated étale morphism of formal schemes, and let T ′ → T be a rig-étale cover. Then there exists a rig-étale cover S ′ → S and a morphism of T-schemes T × S S ′ → T ′ .

Proof. This is proven in the same manner as Corollary 1.4.30. Given an algebraic geometric rigid point s → S, we consider t = s × S T. This is a quasi-compact and quasi-separated étale formal s-scheme. Thus t is a disjoint union of quasi-compact open formal subschemes of s. In particular, the morphism t → T factors through T ′ . We then use Corollary 1.4.20 and Lemma 1.4.26 to conclude. □ Definition 3.7.9. Let S be a formal scheme.

(1) Let K ⊂ S be a sieve. A rig-étale sieve H ⊂ S is said to be K-potentially nearly étale if it can be generated by a family (S i → S) i consisting of rig-étale morphisms which are K-potentially nearly étale. (2) A rig-étale sieve H ⊂ S is said to be potentially nearly étale if it is K-potentially nearly étale for some rig-étale sieve K ⊂ S.

Corollary 3.7.10. Let S be a quasi-compact and quasi-separated formal scheme. Let H ⊂ S be a rig-étale sieve. Then, we may refine H by a rig-étale sieve which is potentially nearly étale.

Proof. After refinement, we may assume that H is generated by a rig-étale cover (S i → S) i∈I where I is finite and every S i is a quasi-compact and quasi-separated rig-étale formal S-scheme. By Proposition 3.7.6(3), each S i is K i -potentially nearly étale over S for some rig-étale sieve K i ⊂ S.

It follows that H is K-potentially nearly étale, with K = ∩ i K i which is a rig-étale sieve since I is finite. □ Notation 3.7.11.

(1) Given a presheaf of sets H on FSch, we denote by FSH (∧) ét (H; χΛ) the object of Pr L obtained by evaluating on H the right Kan extension of FSH (∧) ét (-; χΛ) along the Yoneda embedding FSch op → P(FSch) op . We define similarly RigSH (∧) ét (H rig ; Λ). (2) Let S be a formal scheme and H ⊂ S a rig-étale sieve. We denote by

ξ H : FSH (∧) ét (H; χΛ) → RigSH (∧) ét (S rig ; Λ) (3.36)
the functor obtained by evaluating on H the right Kan extension of ξ and then composing with the equivalence RigSH (∧) ét (H rig ; Λ) ≃ RigSH (∧) ét (S rig ; Λ) provided by Theorem 2.3.4.

Notation 3.7.12. Let S be a formal scheme and H ⊂ S a rig-étale sieve. We denote by RigSH (∧) ét (S rig ; Λ) ⟨H⟩ ⊂ RigSH (∧) ét (S rig ; Λ) the full sub-∞-category generated under colimits, desuspensions and negative Tate twists by motives of the form M(U rig ) where U is a formal S-scheme which is H-potentially nearly smooth. Proposition 3.7.13. We work under Assumption 3.3.2. Let S be a quasi-compact and quasiseparated formal scheme and let H ⊂ S be a rig-étale sieve.

(1) The functor (3.36) is fully faithful and its essential image contains RigSH (∧) ét (S rig ; Λ) ⟨H⟩ .

(2) Assume that the sieve H is K-potentially nearly étale for a rig-étale sieve K ⊂ S. Then the essential image of (3.36) is contained in RigSH (∧) ét (S rig ; Λ) ⟨K⟩ .

Proof. Up to equivalences, the functor ξ H is given by lim

T→H FSH (∧) ét (T; χΛ) → lim T→H RigSH (∧) ét (T rig ; Λ),
where the limit is over the category of formal H-schemes. Since limits in CAT ∞ preserve fully faithful embeddings, Theorem 3.3.3(1), proved in Subsection 3.6, implies that the functor ξ H is fully faithful. Moreover, an object M ∈ RigSH (∧) ét (S rig ; Λ) belongs to the essential image of ξ H if and only if, for every e : T → S factoring through H, e rig, * M belongs to the essential image of ξ T . This shows the first assertion. Indeed, if U is a formal S-scheme which is H-potentially nearly smooth and e : T → S as before, then e rig, * M(U rig ) ≃ M((U × S T) rig ) is a colimit of objects of the form M(V rig ) ≃ ξ T M(V) where V is a smooth formal T-scheme admitting a finite morphism to an open formal subscheme of U × S T which induces an isomorphism on generic fibers. (Recall that such V's exist locally on the nearly smooth formal T-scheme U × S T.)

To prove the second assertion, we assume that H is generated by a rig-étale cover (S i → S) i such that the formal S-schemes S i are rig-étale and K-potentially nearly étale. We want to show that the essential image of ξ H is contained in RigSH (∧) ét (S rig ; Λ) ⟨K⟩ . Let M be in the essential image of ξ H . Let T = i S i and form the Čech nerve T • . Denote by e n : T n → S the obvious morphism. Then M belongs to the essential image of ξ T n , it is enough to show that the essential image of e rig n, ♯ • ξ T n is contained in RigSH (∧) ét (S rig ; Λ) ⟨K⟩ . This would follow if we can prove that for every smooth formal T n -scheme V the formal S-scheme V is K-potentially nearly smooth. This is a direct consequence of the definitions (and also a special case of Proposition 3.7.7). □

Recall that L rigét denotes the rig-étale sheafification functor. In particular, L rigét FSH (∧) ét (-; χΛ) is the rig-étale sheaf associated to the Pr L -valued presheaf FSH (∧) ét (-; χΛ). Proposition 3.7.14. We work under Assumption 3.3.2. Let S be a quasi-compact and quasiseparated formal scheme. Then the functor

L rigét FSH (∧) ét (S; χΛ) → RigSH (∧) ét (S rig ; Λ) (3.37)
is fully faithful with essential image the full sub-∞-category generated under colimits, desuspensions and negative Tate twists by motives of the form M(U rig ) where U is a formal S-scheme which is potentially nearly smooth. In fact, we can restrict to those U's which are smooth over a quasicompact and quasi-separated rig-étale formal S-scheme.

Proof. We split the proof into three steps.

Step 1. Let L 1 rigét be the endofunctor on presheaves over FSch described informally as follows. Given a formal scheme S and a presheaf F with values in an ∞-category admitting limits and colimits, we have

L 1 rigét (F)(S) = colim H⊂S F(H)
where F is the right Kan extension along the Yoneda embedding and the colimit is over the rig-étale sieves H ⊂ S. For a precise construction of such an endofunctor, we refer the reader to [Lur09, Construction 6.2.2.9 & Remark 6.2.2.12]. 9 (In loc. cit., this is done for presheaves with values in S, but the construction makes sense for more general presheaves.) Let S be a quasi-compact and quasi-separated formal scheme. Let Sv(S) be the set of rig-étale sieves of S ordered by containment and let Sv ′ (S) be the subset of Sv(S) × Sv(S), endowed with the induced order, consisting of those pairs (H, K) such that H is K-potentially nearly étale. We have two projections Sv ′ (S) → Sv(S) which are cofinal by Corollary 3.7.10 and [Lur09, Theorem 4.1.3.1]. By Proposition 3.7.13, every pair (H, K) ∈ Sv ′ (S) gives rise to a sequence of fully faithful embeddings

RigSH (∧) ét (S rig ; Λ) ⟨H⟩ → FSH (∧) ét (H; χΛ) → RigSH (∧) ét (S rig ; Λ) ⟨K⟩ → FSH (∧)
ét (K; χΛ), in which we identified FSH (∧) ét (H; χΛ) with its essential image under ξ H , and similarly for K instead of H. Passing to the colimit over Sv ′ (S) and using the cofinality of the two projections Sv ′ (S) → Sv(S), we obtain an equivalence in Pr L :

L 1 rigét FSH (∧) ét (S; χΛ) ≃ colim H⊂S RigSH (∧) ét (S rig ; Λ) ⟨H⟩ .
Since the sub-∞-categories RigSH (∧) ét (S rig ; Λ) ⟨H⟩ are generated under colimits by a set of compact generators of RigSH (∧) ét (S rig ; Λ), it follows immediately that the induced functor ξ 1 S : L 1 rigét FSH (∧) ét (S; χΛ) → RigSH (∧) ét (S rig ; Λ) is fully faithful with essential image the full sub-∞-category generated under colimits, desuspensions and negative Tate twists by motives of the form M(U rig ) where U is a formal S-scheme which is potentially nearly smooth.

Step 2. Here, we prove that L 1 rigét FSH (∧) ét (-; χΛ), restricted to FSch qcqs , is already a rig-étale sheaf. This will prove the statement except for the last sentence.

We argue as in the proof of Proposition 3.7.13. Let H ⊂ S be a rig-étale sieve generated by a finite family (S i → S) i such that the S i 's are quasi-compact and rig-étale over S. We consider the functor ξ 1 H : L 1 rigét FSH (∧) ét (H; χΛ) → RigSH (∧) ét (S rig ; Λ) defined as in Notation 3.7.11(2). This is a fully faithful functor with essential image the sub-∞category spanned by those M ∈ RigSH (∧) ét (S rig ; Λ) such that e rig, * M belongs to the essential image 9

This can be found in the electronic version of [START_REF] Lurie | Higher topos theory[END_REF] on the author's webpage, but not in the published version.

of ξ 1 T for every e : T → S factoring through H. Our goal is to show that ξ 1 S and ξ 1 H have the same essential image.

Let T = i S i and form the Čech nerve T • associated to T → S. Let e n : T n → S be the obvious morphism. Let M be in the essential image of ξ 1 H . We have an equivalence colim Therefore, it is enough to show that e rig n, ♯ e rig, * n M belongs to the essential image of ξ 1 S . Using the description of the essential image of ξ 1 H given above, it suffices to show that e rig n, ♯ takes the essential image of ξ 1

T n to the essential image of ξ 1 S . This follows from the description of the essential images of ξ 1 S and ξ 1 T n given above, and the fact that a potentially nearly smooth formal T n -scheme is also potentially nearly smooth as a formal S-scheme which follows from Propositions 3.7.6(3) and 3.7.7.

Step 3. It remains to show the last assertion in the statement, concerning the generators under colimits of the essential image of (3.37). Let C be the sub-∞-category of RigSH (∧) ét (S rig ; Λ) generated under colimits, desuspension and negative Tate twists by M(V rig ), with V smooth over a rig-étale formal S-scheme. We want to show that C coincides with the essential image of (3.37). By the previous steps, it is enough to show that M(U rig ) ∈ C for every potentially nearly smooth formal S-scheme U. Let T → S be a rig-étale cover such that U × S T is nearly smooth over T. Let T • be the Čech nerve associated to

T → S. Since M(U rig ) ≃ colim [n]∈∆ M((U × S T n ) rig ),
it is enough to show that M((U × S T n ) rig ) ∈ C for every n ∈ N. The problem is local on U × S T n . Since the latter is nearly smooth, we are reduced to show that M(V rig ) ∈ C if V is a formal T nscheme admitting a finite morphism V ′ → V inducing an isomorphism V ′rig ≃ V rig and such that V ′ is smooth over T n . This is clear since M(V ′rig ) ∈ C by construction. □ Corollary 3.7.15. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition morphisms, and let S = lim α S α . Assume one of the following conditions.

(1) We work under the alternative (iii) of Assumption 3.3.1.

(2) We work under the alternative (iv) of Assumption 3.3.1. We assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S rig α ) are bounded independently of α. Then, we have an equivalence in Pr L :

colim α L rigét FSH ét (S α ; χΛ) ≃ L rigét FSH ét (S; χΛ).
Proof. This follows from Theorem 2.5.1, Proposition 3.7.14 and the following assertion. Given a rig-étale formal S-scheme T and a smooth formal T-scheme V, we can find, locally for the rig topology on T and V, an index α 0 , a rig-étale formal S α 0 -scheme T α 0 , a smooth formal T α 0 -scheme V α 0 , and isomorphisms of formal S-schemes T/(0) sat ≃ lim

α≤α 0 T α /(0) sat and V/(0) sat ≃ lim α≤α 0 V α /(0) sat .
(As usual, for α ≤ α 0 , we set T α = T α 0 × S α 0 S α and similarly for V α .) To prove this assertion, we may assume that the S α = Spf(A α )'s are affine, that T = Spf(B) with B adic rig-étale over A = colim α A α and admitting a presentation as in Definition 1.3.3, and V = Spf(C) with C an adic B-algebra étale over B⟨t 1 , . . . , t m ⟩. Then, the result follows easily from Corollary 1.3.10. □ Remark 3.7.16. Recall that our goal in this subsection is to prove Theorem 3.7.1. This is equivalent to the statement that the morphism of rig-étale Pr L -valued sheaves

L rigét ξ : L rigét FSH (∧) ét (-; χΛ) → RigSH (∧) ét ((-) rig ; Λ) (3.38)
is an equivalence under Assumption 3.3.2. Clearly, it is enough to do so after restricting (3.38) to affine formal schemes. Every affine formal scheme is the limit of a cofiltered inverse system of (Λ, ét)-admissible affine formal schemes with (Λ, ét)-admissible generic fiber. Thus, when working under the alternative (iii) of Assumption 3.3.1, Theorem 2.5.1 and Corollary 3.7.15 allow us to restrict (3.38) further to the subcategory of (Λ, ét)-admissible affine formal schemes with (Λ, ét)admissible generic fiber. By Propositions 2.4.19 and 3.2.2, we are then automatically working under the alternative (iv) of Assumption 3.3.1. Said differently, to prove Theorem 3.7.1 we may work from this point onwards under the alternative (iv) of Assumption 3.3.1. In particular, since we only consider formal schemes with finite dimensional generic fibers, (3.38) is a morphism of rig-Nisnevich hypersheaves. (See the proof of Lemma 2.4.18.) As a consequence, it is enough to show that (3.38) induces equivalences on the stalks for the rig-Nisnevich topology. Using Theorem 2.8.6 and the analogous statement for L rigét FSH (∧) ét (-; χΛ) which follows in the same way from Corollary 3.7.15, we are left to show the following statement.

Proposition 3.7.17. Let s be a rigid point and set s = Spf(κ + (s)). Assume the following conditions:

(1) every prime number is invertible either in κ + (s) or in π 0 Λ;

(2) when working in the non-hypercomplete case, Λ is eventually coconnective. Then, RigSH (∧) ét (s; Λ) is generated under colimits, desuspension and negative Tate twists by motives of the form M(U rig ) with U smooth over a rig-étale formal s-scheme (or, equivalently, by the motives M(U) with U smooth with good reduction over an étale rigid analytic s-space).

Proof. This is a generalisation of [Ayo15, Theorem 2.5.34], and we will adapt the proof of loc. cit. to our situation. Let C(s) be the sub-∞-category of RigSH (∧) ét (s; Λ) generated under colimits, desuspension and negative Tate twists by motives of the form M(U rig ), with U smooth over a rig-étale formal s-scheme. Note that C(s) is equally generated by motives of the form M(U), with U smooth with good reduction over an étale rigid analytic s-space. Our goal is to show that C(s) is equal to RigSH (∧) ét (s; Λ). We divide the proof into several steps.

Step 1. Here we show that it is enough to prove the proposition under the following assumptions:

• π 0 Λ is a Q-algebra; • κ(s)
is algebraically closed and κ + (s) has finite height. In particular, s is (Λ, ét)-admissible and we will be working in the hypercomplete case.

Indeed, we can find a cofiltered inverse system of rigid points (s α ) α with s ∼ lim α s α such that the valuation rings κ + (s α ) have finite ranks and the fields κ(s α ) have finite virtual Λ-cohomological dimensions. We set s α = Spf(κ + (s α )) so that s = lim α s α . Our goal is to prove that C(s) = RigSH (∧) ét (s; Λ) and, by Lemma 2.1.20, it is enough to show that M(V rig ) ∈ C(s) for V a rig-smooth formal s-scheme. Moreover, we may assume that V = Spf(A) where A is an adic κ + (s)-algebra which is rig-étale over κ + (s)⟨t 1 , • • • , t m ⟩. Thus, using Corollary 1.3.10, there is an index α and a rig-smooth formal s α -scheme V α such that V rig = V rig α × s α s. Since C(s) contains the image of C(s α ) by the inverse image functor along s → s α , we see that it is enough to show that M(V rig α ) ∈ C(s α ).

Thus, we may replace s by s α and assume that s is (Λ, ét)-admissible. In particular, by Proposition 2.4.19, the non-hypercomplete case is then covered by the hypercomplete case. Also, the ∞category RigSH ∧ ét (s; Λ) is compactly generated by Proposition 2.4.22. Next, we explain how to reduce to the case where π 0 Λ is a Q-algebra. Let M ∈ RigSH ∧ ét (s; Λ) and consider the cofiber sequence M → M Q → M tor where M Q = M ⊗ Q is the rationalisation of M. The motive M tor is a direct coproduct of ℓ-nilpotent motives M ℓ for ℓ non invertible in π 0 Λ. By Theorem 2.10.3, we have an equivalence of ∞-categories

Shv ∧ ét ( Ét/s; Λ) ℓ-nil ≃ RigSH ∧ ét (s; Λ) ℓ-nil .
This implies that M ℓ belongs to the sub-∞-category of RigSH ∧ ét (s; Λ) generated under colimits by motives of the form M(U), where U is an étale rigid analytic s-space. This show that M tor belongs to C(s), and we are left to show that M Q belongs to C(s). To do so, we may replace Λ with Λ Q and assume that π 0 Λ is a Q-algebra.

It remains to explain how to reduce to the case where κ(s) is algebraically closed. Let κ + (s) be the adic completion of a valuation ring extending κ + (s) inside a separable closure of κ(s), and let κ(s) be the fraction field of κ + (s). This defines a geometric algebraic point s over s as in Construction 1.4.27(2). We have s ∼ lim α s α where (s α ) α is the cofiltered inverse system of rigid points such that κ(s α )/κ(s) is a finite separable extension contained in κ(s). Using Theorem 2.5.1 and arguing as above, we have an equivalence in Pr L ω :

C(s) ≃ colim α C(s α ). (3.39) 
Denote by e : s → s, e α : s → s α and r α : s α → s the obvious morphisms. Consider a compact motive M ∈ RigSH ∧ ét (s; Λ) and assume that we know that e * M ∈ C(s). Since e * M is compact, the equivalence (3.39) implies that there exists α 0 and a compact object N ∈ C(s α 0 ) such that e * M = e * α 0 N. In particular, the two compact objects r * α 0 M and N of RigSH ∧ ét (s α 0 ; Λ) become equivalent when pulled back to s. By Theorem 2.5.1, they actually become equivalent when pulled back to s α , for α ≤ α 0 sufficiently small. This shows that r * α M belongs to C(s α ). We now conclude as in the second step of the proof of Proposition 3.7.14: using the Čech nerve associated to s α → s, we reduce to show that, for n ≥ 1,

M ⊗ M( n times s α × s • • • × s s α ) ≃ (r α, ♯ r * α M) ⊗ M( n-1 times s α × s • • • × s s α ),
belongs to C(s) which is clear.

Step 2. In the remainder of the proof, we work under the two assumptions introduced in the first step. We set K = κ(s), V = κ + (s) and we fix π ∈ V a generator of an ideal of definition. We set η = Spec(K) and use a subscript "η" to denote the fiber at η of a V-scheme. By Lemma 2.1.20, the ∞-category RigSH ∧ ét (s; Λ) is generated under colimits by the motives M(Y), for Y ∈ RigSm qc /s, and their desuspensions and negative Tate twists. We will show that M(Y) ∈ C(s) by induction on the relative dimension d of |Y| over |s|. The case of relative dimension zero is clear because Y is then étale over s. In general, the problem is local on Y. Thus, by Proposition 1.3.15, we may assume that Y is the π-adic completion P of a V-scheme P of finite presentation and generically smooth. Replacing P with the Zariski closure of P η , we may also assume that P is flat over V.

Step 3. (This is analogous to the second step in the proof of [Ayo15, Théorème 2.5.34].) In this step, we will prove the following preliminary assertion. Let E ⊂ P be a closed subscheme, generically of codimension ≥ 1, and let Z = E rig considered as a closed rigid analytic subspace of Y. Then the relative motive M(Y/Y ∖ Z), defined as the cofiber of M(Y ∖ Z) → M(Y), belongs to C(s).

The proof of this uses the induction on the relative dimension of |Y| over |s|, and we will argue by a second induction on the dimension of E η . The base case for the second induction is when E η is empty: the relative motive is then zero and the claim is obvious. Let E ′ ⊂ E be the closure of the singularity locus of E η and Z ′ = E ′rig . Since κ(s) is algebraically closed and hence perfect, E ′ η has codimension ≥ 1 in E η . By the second induction, we may assume that M(Y/Y ∖ Z ′ ) belongs to C(s). We are thus left to show that M(Y ∖ Z ′ /Y ∖ Z) belongs to C(s). The rigid analytic space Y ∖ Z ′ is not necessarily quasi-compact, but we may write it as a filtered union of quasi-compact opens Y α = ( P α ) rig where P α are open subschemes of admissible blowups of P, not meeting the closure of E ′ η . Thus, we are left to show that M(Y α /Y α ∖ Z α ) belongs to C(s) with Z α the generic fiber of the formal completion of E α = E × P P α . Replacing Y with Y α and E with E α , we are thus reduced to showing that M(Y/Y ∖ Z) belongs C(s) under the assumption that E η is smooth.

As usual, we may also assume that P is affine, and that E is flat over V. Now, assume we are given a finite type morphism e : P → P and a closed subscheme E ⊂ P with the following properties:

• e η is étale, E ⊂ e -1 (E) and E η = e -1 η (E η ); • the induced morphism E → E is proper and an isomorphism E η ≃ E η on generic fibers.
Then, letting Y and Z be the generic fibers of the π-adic completions of P and E, we have, by étale excision, an isomorphism M( Y/ Y ∖ Z) ≃ M(Y/Y ∖ Z). Using this principle twice, we may assume that P is isomorphic to E × A c , for some c ≥ 1, and that E ⊂ P is the zero section. In this case, the relative motive M(Y/Y ∖ Z) is isomorphic to M(Z)(c)[2c], and we may conclude using the induction on the relative dimension of Y.

Step 4. (This is analogous to the third step in the proof of [Ayo15, Théorème 2.5.34].) In this step, we show that we may assume P to be "poly-stable". By means of [Ber99, Lemma 9.2], applied to some compactification of P, we may find a proper surjective morphism e : Q → P with the following properties:

• there is a finite group G acting on the P-scheme Q, a dense open subscheme L ⊂ P η with inverse image M = e -1 (L) dense in Q η , and such that M → M/G is a finite étale Galois cover with group G and M/G → L is a universal homeomorphism; • the projection Q → Spec(V) factors as a composition of

Q = Q d f d -→ Q d-1 → . . . → Q 1 f 1 -→ Q 0 = Spec(V)
and, for every 1 ≤ i ≤ d, the morphism f i decomposes, étale locally on the source and the target, as

Spec(B) étale ---→ Spec(A[u, v]/(uv -a)) → Spec(A) (3.40)
with A a flat V-algebra of finite type, u and v two indeterminates, and

a ∈ A invertible in A[π -1 ].
In particular, we see that the f i 's have relative dimension 1 and that the ( f i ) η 's are smooth.

Let E ⊂ P be the closure of P η ∖ L in P and F ⊂ Q the closure of Q η ∖ M in Q. By the second step, it is enough to prove that M( P rig ∖ E rig ) belongs to C(s). By Lemma 3.7.18 below, M( P rig ∖ E rig ) is a direct summand of M( Q rig ∖ F rig ) and it is enough to see that the latter is in C(s). Using the second step again, we see that it is enough to show that M( Q rig ) belongs to C(s). Thus, replacing P with Q and Y with Q rig , we may assume that the projection P → Spec(V) can be factored as a composition

P = P d f d -→ P d-1 → . . . → P 1 f 1 -→ P 0 = Spec(V) (3.41)
with f i given, étale locally on the source and the target, by (3.40).

Step 5. We now conclude the proof. We argue by induction on the number of integers i ∈ {1, . . . , d} such that f i is not smooth. If all the f i 's are smooth, then the formal scheme P is smooth over Spf(V) and M(Y) ∈ C(s) by construction. Now suppose that at least one of the f i 's is not smooth. Arguing as in [Ayo15, page 332], 10 we may assume that f d : P d → P d-1 is not smooth. The problem is local for the étale topology on Y. (More precisely, if Y • → Y is a truncated étale hypercover then it is enough to prove that M(Y n ) ∈ C(s) for n ≥ 0.) Therefore, we may assume that a factorization as in (3.40) exists globally for f d , i.e., that f d is a composition of

P = P d étale ---→ P d-1 [u, v]/(uv -a) → P d-1
for some a ∈ O(P d-1 ) which is invertible in O((P d-1 ) η ). Arguing by étale excision as in [Ayo15, page 333], we conclude that it suffices to treat the case where

P = P d-1 [u, v]/(uv -a).
We set R = P d-1 . By the induction on the relative dimension of |Y| → |s|, we know that M( R rig ) belongs to C(s). Consider the blowup e : W → R[u] of the ideal (a, u). Since a is invertible on R η , e η is an isomorphism and W rig ≃ R rig × B 1 . Moreover, W admits a Zariski cover given by

P = R[u, v]/(uv -a) and P ′ = R[u, w]/(aw -u) ≃ R[w] intersecting at P ′′ = R[u, v, v -1 ]/(uv -a) ≃ R[v, v -1 ]. Thus, we have a cofiber sequence M( R rig × U 1 ) → M( P rig ) ⊕ M( R rig × B 1 ) → M( R rig × B 1 ) showing that M(Y) is isomorphic to M( R rig ) ⊕ M( R rig )(1)[1]
. This finishes the proof. □ Lemma 3.7.18. Let S be a rigid analytic space, f : Y → X a morphism of smooth rigid analytic S -spaces and G a finite group acting on the rigid analytic X-space Y. Assume that Y → Y/G is a finite étale cover and that Y/G → X is a universal homeomorphism. Assume also that the order of G is invertible in π 0 Λ and that every prime number is invertible either in O(X) or in π 0 Λ. Then, in the ∞-category RigSH (∧) ét (S ; Λ), the morphism M(Y) → M(X) induced by f exhibits M(X) as the image of the projector |G| -1 g∈G g acting on M(Y). Proof. Let π X : X → S and π Y : Y → S be the structural morphisms. Since M(X) = π X, ♯ π * X Λ, there is an equivalence of copresheaves

Map RigSH (∧) ét (S ; Λ) (M(X), -) ≃ Map RigSH (∧) ét (S ; Λ) (Λ, π X, * π * X (-))
, and similarly for Y instead of X. Thus, by Yoneda's lemma, it is enough to show that, for every

M ∈ RigSH (∧) ét (S ; Λ), the obvious morphism π X, * π * X M → π Y, * π * Y M exhibits π X, * π * X M as the image of the projector |G| -1 g∈G g acting on π Y, * π * Y M. Set X ′ = Y/G
and let π X ′ : X ′ → S be the structural morphism. By étale descent, the image of the projector

|G| -1 g∈G g acting on π Y, * π * Y M is equivalent to π X ′ , * π * X ′ M. Thus, we need to show that the natural transformation π X, * π * X → π X ′ , * π * X ′
is an equivalence. This follows from the fact that the unit morphism id → e * e * is an equivalence, which is a consequence of Theorem 2.9.7. □

Now that we have completed the proof of Theorem 3.7.1, we record the following generalisation of Proposition 3.7.17.
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Corollary 3.7.19. Let S be a rigid analytic space. Assume the following conditions:

(1) every prime number is invertible either in every κ + (s) for s ∈ |S | or in π 0 Λ;

(2) when working in the non-hypercomplete case, Λ is eventually coconnective.

Then RigSH (∧) ét (S ; Λ) is generated under colimits, desuspension and negative Tate twists by the motives M(U) with U smooth with good reduction over an étale rigid analytic S -space.

Proof. The problem is local on S . Thus, we may assume that S = Spf(A) rig with A an adic ring. We may write A as the colimit in the category of adic rings of a filtered direct system (A α ) α such that the S α = Spf(A α ) and the S α = Spf(A α ) rig are (Λ, ét)-admissible. Arguing as in the first step of the proof of Proposition 3.7.17, we see that it is enough to prove the corollary for each S α . Said differently, we may assume that S = Spf(A) and S are (Λ, ét)-admissible. By Theorem 3.7.1, we have an equivalence L rigét FSH (∧) ét (S; χΛ) ≃ RigSH (∧) ét (S ; Λ). We may now conclude using Proposition 3.7.14. □ Corollary 3.7.20. Let S be a rigid analytic space and assume the conditions (1) and (2) of Corollary 3.7.19. For every U ∈ Ét qcqs /S , denote by f U : U → S the structural morphism and choose a formal model U of U. Then, the functors

χ U • f * U : RigSH (∧) ét (S ; Λ) → FSH (∧)
ét (U; Λ), for U ∈ Ét qcqs /S , form a conservative family. In fact, the same is true if we restrict to those U's admitting affine formal models of principal ideal type.

Proof. This follows immediately from Proposition 3.1.14 and Corollary 3.7.19. □

We end the subsection with the following statement.

Theorem 3.7.21. We assume that τ is the étale topology and work under one of the alternatives (ii), (iii) and (iv) of Assumption 3.3.1. Let s be a geometric rigid point and set s = Spf(κ + (s)). Then

ξ s : FSH (∧) ét (s; χΛ) → RigSH (∧) ét (s; Λ) is an equivalence of ∞-categories.
Proof. When working under (iii) or (iv), this is a direct consequence of Theorem 3.3.3(2) and the fact that every rig-étale cover of s splits. In the generality considered in the statement, we argue as follows. The functor ξ s is fully faithful by Theorem 3.3.3(1). Since this functor preserves colimits, it remains to see that its image generates RigSH (∧) ét (s; Λ) under colimits. This follows from Proposition 3.7.17 and the fact that an étale rigid analytic s-space is a coproduct of open subspaces. □ 3.8. Complement. Theorem 3.3.3 is especially useful if we have a handle on the commutative algebras χ S Λ, for S ∈ FSch. Our goal in this subsection is to obtain a purely algebro-geometric description of these commutative algebras, i.e., one that does not involve rigid analytic geometry. In order to do so, we need to assume that τ is the étale topology; the case of the Nisnevich topology seems to require techniques of resolution of singularities which are stronger than what is available.

Given a formal scheme S, we will implicitly identify the ∞-categories SH (eff, ∧) τ (S σ ; Λ) and FSH (eff, ∧) τ (S; Λ) by means of Theorem 3.1.10. In particular, χ S Λ will be considered as a commutative algebra in SH (eff, ∧) τ (S σ ; Λ). Our goal is to prove Theorem 3.8.1 below. The proof will occupy most of the subsection, and it is inspired by the proof of [Ayo15, Théorème 1.3.38].

Theorem 3.8.1. Let B be a scheme, B σ ⊂ B a closed subscheme locally of finite presentation up to nilimmersion, and B η ⊂ B its open complement. Consider the functor χ B : SH (∧) ét (B η ; Λ) → SH (∧) ét (B σ ; Λ) given by χ B = i * • j * , where i : B σ → B and j : B η → B are the obvious immersions. Assume that every prime number is invertible either in π 0 Λ or in O(B). Assume one of the following alternatives.

(1) We work in the non-hypercomplete case and Λ is eventually coconnective;

(2) We work in the hypercomplete case and B is (Λ, ét)-admissible.

Let B be the formal completion of B at B σ . (Note that B σ = B σ up to nilimmersion.) Then, there is an equivalence χ B Λ ≃ χ B Λ of commutative algebras in SH (∧) ét (B σ ; Λ). Remark 3.8.2. One has a good handle on the motive χ B Λ in many situations. For example, if B is regular and B σ is a principal regular divisor in B, then χ B Λ ≃ Λ ⊕ Λ(-1)[-1]. This follows from absolute purity; see Corollary 3.8.32 below. More generally, absolute purity can be used to give a precise description of χ B Λ when B σ is a normal crossing divisor of a regular scheme B. In general, assuming that B is quasi-excellent, one can access χ B Λ using techniques of resolution of singularities to reduce to the case where B is regular and B σ is a normal crossing divisor. In fact, these techniques will also be used in the proof of Theorem 3.8.1.

Remark 3.8.3. Let k be a field of characteristic zero having finite virtual Λ-cohomological dimension. In the non-hypercomplete case, assume that Λ is eventually coconnective. Let K be the discretely valued field k((π)) and R ⊂ K its valuation ring. For n ∈ N × , we denote by K n = K[π 1/n ] the finite extension of K obtained by adjoining an n-th root of unity, and R n ⊂ K n its valuation ring. Also, we let K ∞ be the completion of n∈N × K n and R ∞ ⊂ K ∞ its valuation ring. Using Theorem 3.8.1 (and Remark 3.8.2), we obtain canonical equivalences of commutative algebras χ R n Λ ≃ q n, * Λ where q n : T n → Spec(k) is the structural projection of the 1-dimensional torus T n ≃ G m given by Spec(k[π 1/n , π -1/n ]). It follows formally that we have an equivalence of ∞-categories

SH (∧) ét (k, χ R n Λ) ≃ uSH (∧) ét (T n ; Λ), where uSH (∧) ét (T n ; Λ) is the full sub-∞-category of SH (∧)
ét (T n ; Λ) generated under colimits by the image of the functor q * n . Letting n go to ∞, we obtain an equivalence of ∞-categories

SH (∧) ét (k, χ R ∞ Λ) ≃ uSH (∧) ét (T ∞ ; Λ), (3.42) 
where T ∞ is the pro-torus given by the spectrum of n∈N × k[π 1/n , π -1/n ] and uSH (∧) ét (T ∞ ; Λ) is defined similarly as for the T n 's. Now, assume furthermore that k is algebraically closed. Then the valued field K ∞ is also algebraically closed. Combining the equivalence (3.42) with Theorem 3.7.21, we obtain an equivalence of ∞-categories

uSH (∧) ét (T ∞ ; Λ) ≃ RigSH (∧) ét (K ∞ ; Λ). (3.43) 
(It is not totally obvious how to construct such an equivalence. One needs to argue as in the proof of Lemma 3.5.7; see also Remark 3.5.8.) Applying i * , we deduce an equivalence

χ B M ≃ colim α≤α 0 f * α χ B α M α . (3.52)
Similarly, by Remark 3.5.8 and using Corollary 3.8.18, we have an equivalence

χ B An * B η M ≃ colim α≤α 0 f an, * α χ B α An * B α, η M α . (3.53)
Therefore, it is enough to show that χ B α M α → χ B α An * B α, η M α is an equivalence. In particular, we may assume that B is quasi-excellent and (Λ, ét)-admissible. In this case, since Λ is eventually coconnective, we are automatically working in the hypercomplete case by Propositions 2.4.19 and 3.2.2. This finishes the proof. □

Our next task is to prove the following weak version of Theorem 3.8.19 (which we are able to justify even when τ is the Nisnevich topology).

Proposition 3.8.21. Let B be a quasi-excellent (Λ, τ)-admissible scheme, B σ ⊂ B a closed subscheme, and B η ⊂ B its open complement. If τ is the étale topology, assume that every prime number is invertible either in π 0 Λ or in O(B). Then, there is a natural transformation

χ B • An * B η → χ B , between functors from SH ∧ τ (B η ; Λ) to SH ∧ τ (B σ ; Λ)
, which is a section to the natural transformation ρ B , i.e., such that the composition of

χ B • An * B η → χ B ρ B -→ χ B • An * B η
is the identity. sending an affine formal scheme Spf(A) over S to the scheme Spec(A). Consider also the two related functors D S, σ and D S, η between the same categories, sending an affine formal scheme Spf(A) over S to the schemes Spf(A) σ and Spec(A) ∖ Spf(A) σ respectively. We consider D S , D S, σ and D S, η as diagrams of schemes and define the smooth τ-sites (Sm/D S , τ), (Sm/D S, σ , τ) and (Sm/D S, η , τ)

as in [Ayo07b, §4.5.1]. To fix the notation, let us recall that an object of Sm/D S is a pair (U, V) consisting of an object U ∈ FRigSm af /S and a smooth O(U)-scheme V. The topology τ on Sm/D S is generated by families of the form ((id U , e i ) : (U, V i ) → (U, V)) i where the family (e i ) i is a cover for the topology τ.

The ∞-category SH (eff, ∧) τ (D S ; Λ) is constructed from the site (Sm/D S , τ), using the interval A 1 and the motive of A 1 ∖ 0 pointed by the unit section, as in Definitions 2.1.11 and 2.1.15 (or Definition 3.1.1 and 3.1.3), and similarly for D S, σ and D S, η . (For a construction using the language of model categories, see [Ayo07b, §4.5.2].) We note here that A 1 (resp. A 1 ∖ 0) is considered as a presheaf of sets on Sm/D S , sending (U, V) to O(V) (resp. O × (V)). This presheaf is not representable unless S is affine, but the Cartesian product with this presheaf preserves representable presheaves. (For instance, we have

A 1 × (U, V) = (U, A 1 V ).)
We have morphisms of diagrams of schemes i : D S, σ → D S and j : D S, η → D S , and we define the functor

χ D S : SH (eff, ∧) τ (D S, η ; Λ) → SH (eff, ∧) τ (D S, σ ; Λ) (3.55)
to be the composite i * • j * . Similarly, consider the functor

D an S : FRigSm af /S → RigSch (3.56)
sending an affine formal scheme Spf(A) over S to Spf(A) considered as a rigid analytic scheme. Consider also the related functor D an S, η between the same categories, sending an affine formal scheme Spf(A) over S to the rigid analytic space Spf(A) rig . We consider D an S and D an S, η as diagrams of rigid analytic schemes and define the smooth τ-sites (RigSm/D an S , τ) and (RigSm/D an S, η , τ) as in [Ayo07b, §4.5.1]. The ∞-category RigSH (eff, ∧) τ (D an S ; Λ) is constructed from the site (RigSm/D an S , τ), using the interval B 1 and the motive of U 1 pointed by the unit section, as in Definitions 2.1.11 and 2.1.15, and similarly for D an S, η . We have morphisms of diagrams of rigid analytic schemes i an : D S, σ → D an S and j an : D an S, η → D an S , and we define the functor S ; Λ) of formal motives over D for S using the smooth site (FSm/D for S , τ). Moreover, we have an equivalence of ∞-categories

χ D an S : RigSH (eff, ∧) τ (D an S, η ; Λ) → SH (eff, ∧) τ (D S, σ ; Λ) (3.
σ * : FSH (eff, ∧) τ (D for S ; Λ) ∼ - → SH (eff, ∧) τ (D S, σ ; Λ)
as in Theorem 3.1.10.

Lemma 3.8.24. The functor χ D an S coincides with the composition of

RigSH (eff, ∧) τ (D an S, η ; Λ) χ D for S ---→ FSH (eff, ∧) τ (D for S ; Λ) σ * --→ SH (eff, ∧) τ (D S, σ ; Λ)
where χ D for S is the restriction along the functor (-) rig : FSm/D for S → RigSm/D an S, η sending a pair (U, V) to (U, V rig ).

Proof. This is diagrammatic version of Lemma 3.8.17 which is proven in the same way. □ Remark 3.8.25. There are five diagonal functors emanating from FRigSm af /S and taking values in the categories Sm/D S , Sm/D S, σ , Sm/D S, η , RigSm/D an S and RigSm/D an S, η . These functors will be denoted respectively by diag, diag σ , diag η , diag an and diag an η . They send an affine formal scheme U = Spf(A) over S to the pairs (U, Spec(A)), (U, U σ ), (U, Spec(A) ∖ U σ ), (U, U) and (U, U rig ) respectively. We now concentrate on the case of diag, but what we are going to say can be adapted to the remaining four diagonal functors. The functor diag induces an adjunction (3.59) Lemma 3.8.26. Below, we consider diag η, * and diag an η, * as ordinary functors on ordinary categories of presheaves of sets. Given a rigid analytic space W over S rig , we denote also by W the presheaf of sets on FRigSm af /S given by W(X) = Hom S rig (X rig , W).

(1) Let (U, V) be an object of Sm/D S, η which we identify with the presheaf of sets it represents. Denote by V an the analytification of V with respect to the adic ring O(U). Then, there is a morphism of presheaves of sets

diag η, * (U, V) → V an (3.60)
which induces an isomorphism after sheafification for the rig topology. (2) Let (U, V) be an object of RigSm/D an S, η which we identify with the presheaf of sets it represents. Then, there is a morphism of presheaves of sets

diag an η, * (U, V) → V (3.61)
which induces an isomorphism after sheafification for the rig topology.

Proof. We only prove the first part, which is slightly more interesting. Set A = O(U) and let T = Spf(B) be a rig-smooth affine formal S-scheme. A section of diag η, * (U, V) on T is a pair ( f, g) consisting of a morphism of formal S-schemes f : T → U and a morphism of schemes g : Spec(B) ∖ T σ → V over Spec(A) ∖ U σ . This gives rise to a section of the (Spec(B) ∖ T σ )-scheme V × Spec(A) Spec(B) and, by analytification over T, to a morphism T rig → V an × S rig T rig . This defines the morphism of presheaves (3.60). It remains to see that this morphism induces an equivalence on stalks for the rig topology. To do so, we evaluate (3.60) on a rig point t = Spf(R) over S, with R an adic valuation ring with fraction field K. We may replace S with t and assume that V is a smooth K-scheme. The question being local, we may assume that V is compactifiable over R and fix an open immersion V → V into a proper R-scheme V. In this case, the evaluation of (3.60) on t is the obvious map between (1) the set of K-points x : Spec(K) → V;

(2) the set of R-points x : Spf(R) → V such that there exists an admissible blowup V ′ → V with the property that the lift x ′ : Spf(R) → V ′ of x factors through the complement of the special fiber of the Zariski closure of

V ′ η ∖ V in V ′ . (See Construction 1.1.15.)
To give a morphism of formal R-schemes x : Spf(R) → V is equivalent to giving a morphism of R-schemes x : Spec(R) → V, and the condition in (2) corresponds to the condition that x sends Spec(K) to V. Hence, the set described in (2) can be identified with (2 ′ ) the set of R-points x : Spec(R) → V sending Spec(K) to V. That the obvious map between (1) and (2 ′ ) is a bijection is clear. (Note that the existence of this map follows from the valuative criterion of properness but, once the existence of this map is granted, it is clearly a bijection.) □

Recall that the weak equivalences of the stable (B 1 , τ)-local model structure are called the stable (B 1 , τ)-local equivalences; see Remark 2.1.19. Similarly, we have the notions of stable (A 1 , τ)local equivalences and stable (A 1 , rig-τ)-local equivalences. For later use, we record the following result.

Lemma 3.8.27.

(1) The functor Proof. We only treat the first part; the second part is proven in the same way. The functor diag η, * commutes with colimits. Thus, by [START_REF] Lurie | Higher topos theory[END_REF]Proposition 5.5.4.20], it is enough to show that diag η, * transforms the following types of morphisms (1) colim

[n]∈∆ Λ(U, V n ) → Λ(U, V -1 ), where V • is a τ-hypercover, (2) Λ(U, V) → Λ(U, A 1 V ), (3) a morphism of T -spectra F → F ′ such that F n → F ′
n is an equivalence for n large enough, into (A 1 , rig-τ)-local equivalences, for (1) and (2), and into stable (A 1 , rig-τ)-local equivalences, for (3). The case of (3) is obvious, so we only need to discuss morphisms of type (1) and (2).

In (1) and (2) above, U is an affine formal scheme which is rig-smooth over S. We set U = Spec(O(U)), U σ = U σ and U η = U ∖ U σ . Then V and the V n 's, for n ≥ -1, are smooth U ηschemes. By Lemma 3.8.26(1), diag η, * takes morphisms of type (1) and (2) to morphisms which are rig-locally equivalent to

(1 ′ ) colim [n]∈∆ Λ(V an n ) → Λ(V an -1 ), (2 ′ ) Λ(V an ) → Λ((A 1 V ) an ),
where we use the notation introduced in aforementioned lemma. By Remark 2.1.14, it is enough to show that (1 ′ ) and (2 ′ ) are (B 1 , τ)-equivalences in PSh(RigSm/S rig ; Λ) which is obvious. □

We now state the main technical result needed for proving Proposition 3.8.21. (Compare with [Ayo15, Théorème 1.3.37].) Proposition 3.8.28. Let B be a quasi-excellent (Λ, τ)-admissible scheme, B σ ⊂ B a closed subscheme locally of finite presentation, and B η ⊂ B its open complement. If τ is the étale topology, assume that every prime number is invertible either in π 0 Λ or in O(B).

(1) Consider the commutative diagram of diagrams of schemes

D B, η j G G u η D B u D B, σ i o o u σ B η j G G B B σ . i o o
Then, the composite functor

diag σ, * • i * • j * • u * η : SH ∧ τ (B η ; Λ) → Spt T (PSh(FRigSm af / B; Λ)) (3.62)
takes values in RigSH ∧ τ ( B rig ; Λ) considered as the full sub-∞-category of the target of (3.62) spanned by those objects which are stably (A 1 , rig-τ)-local. We now concentrate on part (1). We fix an object M ∈ SH ∧ τ (B η ; Λ). Our goal is to show that diag σ, * i * j * u * η M belongs to the full sub-∞-category

RigSH ∧ τ ( B rig ; Λ) ⊂ Spt T (PSh(FRigSm af / B; Λ)).

(3.65)

The proof of this is similar to the proof of Proposition 3.6.7 and, instead of repeating large portions of that proof we will refer to it when possible. It follows from Propositions 2.4.22 and 3.2.3 that the sub-∞-category (3.65) is closed under colimits and that the functors diag σ, * , i * , j * and u * η are colimit-preserving. Thus, we may assume that M is compact. We split the proof into several steps.

Step 1. Arguing as in the second part of the proof of Lemma 3.6.2, we may assume one of the following alternatives:

(1) τ is the Nisnevich topology;

(2) π 0 Λ is a Q-algebra;

(3) τ is the étale topology and M is ℓ-nilpotent for a prime ℓ invertible on B. Moreover, we claim that under the alternative (3), we may assume that Λ is eventually coconnective. 

i * j * u * η M ≃ lim r diag σ, * i * j * u * η (M ⊗ Λ τ ≤r Λ).
Since the sub-∞-category (3.65) is stable under limits, we deduce that it is enough to prove the result for M ⊗ Λ τ ≤r Λ . This proves our claim.

In conclusion, when τ is the étale topology, we may assume that Λ is eventually coconnective. (Indeed, if π 0 Λ is a Q-algebra, there is a morphism Q → Λ and we may replace Λ by Q.)

Step 2. From now on, we set E = diag * σ i * j * u * η M and, for m ∈ N, we denote by E m the m-th level of the T -spectrum E. In this step, we show that E admits levelwise hyperdescent for the rig-Nisnevich topology. Arguing as in the beginning of the proof of Proposition 3.6.7, we need to show that E m has descent for every rig-Nisnevich hypercover U • in FRigSm af / B admitting a morphism of augmented simplicial formal schemes U • → U • such that:

• U • is a Nisnevich hypercover; • U -1 → U -1 is an admissible blowup; • U n → U n is an isomorphism for n ≥ 0.
In particular, we see that U n is affine except possibly when n = -1. For n ≥ -1, we set U n = Spec(O(U n )) and, for n ≥ 0, we set U n = U n . Since U -1 → U -1 is an admissible blowup, it is the formal completion of a unique blowup e : U -1 → U -1 with center supported on U -1, σ ⊂ U -1 . For n ≥ -1, we set U n, σ = U n, σ , U n, σ = U n, σ , U n, η = U n ∖ U n, σ and U n, η = U n ∖ U n, σ . We denote by u n : U n → B and u n : U n → B the obvious morphisms.

Since M can be shifted and twisted, it suffices to prove that the map

Map(Λ(U -1 ), E 0 ) → lim [n]∈∆ Map(Λ(U n ), E 0 )
is an equivalence, where the mapping spaces are taken in PSh(FRigSm af / B; Λ). Looking at the definition of E 0 , we see that this map is equivalent to

Map SH ∧ τ (U -1, σ ; Λ) (Λ, χ U -1 u * -1, η M) → lim [n]∈∆ Map SH ∧ τ (U n, σ ; Λ) (Λ, χ U n u * n, η M) = lim [n]∈∆ Map SH ∧ τ ( U n, σ ; Λ) (Λ, χ U n u * n, η M).
(3.66)

For n ≥ 0, we let v n : U n → U -1 be the obvious morphism. Since B is quasi-excellent, the v n 's are regular morphisms. By Lemma 3.8.29 below, the morphism

χ U n u * n, η M → v * n, σ χ U -1 u * -1, η M is an equivalence. Therefore, the left-hand side in (3.66) is equivalent to lim [n]∈∆ Map SH ∧ τ ( U n, σ ; Λ) (Λ, v * n, σ χ U -1 u * -1, η M).
Since U •, σ is a Nisnevich hypercover, the latter is equivalent to Map SH ∧ τ ( U -1, σ ; Λ) (Λ, χ U -1 u * -1, η M). Thus, we are left to show that the morphism

χ U -1 u * -1, η M → e σ, * χ U -1 u * -1, η
M is an equivalence. This follows from the projective base change theorem and the fact that e η is an isomorphism.

Step 3. In this step and the next one, we assume that τ is the étale topology and we prove that E admits levelwise hyperdescent for the rig-étale topology. By the second step, we already know that E admits levelwise hyperdescent for the rig-Nisnevich topology. Thus, arguing as in the beginning of the proof of Proposition 3.6.7, it remains to show that E has levelwise descent for the topology rigf ét.

In this step, we deal with the case where π 0 Λ is a Q-algebra. As explained in the third part of the proof of Proposition 3.6.7, we only need to show that E has levelwise descent for a rigf éthypercover of the form

• • • V 0 × G × G G G G G G G V 0 × G G G G G V 0 G G V -1 . (3.67)
where V -1 is an affine rig-smooth formal B-scheme and V 0 → V -1 is a finite rig-étale covering admitting an action of a finite group G which is simply transitive on the geometric fibers of

V rig 0 → V rig -1 . For n ∈ {-1, 0}, we set V n = Spec(O(V n )), V n, σ = V n, σ and V n, η = V n ∖ V n, σ .
We also denote by v -1 : V -1 → B, v 0 : V 0 → B and e : V 0 → V -1 the obvious morphisms. For later use, we note that e η : V 0, η → V -1, η is a finite étale cover admitting an action of G which is simply transitive on geometric fibers.

Since M can be shifted and twisted, it suffices to prove that the map

Map(Λ(V -1 ), E 0 ) → Map(Λ(V 0 ), E 0 ) G
is an equivalence, where the mapping spaces are taken in PSh(FRigSm af / B; Λ). Looking at the definition of E 0 , we see that this map is equivalent to

Map SH ∧ ét (V -1, σ ; Λ) (Λ, χ V -1 v * -1, η M) → Map SH ∧ ét (V 0, σ ; Λ) (Λ, χ V 0 v * 0, η M) G . Thus, it is enough to show that χ V -1 v * -1, η M → (e σ, * χ V 0 v * 0, η M) G ≃ (χ V -1 e η, * v * -1, η M) G
is an equivalence. (The equivalence above follows from the proper base change theorem and the fact that e is finite.) Taking the "G-invariant subobject" in a Q-linear ∞-category is equivalent to taking the image of the projector |G| -1 g∈G g, and hence it commutes with the functor χ V -1 . Thus, it is enough to show that v * -1, η M 0 → (e η, * e * η v * -1, η M 0 ) G is an equivalence, which follows from étale descent in SH ∧ ét (V -1, η ; Λ).

Step 4. Here we complete the proof that E admits levelwise hyperdescent for the rig-étale topology. By the first and the third steps, we may assume that M is ℓ-nilpotent and that Λ is eventually coconnective. Let M 0 ∈ Shv ∧ ét ( Ét/B η ; Λ) ℓ-nil be the object corresponding to M by the equivalence Shv ∧ ét ( Ét/B η ; Λ) ℓ-nil ≃ SH ∧ ét (B η ; Λ) ℓ-nil provided by Theorem 2.10.4. As in the third step, it suffices to show descent for the rigf éthypercover (3.67) and it is enough to prove that

χ V -1 v * -1, η M → (χ V -1 e η, * v * -1, η M)
G is an equivalence. Using Theorem 2.10.4, we may as well prove that

χ V -1 v * -1, η M 0 → (χ V -1 e η, * v * -1, η M 0 )
G is an equivalence. Since Λ is eventually coconnective and M 0 is compact, we deduce that the étale sheaf M 0 is also eventually coconnective. Taking the "G-invariant subobject" commutes with direct images and, if we restrict to eventually coconnective étale sheaves, it also commute with inverse images. (The latter assertion can be proven using an explicit model for the G-invariant functor; see the fourth part of the proof of Proposition 3.6.7 for a similar argument.) Thus, as in the previous step, it is enough to show that v * -1, η M 0 → (e η, * e * η v * -1, η M 0 ) G is an equivalence, which follows from étale descent in Shv ∧ ét ( Ét/V -1, η ; Λ).

Step 5. In this last step, we check that E is levelwise A 1 -invariant and an Ω-spectrum. Since M can be shifted, it is enough to show that the maps

Map(Λ(U), E m ) → Map(Λ(A 1 U ), E m ), Map(Λ(U), E m ) → fib{Map(Λ(A 1 U ∖ 0 U ), E m+1 ) 1 * -→ Map(Λ(U), E m+1 )} (3.68)
are equivalences for every U ∈ FRigSm af / B. Set U = Spec(O(U)), U σ = U σ and U η = U ∖ U σ . Let V be an affine smooth formal U-scheme, and set V = Spec(O(V)), V σ = V σ and V η = V ∖ V σ . Denote by u : U → B and g : V → U the obvious morphisms. Then we have equivalences

Map(Λ(U), E m ) ≃ Map SH ∧ τ (U σ ; Λ) (Λ(-m), χ U u * η M), Map(Λ(V), E m ) ≃ Map SH ∧ τ (V σ ; Λ) (Λ(-m), χ V g * η u * η M), (1) 
≃ Map SH ∧ τ (V σ ; Λ) (Λ(-m), g * σ χ U u * η M), (2) 
≃ Map SH ∧ τ (U σ ; Λ) (Λ(-m), g σ, * g * σ χ U u * η M
). The equivalence (1) follows from Lemma 3.8.29 below and the fact that g is regular. The equivalence (2) follows by adjunction. Letting p : A 1 U σ → U σ and q : A 1 U σ ∖ 0 U σ → U σ be the obvious projections, we deduce that the maps (3.68) are equivalent to the following ones:

Map SH ∧ τ (U σ ; Λ) (Λ(-m), χ U u * η M) → Map SH ∧ τ (U σ ; Λ) (Λ(-m), p * p * χ U u * η M), Map SH ∧ τ (U σ ; Λ) (Λ(-m), χ U u * η M) → Map SH ∧ τ (U σ ; Λ) (Λ(-m -1), fib{1 * : q * q * χ U u * η M → χ U u * η M})
which are clearly equivalences as needed.

□

The following lemma was used in the proof of Proposition 3.8.28. We prove it in a greater generality than needed because of its potential usefulness.

Lemma 3.8.29 (Regular base change). Consider a Cartesian square of schemes

Y ′ g ′ G G f ′ Y f X ′ g G G X
with X locally noetherian, g regular, and f quasi-compact and quasi-separated. Assume one of the following alternatives:

(1) we work in the non-hypercomplete case and, when τ is the étale topology, we assume furthermore that Λ is eventually coconnective;

(2) we work in the hypercomplete case, and the schemes X, X ′ , Y and Y ′ are (Λ, τ)-admissible. Then, the natural transformation g

* • f * → f ′ * • g ′ * , between functors from SH (eff, ∧) τ (Y; Λ) to SH (eff, ∧) τ (X ′ ; Λ), is an equivalence.
Proof. This is a generalisation of [Ayo15, Corollary 1.A.4] and, as in loc. cit., its proof consists in reducing to the smooth base change theorem using Popescu's theorem on regular algebras and Proposition 2.5.11. However, here we need an extra argument to reduce to the case where Λ is eventually coconnective so that Proposition 2.5.11 applies. The problem being local on X, X ′ and Y, we may assume that X, X ′ , Y and Y ′ are affine. (This uses the hypothesis that f is quasicompact and quasi-separated.) By Proposition 3.2.3, the ∞-category SH (eff, ∧) τ (X; Λ) is compactly generated, and similarly for X ′ , Y and Y ′ . By the same proposition, the functors f * and f ′ * are colimit-preserving, and thus belong to Pr L . (The same is obviously true for g * and g ′ * .)

We first prove the lemma under the alternative (1). By [Pop86, Theorem 1.8], the X-scheme X ′ is a limit of a cofiltered inverse system (X ′ α ) α of smooth affine X-schemes. For each α, consider a Cartesian square

Y ′ α g ′ α G G f ′ α Y f X ′ α g α G G X.
By the smooth base change theorem, we have commutative squares in Pr L SH (eff) τ (Y ′ α ; Λ)

f ′ α, * SH (eff) τ (Y; Λ) f * g ′ * α o o SH (eff) τ (X ′ α ; Λ) SH (eff) τ (X; Λ) g * α o o
Taking the colimit in Pr L of these squares yields a commutative square expressing that g * • f * is equivalent to f ′ * • g ′ * as needed. (This is actually not obvious; one needs to argue as in the proof of Theorem 2.7.1. We leave the details to the reader.)

Next, we prove the lemma under the alternative (2). Using Proposition 3.2.2, we may conclude using the lemma under the alternative (1) if τ is the Nisnevich topology or if Λ is eventually coconnective and, more generally, if Λ is an algebra over an eventually coconnective commutative ring spectrum. In particular, we may assume that τ is the étale topology, and the result holds if π 0 Λ is a Q-algebra. Arguing as in the second part of the proof of Lemma 3.6.2, it remains to prove that g * f * M → f ′ * g ′ * M is an equivalence when M ∈ SH (eff), ∧ ét (Y; Λ) ℓ-nil , for some prime ℓ invertible on X. Moreover, we may assume that M is compact. By Theorem 2.10.4, it is enough to show that g * f * M 0 → f ′ * g ′ * M 0 is an equivalence for M 0 ∈ Shv ∧ ét ( Ét/Y; Λ) ℓ-nil . Using Lemma 2.4.5, one deduces equivalences

g * f * M 0 ≃ lim r g * f * (M 0 ⊗ Λ τ ≤r Λ) and f ′ * g ′ * M 0 ≃ lim r f ′ * g ′ * (M 0 ⊗ Λ τ ≤r Λ).
Thus, we may replace M and Λ with M ⊗ Λ τ ≤r Λ and τ ≤r Λ. We are then automatically working under the alternative (1), and the result follows. □

Proof of Proposition 3.8.21. We have a commutative square of natural transformations

diag η, * • u * η α G G β ′ diag σ, * • i * • j * • u * η β diag an η, * • u an, * η • An * B η α ′ G G diag σ, * • i an, * • j an * • u an, * η • An * B η .
(3.69)

The natural transformation α is obtained from j * → i * • i * • j * by applying diag * , and similarly for the natural transformation α ′ . The natural transformation β is deduced from (3.58) (with S = B).

Finally, the natural transformation β ′ is deduced from the second natural transformation in (3.59) (with S = B) and the equivalence u an, * η

• An * B η ≃ An * D B, η
• u * η . We claim that the natural transformation β • α is given by stable (A 1 , rig-τ)-local equivalences. We will prove this by showing that α ′ is an equivalence and that β ′ is given by stable (A 1 , rig-τ)local equivalences. We then use this to finish the proof of the proposition. We split the remainder of the proof into three steps accordingly.

Step 1. Here we prove that α ′ is an equivalence. In fact, even the natural transformation Step 2. Here we prove that β ′ is given by stable (A 1 , rig-τ)-local equivalences. Since all the functors composing the source and the target of β ′ are colimit-preserving and since stable (A 1 , rig-τ)-local equivalences are preserved by colimits, it is enough to show that

β ′ M : diag η, * u * η M → diag an η, * u an, * η An * B η M
136 is a stable (A 1 , rig-τ)-local equivalence when M is of the form L A 1 , τ, st Sus m T Λ(X) for n ∈ N and X ∈ Sm/B η . (Here, L A 1 , τ, st is the stable (A 1 , τ)-localisation functor and Sus m T is the left adjoint sending a T -spectrum to its m-th level.) We have an equivalence Step 3. We are now ready to finish the proof of the proposition. By Proposition 3.8.28(1), the functor diag σ, * • i * • j * • u * η takes values in the ∞-subcategory spanned by stably (A 1 , rig-τ)-local objects. Therefore, α factors through the functor L A 1 , rig-τ, st • diag η, * • u * η and the composition of 

u * η M ≃ L A 1 , τ, st u * η Sus m T Λ(X)
L A 1 , rig-τ, st • diag η, * • u * η α - → diag σ, * • i * • j * • u * η β - → diag σ, * • i an, * • j an * • u an, * η • An *
u sm, * σ • χ B = u sm, * σ • i * • j * ≃ i sm, * • j sm * • u sm, * η .
We conclude by remarking that diag sm σ, * • u sm, * σ is equivalent to the identity functor. □

We are now almost ready to finish the proof of Theorem 3.8.19, but we still need two results which are of independent interest. The following is a version of [Ayo07a, Proposition 2.2.27(2)] with integral coefficients. Proposition 3.8.30. Let B be a (Λ, ét)-admissible scheme, B σ ⊂ B a closed subscheme, and B η ⊂ B its open complement. Assume one of the following alternatives:

• B is quasi-compact and quasi-excellent of characteristic zero; • B is of finite type over a quasi-compact and quasi-excellent scheme of dimension ≤ 1.

Assume that every prime number is invertible either in π 0 Λ or in O(B). Then, the ∞-category SH ∧ ét (B η ; Λ) is compactly generated, up to desuspension and Tate twists, by motives of the form f η, * Λ, where f : X → B is a proper morphism with X regular and such that X σ is a normal crossing divisor.

Proof. By [Tem08, Theorem 1.1] and [dJ97, Theorem 5.13], given a finite type B-scheme X with X η integral and dense in X, we may find a proper morphism e : X ′ → X such that:

(1) X ′ is regular and X ′ σ is a strict normal crossing divisor of X ′ ; (2) X ′ η is integral and dense in X ′ , and X ′ → X is dominant and generically finite; (3) there exists a finite group G acting on the X-scheme X ′ and a dense open U ⊂ X η with inverse image U ′ ⊂ X ′ η , such that the morphism U ′ → U factors as a finite étale Galois cover U ′ → U ′ /G with group G and a universal homeomorphism U ′ /G → U. Now, let T (resp. T ′ ) be the smallest full sub-∞-category of SH ∧ ét (B η ; Λ) closed under colimits, desuspension and Tate twists, and containing the motives of the form f η, * Λ, where f : X → B is a proper morphism (resp. a proper morphism with X regular and X σ a normal crossing divisor). By [Ayo07a, Lemme 2.2.23], we have T = SH ∧ ét (B η ; Λ), and it is enough to show that T ⊂ T ′ . Said differently, we need to show that f η, * Λ ∈ T ′ for any proper morphism f : X → B. We argue by induction on the dimension of X η .

Given a dense open immersion j : U → X η , we have an equivalence

( f η, * Λ ∈ T ′ ) ⇔ ( f η, * j ! Λ ∈ T ′ ) (3.70)
by the induction hypothesis and the localisation property. Thus, given a proper morphism e 1 : X 1 → X such that e -1 1 (U) is dense in X 1, η and e -1 1 (U) ≃ U, we may replace X with X 1 . Applying this to the normalisation of X, we reduce to the case where X is integral and X η dense in X. Now, let e : X ′ → X, G, U and U ′ be as in (1)-(3) above. Set f ′ = f • e, and denote by j : U → X η and j ′ : U ′ → X ′ η the obvious inclusions. Then f ′ η, * Λ ∈ T ′ by definition and f ′ η, * j ′ ! Λ ∈ T ′ by the equivalence (3.70), for X ′ instead of X, which is also valid under the induction hypothesis since X ′ η has the same dimension as X η . Moreover, by the equivalence (3.70), we only need to show that f η, * j ! Λ ∈ T ′ . Since T ′ is closed under colimits, it is enough to show that

f η, * j ! Λ ≃ colim G f ′ η, * j ′ ! Λ
where f ′ η, * j ′ ! Λ is endowed with the G-action induced from the action of G on X ′ . Let u : U ′ → U and v : U ′ /G → U be the obvious morphisms. Since e is proper, we have f ′ η, * j ′ ! Λ ≃ f η, * j ! u * Λ. Since f η, * and j ! commute with colimits, we have colim

G f ′ η, * j ′ ! Λ ≃ f η, * j ! (colim G u * Λ).
Thus, we are left to show that Λ → colim G u * Λ is an equivalence. By étale descent, we have v * Λ ≃ colim G u * Λ and by Theorem 2.9.7 we have Λ ≃ v * Λ. This finishes the proof. □ The following is a generalisation of [Ayo14a, Théorème 7.4].

Proposition 3.8.31. Let S be a regular (Λ, ét)-admissible scheme and assume that every prime number is invertible either in π 0 Λ or in O(S ). Let

T ′ s ′ G G t ′ T t S ′ s G G S
be a transversal square of closed immersions in the sense of [Ayo14a, Définition 7.2]. Then, the morphism s ′ * t ! Λ → t ′! s * Λ is an equivalence in SH ∧ ét (T ′ ; Λ). Proof. More generally, given a Λ-module M ∈ Mod Λ , we will prove that s ′ * t ! M → t ′! s * M is an equivalence. Since the functors s * , t ! , s ′ * and t ′ * are colimit-preserving, we may assume that M is compact. When Λ is the Eilenberg-Mac Lane spectrum associated to an ordinary ring, this is [Ayo14a, Théorème 7.4]. It follows that the proposition is known if π 0 Λ is a Q-algebra or, said differently, if we replace M by M Q = M ⊗ Q. Thus, we are left to treat the case where M is ℓ-nilpotent for a prime ℓ invertible on S . We may apply Theorem 2.10.4 and work with the ∞-categories of étale sheaves Shv ∧ ét ( Ét/(-); Λ) ℓ-nil instead of SH ∧ ét (-; Λ). We have equivalences

t ! M ≃ lim r t ! (M ⊗ Λ τ ≤r Λ) and t ′! M ≃ lim r t ′! (M ⊗ Λ τ ≤r Λ).
Since S is (Λ, ét)-admissible and M is compact, Lemma 2.4.5 implies that the inverse system (t ! (M ⊗ Λ τ ≤r Λ)) r in Shv ∧ ét ( Ét/T ; Λ) is eventually constant on homotopy sheaves. It follows that

s ′ * t ! M ≃ lim r s ′ * t ! (M ⊗ Λ τ ≤r Λ).
Thus, it is enough to prove that the maps

s ′ * t ! (M ⊗ Λ τ ≤r Λ) → t ′! s * (M ⊗ Λ τ ≤r Λ)
are equivalences. Said differently, we may assume that Λ is eventually coconnective. By an easy induction, we reduce to the case where Λ is the Eilenberg-Mac Lane spectrum associated to Z/ℓ. (See the proof of Lemma 3.6.2.) In this case, the result is proven in [Ayo14a, Proposition 7.8] as a consequence of Gabber's absolute purity [ILO14, Exposé XVI, Théorème 3.1.1]. □ Corollary 3.8.32. Let B be a (Λ, ét)-admissible scheme, B σ ⊂ B a closed subscheme, and B η ⊂ B its open complement. Below, we use Notation 3.8.14.

(1) Assume that B is regular and that B σ is a regular subscheme of codimension c defined as the vanishing locus of a global regular sequence a 1 , . . . , a c ∈ O(B). Then, we have equivalences

i ! Λ ≃ Λ(-c)[-2c] and χ B Λ ≃ Λ ⊕ Λ(-c)[-2c + 1] in SH ∧ ét (B σ ; Λ).
(2) Assume that B is regular and that B σ is a strict normal crossing divisor. Let D ⊂ B σ be an irreducible component and D • the intersection of D with the regular locus of (B σ ) red . Let u : D • → D and v : D → B σ be the obvious inclusions. The morphism

v * χ B Λ → u * u * v * χ B Λ is an equivalence in SH ∧ ét (D; Λ).
Proof. For the first assertion, we consider the commutative diagram with Cartesian squares

B η j G G a η B a B σ i o o a σ A c B ∖ 0 B j 0 G G A c B B, i 0 o o
where a is the section of A c B → B induced by the c-tuple (a 1 , . . . , a c ) and i 0 is the zero section. By Proposition 3.8.31, we have equivalences i ! Λ ≃ a * σ i ! 0 Λ and χ B Λ ≃ a * σ χ A c B Λ, which enable us to conclude.

We now pass to the second assertion. Since the problem is local over B, we may assume that (B σ ) red is defined by an equation of the form a 1 • • • a c = 0, where a 1 , . . . , a c is a regular sequence. Consider the commutative diagram with Cartesian squares

B η j G G a η B a B σ i o o a σ U j ′ G G A c B E, i ′ o o
where E is defined by the equation t 1 • • • t c = 0, with (t 1 , . . . , t c ) a system of coordinates on A c , and

U = A c
B ∖ E. For I ⊂ {1, . . . , c} nonempty, we let D I ⊂ B σ and H I ⊂ E be the closed subschemes defined by the equations i∈I a i = 0 and i∈I t i = 0 respectively. We have transversal squares

D I i I G G a I B a H I i ′ I G G A c B .
By Proposition 3.8.31, we deduce equivalences a * I i ′! I Λ ≃ i ! I Λ. Since i ! Λ and i ′! Λ can be built from the i ! I Λ's and the i ′! I Λ's using the same recipe, we deduce that the obvious map a * σ i ′! Λ → i ! Λ is an equivalence. It follows that a * σ χ A c B Λ → χ B Λ is also an equivalence. We may assume that D = D 1 . We set H = H 1 and define H • as in the statement. We also let v ′ : H → E and u ′ : H • → H be the obvious inclusions. By [Ayo07b, Théorème 3.3.11], the obvious map

v ′ * χ A c B Λ → u ′ * u ′ * v ′ * χ A c B Λ
We will show that q is the identity of Λ(-1)[-1]. To do so, we consider the morphism Λ → Λ(1) [1] in SH ∧ ét (X η ; Λ) corresponding to a ∈ O × (X η ), i.e., induced by the section a : X η → A 1 X η ∖ 0 X η . Applying χ X and then p : χ X → χ X yields a commutative square

Λ ⊕ Λ(-1)[-1]       0 0 1 0       G G       1 r 0 q       Λ(1)[1] ⊕ Λ       1 r 0 q       Λ ⊕ Λ(-1)[-1]       0 0 1 0       G G Λ(1)[1] ⊕ Λ.
This forces q to be the identity, as needed. □

4. The six-functor formalism for rigid analytic motives

In this section, we develop the six-functor formalism for rigid analytic motives, getting rid of the quasi-projectivity assumption imposed in [START_REF] Ayoub | Motifs des variétés analytiques rigides[END_REF]§1.4]. The key step in doing so is to prove an extended proper base change theorem for rigid analytic motives; see Theorem 4.1.4 below. An important particularity in the rigid analytic setting is the existence of canonical compactifications (aka., Huber compactifications). We will not make use of these compactifications in defining the exceptional direct image functors, but see Theorem 4.3.20 below.

Extended proper base change theorem.

Our goal in this subsection is to prove a general extended proper base change theorem for rigid analytic motives; see Theorem 4.1.4 below. This will be achieved by reducing to the usual proper base change theorem for algebraic motives. A compatibility property for the functors χ S , for S ∈ FSch, and the operations f ♯ , for f smooth, plays a key role in this reduction; it is given in Theorem 4.1.3 below which we deduce quite easily from Theorem 3.6.1 (which was a key step in proving Theorem 3.3.3). We start by a well-known generalisation of some facts contained in [Ayo07a, Scholie 1.4.1].

Proposition 4.1.1. Consider a Cartesian square in FSch

Y ′ g ′ G G f ′ Y f X ′ g G G X
with f proper.

(1) The commutative square

FSH (∧) τ (X; Λ) f * G G g * FSH (∧) τ (Y; Λ) g ′ * FSH (∧) τ (X ′ ; Λ) f ′ * G G FSH (∧) τ (Y ′ ; Λ)
is right adjointable, i.e., the natural transformation g * • f * → f ′ * • g ′ * is an equivalence.

(2) If g is smooth, the commutative square

FSH (∧) τ (X ′ ; Λ) f ′ * G G g ♯ FSH (∧) τ (Y ′ ; Λ) g ′ ♯ FSH (∧) τ (X; Λ) f * G G FSH (∧) τ (Y; Λ) is right adjointable, i.e., the natural transformation g ♯ • f ′ * → f * • g ′
♯ is an equivalence. Proof. By Theorem 3.1.10, we reduce to show the statement for a Cartesian square in Sch

Y ′ g ′ G G f ′ Y f X ′ g G G X
with f proper. When f is projective, this is covered by [Ayo07a, Scholie 1.4.1]; see also [START_REF] Ayoub | La réalisation étale et les opérations de Grothendieck[END_REF]Proposition 3.5]. The passage from the projective to the proper case is a well-known procedure, that we revisit here because we don't know a reference in the generality we are considering. (Under noetherianness assumptions, an argument can be found in the proof of [CD19, Proposition 2.3.11(2)].)

The question is local on X, so we may assume that X is quasi-compact and quasi-separated. Using a covering of Y by finitely many affine open subschemes, assertion (1) (resp. assertion (2)) follows if we can prove that the natural transformation

g * • f * • v ♯ → f ′ * • g ′ * • v ♯ (resp. g ♯ • f ′ * • v ′ ♯ → f * • g ′ ♯ • v ′ ♯
) is an equivalence for every open immersion v : V → Y with base change v ′ : V ′ → Y ′ . Letting g ′′ : V ′ → V be the base change of g ′ , this natural transformation can be rewritten as follows:

g * • ( f * • v ♯ ) → ( f ′ * • v ′ ♯ ) • g ′′ * (resp. g ♯ • ( f ′ * • v ′ ♯ ) → ( f * • v ♯ ) • g ′′ ♯ )
. By the refined version of Chow's lemma given in [Con07, Corollary 2.6], we may find a blowup e : Z → Y, with centre disjoint from V, such that h = f •e is a projective morphism. Let w : V → Z be the open immersion such that v = e • w. Set Z ′ = Z × Y Y ′ and let e ′ : Z ′ → Y ′ , h ′ : Z ′ → X ′ and w ′ : V ′ → Z ′ be the base change of e, h and w along g. Using [Ayo07a, Scholie 1.4.1], we have natural equivalences v ♯ ≃ e * • w ♯ and v ′ ♯ ≃ e ′ * • w ′ ♯ . Thus, we may rewrite the above natural transformation as follows:

g * • (h * • w ♯ ) → (h ′ * • w ′ ♯ ) • g ′′ * (resp. g ♯ • (h ′ * • w ′ ♯ ) → (h * • w ♯ ) • g ′′ ♯ )
. Thus, we may replace f and f ′ by h and h ′ , thereby reducing the general case to the case of a projective morphism. □ Lemma 4.1.2. Let f : Y → X be a proper morphism of formal schemes. Then, the functor f * : FSH (∧) τ (Y; Λ) → FSH (∧) τ (X; Λ) is colimit-preserving and thus admits a right adjoint.

Proof. By Theorem 3.1.10, we reduce to show the statement for a proper morphism of schemes f : Y → X. When f is projective, this follows from [Ayo07a, Théorème 1.7.17]. In general, we may assume that X is quasi-compact and quasi-separated, and reduce to show that f * • v ♯ is colimitpreserving for every open immersion v : V → Y with V affine. Then, we use the refined version of Chow's lemma given in [Con07, Corollary 2.6], to find a blowup Y ′ → Y with centre disjoint from V and such that Y ′ → X is projective. We conclude using the equivalence

f * • v ♯ ≃ f ′ * • v ′ ♯ where f ′ : Y ′ → X and v ′ : V → Y ′ are the obvious morphisms. □
Our main task in this subsection is to prove a variant of Proposition 4.1.1 for rigid analytic motives. (A version of Proposition 4.1.1(a) holds true in the rigid analytic setting even without assuming that f is proper but under some mild technical assumptions; see Theorem 2.7.1. We will explain below how to remove these technical assumptions when f is assumed to be proper.) A key ingredient is provided by the following theorem.

Theorem 4.1.3. We work under Assumption 3.3.1. Let f : T → S be a smooth morphism of formal schemes. The commutative square

FSH (∧) τ (T; Λ) ξ T G G f ♯ RigSH (∧) τ (T rig ; Λ) f rig ♯ FSH (∧) τ (S; Λ) ξ S G G RigSH (∧) τ (S rig ; Λ)
is right adjointable, i.e., the induced natural transformation f ♯ • χ T → χ S • f rig ♯ is an equivalence. Proof. We split the proof into two steps. In the first one, we consider the case where f is an open immersion and, in the second one, we treat the general case.

Step 1. Here we treat the case of an open immersion j : U → S. For M ∈ RigSH (∧) τ (S rig ; Λ), we have a commutative diagram

χ S (M) ⊗ j ♯ Λ (1) G G ∼ χ S (M ⊗ ξ S j ♯ Λ) ∼ G G χ S (M ⊗ j rig ♯ Λ) ∼ j ♯ j * χ S M ∼ G G j ♯ χ U j rig, * M (2) 
G G χ S j rig ♯ j rig, * M, where all the arrows, except the labeled ones, are equivalences for obvious reasons. By Theorem 3.6.1, the morphism (1) is also an equivalence, and hence the same is true for the morphism (2). Thus, the natural transformation j ♯ • χ U → χ S • j rig ♯ becomes an equivalence when applied to the functor j rig, * . Since the latter is essentially surjective, the result follows.

Step 2. Here we treat the general case. Clearly, the problem is local on S. We claim that it is also local on T. Indeed, let (u i : T i → T) i be an open covering of T. The ∞-category RigSH (∧) τ (T rig ; Λ) is generated under colimits by the images of the functors u rig i, ♯ . Clearly, the functors f ♯ and f rig ♯ are colimit-preserving. By Proposition 3.6.8, the same is true for χ T and χ S . Thus, it is enough to prove that the natural transformations

f ♯ • χ T • u rig i, ♯ → χ S • f rig ♯ • u rig i, ♯ are equivalences. Using the first step, this natural transformation is equivalent to ( f • u i ) ♯ • χ T i → χ S • ( f • u i ) rig
♯ which brings us to prove the theorem for the morphisms f • u i . This proves our claim.

The problem being local on T and S, we may assume that there is a closed immersion i : T → A n S . We may also assume that there is an étale neighbourhood of T in A n S which is isomorphic to an étale neighbourhood of the zero section T → A m T (where m is the codimension of the immersion i). Thus, letting p : A n S → S be the obvious projection, we have natural equivalences

p ♯ • i * ≃ f ♯ (m)[2m] and p rig ♯ • i rig * ≃ f rig ♯ (m)[2m].
Moreover, the following diagram is commutative

p ♯ • i * • χ T ∼ G G ∼ p ♯ • χ A n S • i rig * G G χ S • p rig ♯ • i rig * ∼ f ♯ • χ T (m)[2m] G G χ S • f rig ♯ (m)[2m]
. This shows that it suffices to treat the case of the projection p : A n S → S. Let j : A n S → P n S be an open immersion into the relative projective space of dimension n and let q : P n S → S be the obvious projection. The morphism

p ♯ • χ A n S → χ S • p rig ♯ is equivalent to the composition of q ♯ • j ♯ • χ A n S → q ♯ • χ P n S • j rig ♯ → χ S • q rig ♯ • j rig ♯
and the first morphism is an equivalence by the first step. Thus, we are left to treat the case of q : P n S → S. By [Ayo07a, Théorème 1.7.17] and Corollary 2.2.9, we have equivalences q ♯ ≃ q * • Th(Ω q ) and q rig ♯ ≃ q rig * • Th(Ω q rig ), and the following square

q ♯ • χ P n S ∼ G G q * • Th(Ω q ) • χ P n S ∼ χ S • q rig ♯ ∼ G G χ S • q rig * • Th(Ω q rig ) is commutative. This finishes the proof.
□ Here is the main result of this subsection. 

Y ′ g ′ G G f ′ Y f X ′ g G G X with f proper.
(1) The commutative square

RigSH (∧) τ (X; Λ) f * G G g * RigSH (∧) τ (Y; Λ) g ′ * RigSH (∧) τ (X ′ ; Λ) f ′ * G G RigSH (∧) τ (Y ′ ; Λ) is right adjointable, i.e., the natural transformation g * • f * → f ′ * • g ′ * is an equivalence. (2) If g is smooth, the commutative square RigSH (∧) τ (X ′ ; Λ) f ′ * G G g ♯ RigSH (∧) τ (Y ′ ; Λ) g ′ ♯ RigSH (∧) τ (X; Λ) f * G G FSH (∧) τ (Y; Λ)
is right adjointable, i.e., the natural transformation g ♯ • f ′ * → f * • g ′ ♯ is an equivalence. Proof. The question is local on X and X ′ . Thus, we may assume that X and X ′ are quasi-compact and quasi-separated. We split the proof into three steps. The first two steps concern part (2): in the first step we show that it is enough to treat the case where g has good reduction, and in the second step we prove part (2) while working in the non-hypercomplete case and assuming that τ is the Nisnevich topology. Finally, in the third step, we use what we learned in the second step to prove the theorem in complete generality.

Step 1. Here, we assume that part (2) is known when g has good reduction and we explain how to deduce it in general. The problem being local on X ′ , we may assume that our Cartesian square is the composition of two Cartesian squares

Y ′ e ′ G G f ′ Y 1 h ′ G G f 1 Y f X ′ e G G X 1 h G G X
where e is étale and h is smooth with good reduction. (For instance, we may assume that h is the projection of a relative ball.) By assumption, part (2) is known for the right square, so it remains to prove it for the left square. Said differently, we may assume that g is étale. Using Lemma 4.1.5 below, we reduce further to the case where g is finite étale. In this case, there is a natural equivalence g ♯ ≃ g * constructed as follows. Consider the Cartesian square

X ′ × X X ′ pr 2 G G pr 1 X ′ g X ′ g G G X,
and the diagonal embedding ∆ : X ′ → X ′ × X X ′ which is a clopen immersion. Since g is locally projective, we may use Proposition 2.2.12(2) which implies that the natural transformation

g ♯ • pr 1, * → g * • pr 2, ♯
is an equivalence. Applying this equivalence to the functor ∆ ♯ ≃ ∆ * , we get the equivalence g ♯ ≃ g * . Similarly, we have an equivalence g ′ ♯ ≃ g ′ * . Moreover, modulo these equivalences, the natural transformation g

♯ • f ′ * → f * • g ′ ♯ coincides with the obvious equivalence g * • f ′ * ≃ f * • g ′ * .
This proves the claimed reduction.

Step 2. We now prove part (2) of the statement under Assumption 3.3.1 so that we can use Theorem 4.1.3. (More precisely, we will assume that all the formal models used below satisfy this assumption.) In the third step we explain how to get rid of this assumption.

The problem being local on X and X ′ , we may also assume that f is the generic fiber of a proper morphism f : Y → X in FSch and that g is the generic fiber of a smooth morphism g : X ′ → X of formal schemes (since g can be assumed to have good reduction, by the first step). We form a Cartesian square

Y ′ g ′ G G f ′ Y f X ′ g G G X.
For every quasi-compact and quasi-separated smooth rigid analytic X-space L, with structural morphism p L : L → X, choose a formal model L which is a finite type formal X-scheme. By Proposition 3.1.15, when L varies, the functors

χ L • p * L : RigSH (∧) τ (X; Λ) → FSH (∧)
τ (L; Λ) form a conservative family. Therefore, it is enough to show that the natural transformation

χ L • p * L • g ♯ • f ′ * → χ L • p * L • f * • g ′ ♯
is an equivalence for each p L : L → X and L as above. Letting f L , f ′ L , g L and g ′ L be the base change of the morphisms f , f ′ , g and g ′ along p L : L → X, and using Proposition 2.2.1, we reduce to show that the natural transformation

χ L • g L, ♯ • f ′ L, * → χ L • f L, * • g ′ L, ♯
is an equivalence. Thus, replacing X with L and X with L, we may concentrate on the natural transformation

χ X • g ♯ • f ′ * → χ X • f * • g ′ ♯ .
Using Theorem 4.1.3, we can rewrite this natural transformation as follows:

g ♯ • f ′ * • χ Y ′ → f * • g ′ ♯ • χ Y ′ .
We now conclude using Proposition 4.1.1(2).

Step 3. In this step, we will prove the theorem in complete generality. By Theorem 2.7.1 and the second step, the theorem is known for the ∞-categories RigSH nis (-; Λ), i.e., when τ is the Nisnevich topology and we work in the non-hypercomplete case. This will be our starting point. (Of course, by the second step, the theorem is known more generally, e.g., when τ is the Nisnevich topology and we work in the hypercomplete case, but this will not be used below.)

For a rigid analytic space S , the functor L S : RigSH nis (S ; Λ) → RigSH (∧) τ (S ; Λ) is a localisation functor with respect to the set H S consisting of maps of the form colim [n]∈∆ M(T n ) → M(T -1 ), and their desuspensions and negative Tate twists, where T • is a τ-hypercover which is assumed to be truncated in the non-hypercomplete case. We claim that the functor

f * : RigSH nis (Y; Λ) → RigSH nis (X; Λ)
takes H Y -equivalences to H X -equivalences, and that the same is true for f ′ * . Assuming this claim, one has equivalences L X • f * ≃ f * • L Y , and similarly for f ′ * . Since the functors L Y and L Y ′ are essentially surjective on objects, it suffices to prove that the natural transformations

g * • f * • L Y → f ′ * • g ′ * • L Y and g ♯ • f ′ * • L Y ′ → f * • g ′ ♯ • L Y ′ are 
equivalences. Thus, using our claim and the obvious analogous commutations for g * , g ♯ , g ′ * and g ′ ♯ , the above natural transformations are equivalent to L

X ′ • g * • f * → L X ′ • f ′ * • g ′ * and L X • g ♯ • f ′ * → L X • f * • g ′ ♯ ,
and the result follows.

It remains to prove our claim, and it is enough to consider the case of f (which is a general proper morphism). Using a covering of Y by finitely many affine open subspaces, we see that it suffices to show that f * • v ♯ takes H V -equivalences to H X -equivalences for every open immersion v : V → Y such that V admits a locally closed immersion into a relative projective space P ≃ P n X over X. (For what we mean by a locally closed immersion, see Definition 1.1.14. For the existence of a cover by open subspaces with the required property, see the proof of Proposition 4.2.2(2) below.) Let U ⊂ P be an open subspace containing V as a closed subset. Set Q = Y × X P, W = V × X U, W 1 = V × X P and W 2 = Y × X U. Thus, Q is a proper rigid analytic X-space, and W, W 1 and W 2 are open subspaces of Q containing Y, via the diagonal embedding Y → Q, as a closed subset. We have a commutative diagram of immersions with Cartesian squares

V t 2 2 V t 2 3 3 V t 1 2 2 W e 2 G G e 1 w 3 3 W 2 w 2 W 1 w 1 G G Q.
Using Proposition 2.2.3(4), we obtain equivalences e 1, ♯ • t * ≃ t 1, * and e 2, ♯ • t * ≃ t 2, * . Applying this to w 1, ♯ and w 2, ♯ , we obtain equivalences

w 1, ♯ • t 1, * ≃ w ♯ • t * ≃ w 2, ♯ • t 2, * . (4.1)
Now, consider the commutative diagram with a Cartesian square

V t 1 G G W 1 w 1 G G q ′ Q q V v G G Y.
By the second step, we deduce equivalences of functors from RigSH nis (V; Λ) to RigSH nis (Y; Λ):

v ♯ ≃ v ♯ • q ′ * • t 1, * ≃ q * • w 1, ♯ • t 1, * ≃ q * • w ♯ • t * .
Thus, it will be enough to show that the functor f * • q * • w ♯ • t * takes H V -equivalences to H Xequivalences. Next, consider the commutative diagram with Cartesian squares

V t 2 G G W 2 w 2 G G h ′ Q h V s G G U u G G P.
By the second step, we we deduce equivalences of functors from RigSH nis (V; Λ) to RigSH nis (Y; Λ):

u ♯ • s * ≃ u ♯ • h ′ * • t 2, * ≃ h * • w 2, ♯ • t 2, * ≃ h * • w ♯ • t * .
Since p • h = f • q with p : P → X the structural projection of the relative projective space P, we are left to show that p * • u ♯ • s * takes H V -equivalences to H X -equivalences. This is actually true for each of the functors p * , u ♯ and s * . For the first one, we use the equivalence p * ≃ p ♯ • Th -1 (Ω p ) provided by Corollary 2.2.9. For the second one, this is clear, and for the third one, this follows from Lemma 2.2.4. □

The following lemma was used in the first step of the proof of Theorem 4.1.4.

Lemma 4.1.5. Let f : T → S be an étale morphism of rigid analytic spaces. Then, locally on S and T , we may find a commutative triangle

T j G G f 2 2 T ′ f ′ S
where j is an open immersion and f ′ is a finite étale morphism.

Proof. This is a well-known fact. In the generality we are considering here, it can be proven by adapting the argument used in proving Proposition 3.7.6(3). More precisely, it is enough to show that a rig-étale morphism of formal schemes f : T → S is locally, for the rig topology on S and T, the composition of an open immersion and a finite rig-étale morphism. We argue locally around a rigid point s : Spf(V) → S corresponding to s ∈ |S rig |. As in the proof of Proposition 3.7.6(3), we may assume that the formal scheme s × S T/(0) sat is the formal spectrum of the π-adic completion of an algebra of the form

V⟨t, s 1 , . . . , s m ⟩/(R, π N s 1 -P 1 , . . . , π N s m -P m ) sat [Q -1 ] (4.2) where R ∈ V[t] is a monic polynomial which is separable over V[π -1 ], and Q ∈ V[t, s 1 , . . . , s m ].
(The polynomial R is the analogue of the polynomial (ta 1 ) • • • (ta r ) in (3.34). Here, since V[π -1 ] is not algebraically closed, our polynomial R will not split in general.) The remainder of the argument is identical to the one used in the proof of Proposition 3.7.6(3). □

The following is a corollary of the proof of Theorem 4.1.4. We end this subsection by establishing the projection formula for direct images along proper morphisms.

Proposition 4.1.7.

(1) Let f : Y → X be a proper morphism of formal schemes. For M ∈ FSH

(∧) τ (X; Λ) and N ∈ FSH (∧) τ (Y; Λ), the morphism M ⊗ f * N → f * ( f * M ⊗ N) is an equivalence. (2) Let f : Y → X be a proper morphism of rigid analytic spaces. For M ∈ RigSH (∧) τ (X; Λ) and N ∈ RigSH (∧) τ (Y; Λ), the morphism M ⊗ f * N → f * ( f * M ⊗ N)
is an equivalence.

Proof. We only prove the second part. The proof of the first part is similar: in the argument below, use Proposition 4.1.1 and Lemma 4.1.2 instead of Theorem 4.1.4, and Corollary 4.1.6. The functor f * is colimit-preserving by Corollary 4.1.6. Hence, it is enough to prove the result when M varies in a set of generators under colimits for the ∞-category RigSH (∧) τ (X; Λ). Thus, we may assume that M = g ♯ Λ where g : X ′ → X is a smooth morphism. We form the Cartesian square

Y ′ g ′ G G f ′ Y f X ′ g G G X.
By Proposition 2.2.1(2), we have natural equivalences

M ⊗ (-) ≃ g ♯ • g * (-) and ( f * M) ⊗ (-) ≃ g ′ ♯ • g ′ * (-)
. Modulo these equivalences, the morphism of the statement is the composition of

g ♯ g * f * N → g ♯ f ′ * g ′ * N → f * g ′ ♯ g ′ * N.
The result follows now from Theorem 4.1.4. □

Recall that an object in a monoidal ∞-category C ⊗ is strongly dualisable if it is so as an object of the homotopy category of C endowed with the induced monoidal structure. The following is a well-known consequence of the projection formula for proper direct images.

Corollary 4.1.8.

(1) Let f : Y → X be a smooth and proper morphism of formal schemes. Then f ♯ Λ is strongly dualisable in the monoidal ∞-category FSH (∧) τ (X; Λ) ⊗ and its dual is f * Λ.

(2) Let f : Y → X be a smooth and proper morphism of rigid analytic spaces. Then f ♯ Λ is strongly dualisable in the monoidal ∞-category RigSH (∧) τ (X; Λ) ⊗ and its dual is f * Λ. Proof. We only treat the case of rigid analytic motives. We need to show that there is an equivalence between the endofunctors Hom( f ♯ Λ, -) and ( f * Λ) ⊗ -. We have natural equivalences

Hom( f ♯ Λ, -) (1) ≃ f * f * (-) ≃ f * (Λ ⊗ f * M) (2) ≃ f * (Λ) ⊗ M
where (1) is deduced by adjunction from the smooth projection formula f

♯ Λ ⊗ -≃ f ♯ • f * (-) (see Proposition 2.2.1(2)) and (2) is deduced from Proposition 4.1.7(2). □ 4.2. Weak compactifications.
In this subsection, we discuss the notion of a weak compactification of a rigid analytic S -space. For us, it will be enough to know that weak compactifications exist locally. We will also briefly discuss Huber's compactifications. 

Y i G G f 2 2 W h X (4.3)
of rigid analytic spaces, where i is a locally closed immersion and h a proper morphism. (See Definition 1.1.14.) By abuse of language, we say that h is a weak compactification of f or that W is a weak compactification of Y. We define the category of weak compactifications of f to be the full subcategory of (RigSpc/X) f / spanned by the weak compactifications of f . We say that f is weakly compactifiable if it admits a weak compactification. (Clearly, for f to be weakly compactifiable, it is necessary that f is separated and locally of finite type.) Proposition 4.2.2. Let f : Y → X be a morphism of rigid analytic spaces.

(1) The category of weak compactifications of f has fiber products and equalizers. In particular, when f : Y → X is weakly compactifiable, this category is cofiltered.

(2) Assume that f is locally of finite type. Then, locally on Y, f is weakly compactifiable.

Proof. The first part follows from standard properties of proper morphisms and locally closed immersions. For the second part, since the question is local on Y, we may assume that f factors through an open subspace U ⊂ X and that Y → U is the generic fiber of a finite type morphism Y → U between affine formal schemes. In this case, we may factor f as the composition of

Y s - → B N U u - → P N X p - → X
where s is a closed immersion, u the obvious open immersion and p the obvious projection. □

We will need a short digression concerning the notion of relative interior.

Definition 4.2.3. Let f : X → W be a morphism between rigid analytic spaces. Let V ⊂ W be an open subspace. We say that X maps into the interior of V relatively to W and write f (X)

⋐ W V if the closure of f (|X|) in |W| is contained in |V|.
Remark 4.2.4. Often we use Definition 4.2.3 when f is a locally closed immersion. In this case, we write simply "X ⋐ W V" instead of " f (X) ⋐ W V".

Below, we use freely the fact that the underlying topological space of a rigid analytic space is valuative in the sense of [FK18, Chapter 0, Definition 2.3.1]. Lemma 4.2.5. Let f : X → W be a morphism between quasi-compact and quasi-separated rigid analytic spaces. A point of |W| belongs to f (|X|) if and only if its maximal generisation belongs to f (|X|). Moreover, we have the equalities: 

f (|X|) = f (X) ⋐ W V |V| = f (X) ⋐ W V |V|. ( 4 
V ′ ⊂ W such that f (X) ⋐ W V ′ and V ′ ⋐ W V.
Proof. By Lemma 4.2.5, we have

f (|X|) = f (X)⋐ W V ′ |V ′ | ⊂ |V|.
By [FK18, Chapter 0, Corollary 2.2.12], there exists a quasi-compact open subspace V ′ ⊂ W with f (X) ⋐ W V ′ such that |V ′ | ⊂ |V| as needed. □

We now discuss Huber's compactifications. We will freely use results and notations from Subsection 1.2. We start with a definition. Definition 4.2.7.

( 

+ + B •• ⊂ B.
The following theorem is due to Huber.

Theorem 4.2.10. Let S be a quasi-compact and quasi-separated universally uniform adic space. There is a functor Adic sft /S → Fun(∆ 1 , Adic/S ) sending a separated adic S -space of finite type X to an open immersion j X : X → X c over S satisfying the following properties.

( 

+ (x ′ ) = V. (2) The morphism O X c → j X, * O X is an isomorphism.
(3) (Compatibility with base change) If S ′ → S is an open immersion, then the morphism j X × S S ′ : X × S S ′ → X c × S S ′ coincides with j X ′ : X ′ → X ′c where X ′ is the adic S ′ -space X × S S ′ . (4) If S = Spa(A) and X = Spa(B), then X c = Spa(B c ).

Proof. This is essentially contained in [Hub96, Theorem 5.1.5]. In loc. cit., it is assumed that adic spaces satisfy one of the conditions in [Hub96, (1.1.1)], but this is only needed to insure universal sheafyness. Here, we use instead universal uniformness and [START_REF] Buzzard | Stably uniform affinoids are sheafy[END_REF]Theorem 7]. □

In the next proposition, we denote a uniform adic space and the associated rigid analytic space by the same symbol. (This is an abuse of notation justified by Corollary 1.2.7.) Proposition 4.2.11. Let S be a quasi-compact and quasi-separated universally uniform adic space, and let X be a separated adic S -space of finite type. Let i : X → W be a weak compactification of X over S . Then, X c is naturally a weak limit of the rigid analytic pro-space (V) X⋐ W V in the sense of Definition 2.8.10.

Proof. By the universal property of Huber's compactifications (see [Hub96, Theorem 5.1.5]), the locally closed immersion i extends to a morphism i

′ : X c → W. Since i ′ (|X c |) is contained in the closure of |X| in |W|, there is a natural map X c → (V) X⋐ W V , (4.5) 
and we need to prove that it exhibits X c as a weak limit of (V) X⋐ W V . We first check that the map It remains to see that for every point x of |X c | with image v in lim X⋐ W V |V| the map κ(v) → κ(x) has dense image. In fact, we have κ(v) ≃ κ(x). To prove this, we may assume that x belongs to |X|, since the residue field of x is equal to the residue field of its maximal generisation and similarly for v. The claimed result is then clear since X → (V) X⋐ W V is given by locally closed immersions. □ 4.3. The exceptional functors, I. Construction.

|X c | → lim X⋐ W V |V| ( 4 
In this subsection, we define the exceptional functors f ! and f ! associated with a morphism f of rigid analytic spaces which is locally of finite type, and establish some of their basic properties. We start with the easy case of a locally closed immersion.

Lemma 4.3.1. Let i : Z → X be a locally closed immersion of rigid analytic spaces. Let U ⊂ X be an open neighbourhood of Z in which Z is closed. Denote by s : Z → U and j : U → X the obvious immersions. Then, the composite functor

j ♯ • s * : RigSH (∧) τ (Z; Λ) → RigSH (∧) τ (X; Λ)
is independent of the choice of U and we denote it by i ! .

Proof. Let U ′ ⊂ U be an open neighbourhood of Z. Let s ′ : Z → U ′ and u : U ′ → U be the obvious immersions. We need to show that u ♯ • s ′ * ≃ s * . To do so, we use the Cartesian square Z

s ′ Z s U ′ u G G U
and Proposition 2.2.3(4). □ Lemma 4.3.2. Let s : Y → X and t : Z → Y be locally closed immersions of rigid analytic spaces.

There is an equivalence

(s • t) ! ≃ s ! • t ! of functors from RigSH (∧) τ (Z; Λ) to RigSH (∧) τ (X; Λ). Proof. Indeed, let U ⊂ X be an open neighbourhood of Y in which Y is closed, and let V ⊂ U be an open neighbourhood of Z in which Z is closed. Set W = Y ∩ V. Consider the commutative diagram with a Cartesian square Z e G G 1 1 t 2 2 W w G G d Y c s 1 1 V v G G U u G G X.
Using Proposition 2.2.3(4), we have natural equivalences 

u ♯ • c * • w ♯ • e * ≃ u ♯ • v ♯ • d * • e * ≃ (u • v) ♯ • (d • e) * as 
f ′ i ′ G G Y f Z i G G X
where i is a locally closed immersion.

(1) There is a natural equivalence f * 

• i ! ≃ i ′ ! • f ′ * between functors from RigSH (∧) τ (Z; Λ) to RigSH (∧) τ (Y; Λ). (2) Assume that f is a proper morphism. There is a natural equivalence f * • i ′ ! ≃ i ! • f ′ * between functors from RigSH (∧) τ (T ; Λ) to RigSH (∧) τ (X; Λ). Proof.
Y i G G f 2 2 W h X
of f and define the functor

f ! : RigSH (∧) τ (Y; Λ) → RigSH (∧) τ (X; Λ) by setting f ! = h * • i ! .
It follows from Corollary 4.1.6 that the functor f ! is colimit-preserving; we denote by f ! its right adjoint. The functors f ! and f ! are called the exceptional direct and inverse image functors.

Lemma 4.3.5. Keep the notations as in Definition 4.3.4. The functor f ! is independent of the choice of the weak compactification of f . Proof. Let i ′ : Y → W ′ be a second weak compactification of f and denote by h ′ : W ′ → X the structural projection. Without loss of generality, we may assume that W ′ is finer than W. Let U ⊂ W be an open neighbourhood of Y in which Y is closed, and let U ′ ⊂ W ′ be the inverse image of U. We then have a commutative diagram with a Cartesian square

U ′ j ′ G G g ′ W ′ g h ′ 7 7 Y s 7 7 s ′ X X X. U j G G W h W W We need to compare h * • j ♯ • s * with h ′ * • j ′ ♯ • s ′ * . We have natural transformations h * • j ♯ • s * ≃ h * • j ♯ • g ′ * • s ′ * → h * • g * • j ′ ♯ • s ′ * ≃ h ′ * • j ′ ♯ • s ′ *
where the middle one is an equivalence by Theorem 4.1.4. □ Example 4.3.6. Using Lemma 4.3.5 and a well-chosen weak compactification, we obtain the following particular cases.

(1) If j : U → X is an open immersion, then j ! ≃ j ♯ and j ! ≃ j * .

(

) If f : Y → X is proper, then f ! ≃ f * . 2 
Remark 4.3.7. At this point we have constructed, for each weakly compactifiable morphism f : Y → X of rigid analytic spaces, a functor f ! : RigSH (∧) τ (Y; Λ) → RigSH (∧) τ (X; Λ). Due to the choice of a weak compactification involved in the construction, it is not clear why f → f ! would be functorial in any sense. The main goal of the remainder of this subsection is to prove that in fact it is, as long as we restrict to morphisms between weakly compactifiable rigid analytic spaces over a fixed base. (Note that morphisms between such spaces are automatically weakly compactifiable, so that our construction applies.) Notation 4.3.8. Let S be a rigid analytic space.

(1) We denote by RigSpc wc /S ⊂ RigSpc/S the full subcategory of weakly compactifiable rigid analytic S -spaces. Recall that, by definition, RigSpc wc /S is contained in RigSpc lft /S (see Notation 4.2.8(2)) and that every object in RigSpc lft /S is locally isomorphic to an object of RigSpc wc /S by Proposition 4.2.2. (2) We denote by RigSpc prop /S ⊂ RigSpc/S the full subcategory of proper rigid analytic Sspaces.

(3) We denote by WComp/S the category whose objects are pairs (X, W) where X is a rigid analytic S -space and W a weak compactification of X. There are functors d S : WComp/S → RigSpc wc /S and w S : WComp/S → RigSpc prop /S sending a pair (X, W) to X and W respectively.

Proposition 4.3.9. Let S be a rigid analytic space. There is a functor RigSH (∧) τ (-; Λ) ! : RigSpc wc /S → Pr L (4.7)

sending an object X to the ∞-category RigSH (∧) τ (X; Λ) and a morphism f to the functor f ! . We fix a rigid analytic space S . The functor (4.7) will be constructed below and the fact that it extends the functors in Definition 4.3.4 is proven in Lemma 4.3.14. We start by constructing a similar functor defined on WComp/S . Notation 4.3.10. Given an object (X, W) in WComp/S , we denote by RigSH (∧) τ ((X, W); Λ) ! the full sub-∞-category of RigSH (∧) τ (W; Λ) spanned by the essential image of the fully faithful embedding i ! :

RigSH (∧) τ (X; Λ) → RigSH (∧) τ (W; Λ), (4.8) 
where i : X → W is the given locally closed immersion.

Proposition 4.3.11. Let ( f, h) : (X ′ , W ′ ) → (X, W) be a morphism in WComp/S .

(1) The functor h * :

RigSH (∧) τ (W ′ ; Λ) → RigSH (∧) τ (W; Λ) takes RigSH (∧) τ ((X ′ , W ′ ); Λ) ! into RigSH (∧) τ ((X, W); Λ) ! , and induces a functor ( f, h) ! : RigSH (∧) τ ((X ′ , W ′ ); Λ) ! → RigSH (∧) τ ((X, W); Λ) ! . (4.9) 
(2) There is a commutative square

RigSH (∧) τ (X ′ ; Λ) G G f ! RigSH (∧) τ ((X ′ , W ′ ); Λ) ! ( f,h) ! RigSH (∧) τ (X; Λ) G G RigSH (∧)
τ ((X, W); Λ) ! where the horizontal arrows are equivalences.

(3) If f is an isomorphism, then ( f, h) ! is an equivalence of ∞-categories.

Proof. Consider the commutative diagram with a Cartesian square

X ′ u G G f 2 2 i ′ 2 2 V v G G h ′ W ′ h X i G G W. By Lemma 4.3.2, we have i ′ ! ≃ v ! • u ! .
Thus, the essential image of i ′ ! is contained in the essential image of v ! . On the other hand, by Proposition 4.3.3(2), we have h

* • v ! ≃ i ! • h ′ * .
Thus, h * takes the essential image of v ! into the essential image of i ! , which proves the first statement.

Next, we verify the second statement. Note that V is a weak compactification of X ′ over X. Thus, by Lemma 4.3.5, we have f

! ≃ h ′ * • u ! . Using Proposition 4.3.3(2) again, we obtain natural equivalences i ! • f ! ≃ i ! • h ′ * • u ! ≃ h * • v ! • u ! ≃ h * • i ′ ! .
This gives the commutative square in the second statement. Finally, the third statement follows from the second one using Lemma 4.3.5. □ and its composition with the endofunctor α • β of (WComp/S ) /X . Since β is right adjoint to α, composition with β is equivalent to left Kan extension along α. This implies that the colimit in (4.16) is equivalent to colim (Y,W)∈(WComp/S ) /(X,P)

RigSH (∧) τ ((Y, W); Λ) ! ≃ RigSH (∧)
τ ((X, P); Λ) ! since (X, P) is the final object of (WComp/S ) /(X,P) . This proves the lemma. □ Corollary 4.3.15. Let X be a weakly compactifiable rigid analytic S -space, and let Op/X be the category of open subspaces of X. Then, the functors RigSH (∧) τ (-; Λ) ! : Op/X → Pr L and RigSH (∧) τ (-; Λ) * : (Op/X) op → Pr R (4.17)

are exchanged by the equivalence (Pr L ) op ≃ Pr R .

Proof. Let P be a weak compactification of X. Then, for every open subspace U ⊂ X, P is also a weak compactification of U. Thus, we have a functor Op/X → WComp/S given by U → (U, P). Therefore, by Lemma 4.3.14, the first functor in (4.17) is equivalent to the functor given by U → RigSH (∧) τ ((U, P); Λ) ! . It is immediate from the construction of (4.13) that this functor is equivalent to the one sending an open immersion u : U → X to the essential image of the fully faithful embedding u ♯ . This proves the corollary. □ Remark 4.3.16. Using the equivalence (Pr L ) op ≃ Pr R , the functor (4.7) gives rise to a functor

RigSH (∧) τ (-; Λ) ! : (RigSpc wc /S ) op → Pr R (4.18)
sending a morphism f to the functor f ! .

Proposition 4.3.17. The functor (4.18) is a Pr R -valued sheaf for the analytic topology.

Proof. It is enough to show that, for every X ∈ RigSpc wc /S , the restriction of (4.18) to Op/X is a sheaf for the analytic topology. 

(∧) τ (X; Λ) ! is equivalent to the ∞-category RigSH (∧)
τ (X; Λ) for a general object X ∈ RigSpc lft /S . This will be proven in Subsection 4.4; see Corollary 4.4.23 below. When X is weakly compactifiable, this is already stated in Proposition 4.3.9.

We end this subsection with the following result relating our approach to the one in [Hub96, §5.2].

Theorem 4.3.20. Let X and Y be quasi-compact and quasi-separated uniform adic spaces, and let f : Y → X be a weakly compactifiable morphism of rigid analytic spaces. Let f c : Y c → X be the projection of Huber's compactification of Y over X, and j : Y → Y c the obvious inclusion. Assume one of the following two alternatives.

(1) We work in the non-hypercomplete case, and X is locally of finite Krull dimension. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective. (2) We work in the hypercomplete case, and X is (Λ, τ)-admissible (see Definition 2.4.14). Then, the functor f ! of Definition 4.3.4 coincides with the composite functor f c * • j ♯ . Proof. Fix a weak compactification W of Y over X, and let h : W → X and i : Y → W be the given morphisms. The morphism i extends to a morphism i ′ : Y c → W. We have f c * ≃ h * •i ′ * . Thus, we only need to show that there is an equivalence i

′ * • j ♯ ≃ i ! . The Cartesian square Y j G G Y c i ′ Y i G G W and Proposition 4.3.3(1) give an equivalence i ′ * • i ! ≃ j ! = j ♯ . Thus, it is enough to show that the morphism i ! → i ′ * • i ′ * • i ! is an equivalence. By Proposition 4.2.
11, Y c is the weak limit of the rigid analytic pro-space (V) Y⋐ W V . It follows from Theorem 2.8.15 that there is an equivalence of ∞-categories

colim Y⋐ W V RigSH (∧) τ (V; Λ) → RigSH (∧) τ (Y c ; Λ).
Arguing as in the proof of Lemma 3.5.7 (see also Remark 3.5.8), we deduce an equivalence colim

Y⋐ W V r V, * • r * V ≃ i ′ * • i ′ *
where, for an open subspace U ⊂ W, r U : U → W denotes the obvious inclusion. Therefore, it is enough to prove that i

! → r V, * • r * V • i ! is an equivalence for every V ⊂ W such that Y ⋐ W V. Letting Q be the open subspace of W with underlying topological space |Q| = |W| ∖ |Y|, we have W = V ∪ Q. So it suffices to prove that r * V • i ! → r * V • r V, * • r * V • i ! and r * Q • i ! → r * Q • r V, * • r * V • i ! are equivalences.
For the first one, we use that r * V •r V, * ≃ id. For the second one, we use Proposition 4.3.3(1) and the fact that Y × W Q = ∅, which imply that the source and the target of the natural transformation are the zero functor. □ Remark 4.3.21. Theorem 4.3.20 can be extended to separable morphisms of finite type which are not assumed to be weakly compactifiable. Indeed, one can construct a variant of the functor (4.7) using Huber's compactifications (instead of weak compactifications) and show that this new functor coincides with (4.7) on RigSpc wc /S and gives rise to a sheaf for the analytic topology via the equivalence (Pr L ) op ≃ Pr R . We will not pursue this further in this paper, and leave it to the interested reader.

4.4. The exceptional functors, II. Exchange. The goal of this subsection is to prove Theorem 4.4.2 below and derive a few consequences. This theorem can be seen as a strengthening of Corollary 4.3.18 and gives a way to encapsulate the coherence properties of the exchange equivalences between the ordinary inverse (resp. direct) image functors and the exceptional direct (resp. inverse) image functors. It should be mentioned that Theorem 4.4.2 is not the best possible statement one could hope for. For a better statement, we refer to Theorem 4.4.31 below whose proof relies unfortunately on unproven claims in [START_REF] Gaitsgory | A study in derived algebraic geometry[END_REF] concerning (∞, 2)-categories. However, Theorem 4.4.2 is probably good enough in practice. which are exchanged by the equivalence (Pr L ) op ≃ Pr R and which admit the following informal description.

• These functors send an object (S , X), with S a rigid analytic space and X an object of RigSpc lft /S , to the ∞-category RigSH (∧) τ (X; Λ). • These functors send an arrow (g, f ) : (S , Y) → (T, X), consisting of morphisms g : T → S and f : T × S Y → X, to the functors f ! • g ′ * and g ′ * • f ! respectively, with g ′ : T × S Y → Y the base change of g. Moreover, the functors in (4.21) satisfy the following properties.

(1) The ordinary functors admitting the following informal description.

RigSH (∧) τ (-; Λ) * : RigSpc op → Pr L RigSH (∧) τ ( 
• It sends a pair (S , X), with S a rigid analytic space and X an object of RigSpc prop /S , to the ∞-category RigSH (∧) τ (X; Λ). • It sends an arrow (g, f ) : (S , X) → (T, Y), consisting of morphisms g : T → S and f : Y → T × S X, to the functor f * • g ′ * with g ′ : T × S X → X the base change of g. Said differently, (4.24) is the composition of

RigSpc op (RigSpc prop ) op → RigSpc op RigSH (∧) τ (-; Λ) * -----------→ Pr L
where the first functor is given by (S , X) → X. We will apply to the functor (4.24) the following general construction.

Construction 4.4.3. Let B be a simplicial set, p : E → B a coCartesian fibration and D : E → CAT ∞ a functor. We assume the following condition.

(⋆) For every commutative square

X f G G g Y g ′ X ′ f ′ G G Y ′
in E, such that g and g ′ are p-coCartesian, and p( f ) and p( f ′ ) are identity morphisms, the associated square

D(X) G G D(Y) D(X ′ ) G G D(Y ′ )
is right adjointable. Let p ′ : E ′ → B be a coCartesian fibration which is opposite to E, i.e., if p is classified by a diagram C : B → CAT ∞ , then p ′ is classified by the diagram C op : B → CAT ∞ obtained by composing C with the autoequivalence (-) op of CAT ∞ . In particular, for b ∈ B, the fiber E ′ b of p ′ at b is equivalent to the opposite of the fiber E b of p at b. Similarly, given a p-coCartesian edge A → B in E, there is an associated p ′ -coCartesian edge A ′ → B ′ in E ′ such that A ′ and B ′ are the images of A and B by the equivalences between the fibers of p and the opposite of the fibers of p ′ .

Then, there exists a diagram D ′ : E ′ → CAT ∞ which admits the following informal description.

(1) For b ∈ B, the functor

D ′ | E ′ b : E ′ b → CAT ∞ lands in CAT R ∞ and it is deduced from the functor D| E b : E b → CAT L ∞ using the equivalences E ′ b ≃ (E b ) op and CAT R ∞ ≃ (CAT L ∞ ) op . (2) Given a p-coCartesian edge A → B in E with corresponding p ′ -coCartesian edge A ′ → B ′ , the associated functor D(A) → D(B) is equivalent to the functor D ′ (A ′ ) → D ′ (B ′
). The diagram D ′ is constructed as follows. Consider the coCartesian fibration q : F → E classified by D. By [Lur09, Proposition 2.4.2.3(3)], p • q : F → B is a coCartesian fibration and q sends a p • q-coCartesian edge to a p-coCartesian edge. Applying straightening to p • q and p, we obtain a morphism ϕ : N → C in Fun(B, CAT ∞ ) between the diagrams N : B → CAT ∞ and C : B → CAT ∞ classifying p • q and q respectively. Note that for b ∈ B, the functor ϕ(b) : N(b) → C(b) is equivalent to the functor q b : F b → E b induced on the fibers of p • q and p. Hence, ϕ(b) is a coCartesian fibration. Condition (⋆) is equivalent to the following one.

where g : T → S is a morphism of rigid analytic spaces, f : Y → X a morphism in RigSpc prop /S , and f ′ : Y ′ → X ′ the base change of f along g. Letting g ′ : X ′ → X and g ′′ : Y ′ → Y be the base changes of g, the functor (4.24) takes the above square to the commutative square of ∞-categories More precisely, the composition of (4.25) with Pr L → CAT ∞ is the functor D ′ when we take for D the composition of (4.24) with Pr L → CAT ∞ ; that the resulting functor D ′ lands in Pr L follows from Corollary 4.1.6. The functor (4.25) admits the following informal description.

RigSH (∧) τ (X; Λ) f * G G g ′ * RigSH (∧) τ (Y; Λ) g ′′ * RigSH (∧) τ (X ′ ; Λ) f ′ * G G RigSH (∧) τ (Y ′ ; Λ). The morphism f ,
• It sends a pair (S , X), with S a rigid analytic space and X an object of RigSpc prop /S , to the ∞-category RigSH In this case, we need to show that the functor g ′ * : RigSH (∧) τ (Q; Λ) → RigSH (∧) τ (T × S Q; Λ), with g ′ : T × S Q → Q the base change of g, sends the essential image of i ! , with i : Y → Q the given immersion, to the essential image of i ′ ! , with i ′ : T × S Y → T × S Q the base change of i. We gather a few properties satisfied by this functor in the following lemma. where ∆ is the diagonal functor given by S → (S , S ). Since ∆ is a coCartesian section, the result follows from Remark 4.4.4. □

For later use, we also record the following fact.

Lemma 4.4.9. Let S be a rigid analytic space, and let X ∈ RigSpc wc /S . Then, the composition of (4.32) with the functor (RigSpc/S ) op →

RigSpc op

RigSpc wc , given by T → (T, T × S X), is equivalent to the functor RigSH (∧) τ (-× S X; Λ) * : (RigSpc/S ) op → Pr L . Proof. We first reduce to the case where the rigid analytic S -space X is proper. To do so, we fix a weak compactification W of X, and consider the functors given by T → (T, T × S X) and T → (T, T × S W) respectively. The given immersion i : X → W induces a natural transformation i : ∆ X → ∆ W . Applying (4.32), we obtain a natural transformation i ! : RigSH (∧) τ (-; Λ) * ! • ∆ X → RigSH (∧) τ (-; Λ) * ! • ∆ W . On T ∈ RigSpc/S , the natural transformation i ! is given by the fully faithful embedding (T × S i) ! . It follows that RigSH (∧) τ (-; Λ) * ! • ∆ X can be obtained from RigSH (∧) τ (-; Λ) * ! • ∆ W by applying Lemma 4.3.13 to the essential images of the functors (T × S i) ! , for T ∈ RigSpc/S . Using Proposition 4.3.3(1), we see that it is enough to prove that RigSH (∧) τ (-; Λ) * ! • ∆ W is given by RigSH (∧) τ (-× S W; Λ) * . Said differently, we may assume that X is proper over S .

We now prove the lemma assuming that X is proper over S . (The argument is the same as the one used for the proof of Lemma 4.4.8(2).) By Lemma 4.4.8(1), it is enough to prove the same conclusion for the composition of (4.30) with the functor ∆ ′ X : (RigSpc/S ) op →

RigSpc op

WComp,

given by T → (T, (T × S X, T × S X)). In this composition, we may replace (4.30) by (4.27) without changing the result. Since ∆ ′ X is a coCartesian section, the result follows from Remark 4.4.4. □ By Lemmas 4.4.8 and 4.4.9, the functor (4.32) admits the following informal description.

• It sends an object (S , X), with S a rigid analytic space and X an object of RigSpc wc /S , to the ∞-category RigSH Note that the functor (4.33) is an extension of (4.32) in the usual sense, i.e., the restriction of (4.33) along ι is indeed the functor (4.32).

Proposition 4.4.10. For a rigid analytic space S , the restriction of (4.33) to RigSpc lft /S is equivalent to the functor RigSH (∧) τ (-; Λ) ! : RigSpc lft /S → Pr L of Corollary 4.3.18.

Proof. By [Lur09, Proposition 4.3.3.10], it is enough to show that the functor RigSH (∧) τ (-; Λ) ! in Corollary 4.3.18 is a left Kan extension of the same-named functor in Proposition 4.3.9. Using the equivalence (Pr L ) op ≃ Pr R , it is equivalent to show that the functor RigSH (∧) τ (-; Λ) ! in Corollary 4.3.18 is the right Kan extension of the same-named functor in Remark 4.3.16. Since the former was defined as the unique Pr R -valued sheaf for the analytic topology extending the latter, the result follows from Lemma 4. Recall that we need to show that F ′ is a sheaf. Since D = S, we have at our disposal the sheafification functors, and these commute with restriction along the inclusion C → C ′ . Let F ′′ be the τ ′ -sheaf associated to F ′ . Since F ′ | C ≃ F is already a τ-sheaf, it follows that F ′ → F ′′ induces an equivalence after restriction to C. By the universal property of the right Kan extension, there must be a map F ′′ → F ′ such that F ′ → F ′′ → F ′ is homotopic to the identity of F ′ . Thus, F ′ is a retract of the τ ′ -sheaf F ′′ . This proves that F ′ is also a τ ′ -sheaf (and that F ′ ≃ F ′′ ). □ Remark 4.4.12. The category

Q = RigSpc op
RigSpc lft op admits a natural topology, called the analytic topology and denoted by "an". It is induced by a pretopology Cov an in the sense of [SGAIV1, Exposé II, Définition 1.3], which is given as follows.

For (S , X) ∈ Q, a family ((S i , X i ) → (S , X)) i belongs to Cov an (S , X) if (S i → S ) i is an open cover of S and the morphisms S i × S X → X i are isomorphisms.

Proposition 4.4.13. The functor (4.33) is a sheaf for the analytic topology on Q.

Proof. Fix an object (S -1 , X) in Q and let S • be a truncated hypercover of S -1 in the analytic topology. We assume that the S n 's are coproducts of open subspaces of S -1 . For n ∈ N, we set X n = S n × S -1 X and similarly for every rigid analytic S -1 -space. We need to show that RigSH (∧) τ ((S -1 , X); Λ) * ! → lim is an equivalence for every U ∈ Op wc /X. Said differently, we may assume that X is weakly compactifiable. In this case, we may use Lemma 4.4.9 to rewrite (4.35) as follows:

RigSH (∧) τ (X; Λ) * → lim [n]∈∆ RigSH (∧) τ (X n ; Λ) * (4.38)
which is indeed an equivalence by Theorem 2.3.4. □ At this stage, Theorem 4.4.2 is proven, except for the assertion that the functors in (4.21) take an object (S , X) to RigSH (∧) τ (X; Λ). We do know this when X weakly compactifiable over S . In order to establish this in general, we will need a few more results about the functors in (4.23). We first introduce a notation which is useful in discussing these results.

we reduce to show the lemma when X and Y are weakly compactifiable over S . In this case, the commutative square of the statement coincides with the one deduced by adjunction from

RigSH (∧) τ (V; Λ) v ♯ G G g ! RigSH (∧) τ (Y; Λ) f ! RigSH (∧) τ (U; Λ) u ♯ G G G G RigSH (∧)
τ (X; Λ). The right adjointability of this square is clear: it follows from the construction of the exceptional direct image functors given in Definition 4.3.4 and Proposition 2.2.1(3). □ Construction 4.4.19. Let S be a rigid analytic space and let i : Z → X be a locally closed immersion in RigSpc lft /S . We define a functor i ? S : RigSH (∧) τ (Z; Λ) ! S → RigSH (∧) τ (X; Λ) ! S as follows. Choose an open subspace U ⊂ X containing Z as a closed subspace, and let s : Z → U and j : U → X be the obvious immersions. Define i ? S to be the composite functor j ? S • s ! S . Proof. Let U ′ ⊂ U be an open neighbourhood of Z contained in U. Let s ′ : Z → U ′ and u : U ′ → U be the obvious immersions. We need to show that u ? S • s ′ ! S ≃ s ! S . We have a Cartesian square

Z s ′ Z s U ′ u G G U
which induces an equivalence s ′! S ≃ s ! S • u ? S by Lemma 4.4.18. From this equivalence, we deduce a natural transformation s ! S → u ? S • s ′ ! S . This natural transformation is an equivalence. Indeed, it is enough to check this after applying u ! S and v ! S , with v : U ∖ Z → U the obvious inclusion, and this is easily seen to be true using Lemma 4.4.18 again. □ Lemma 4.4.21. Let S be a rigid analytic space and i : Z → X a locally closed immersion in RigSpc lft /S . Let g : S ′ → S be a morphism of rigid analytic spaces, and consider the Cartesian square

Z ′ g ′′ G G i ′ Z i X ′ g ′ G G
X where i ′ is the base change of i by g. Then, there is a commutative square of ∞-categories

RigSH (∧) τ (Z ′ ; Λ) ! S ′ g ′′ * G G i ′ ? S ′ RigSH (∧) τ (Z; Λ) ! S i ? S
RigSH (∧) τ (X ′ ; Λ) ! S ′ g ′ * G G RigSH (∧) τ (X; Λ) ! S (In the above square, g ′ * is obtained by applying the second functor in (4.21) to the arrow (g, id X ′ ) : (S ′ , X ′ ) → (S , X) and similarly for g ′′ * .) Definition 4.4.24. Let f : Y → X be a morphism of rigid analytic spaces which is locally of finite type. The functors in adjunction f ! : RigSH (∧) τ (Y; Λ) ⇄ RigSH (∧) τ (X; Λ) : f ! are defined to be the images of the arrow (id X , f ) : (X, Y) → (X, X) by the functors in (4.21) modulo the equivalence RigSH (∧) τ (Y; Λ) ≃ RigSH (∧) τ (Y; Λ) ! X given by Corollary 4.4.23. The functors f ! and f ! are called the exceptional direct and inverse image functors.

Remark 4.4.25. Given two morphisms f : Y → X and g : Z → Y which are locally of finite type, we have equivalences f ! • g ! ≃ ( f • g) ! and g ! • f ! ≃ ( f • g) ! . (This follows from the construction and the equivalences f ! X • g ! X ≃ ( f • g) ! X and g ! X • f ! X ≃ ( f • g) ! X .) Therefore, one expects to have functors, from the wide subcategory of RigSpc spanned by locally of finite type morphisms, to Pr L and (Pr R ) op , sending a morphism f to the functors f ! and f ! . Our method does not give readily such a functor, but techniques from 

Y ′ g ′ G G f ′ Y f X ′ g G G X
with f locally of finite type. Then, there is a commutative square of ∞-categories RigSH (∧) τ (Y; Λ)

g ′ * G G f ! RigSH (∧) τ (Y ′ ; Λ) f ′ ! RigSH (∧) τ (X; Λ) g * G G RigSH (∧) τ (X ′ ; Λ).
Proof. Applying the first functor in (4.21) to the commutative square

(X, Y) G G (X ′ , Y ′ ) (X, X) G G (X ′ , X ′ ),
we get a commutative square of ∞-categories is equivalent to the functor (4.25). In particular, if f : Y → X is a proper morphism of rigid analytic spaces, there is an equivalence f ! ≃ f * .

RigSH (∧) τ (Y; Λ) ! X g ′ * G G f ! X RigSH (∧) τ (Y ′ ; Λ) ! X ′ f ′ ! X ′ RigSH (∧) τ (X; Λ) ! X g * G G RigSH (∧) τ (X ′ ; Λ) ! X ′
Proof. This is a direct consequence of the construction. □ Corollary 4.4.28. Let f : Y → X be a morphism of rigid analytic spaces. Assume that f admits a factorization f = p • j where j is an open immersion and p is a proper morphism. Then, there is an equivalence f ! ≃ p * • j ♯ .

Proof. This follows from Corollary 4.4.23(2), Remark 4.4.25 and Proposition 4.4.27. □ Theorem 4.4.29 (Ambidexterity). Let f : Y → X be a smooth morphism between rigid analytic spaces. There are equivalences f ! ≃ f ♯ • Th -1 (Ω f ) and f ! ≃ Th(Ω f ) • f * .

Proof. We first construct a natural transformation α f : f ♯ → f ! •Th(Ω f ). Consider the commutative diagram with a Cartesian square

Y ∆ f 5 5 Y × X Y p 2 G G p 1 Y f Y f G G X.
By Proposition 4.4.26, we have an equivalence p 1, ! • p * 2 ≃ f * • f ! . Using the adjunctions ( f ♯ , f * ) and (p 2, ♯ , p * 2 ), we deduce a natural transformation f ♯ • p 1, ! → f ! • p 2, ♯ . Applying the latter to ∆ f, ! and using the equivalences p 1, ! • ∆ f, ! ≃ id and p 2, ♯ • ∆ f, ! ≃ Th(Ω f ), we get α f . We next show that α f is an equivalence. It is easy to see that α f is compatible with composition, i.e., that the analogue of [Ayo07a, Proposition 1.7.3] is satisfied. Moreover, if j is an open immersion, α j is the equivalence j ♯ ≃ j ! . Thus, to show that α f is invertible, we may argue locally on Y for the analytic topology. Thus, we may assume that Y is weakly compactifiable over X. Choose a weak compactification i : Y → W and let g : W → X be the structural morphism. To prove that α f is invertible, it is enough to show that the natural transformation f ♯ • p 1, ! → f ! • p 2, ♯ is invertible. Unwinding the definitions, we see that it is enough to prove that the natural transformation f ♯ • q * → f * • q ♯ associated to the Cartesian square

Y × X W f ′ G G g ′ W g Y f G G X
is an equivalence. This is indeed true by Theorem 4.1.4(2). □ There is another way to encapsulate much of the six-functor formalism using (∞, 2)-categories of correspondences (aka., spans). This gives an alternative approach to the constructions of this subsection which is more elegant and more powerful. The technology needed to carry out this approach is developed in [GR17, Part III] but relies, unfortunately, on yet unproven hypotheses in the theory of (∞, 2)-categories; see [GR17, Chapter 10, §0.4]. It is for this reason that we decided to develop a more self-contained approach. However, for the reader who is willing to accept the unproven hypotheses in loc. cit., we briefly explain how this is supposed to work. For a similar discussion in the context of equivariant motives, see [Hoy17, §6.2].

Remark 4.4.30. Given an ∞-category C with finite limits, there is an associated (∞, 2)-category Corr(C) having the same objects as C, and where 1-morphisms between X and Y are given by spans

Z f & & g Ô Ô X Y,
i.e., maps ( f, g) : Z → X × Y. Given a second span ( f ′ , g ′ ) : Z ′ → X × Y, a 2-morphism ( f ′ , g ′ ) ⇒ ( f, g) is a morphism h : Z ′ → Z such that g ′ = gh and f ′ = f h. If P 1 , P 2 and P 3 are properties of morphisms in C, we denote by Corr(C) P 3 P 1 ,P 2 the subcategory obtained by imposing P 1 , P 2 and P 3 on the morphisms f , g and h above. For details, on the (∞, 2)-category Corr(C), we refer the reader to [GR17, Chapter 7, §1.2]. Below, we will be interested in the (∞, 2)-category Corr(RigSpc) proper all, wc , where 2-morphisms are given by proper maps, and right legs of spans are requested to be weakly compactifiable while no condition is imposed on left legs. In this subsection, we explain how to incorporate the projection formula for the exceptional direct image functors into the functor RigSH (∧) τ (-; Λ) * ! of Theorem 4.4.2. Theorem 4.5.1. The functor RigSH (∧) τ (-; Λ) * ! from Theorem 4.4.2 admits a structure of a module over the composite functor Proof. We only sketch the argument, leaving some details to the reader. The proof consists in revisiting the construction of the functor RigSH (∧) τ (-; Λ) * ! of Theorem 4.4.2, exhibiting step by step a natural module structure over a suitable variant of the algebra (4.49). We start by remarking that the functor (4.24) lifts to a functor (The first functor in the composition above is given by (S , X) → S .) Retaining merely the induced module structure on (4.24), we obtain a commutative square Informally, this functor takes a pair of objects ((S , X), r : ⟨1⟩ → ⟨m⟩) to the tensor product in Pr L, ⊗ of copies of RigSH (∧) τ (S ; Λ), one for each i ∈ {1, . . . , m} different from r(1), and a copy of RigSH (∧) τ (X; Λ), only when r(1) ∈ {1, . . . , m}. Moreover, an arrow of the form ((id S , id X ), s : ⟨m⟩ → ⟨n⟩) is sent to a functor induced by the tensor product on RigSH (∧) τ (S ; Λ), and the tensor product of an object of RigSH (∧) τ (S ; Λ) with an object of RigSH (∧) τ (X; Λ), i.e., the functor RigSH (∧) τ (S ; Λ) ⊗ RigSH (∧) τ (X; Λ) → RigSH (∧) τ (X; Λ), given by (M, N) → f * (M)⊗ N where f : X → S is the structural morphism. Using this description, it follows from Theorem 4.1.4(1) and Proposition 4.1.7 that the condition (⋆) in Construction 4.4.3 is satisfied for the functor (4.51). (What plays the role of the simplicial set "S " in that construction is the category RigSpc op × K 1 .) Applying Construction 4.4.3, we obtain a functor Proof. We want to show that the inverse of the equivalence (4.43) can be naturally lifted to a morphism of RigSH (∧) τ (S ; Λ) ⊗ -modules. This equivalence is given by the composition of RigSH (∧) τ ((S , X); Λ) * ! (pr 2 ) * ----→ RigSH (∧) τ ((X, X × S X); Λ) * ! (δ X ) ?

---→ RigSH (∧) τ ((X, X); Λ) * ! where:

• pr 2 : X × S X → X is the projection to the second factor and δ X : X → X × S X is the diagonal embedding; • (δ X ) ? is the left adjoint of the functor (δ X ) ? as in Construction 4.4.19. The existence of (δ X ) ? follows from Proposition 4.4.27 which insures that the functor i ! X , for i a closed immersion of rigid analytic X-spaces, admits a left adjoint. The functor (pr 2 ) * admits a natural lift to a morphism of RigSH (∧) τ (S ; Λ) ⊗ -modules. So, we are left to prove the same for (δ X ) ? . More generally, it is enough to prove the following assertions (with T a rigid analytic space).

(1) If j : V → Y is an open immersion in RigSpc lft /T , the functor This can be checked locally on Y, and thus we may assume that Y is weakly compactifiable over T . In this case, the morphism (4.56) can be identified with the equivalence j * (A) ⊗ j * (B) ≃ j * (A ⊗ B). Similarly, for the second assertion, starting with the morphism of RigSH (∧) τ (Y; Λ) ⊗ -modules i ! , we need to show that the morphism i ? (A ⊗ B) → i ? (A) ⊗ B (4.57) is an equivalence for A ∈ RigSH (∧) τ ((T, Y); Λ) * ! and B ∈ RigSH (∧) τ (Y; Λ). This can checked locally on Y, and thus we may assume that Y is weakly compactifiable. In this case, the morphism (4.57) can be identified with the equivalence i * (A ⊗ B) ≃ i * (A) ⊗ i * (B). □ Corollary 4.5.3 (Projection formula). Let f : Y → X be a morphism of rigid analytic spaces which is locally of finite type. Then, the functor f ! : RigSH (∧) τ (Y; Λ) → RigSH (∧) τ (X; Λ), as in Definition 4.4.24, admits a lift to a morphism of RigSH (∧) τ (X; Λ) ⊗ -modules. In particular, there is an equivalence

M ⊗ f ! N ≃ f ! ( f * M ⊗ N)
for every M ∈ RigSH (∧) τ (X; Λ) and N ∈ RigSH In this last subsection, we prove the compatibility of the exceptional functors with the analytification functor (2.13). We first start with the algebraic analogue of Theorem 4.4.2. (Below, for a scheme S , we denote by Sch lft /S the category of locally of finite type S -schemes.) which are exchanged by the equivalence (Pr L ) op ≃ Pr R and which admit the following informal description.

• These functors send an object (S , X), with S a scheme and X an object of Sch lft /S , to the ∞-category SH (∧) τ (X; Λ). • These functors send an arrow (g, f ) : (S , Y) → (T, X), consisting of morphisms g : T → S and f : T × S Y → X, to the functors f ! • g ′ * and g ′ * • f ! respectively, with g ′ : T × S Y → Y the base change of g. Moreover, the functors in (4.58) satisfy the following properties. Proof. This is the algebraic analogue of the combination of Theorems 4.4.2 and 4.5.1. The proof in the algebraic setting is totally similar to the proof in the rigid analytic setting. However, we spend some lines discussing the construction of the functors in (4.58) in order to introduce some notation which will be useful for the proof of Theorem 4.6.3 below. Given a scheme S , we denote by Sch prop /S the category of proper S -schemes. We also denote by Sch cp /S the category of compactifiable S -schemes, i.e., those S -schemes admitting an open immersion into a proper S -scheme. We have an inclusion Sch cp /S ⊂ Sch sft /S which is an equality when S is quasi-compact and quasi-separated by Nagata's compactification theorem (see [START_REF] Conrad | Deligne's notes on Nagata compactifications[END_REF]Theorem 4.1]). We denote by Comp/S the category whose objects are pairs (X, X) where X is an S -scheme and X is a compactification of X over S . We have a functor d S : Comp/S → Sch cp /S , given by (X, X) → X.

The construction of the functors in (4.58) starts with the functor CAlg(Pr L ) CAlg(Pr L ).

In particular, there is a natural transformation given by (S , (X, X)) → (S , X). The obvious natural transformation v : d ′ → w ′ induces a natural transformation v an ! : RigSH (∧) τ ((-) an ; Λ) * ! • d ′ → RigSH (∧) τ ((-) an ; Λ) * ! • w ′ which is objectwise a fully faithful embedding. Thus, we may obtain RigSH (∧) τ ((-) an ; Λ) * ! •d ′ from RigSH (∧) τ ((-) an ; Λ) * ! • w ′ by applying Lemma 4.3.13 to the essential images of the fully faithful embeddings v an ! : RigSH (∧) τ (X an ; Λ) → RigSH (∧) τ (X an ; Λ) for the objects (S , (X, X)). Since SH (∧) τ ((-, -); Λ) * ! is constructed from SH where the first functor is given by ((S , ϵ), X) → (ϵ, X) and the second one classifies the natural transformation An * : SH (∧) τ (-; Λ) → RigSH 

  FK18, Chapter I, Definitions 4.2.2 & 4.3.4 & 4.7.1 & 4.8.12 & 5.3.10 & 5.3.16]. Definition 1.1.7. Let f : Y → X be a morphism of formal schemes.

  is a homeomorphism |Spf(A) rig | ≃ |Spa(A ♮ )| modulo which O + Spf(A) rig (resp. O Spf(A) rig ) is isomorphic to the sheafification of O + Spa(A ♮ ) (resp. O Spa(A ♮ ) ).(2) Let R be an affinoid ring. There exists a homeomorphism |Spa(R)| ≃ lim |Spf(R ♮ ) rig | modulo which O + lim Spf(R ♮ ) rig (resp. O lim Spf(R ♮ ) rig ) is isomorphic to the sheafification of O + Spa(R) (resp. O Spa(R) ).

  are bijections and similarly for C (instead of C α ). Since filtered colimits commute with taking images, we are left to show that colim α Hom A o /π e (B ′ o /π e , C α /π e ) → Hom A o /π e (B ′ o /π e , C/π e )is a bijection for any positive integer e. This is clear since B ′ o /π e is a finitely presented A o /π ealgebra and C/π e is the colimit of the filtered system (C α /π e ) α . □

  5.31]. For the third assertion, we refer to the proof of [Ayo15, Lemme 1.4.32]. Both proofs are formal and extend readily to the context we are considering. □ Corollary 2.2.2. Let j : U → X be an open immersion of rigid analytic spaces. Then the functors j ♯ , j * : RigSH (eff, ∧) τ (U; Λ) → RigSH (eff, ∧) τ (X; Λ) are fully faithful. Proof. This follows from Proposition 2.2.1(3) with f and g equal to j. □ Proposition 2.2.3. Let i : Z → X be a closed immersion of rigid analytic spaces (as in Definition 1.1.14) and j : U → X the complementary open immersion (i.e., such that |U| = |X| ∖ |Z|). (1) The functor i * : RigSH (eff, ∧) τ (Z; Λ) → RigSH (eff, ∧) τ (X; Λ) is fully faithful.

  ]. □ Definition 2.4.8. Let G be a profinite group. The Λ-cohomological dimension of G is the smallest d ∈ N ⊔ {∞} such that, for every π 0 Λ-module M endowed with a continuous action of G, the cohomology groups H i (G; M) vanish for i > d. The virtual Λ-cohomological dimension of G is the infimum of the Λ-cohomological dimensions of the finite-index subgroups of G. If G admits a finite-index torsion-free subgroup H, then the virtual Λ-cohomological dimension of G is equal to the Λ-cohomological dimension of H. (See [Ser94, Chapitre I, §3.3, Proposition 14 ′ ].)

  3) Number fields have virtual Λ-cohomological dimension ≤ 3, and finite fields have Λcohomological dimension ≤ 2. Property (1) follows from [Ser94, Chapitre II, §4.1, Proposition 10 ′ ]. Property (2) follows from [Ser94, Chapitre II, §4.2, Proposition 11]. Property (3) follows from [Ser94, Chapitre II, §4.4, Proposition 13].

  (See [Lur09, Propositions 3.1.3.7 & 3.1.4.1, & Theorem 3.1.5.1].) We now check that the inclusion functor Cat rex, idem ∞ → Cat ∞ satisfies properties (1)-(3) of Lemma 2.8.3. Property (1) follows from [Lur09, Corollary 5.3.6.10]. Property (2) is obvious: an inverse of a right exact equivalence of ∞-categories is right exact. For property (3), we need to show the following: given a filtered diagram in Cat rex, idem ∞ , its colimit computed in Cat ∞ admits finite colimits and is idempotent complete. The first property follows from [Lur09, Proposition 5.5.7.11]. The second property follows from [Lur09, Corollary 4.4.5.21]. 7 □

  .) Moreover, by the proof of Lemma 2.4.16, we have the inequality pvcd Λ (U) ≤ pvcd Λ (S ), and, since S is quasi-compact, the (Λ, τ)-admissibility of S implies that pvcd Λ (S ) is finite. □ Remark 2.8.7. Theorem 2.8.6 applies in the case of a rigid point s → S associated to a point s ∈ |S |.In this case, the stalk RigSH (eff, τ) τ (-; Λ) s has a simpler description: it is the colimit, taken in Pr L , of the diagram U → RigSH (eff, ∧) τ (U; Λ), where U runs over the open neighbourhoods U ⊂ S of s. Indeed, every étale neighbourhood s → T → S of s in S can be refined by an open neighbourhood. (This follows from Corollary 1.3.10 and Lemma 1.4.26(1).) Similarly, if s → S is a nis-geometric rigid point as in Construction 1.4.27(1), we may restrict in the description of the stalk in Theorem 2.8.6 to those étale neighbourhoods U admitting good reduction.

  3.1]) and that |Z| ⊂ |X| is stable by generisation. The following lemma can be compared with [Hub96, Remark 2.4.3(i)]. See also the proof of [Sch12, Proposition 7.16]. Lemma 2.8.13. Keep the notation as in Definition 2.8.10 and consider the following variants of conditions (1) and (2): (1 ′ ) the f α 's are quasi-compact and quasi-separated, and the map |S | → lim α |S α | is a bijection; (2 ′ ) for every s ∈ |S | with images s α ∈ |S α |, the induced morphism of fields colim α κ(s α ) → κ(s) has dense image.

  8.13 and condition (2) of Definition 2.8.10 are satisfied by the maps X × S α 0 S → X × S α 0 S α , for α ≤ α 0 . A point of |X × S α 0 S | corresponds to a point s ∈ |S | and a point of |X × S α 0 s| mapping to the closed point of |s|. Using a similar description for the points of the |X × S α 0 S α |'s, condition (1 ′ ) and (2) follow from the following assertion: given s ∈ |S | with images s α ∈ |S α |, X × S α 0 s is a weak limit of (X × S α 0 s) α≤α 0 .

Proof.

  See the proof of Lemma 2.1.20. □ Proposition 3.1.7. The assignment S → FSH (eff, ∧) τ (S; Λ) ⊗ extends naturally into a functor FSH (eff, ∧) τ (-; Λ) ⊗ : FSch op → CAlg(Pr L ). (3.3) Proof. We refer to [Rob14, §9.1] for the construction of an analogous functor in the algebraic setting. □ Notation 3.1.8. Let f : Y → X be a morphism of formal schemes. The image of f by (3.3) is the inverse image functor f * : FSH (eff, ∧) τ (X; Λ) → FSH (eff, ∧) τ (Y; Λ) which has the structure of a monoidal functor. Its right adjoint f * is the direct image functor. It has the structure of a right-lax monoidal functor. (See Lemma 3.4.1 below.)

  Theorem 3.1.10. The functors σ * and σ * in (3.4) are equivalences of ∞-categories.

ξ

  S : FSH (eff, ∧) τ (S; Λ) ⇄ RigSH (eff, ∧) τ (S rig ; Λ) : χ S . (3.5) Composing with the equivalences of Theorem 3.1.10, we get also an equivalent adjunction ξ S : SH (eff, ∧) τ (S σ ; Λ) ⇄ RigSH (eff, ∧) τ (S rig ; Λ) : χ S . (3.6)

  Proposition 3.2.1. The contravariant functor S → FSH (eff, ∧) τ (S; Λ), f → f * defines a τ-(hyper)sheaf on FSch with values in Pr L .

Proof.

  Let p : C ⊗ → Fin * and q : D ⊗ → Fin * be the defining coCartesian fibrations. Recall that CAlg(C) is the full sub-∞-category of Sect(p) = Fun(Fin * , C ⊗ ) × Fun(Fin * , Fin * ) id Fin * spanned by those sections of p sending the arrows ρ i : ⟨n⟩ → ⟨1⟩, for 1 ≤ i ≤ n, to coCartesian edges, and similarly for CAlg(D). It follows that F ⊗ and G ⊗ induce functors CAlg(F) and CAlg(G), and that the unit and counit of the adjunction (F ⊗ , G ⊗ ) define natural transformations id → CAlg(G) • CAlg(F) and CAlg(F) • CAlg(G) → id satisfying the usual identities up to homotopy. □ We now start our construction of ξ ⊗ . By Proposition 3.1.13, we have a morphism ξ ⊗ : FSH (eff, ∧) τ (-; Λ) ⊗ → RigSH (eff, ∧) τ ((-) rig ; Λ) ⊗ in the ∞-category Fun(FSch op , CAlg(CAT ∞ )). The formation of ∞-categories of commutative algebras gives a functor CAlg(-) : CAlg(CAT ∞ ) → CAT ∞ . Applying this functor to ξ ⊗ yields a morphism CAlg(ξ) : CAlg(FSH (eff, ∧) τ (-; Λ)) → CAlg(RigSH (eff, ∧) τ ((-) rig ; Λ)) in the ∞-category Fun(FSch op , CAT ∞ ). Applying Lurie's unstraightening construction [Lur09, §3.2] to this morphism, we get a commutative triangle rig ; Λ)), and F is the functor induced by CAlg(ξ). By Corollary 3.4.2, the fibers of F admit right adjoints.

  4.6 below and [Lur09, Proposition 2.4.2.3(3)]. Lemma 3.4.6. Let C be an ∞-category and E ⊗ : C → CAlg(CAT ∞ ) a functor. Consider the commutative triangle Lurie's unstraightening construction [Lur09, §3.2] to the morphism Mod(E(-)) ⊗ → Fin * × CAlg(E(-))

  Proposition 3.5.1. The contravariant functor S → FSH (eff, ∧) τ (S; χΛ), f → f * defines a τ-(hyper)sheaf on FSch with values in Pr L .

  is an equivalence. This is clear since CAlg(C) → C commutes with filtered colimits. □ Before stating the next ∞-categorical result, we introduce some notation. Let C be an ∞-category and E ⊗ : C → CAlg(Pr L ) a functor. Consider the commutative triangle Fin * × C obtained by applying Lurie's unstraightening construction [Lur09, §3.2] to the functor sending X ∈ C to the commutative triangle Mod(E(X)) ⊗ By Lemma 3.4.6 and [Lur09, Proposition 2.4.2.3(3)], the maps p, q and r are all coCartesian fibrations. Assume that we are given a section A of the coCartesian fibration p : D → C, and consider M ⊗ A = M ⊗ × D, A C. The obvious functor M ⊗ A → Fin * × C is a coCartesian fibration. By Lurie's straightening construction [Lur09, §3.2], it determines a functor Mod A (E) ⊗ : C → CAlg(Pr L ).

  Lemma 3.5.7. With the notation and assumptions of Theorem 3.5.3, we have an equivalencecolim α f * α χ S α Λ → χ S Λ in FSH (eff, ∧)τ (S; Λ), where f α : S → S α is the obvious map. Proof. Under the assumptions of Theorem 3.5.3, Theorem 2.5.1 and Proposition 3.2.4 provide us with equivalences in Pr L ω colim α RigSH (eff, ∧) τ (S rig α ; Λ) ≃ RigSH (eff, ∧)

colimα

  RigSH τ (S α ; Λ) ≃ RigSH τ (S ; Λ) and colim α FSH τ (S α ; Λ) ≃ FSH τ (S; Λ) in Pr L , and the colimits are taken in Pr L . Using that the tensor product of Pr L commutes with filtered colimits, we deduce an equivalence colim α RigSH τ (S α ; Λ) ⊗ FSH τ (S α ; Λ) ≃ RigSH τ (S ; Λ) ⊗ FSH τ (S; Λ).

  Definition 3.6.3. We define the ∞-category FSH (eff, ∧) τ (S; Λ) by repeating Definitions 3.1.1 and 3.1.3 while replacing FSm/S with the category FRigSm/S of rig-smooth formal S-schemes (see Definition 1.3.13 and Remark 1.4.14).

  (eff, ∧) τ (S ; Λ) with the full sub-∞-category of FSH (eff, ∧) τ (S; Λ) spanned by those objects admitting rig-τ-(hyper)descent. Clearly, we have natural equivalences ξ S ≃ ξ S • ι * S and χ S ≃ ι S, * • χ S . We record the following lemma for later use. Lemma 3.6.5. The functor ι S, * underlies a monoidal functor ι ⊗ S, * : FSH (eff, ∧) τ (S; Λ) ⊗ → FSH (eff, ∧) τ (S; Λ) ⊗ (3.22) which belongs to CAlg(Pr L ). Proof. The functor ι S, * : PSh(FRigSm/S; Λ) → PSh(FSm/S; Λ) (3.23) underlies a monoidal functor ι ⊗ S, * and admits a right adjoint. (Recall that the tensor product on presheaves is given objectwise, see Remarks 2.1.5 and 2.1.6.) Moreover, it commutes with the τ-(hyper)sheafification functor. Indeed, restricting to the small sites ( Ét/X, τ), for X in FSm/S (resp. FRigSm/S), detects τ-(hyper)sheaves and τ-local equivalences in the hypercomplete and non-hypercomplete cases. It follows that the functor (3.23) induces a left adjoint functor ι S, * : Shv (∧) τ (FRigSm/S; Λ) → Shv (∧) τ (FSm/S; Λ) (3.24) underlying a monoidal functor. Moreover, for X a smooth formal S-scheme, we have an equivalence ι S, * (Λ τ (X)) ≃ Λ τ (X). Using [Lur09, Proposition 5.5.4.20], it follows that (3.24) preserves A 1 -local equivalences inducing a left adjoint functor ι S, * : FSH eff, (∧) τ (S; Λ) → FSH eff, (∧) τ (S; Λ) (3.25) underlying a monoidal functor. This functor sends T S to T S , and induces a left adjoint functor ι S, * : FSH (∧) τ (S; Λ) → FSH (∧) τ (S; Λ) (3.26) underlying a monoidal functor. From the above discussion, we see that the functors (3.25) and (3.26) are right adjoint to the functors ι * S in Remark 3.6.4(1), finishing the proof. □ Remark 3.6.6. There is also an obvious functorial dependence of FSH (eff, ∧) τ (S; Λ) on the formal scheme S. A morphism of formal schemes f : T → S induces an inverse image functor f * : FSH (eff, ∧) τ (S; Λ) → FSH (eff, ∧) τ (T; Λ)

  colim [n]∈∆ e rig n, ♯ e rig, * n M → M is an equivalence. (Indeed, by the projection formula, the simplicial object e rig •, ♯ e rig, * • M is equivalent to M(T rig • ) ⊗ M and T rig • → S rig is a truncated étale hypercover of S rig .) Since e rig, * n

  To prove Proposition 3.8.21 we need a digression. (Compare with [Ayo15, page 112]. 11 ) Construction 3.8.22. Let S be a formal scheme. We denote by FRigSm af /S the full subcategory of FSch/S spanned by rig-smooth formal S-schemes which are affine. Consider the functor D S : FRigSm af /S → Sch (3.54)

  57) to be the composite i an, * • j an * . The analytification functor induces functors An * D S : SH (eff, ∧) τ (D S ; Λ) → RigSH (eff, ∧) τ (D an S ; Λ) and An * D S, η : SH (eff, ∧) τ (D S, η ; Λ) → RigSH (eff, ∧) τ (D an S, η ; Λ). We may then define a natural transformation ρ D S : χ D S → χ D an S • An * D η (3.58) as in Remark 3.8.15. Remark 3.8.23. The functor (3.56) factors through the subcategory FSch ⊂ RigSch and defines a diagram of formal schemes that we denote by D for S . As in Construction 3.8.22, we can define an ∞-category FSH (eff, ∧) τ (D for

  diag * : PSh(FRigSm af /S; Λ) ⇄ PSh(Sm/D S ; Λ) : diag * where diag * is the restriction functor. As in Remark 2.1.19, we denote by T S (instead of T S ) the cofiber of the split inclusion of Λ(S) → Λ(A 1 S ∖ 0 S ) (without τ-(hyper)sheafification), and similarly for T D S . (Here S and A 1 S ∖ 0 S are considered as presheaves of sets on FRigSm af /S which are not necessarily representable.) Noting that diag * (T D S ) ≃ T S , we may extend the above adjunction to T -spectra: diag * : Spt T (PSh(FRigSm af /S; Λ)) ⇄ Spt T (PSh(Sm/D S ; Λ)) : diag * .Here, by abuse of notation, we write Spt T (PSh(-; Λ)) for the ∞-category associated to the simplicial category Spt T (PSh ∆ (-; Λ)) endowed with its levelwise global model structure; compare with Remark 2.1.19. We have the following equivalencesdiag σ, * ≃ diag * • i * ≃ diag an * • i an * , diag η, * ≃ diag * • j *and diag an η, * ≃ diag an * • j an * . Moreover, there are natural equivalences An * D S • diag * ≃ diag an, * and An * D S, η • diag * η ≃ diag an, * η inducing natural transformations diag * → diag an * • An * D S and diag η, * → diag an η, * • An * D S, η .

  diag η, * : Spt T (PSh(Sm/D S, η ; Λ)) → Spt T (PSh(FRigSm af /S; Λ)) takes a stable (A 1 , τ)-local equivalence to a stable (A 1 , rig-τ)-local equivalence.(2) The functor diag an η, * : Spt T (PSh(RigSm/D an S, η ; Λ)) → Spt T (PSh(FRigSm af /S; Λ)) takes a stable (B 1 , τ)-local equivalence to a stable (A 1 , rig-τ)-local equivalence.

( 2 )→

 2 Consider the commutative diagram of diagrams of rigid analytic schemes composite functor diag an σ, * • i an, * • j an * • u an, * η : RigSH ∧ τ ( B rig ; Λ) → Spt T (PSh(FRigSm af / B; Λ)) (3.63) takes values in RigSH ∧ τ ( B rig ; Λ) considered as the full sub-∞-category of the target of (3.63) spanned by those objects which are stably (A 1 , rig-τ)-local. Moreover, the induced endofunctor of RigSH ∧ τ ( B rig ; Λ) is equivalent to the identity functor. Proof. We start with part (2) which is easier. Let diag for : FRigSm af / B → FSm/D for B be the diagonal functor sending an affine formal scheme U to the pair (U, U), and let diag for * be constructed as in Remark 3.8.25. We have an equivalence diag for * • σ * ≃ diag σ, * , where σ * is restriction along the functor (-) σ : FSm/D for B → Sm/D B, σ . By Lemma 3.8.24 and Theorem 3.1.10, the composite functor (3.63) is equivalent to the composite functor diag for * • χ D for B • u an, * η : RigSH ∧ τ ( B rig ; Λ) → Spt T (PSh(FRigSm af / B; Λ)). (3.64) Now, χ D for B is restriction along the functor (-) rig : FSm/D for B RigSm/D an B rig and u * η is restriction along along the functor RigSm/D an B rig → RigSm/ B rig sending a pair (U, V) to V rig . It follows that the composite functor (3.64) is restriction along the functor (-) rig : FRigSm af / B → RigSm/ B rig . The claim now follows from Remark 2.1.14.

.(→

  diag an η, * → diag σ, * • i an, * • j an * = diag σ, * • χ D an B is an equivalence. Indeed, by Lemma 3.8.24 and Theorem 3.1.10, we have an equivalence diag σ, * • χ D an B ≃ diag for * • χ D for B See the beginning of the proof of Proposition 3.8.28.) Thus, we need to show that the natural transformation diag an η, * → diag for * • χ D for B is an equivalence. This follows from the equality diag an η = (-) rig • diag for and the fact that χ D for B is restriction along the functor (-) rig : FSm/D for B FSm/D an B, η .

  where, on the right-hand side, u * η : Spt T (PSh(Sm/B η ; Λ)) → Spt T (PSh(Sm/D B, η ; Λ)) is the inverse image functor on T -spectra of presheaves of Λ-modules. Using Lemma 3.8.27(1), we deduce a stable (A 1 , rig-τ)-local equivalencediag η, * u * η Sus m T Λ(X) → diag η, * u * η M. Similarly, we have An * B η M ≃ L B 1 , τ, st Sus m T Λ(X an ).Arguing as before and using Lemma 3.8.27(2), we deduce a stable (A 1 , rig-τ)-local equivalence diag an η, * u an, * η Sus m T Λ(X an ) → diag an η, * u an, * η An * B η M. The result follows now by remarking that the obvious morphism diag η, * u * η Sus m T Λ(X) → diag an η, * u an, * η Sus m T Λ(X an ) is an isomorphism.

  stable (A 1 , rig-τ)-local equivalences (by the first and second steps). Since the source and the target of this composition take values in the ∞-subcategory spanned by stably (A 1 , rig-τ)-local objects (by Proposition 3.8.28(2) for the target), this composition is in fact a natural equivalence. Thus, we have shown that β admits a section. Applying the restriction functorr * : Spt T (PSh(FRigSm af / B; Λ)) → Spt T (PSh(FSm af / B; Λ)) to β, we deduce a natural transformation r * (β) : r * • diag σ, * • i * • j * • u * η → r * • diag σ, * • i an, * • j an * • u an, * η • An * B ηadmitting a section. We claim that this natural transformation is equivalent toρ B : χ B → χ B • An * B η . We only explain how to identify r * • diag σ, * • i * • j * • u * η with χ B ; the identification of r * • diag σ, * • i an, * • j an * • u an, *η with χ B is similar and easier. Denote by D sm B the diagram of schemes obtained by restricting the functor D B to the subcategory FSm af / B ⊂ FRigSm af / B. Define D sm B, σ and D sm B, η similarly and denote by i sm : D sm B, σ → D sm B and j sm : D sm B, η → D sm B the obvious inclusions. We also consider the diagonal functor diag sm σ : FSm/ B → Sm/D sm B, σsending a formal scheme U to the pair (U, U σ ). With these notations, we have an equivalencer * • diag σ, * • i * • j * • u * η ≃ diag sm σ, * • i sm, * • j sm * • u sm, *η . Now, remark that the diagram of schemes D sm B takes values in regular B-schemes. By Lemma 3.8.29, we deduce an equivalence

  Theorem 4.1.4 (Extended proper base change). Consider a Cartesian square in RigSpc

Corollary 4.1. 6 .

 6 Let f : Y → X be a proper morphism of rigid analytic spaces. Then, the functor f * : RigSH(∧) τ (Y; Λ) → RigSH (∧) τ (X; Λ) is colimit-preserving and thus admits a right adjoint.Proof. This is true for the functor f * : RigSH nis (Y; Λ) → RigSH nis (X; Λ) by Proposition 2.4.22(1). The result in general follows from the fact that this functor takes H Yequivalences to H X -equivalences as shown in the third step of the proof of Theorem 4.1.4. □

  Definition 4.2.1. Let f : Y → X be a morphism of rigid analytic spaces. A weak compactification of f is a commutative triangle

)

  Every point of |X c | is a specialisation of a point of |X|. Moreover, for every x ∈ |X| and every valuation ring V ⊂ κ + (x) containing κ + (s ′ ) for a specialisation s ′ ∈ |S | of the image of x in |S |, there exists a unique point x ′ ∈ |X c | which is a specialisation of x and such that κ

  .6) is a bijection. Injectivity is clear since each locally closed immersion X → V, with X ⋐ W V, induces an injection |X c | → |V c | and the map |X c | → |V| factors this injection. For surjectivity, we use Lemma 4.2.5 which implies that every point v ∈ lim X⋐ W V |V| is a specialisation of a point x ∈ |X|. Thus, we have κ(v) = κ(x) and κ + (s) ⊂ κ + (v) ⊂ κ + (x). By Theorem 4.2.10(1), the valuation ring κ + (v) ⊂ κ(x) determines a point of |X c | which is necessarily sent to v by (4.5) since W → S is separated.

  needed. □ Proposition 4.3.3. Consider a Cartesian square of rigid analytic spaces T

  Notation 4.4.1. Given a simplicial set B and a diagram C : B → CAT ∞ , we denote by B C → B a coCartesian fibration classified by C. When B is an ordinary category and C takes values in the sub-∞-category of CAT ∞ spanned by ordinary categories, we take for B C the ordinary category given by the Grothendieck construction. In particular, objects of B C are represented by pairs (b, c) where b ∈ B and c ∈ C(b).

  Theorem 4.4.2. There are functors RigSH(∧) τ (-; Λ)

  being a morphism of proper rigid analytic S -spaces, is proper. Thus, the right adjointability of the above square follows from Theorem 4.1.4(1). □ By Lemma 4.4.5, we may use Construction 4.4.3 to obtain a functor RigSH (∧) τ (-; Λ) * * : RigSpc op RigSpc prop → Pr L . (4.25)

  (∧) τ (X; Λ). • It sends an arrow (g, f ) : (S , Y) → (T, X), consisting of morphisms g : T → S and f : T × S Y → X, to the functor f * • g ′ * with g ′ : T × S Y → Y the base change of g. Integrating the functors w S from Notation 4.3.8, we obtain a functor 4.25), we obtain a functor RigSH (∧) τ (w(-); Λ) * * : RigSpc op WComp → Pr L . (4.27) Notation 4.4.6. Given (S , (X, W)) ∈ RigSpc op WComp, we denote by RigSH (∧) τ ((X, W); Λ) * ! the full sub-∞-category of RigSH (∧) τ (W; Λ) * * introduced in Notation 4.3.10, i.e., the essential image of the fully faithful embedding (4.8). The next statement is a strengthening of Proposition 4.3.11(1). Proposition 4.4.7. Given an arrow(g, ( f, h)) : (S , (Y, Q)) → (T, (X, P)) in RigSpc op WComp, the associated functorRigSH (∧) τ (Q; Λ) * * → RigSH (∧) τ (P; Λ) * * (4.28) takes RigSH (∧) τ ((Y, Q); Λ) * ! into RigSH (∧)τ ((X, P); Λ) * ! and induces a functorRigSH (∧) τ ((Y, Q); Λ) * ! → RigSH (∧) τ ((X, P); Λ) * ! . (4.29) Proof. Using Proposition 4.3.11(1), we only need to treat the case of a morphism of the form (g, id, id) : (S , (Y, Q)) → (T, T × S Y, T × S Q).

  The obvious natural transformation RigSH(∧) τ ((-, -); Λ) * ! → RigSH (∧) τ (-; Λ) * ! • d is an equivalence. (2) Composing (4.32) with the diagonal functor RigSpc op → RigSpc op RigSpc wc yields the ordinary functor RigSH (∧) τ (-; Λ) * : RigSpc op → Pr L . (3) For a rigid analytic space S , the restriction of (4.32) to RigSpc wc /S is equivalent to the functor RigSH (∧) τ (-; Λ) ! : RigSpc wc /S → Pr L of Proposition 4.3.9. Proof. The third assertion follows from [Lur09, Proposition 4.3.3.10]. Using this and Lemma 4.3.14, we deduce the first assertion. For the second assertion we argue as follows. By the first assertion, it suffices to describe the composition of (4.30) with the diagonal functor RigSpc op → RigSpc op WComp given by S → (S , (S , S )). In this composition, we may replace (4.30) by (4.27) without changing the result. In other words, our functor is the composition of RigSpc op ∆ -→ RigSpc op RigSpc prop RigSH (∧) τ (-; Λ) * * -----------→ Pr L

∆

  X : (RigSpc/S ) op → RigSpc op RigSpc wc and ∆ W : (RigSpc/S ) op → RigSpc op RigSpc wc

  (∧) τ (X; Λ).• It sends an arrow (S , Y) → (T, X), consisting of morphisms g : T → S and f : T × S Y → X, to the functor f ! • g ′ * with g ′ : T × S Y → Y the base change of g. Finally, we define the functor RigSH(∧) τ (-; Λ)

  4.11 below. □ Lemma 4.4.11. Let (C ′ , τ ′ ) be a site with C ′ an ordinary category admitting finite limits. Let C ⊂ C ′ be a full subcategory closed under finite limits and let τ be the induced topology on C. Assume that the morphism of sites (C ′ , τ ′ ) → (C, τ) induces an equivalence between the associated ordinary topoi. (Equivalently, every object of C ′ admits a cover by objects in C.) Let D be an ∞-category admitting limits and let F :C op → D be a D-valued τ-sheaf on C. Then, the right Kan extension F ′ : C ′op → D of F along the inclusion C op → C ′op is a τ ′ -sheaf. More precisely, F ′ is the image of F by the equivalence of ∞-categories Shv τ (C; D) ∼ -→ Shv τ ′ (C ′ ; D).Proof. By Lemma 2.1.4, we have an equivalence of ∞-topoi Shv τ ′ (C ′ ) ≃ Shv τ (C). Since Shv τ (C; D) can be identified with the ∞-category of limit-preserving functors from Shv τ (C) to D, and similarly for C ′ , we deduce an equivalence of ∞-categories Shv τ ′ (C ′ ; D) ≃ Shv τ (C; D). This equivalence is given by the restriction functor. Since the restriction of F ′ to C is equivalent to F, we only need to prove that F ′ is a τ ′ -sheaf. For d ∈ D, denote by y(d) : D → S the copresheaf corepresented by d. The functors y(d), for d ∈ D, form a conservative family of limit-preserving functors. Thus, it is enough to show that y(d)(F ′ ) is a τ ′ -sheaf for every d ∈ D. Since y(d)(F ′ ) is the right Kan extension of y(d)(F), we are reduced to prove the lemma with D the ∞-category of spaces S.

  τ ((S n , X n ); Λ) * ! (4.35) is an equivalence. By Lemma 4.4.11, the functor RigSH(∧) τ (S n × S -1 -; Λ) ! : Op/X → Pr L is the left Kan extension of its restriction to the subcategory Op wc /X ⊂ Op/X spanned by those open subspaces of X which are weakly compactifiable over S -1 . Using Proposition 4.4.10, we deduce thatRigSH (∧) τ ((S n , X n ); Λ) * ! ≃ colim U∈Op wc /X RigSH (∧) τ ((S n , U n ); Λ) * !where the colimit is taken in Pr L . Thus, we are reduced to showing that colimU∈Op wc /X RigSH (∧) τ ((S -1 , U); Λ) * ! → lim [n]∈∆ colim U∈Op wc /X RigSH (∧) τ ((S n , U n ); Λ) * ! (4.36)is an equivalence. We want to apply [Lur17, Proposition 4.7.4.19] for commuting the limit with the colimit in the right-hand side of (4.36). For this, we need to show that for every [n ′ ] → [n] in ∆ and every inclusion U → U ′ in Op wc /X, the associated squareRigSH (∧) τ ((S n , U n ); Λ) * ! G G RigSH (∧) τ ((S n , U ′ n ); Λ) * ! RigSH (∧) τ ((S n ′ , U n ′ ); Λ) * ! G G RigSH (∧) τ ((S n ′ , U ′ n ′ ); Λ) * ! is right adjointable. Let g : S n ′ → S n be the morphism induced by [n ′ ] → [n], and let g ′ : U n ′ → U n and g ′′ : U ′ n ′ → U ′ n be the morphisms obtained by base change. Let u : U → U ′ be the obvious inclusion, and let u n : U n → U ′ n and u n ′ : U n ′ → U ′ n ′ be the morphisms obtained by base change. Then, using Lemma 4.4.8, and looking back at the construction of (4.30), we see that the above square is equivalent toRigSH (∧) τ (U n ; Λ) u n, ♯ G G g ′ * RigSH (∧) τ (U ′ n ; Λ) g ′′ * RigSH (∧) τ (U n ′ ; Λ) u n ′ , ♯ G G RigSH (∧) τ (U ′ n ′ ; Λ)which is clearly right adjointable. Thus, [Lur17, Proposition 4.7.4.19] applies, and we are left to showing that RigSH (∧) τ ((S -1 , U); Λ) * ! → lim [n]∈∆ RigSH (∧) τ ((S n , U n ); Λ)

  Lemma 4.4.20. Keep the notations of Construction 4.4.19. The functor i ? S is independent of the choice of the open neighbourhood U.

  [GR17, Part III] might do. (See Theorem 4.4.31 and Remark 4.4.32 below.) Proposition 4.4.26. Consider a Cartesian square of rigid analytic spaces

.

  The result follows then from Corollary 4.4.23. □ Proposition 4.4.27. The composition of the first functor in (4.21) with the obvious inclusion RigSpc op RigSpc prop → RigSpc op RigSpc lft

  Theorem 4.4.31. There is a 2-functor RigSH(∧) τ (-; Λ) : (Corr(RigSpc) proper all, wc ) 2-op → Pr L (4.44)sending a span of the form X f ← -Y id -→ Y to f * and a span of the form Y id ← -Y f -→ X to f ! .(Above, Pr L is considered as an (∞, 2)-category in the natural way, i.e., where 2-morphisms are given by natural transformations.) Proof. We denote by "prop" (resp. "iso", "open", "closed", "imm") the class of proper morphisms (resp. isomorphisms, open immersions, closed immersions, locally closed immersions) in RigSpc. By [GR17, Chapter 7, Theorem 3.2.2] and Theorem 4.1.4(1), there exists a unique 2-functorRigSH (∧)τ (-; Λ) : (Corr(RigSpc) prop all, prop ) 2-op → CAT ∞ (4.45) extending the functor RigSH (∧) τ (-; Λ) * : RigSpc op → Pr L . Also, by the same theorem of loc. cit., there exists a unique 2-functor RigSH (∧) τ (-; Λ) : (Corr(RigSpc) iso all, open ) 2-op → CAT ∞ (4.46) extending the same functor. In particular, these two extensions coincide on (RigSpc qcqs ) op . By [GR17, Chapter 7, Theorem 5.2.4] and Proposition 2.2.3, we may glue uniquely (4.46) with the restriction of (4.45) to (Corr(RigSpc) iso all, closed ) 2-op and get a 2-functor RigSH (∧) τ (-; Λ) : (Corr(RigSpc) iso all, imm ) 2-op → CAT ∞ (4.47) By a second application of [GR17, Chapter 7, Theorem 5.2.4] and using Proposition 4.3.3, we can glue uniquely (4.45) and (4.47) to get the 2-functor (4.44) in the statement. □ Remark 4.4.32. We denote by "lft" the class of morphisms which are locally of finite type. It is conceivable that the 2-functor (4.44) can be extended to a 2-functor RigSH (∧) τ (-; Λ) : (Corr(RigSpc) proper all, lft ) 2-op → Pr L (4.48) sending a span of the form X f ← -Y id -→ Y to f * and a span of the form Y id ← -Y f -→ X to the functor f ! of Definition 4.4.24. We do not pursue this here.

4. 5 .

 5 Projection formula.

G

  RigSpc opRigSpc lft → RigSpc op RigSH (∧)τ (-; Λ) ⊗ -----------→ CAlg(Pr L ), (4.49)considered as a commutative algebra in the ∞-category of functors from RigSpc op RigSpc lft to Pr L . (The first functor in (4.49) is the one given by (S , X) → S .) Said differently, there is a functorRigSH (∧) τ (-; Λ) ⊗ ! : RigSpc op RigSpc lft → Mod(Pr L ) (4.50)which is a lifting of the functor RigSH (∧) τ (-; Λ) * ! and which is part of a commutative squareRigSpc op RigSpc lftRigSH (∧) τ (-; Λ) G CAlg(Pr L ).

  RigSH(∧) τ (-; Λ) ⊗, ⊗ : RigSpc op (RigSpc prop ) op → CAlg(Pr L ) admitting a natural transformation from the composite functor RigSpc op (RigSpc prop ) op → RigSpc op RigSH (∧) τ (-; Λ) ⊗-----------→ CAlg(Pr L ).

G

  RigSpc op (RigSpc prop ) op RigSH (∧) τ (-; Λ) G CAlg(Pr L ).With K as in Construction 3.4.4, we set K 1 = ⟨1⟩ × Fin * , e 0 K. We may view the upper horizontal arrow in the previous square as a functorRigSH (∧) τ (-; Λ)⊗, * : RigSpc op (RigSpc prop ) op × K 1 → Pr L . (4.51)

(

  RigSpc prop ) × K 1 → Pr L . (4.52)This functor is easily seen to correspond to a Mod(Pr L )-valued functor RigSH(∧) τ (-; Λ) ⊗ * which is a lift of (4.25) and which is part of a commutative square RigSpc op (RigSpc prop )RigSH (∧) τ (-; Λ) ⊗ * G G Mod(Pr L ) RigSpc op RigSH (∧) τ (-; Λ) ⊗ G G CAlg(Pr L ).Given (S , (X, W)) ∈ RigSpc op WComp, the sub-∞-categoryRigSH (∧) ((X, W); Λ) * ! ⊂ RigSH (∧) τ (W; Λ) * *(see Notations 4.3.10 and 4.4.6) is stable by tensoring with any object of RigSH (∧) τ (W; Λ) * * and, in particular, by the inverse image of any object of RigSH(∧) τ (S ; Λ) * . (This is an immediate consequence of Proposition 2.2.1(2).) Applying Lemma 4.3.13 to the restriction of the functor (4.52) to the category RigSpc op WComp, we obtain a functorRigSH (∧) τ (-; Λ) ⊗ ! : RigSpc op WComp → Mod(Pr L ) (4.53)which is a lift of (4.30) and which is part of a commutative square as above. The remainder of the construction follows closely the construction of the functor RigSH (∧) τ (-; Λ) * ! of Theorem 4.4.2. Namely, we take a left Kan extension of (4.53) along the functor (4.31), and then a second left Kan extension along the fully faithful embedding (4.34). That the resulting functorRigSH (∧) τ (-; Λ) ⊗ ! : RigSpc op RigSpc lft → Mod(Pr L ) (4.54) is a lift of (4.32) follows from [Lur09, Proposition 4.3.3.10] and [Lur17, Corollary 3.4.4.6(2)]. □ Proposition 4.5.2. Let S be a rigid analytic space and X ∈ RigSpc lft /S . There exists an equivalence of RigSH (∧) τ (S ; Λ) ⊗ -modules RigSH (∧) τ ((S , X); Λ) ⊗ ! ≃ RigSH (∧) τ (X; Λ) ⊗ (4.55) which is a lift of the equivalence of ∞-categories provided by Corollary 4.4.23.

j

  ! : RigSH (∧) τ ((T, Y); Λ) * ! → RigSH (∧) τ ((T, V); Λ) * ! lifts to a morphism of RigSH (∧) τ (Y; Λ) ⊗ -modules. (2) If i : Z → Y is a closed immersion in RigSpc lft /T , the functor i ? : RigSH (∧) τ ((T, Y); Λ) * ! → RigSH (∧) τ ((T, Z); Λ) * ! lifts to a morphism of RigSH (∧) τ (Y; Λ) ⊗ -modules.For the first assertion, starting with the morphism of RigSH(∧) τ (Y; Λ) ⊗ -modules j ! , we need to show that the morphism j ! (A) ⊗ B → j ! (A ⊗ B) (4.56) is an equivalence for A ∈ RigSH (∧) τ ((T, Y); Λ) * ! and B ∈ RigSH (∧) τ (Y; Λ).

  (∧) τ (Y; Λ). Proof. This is an immediate consequence of Theorem 4.5.1 and Proposition 4.5.2. □ Corollary 4.5.4. Let f : Y → X be a morphism of rigid analytic spaces which is locally of finite type. Then there are equivalencesf ! Hom(M, M ′ ) ≃ Hom( f * M, f ! M ′ ) and Hom( f ! N, M) ≃ f * Hom(N, f ! M)for M, M ′ ∈ RigSH (∧) τ (X; Λ) and N ∈ RigSH (∧) τ (Y; Λ). Proof. These are obtained by adjunction from the equivalences(M ⊗ -) • f ! ≃ f ! • ( f * M ⊗ -) and (-⊗ f ! N) ≃ f ! • (-⊗ N) • f *which are provided by Corollary 4.5.3. □ 4.6. Compatibility with the analytification functor.

  Theorem 4.6.1. There are functorsSH (∧) τ (-; Λ)

( 1 )G

 1 The ordinary functors SH(∧) τ (-; Λ) * : Sch op → Pr L SH(∧) τ (-; Λ) * : Sch op → Pr R (4.59)are obtained from the functors in (4.58) by composition with the functor Sch op → Sch op Sch lft , given by S → (S , S ).(2) For a scheme S , consider the functorsSH (∧) τ (-; Λ) ! : Sch lft /S → Pr L SH (∧) τ (-; Λ) ! : Sch lft /S → Pr R (4.60)obtained from the functors in (4.58) by restriction to Sch lft /S . For a morphism f : Y → X in Sch lft /S , denote by f ! and f ! the images of f by these functors respectively. If f is proper there is an equivalence f ! ≃ f * and if f is smooth there is an equivalence f ! ≃ Th(Ω f ) • f * .(3) The functor SH (∧) τ (-; Λ) * ! can be lifted to a functorSH (∧) τ (-; Λ) ⊗ ! : Sch op Sch lft → Mod(Pr L )which is part of a commutative square Sch op Sch lft SH (∧) G CAlg(Pr L ).

SH 9 ((

 9 (∧) τ (-; Λ) * , * : Sch op (Sch prop ) op → Pr L (4.61) obtained from SH (∧) τ (-; Λ) * by composition with the functor Sch op (Sch prop ) op → Sch op , given by (S , X) → X. The condition (⋆) in Construction 4.4.3 is satisfied for (4.61) by the proper base change theorem (see Proposition 4.1.1(1)). Using this construction, we obtain a functor SH (∧) τ (-; Λ) * * : Sch op Sch prop → Pr L (4.62) sending an arrow (g, f ) : (S , Y) → (T, X), consisting of morphisms g : T → S and f : T× S Y → X, to the composite functor f * •g ′ * : SH (∧) τ (Y; Λ) → SH (∧) τ (X; Λ), with g ′ : T × S Y → Y the base change of g.Let S be a scheme. For (X, X) in Comp/S , we denote by SH(∧) τ ((X, X); Λ) * ! the essential image of the fully faithful embeddingv ♯ : SH (∧) τ (X; Λ) → SH (∧)τ (X; Λ) where v : X → X is the given open immersion. By Proposition 4.1.1(2), the analogue of Proposition 4.4.7 holds true for the functor (4.62). Thus, we may apply Lemma 4.3.13 to obtain a functor SH(∧) τ ((-, -); Λ) * ! : Sch op Comp → Pr L . (4.63) By left Kan extension along the functor d : Sch op Comp → Sch op Sch cp , we deduce from (4.63) the functor SH (∧) τ (-; Λ) * ! : Sch op Sch cp → Pr L . (4.64) The analogue of Lemma 4.4.8 is also valid here. Finally, the first functor in (4.58) is obtained by left Kan extension along Sch op Sch cp → Sch op Sch lft from (4.64). □ Remark 4.6.2. Theorem 4.6.1 holds true with the same proof for any stable homotopical functor in the sense of [Ayo07a, Définition 1.4.1]. More precisely, given a functor H * : Sch op → Pr L , f → f * satisfying the ∞-categorical versions of the properties (1)-(6) listed in [Ayo07a, §1.4.1], there are functors (1) and (2) of Theorem 4.6.1. Moreover, if H admits a lift to a functor H ⊗ : Sch op → CAlg(Pr L ) such that the projection formula holds, then property (3) of Theorem 4.6.1 is also satisfied. Theorem 4.6.3. Let A be an adic ring. Set S = Spf(A) rig and U = Spec(A) ∖ Spec(A/I) where I ⊂ A is an ideal of definition. There is a commutative cube of ∞-categories (Sch lft /U) op Sch lft (-) an G G SH (∧) τ (-; Λ) ⊗ ! 9 RigSpc lft /S ) op RigSpc lft RigSH (∧) τ (-; Λ) ⊗ RigSpc lft /S ) op RigSH (∧) τ (-; Λ) ⊗ @ @

  An * : SH(∧) τ (-; Λ) * ! → RigSH (∧) τ ((-) an ; Λ) * ! (4.66)between functors from (Sch lft /U) op Sch lft to Pr L which extends the morphism of Pr L -valued presheaves An * underlying (2.14) in Proposition 2.2.13.Proof. For simplicity, we only construct the natural transformation (4.66). It will be clear from the construction how to lift this natural transformation into a commutative square which is part of a commutative cube as in the statement. We use the notation introduced in the proof of Theorem 4.6.1. By construction, the functorSH (∧) τ (-; Λ) * ! : (Sch lft /U) op Sch lft → Pr Lis a left Kan extension along the functord ′ : (Sch lft /U) op Comp → (Sch lft /U) op Sch lft ,given by (S , (X, X)) → (S , X), of the functorSH (∧) τ ((-, -); Λ) * ! : (Sch lft /U) op Comp → Pr L obtained from (4.63) by restriction. (Here, we are combining the two left Kan extensions from the proof of Theorem 4.6.1.) By the universal property of left Kan extensions, it is thus enough to construct a natural transformation An * : SH (∧) τ ((-, -); Λ) * ! → RigSH (∧) τ ((-) an ; Λ) * ! • d ′ between functors from (Sch lft /U) op Comp to Pr L . Now, consider the functors w : (Sch lft /U) op Comp → (Sch lft /U) op Sch prop and w ′ : (Sch lft /U) op Comp → (Sch lft /U) op Sch lft

  (∧) τ (-; Λ) * * •w in the same way, we are left to construct a natural transformationSH (∧) τ (-; Λ) * * • w → RigSH (∧) τ ((-) an ; Λ) * ! • w ′ .The functor w ′ factors through (Sch lft /U) op Sch prop . Thus, by Proposition 4.4.27, it is enough to construct a natural transformationSH (∧) τ (-; Λ) * * → RigSH (∧) τ ((-) an ; Λ) * *between functors from (Sch lft /U) op Sch prop to Pr L . Equivalently, we need to construct a functor(Sch lft /U) op ×∆ 1 Sch prop → Pr L ,which restricts to SH (∧) τ (-; Λ) * * over {0} ⊂ ∆ 1 and to RigSH (∧) τ ((-) an ; Λ) * * over {1} ⊂ ∆ 1 . For this, we apply Construction 4.4.3 to the composite functor (Sch lft /U) op ×∆ 1 (Sch prop ) op → ∆ 1 × (Sch lft /U) op → Pr L

  • (s) is the localisation of V at its height 1 prime ideal. A morphism of rigid points s ′ → s is a morphism of rigid analytic spaces sending the closed point of |s ′ | to the closed point of |s|. Said differently, the induced morphismκ + (s) → κ + (s ′ ) is local.Remark 1.4.23. A morphism of rigid points s → s is said to be algebraic if the complete field κ(s) contains a dense separable extension of κ(s). Algebraic rigid points over s are all obtained by

the following recipe. Start with a separable extension L/κ(s) and choose a valuation ring V ⊂ L such that V ∩ κ(s) = κ + (s). (By [Bou98, Chapter VI, §8, n • 6, Proposition 6 & Corollary 1] such valuation rings exist, and they are conjugate under the automorphism group of the extension L/κ(s) if the latter is Galois.) Then define a rigid point s by taking κ + (s) to be the adic completion of V (considered as a κ + (s)-algebra). By [BGR84, Proposition 3.4.1/6], if L is a separable closure of κ(s), then κ(s) is algebraically closed (and not only separably closed).

  the category Sch lft /U, of U-schemes which are locally of finite type, to the category of rigid analytic U an -spaces. (Note that U an = Spf(A) rig .) This functor preserves étale and smooth morphisms, closed immersions and complementary open immersions, as well as proper morphisms.

	from Sch lft /U to Pr L is a stable homotopical functor in the sense that it satisfies the ∞-categorical
	versions of the properties (1)-(6) listed in [Ayo07a, §1.4.1].
	Remark 2.2.8. The ∞-categorical versions of the properties (1)-(6) listed in [Ayo07a, §1.4.1] can
	be checked after passing to the homotopy categories. Thus, we may as well reformulate Proposition
	2.2.7 by saying that the functor from Sch lft /U to the 2-category of triangulated categories, sending
	X to the homotopy category associated to RigSH (∧) τ (X an ; Λ), is a stable homotopical functor in the
	sense of [Ayo07a, Définition 1.4.1].
	The following result follows immediately from Propositions 2.2.1 and 2.2.3, and the construc-
	tion.
	Proposition 2.2.7. Keep the notation as in Remark 2.2.6. The contravariant functor
	X → RigSH (∧) τ (X an ; Λ), f → f an, *

  Remark 2.5.2. Keep the notations and hypotheses as in Theorem 2.5.1. Using [Lur17, Corollary 3.2.3.2], we can upgrade (2.20) into an equivalence colim

α RigSH

  The presheaf RigSH eff nis (-; Λ) has descent for the analytic topology by Theorem 2.3.4. Combining this with Proposition 2.5.8 and [Lur17, Proposition 4.7.4.19], we see that the problem is local on S o , which finishes the proof. (Note that the condition for applying [Lur17, Proposition 4.7.4.19] is indeed satisfied by the base change theorem for open immersions, a special case of the base change theorem for smooth morphisms; see Proposition 2.2.1.) □

  .35). More concretely, we have a functor FRigSm af, pr /(S α ) α → FRigSm ′ af, pr /(S α ) α (2.36) which is the identity on objects and such that, in the target, the set of morphisms from (Y α ) α≤β 0 to (X α ) α≤α 0 is the set of morphisms from (Y ′ α ) α≤β 0 to (X ′ α ) α≤α 0 over (S α ) α . Remark 2.6.10. Let FRig Ét af, pr /S be the full subcategory of FRigSm af, pr /S spanned by rig-étale formal S-schemes. Similarly, let FRig Ét af, pr /(S α ) α = colim FRig Ét af, pr /S α , considered as a full subcategory of FRigSm af, pr /(S α ) α , and let FRig Ét ′ af, pr /(S α ) α be its essential image by the functor (2.36). The obvious functors FRig Ét af, pr /(S α ) α → FRig Ét ′ af, pr /(S α ) α → FRig Ét af, pr /S are equivalences of categories. Indeed, it is so for their composition by Corollary 1.3.10, and the second functor is faithful. This allows us to define the rig-Nisnevich topology on FRig Ét ′ af, pr /(S α )

α α , and more generally on FRigSm ′ af, pr /(S α ) α by replacing (S α ) α with a general object of the latter category.

  Corollary 2.6.18. Let R be an adic ring of principal ideal type and π ∈ R a generator of an ideal of definition. Let s = (s 1 , . . . , s m ) and t = (t 1 , . . . , t n ) be two systems of coordinates, let a = (a 1 , . . . , a m ) and b = (b 1 , . . . , b n ) be two tuples of elements in R, and let P = (P 1 , . . . , P n ) be an ntuple of polynomials in R[s, t] such that P| s=a, t=b = (0, . . . , 0). Assume also that det(∂P i /∂t j )| s=a, t=b generates an open ideal in R. Then, there exists a unique n-tuple F = (F 1 , . . . , F

3.7. (Note that det(∂P i /∂t j )| s=0, t=0 generates an open ideal in R if and only if it is invertible in R[π -1 ].) □ The previous statement has the following generalisation. (See [Vez19, Proposition A.2].) n ) of formal power series in (R[π -1 ])[[sa]] such that P(s, F(s)) = 0. Moreover, for N large enough, the F i 's belong to the subring R[[π -N (sa)]].

  Let Op/S denote the category of open subspaces of S endowed with the analytic topology. By Theorem 2.3.4, RigSH (eff, ∧) Λ) is a hypersheaf on Op/S . (In the non-hypercomplete case, we use [CM21, Theorem 3.12] and [Lur09, Corollary 7.2.1.12] which insure that a sheaf on Op/S is automatically a hypersheaf.) Moreover, by Proposition 2.4.20, this presheaf takes values in Pr L ω . The result follows now from Lemma 2.8.5 and Theorem 2.8.6. □ Remark 2.8.9. The algebraic analogue of Corollary 2.8.8 is also true: given a scheme S and assuming one of the alternatives of this corollary, the functors SH (eff, ∧) Λ), for s ∈ |S |, are jointly conservative. This can be deduced from Proposition 2.2.3 by arguing as in the proof of [Hoy18, Corollary 14]. Our next goal is to upgrade Theorem 2.5.1 to a motivic analogue of [Hub96, Proposition 2.4.4]; see Theorem 2.8.15 below. We first introduce, following [Hub96, Definition 2.4.2 & Remark 2.4.5], a notion of weak limit in the category of rigid analytic spaces.

, ∧) τ (s; Λ), for s ∈ S , are jointly conservative. Proof. τ (-; τ (S ; Λ) → SH (eff, ∧) τ (s;

  • hypothesis (4) of loc. cit., and more generally the right adjointability of the squares

	Lur17, Lemma 5.2.2.37] are satisfied is clear:
	• hypothesis (1) of loc. cit. follows from Proposition 3.2.1;
	• hypothesis (2) of loc. cit. follows from [Lur17, Corollary 4.2.3.2];

• hypothesis (3) of loc. cit. is clear since the ∞-categories FSH (eff, ∧) τ (U n ; Λ) are presentable;

  modules, for every c ∈ C, and similarly for Mod A ∞ (E ∞ ). In fact, [Lur17, Corollary 4.5.1.6] shows also that the functor Mod A (E) : C → Pr L is equivalent to the functor LMod A (E) : C → Pr L which is constructed similarly as above. More explicitly, one applies Lurie's unstraightening construction[START_REF] Lurie | Higher topos theory[END_REF] §3.2] 

to the functor sending c ∈ C to the functor LMod(E(c)) → Alg(E(c)) (see [Lur17, Definition 4.2.1.13 & Example 4.2.1.18]) to get a morphism of coCartesian fibrations

  To prove this, let M 0 ∈ Shv ∧ ét ( Ét/B η ; Λ) ℓ-nil be the object corresponding to M by the equivalence Shv ∧ ét ( Ét/B η ; Λ) ℓ-nil ≃ SH ∧ ét (B η ; Λ) ℓ-nil provided by Theorem 2.10.4. Then, as a T -spectrum, M is given at level m by ι * B η M 0 (m)[m], where ι * B η is as in Notation 2.10.7. (See [Ayo14a, Corollary 4.9] in the case where Λ is an Eilenberg-Mac Lane spectrum; the general case can be treated similarly.) Similarly, as a T -spectrum, i * j * u * η M is given at level m by ι *

	D B, σ	i * j * u * η M 0 (m)[m]. Using this and Lemma 2.4.5, one deduces an equivalence
		diag σ, *

  1) A Tate ring A is said to be universally uniform if every finitely generated Tate A-algebra is uniform. (Recall that a finitely generated Tate A-algebra is a quotient of A⟨t⟩ = A 0 ⟨t⟩[π -1 ] where t = (t 1 , . . . , t n ) is a system of coordinates, A 0 ⊂ A a ring of definition and π ∈ A a topologically nilpotent unit contained in A 0 .) In particular, a universally uniform Tate ring is also stably uniform in the sense of[START_REF] Buzzard | Stably uniform affinoids are sheafy[END_REF]. A Tate affinoid ring R is said to be universally uniform if R ± is universally uniform.(2) A universally uniform adic space is a uniform adic space (as in Definition 1.2.6) which is locally isomorphic to Spa(A), where A is a universally uniform Tate affinoid ring. Let S be a universally uniform adic space. We denote by Adic/S the category of uniform adic S -spaces. We denote by Adic lft /S (resp. Adic sft /S ) the full subcategory of Adic/S spanned by those adic S -spaces which are locally of finite type (resp. which are separated of finite type). (2) Let S be a rigid analytic space. We denote by RigSpc lft /S (resp. RigSpc sft /S ) the full subcategory of RigSpc/S spanned by those rigid analytic S -spaces which are locally of finite type (resp. which are separated of finite type). (3) Let S be a universally uniform adic space. By Corollary 1.2.7, S determines a rigid analytic space which we denote also by S , and we have equivalences of categories Adic lft /S ≃ RigSpc lft /S and Adic sft /S ≃ RigSpc sft /S .

	Notation 4.2.8.
	(1)

Notation 4.2.9. Let A be a Tate affinoid ring and B a Tate affinoid A-algebra. We define a new Tate affinoid A-algebra B c = (B ± c , B + c ) by setting B ± c = B ± and letting B + c to be the integral closure of the subring A

  This follows from Corollary 4.3.15 and Theorem 2.3.4. (Indeed, the inclusion functors Pr L → CAT ∞ and Pr R → CAT ∞ are limit-preserving by [

	Lur09, Proposition
	5.5.3.13 & Theorem 5.5.3.18].)	□
	Corollary 4.3.18. There is a unique extension of (4.7) into a functor	
	RigSH (∧) τ (-; Λ) ! : RigSpc lft /S → Pr L	(4.19)
	such that the following condition is satisfied. The functor	
	RigSH (∧) τ (-; Λ) ! : (RigSpc lft /S ) op → Pr R ,	(4.20)
	obtained from (4.19) using the equivalence (Pr L ) op ≃ Pr R , is a Pr R -valued sheaf for the analytic
	topology.	
	Proof. This follows from Proposition 4.3.17 using Lemma 2.1.4. Indeed, a Pr R -valued τ-sheaf on
	a site (C, τ) is equivalent to a limit-preserving functor on Shv τ (C) op ; see Definition 2.3.1.	□
	Remark 4.3.19. At this point, it is unclear that the ∞-category RigSH	

  (as in Notation 4.3.12) are obtained from the functors in (4.21) by composition with the diagonal functor RigSpc op → RigSpc op RigSpc lft , given by S → (S , S ).

	(2) For a rigid analytic space S , the functors	
	RigSH (∧) τ (-; Λ) ! : RigSpc lft /S → Pr L RigSH (∧) τ (-; Λ) ! : RigSpc lft /S → Pr R	(4.23)
	(as in Corollary 4.3.18) are obtained from the functors in (4.21) by restriction to
	RigSpc lft /S .	
	(RigSpc prop ) op → Pr L	(4.24)
	RigSpc op	

-; Λ) * : RigSpc op → Pr R (4.22)

To construct the functors in (4.21), we start with the functor RigSH

(∧) 

τ (-; Λ) * , * :

  This follows immediately from Proposition 4.3.3(1).□ restricts to (4.13) on WComp/S for every rigid analytic space S . Integrating the functors d S from Notation 4.3.8, we obtain a functor , (X, W)) → (S , X). By left Kan extension along the functor (4.31), we obtain from (4.30) a functor

	Combining Proposition 4.4.7 with Lemma 4.3.13, we deduce a functor
	RigSH (∧) τ ((-, -); Λ) * ! :	RigSpc op	WComp → Pr L ,	(4.30)
	and this functor d :	WComp →	RigSpc wc	(4.31)
	RigSpc op				RigSpc op
	given by (S RigSH (∧) τ (-; Λ) * ! :	RigSpc op	RigSpc wc → Pr L .	(4.32)

  (∧) τ ((-) an ; Λ) underlying (2.14) in Proposition 2.2.13. That condition (⋆) in Construction 4.4.3 is satisfied, follows from Propositions 2.2.14 and 4.1.1(1), and Theorem 4.1.4(1).
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Our next goal is to prove the continuity property for FSH (eff, ∧) τ (-; χΛ). Theorem 3.5.3. Let (S α ) α be a cofiltered inverse system of quasi-compact and quasi-separated formal schemes with affine transition maps, and let S = lim α S α be the limit of this system. We assume one of the following two alternatives.

(1) We work in the non-hypercomplete case. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective. (2) We work in the hypercomplete case, and S and S rig as well as the S α 's and the S rig α 's are (Λ, τ)-admissible. When τ is the étale topology, we assume furthermore that Λ is eventually coconnective or that the numbers pvcd Λ (S α ) and pvcd Λ (S rig α ) are bounded independently of α.

Then the obvious functor where the colimit is taken in Pr L , is an equivalence.

Remark 3.5.4. Compared to the analogous statements for rigid analytic and formal motives (see Theorem 2.5.1 and Proposition 3.2.4), we have to assume, in the non-hypercomplete case, that Λ is eventually coconnective when τ is the étale topology. This is due to Lemma 3.5.7 below, that we were only able to prove under this extra assumption which insures the compact generation of the ∞-categories of χΛ-modules in formal motives.

We will obtain Theorem 3.5.3 as a consequence of Theorem 2.5.1 and Proposition 3.2.4. To do so, we need some ∞-categorical facts. We start with the following result, which is well-known but for which we couldn't find a reference. Lemma 3.5.5. Let C ⊗ be a monoidal ∞-category admitting colimits which are compatible with the monoidal structure. Then, the forgetful functor ff : Mod(C) → C commutes with filtered colimits.

Proof. By [Lur17, Theorem 4.5.3.1], we have a coCartesian fibration Mod(C) → CAlg(C). By [Lur17, Corollary 3.4.4.6(2)], for every A ∈ CAlg(C), the ∞-category Mod A (C) admits colimits and the forgetful functor ff A : Mod A (C) → C is colimit-preserving. Also, the base change functor Mod A (C) → Mod B (C), associated to a morphism A → B in CAlg(C), is colimit-preserving since it admits a right adjoint. Moreover, by [Lur17, Corollaries 3.2.3.2 & 3.2.3.3], the ∞-category CAlg(C) admits colimits and the forgetful functor CAlg(C) → C preserves the filtered ones. Using [Lur09, Proposition 4.3.1.5(2) & Corollary 4.3.1.11], we deduce that Mod(C) admits colimits and that they are computed as follows. Let p : K → Mod(C) be a diagram and let q : K → CAlg(C) be the diagram obtained by composing with the forgetful functor. Let A ∞ ∈ CAlg(C) be a colimit of q and let p ′ : K → Mod A ∞ (C) be a diagram endowed with a morphism p → p ′ in Mod(C) K given by coCartesian edges. (See the beginning of the proof of [START_REF] Lurie | Higher topos theory[END_REF]Corollary 4.3.1.11].) Then, the colimit of p is equivalent to the colimit of p ′ computed in Mod A ∞ (C). Now assume that K is a filtered partially ordered set, and let L be the subset of K × K consisting of those pairs (i, j) with i ≤ j. We endow L with the induced order. Consider the commutative square

X ′ → X, to the constant simplicial complex F(X). We leave the easy details to the reader. By Corollary 2.4.6, it follows that every rigf ét-sheaf of Λ-modules on FRig Ét/X is automatically a rigf ét-(hyper)sheaf. (Indeed, although Λ is not assumed to be eventually coconnective, the condition that π 0 Λ is a Q-algebra implies that there exists a morphism of commutative ring spectra Q → Λ, and thus we may replace Λ by Q in order to apply Corollary 2.4.6.)

By the above discussion, it is enough to check property (B) when V • is the Čech nerve associated to a finite rig-étale covering e 0 : V 0 → V -1 . Moreover, we may assume that the formal V -1scheme V 0 admits an action of a finite group G which is simply transitive on the geometric fibers of e rig 0 : V rig 0 → V rig -1 . The Čech nerve V • can be refined by the following rigf ét-hypercover

Since the latter has the same form when base-changed to each V n , we are left to prove property (B) with (3.31) instead of V • . As explained in the second part, it suffices to prove property (B ′ ) for (3.31). In this case, the cosimplicial object A • defines an action of G on A 0 ∈ FSH (∧) ét (V -1 ; Λ), and we may rewrite (3.30) as

That this is an equivalence follows from the fact that taking the "G-invariant subobject" in a Qlinear ∞-category is equivalent to taking the image of the projector |G| -1 g∈G g. Part 4. Here we prove property (B) under the alternative (iv) and assuming conditions (1), (2) and (3) of Lemma 3.6.2.

By Theorems 2.10.3, 2.10.4 and 3.1.10, we have equivalences of ∞-categories

and Shv ∧ ét ( Ét/X; Z/ℓ) ≃ FSH ∧ ét (X; Z/ℓ) for every formal S-scheme X. Let M 0 ∈ Shv ∧ ét ( Ét/X rig ; Z/ℓ) and N 0 ∈ Shv ∧ ét ( Ét/X; Z/ℓ) be the étale hypersheaves corresponding to M and N by these equivalences. Set A • 0 = χ V -1 (e rig •, * e rig, * • (g rig, * -1 (M 0 ))) and B 0 = g * -1 (N 0 ). We need to prove that ( lim

is an equivalence in Shv ∧ ét ( Ét/V -1 ; Z/ℓ). We will do this by proving that (3.32) induces an equivalence at every geometric point v → V -1, σ . Since M 0 and N 0 are compact, A • 0 and A • 0 ⊗ B 0 are eventually connective and coconnective as cosimplicial objects, i.e., uniformly in the cosimplicial degree. Since the homotopy limit of a cosimplicial object in complexes of Z/ℓ-modules can be computed using the total complex of the associated double complex, this implies that ( lim

Thus, the fiber of (3.32) at v can be identified with the map ( lim

That the latter is an equivalence follows from the fact that (B 0 ) v is a perfect complex of Z/ℓmodules (which is a consequence of the assumption that N is compact). □

The method used for proving Theorem 3.6.1 can be also used to prove the following result.

Proposition 3.6.8. We work under Assumption 3.3.1. Let S be a formal scheme and set S = S rig . The functor χ S : RigSH (∧) τ (S ; Λ) → FSH (∧) τ (S; Λ) preserves colimits.

Moreover, one can check that this equivalence is given by the composition of

In fact, by Galois descent, one can show that the equivalence (3.43) is also true without assuming that k is algebraically closed. We obtain in this way a weak version of [Ayo15, Scholie 1.3.26(1)] (for the étale topology and after replacing K with K ∞ ). See also [Ayo15, Théorème 2.5.75] for a similar statement for motives with transfers.

Our first task is to construct a morphism of commutative algebras χ B Λ → χ B Λ which we will eventually prove to be an equivalence. In order to do so, we need a digression on the notion of rigid analytic schemes, generalising [Ayo15, Définition 1.4.1]. Definition 3.8.4. A rigid analytic scheme S is a triple (S η , S , ι S ) consisting of a rigid analytic space S η , called the generic fiber of S , a formal scheme S , called the completion of S , and an open immersion ι S : S rig → S η . (We think of S as obtained from S η and S by gluing along S rig .) Given a rigid analytic scheme S , we set S σ = S σ and call it the special fiber of S . A morphism of rigid analytic schemes f : T → S is a pair of morphisms ( f η , f ), where f η : T η → S η is a morphism of rigid analytic spaces and f : T → S is a morphism of formal schemes, and such that ι S • f η = f η • ι T . The morphism f is said to be étale (resp. smooth) if both f η and f are étale (resp. smooth).

Notation 3.8.5. We denote by RigSch the category of rigid analytic schemes. Given a rigid analytic scheme S , we denote by RigSch/S the overcategory of rigid analytic S -schemes and Ét/S (resp. RigSm/S ) its full subcategory consisting of étale (resp. smooth) objects.

Remark 3.8.6.

(1) We have a fully faithful embedding RigSpc → RigSch sending a rigid analytic space S to the triple (S , ∅, ∅ → S ). We will identify RigSpc with its essential image in RigSch.

(2) We have a fully faithful embedding FSch → RigSch sending a formal scheme S to the triple (S rig , S, id S rig ). We will identify FSpc with its essential image in RigSch.

Remark 3.8.7. A morphism j of rigid analytic schemes is said to be a closed (resp. an open) immersion if both j η and j are closed (resp. open) immersions. Given a closed immersion Z → S of rigid analytic schemes, the complement S ∖ Z is defined to be the rigid analytic scheme given by the triple (S η ∖ Z η , S ∖ Z, ι S ∖Z ) where ι S ∖Z is obtained by restriction and corestriction from ι S .

We have an obvious open immersion S ∖ Z → S . We warn the reader about the following notation clash: given a closed immersion of formal schemes Z → S, then "S ∖ Z" can mean two different things. It can mean the open formal subscheme of S supported on the open subset |S| ∖ |Z| of |S|. It can also mean the rigid analytic scheme obtained as the complement of Z in S considered as rigid analytic schemes. Each time there is a risk of confusion, we will specify if the complementation is taken in the category of formal schemes or the category of rigid analytic schemes. (2) For a separated finite type B-scheme X with an open immersion X → X into a proper B-scheme, and complement Y = X ∖ X, we have

where, for a B-scheme W, W is the formal completion of W at W σ = W × B B σ . We stress that in (3.45) the complement is taken in the category of rigid analytic schemes.

Remark 3.8.9. Keep the notation of Construction 3.8.8. The functor (3.44) commutes with finite limits, and preserves étale and smooth morphisms, closed immersions and complementary open immersions, as well as proper morphisms. For X ∈ Sch lft /B, we have a canonical isomorphism (X an ) η ≃ (X η ) an so there is no ambiguity in writing "X an η ". The formal completions of X and X an are canonically isomorphic, i.e., X an ≃ X, and we have isomorphisms (X an ) σ ≃ X σ ≃ (X σ ) an up to nilimmersions.

Definition 3.8.10. Let ( f i : S i → S ) i be a family of étale morphisms of rigid analytic schemes. We say that this family is an étale (resp. Nisnevich) cover if both families ( f i, η : S i, η → S η ) i and ( f i : S i → S ) i are étale (resp. Nisnevich) covers. The topology generated by étale (resp. Nisnevich) covers is called the étale (resp. Nisnevich) topology and is denoted by "ét" (resp. "nis").

Notation 3.8.11. Let X be a rigid analytic scheme. We denote by B n X the relative n-dimensional ball given by the triple

). Definition 3.8.12. Given a rigid analytic scheme S , we define the monoidal ∞-category of rigid analytic motives RigSH (eff, ∧) τ (S ; Λ) ⊗ from the smooth étale site (RigSm/S , τ) using the interval B 1 S and the motive of U 1 S pointed by the unit section, just as in Definitions 2.1.11 and 2.1.15. Remark 3.8.13. Many of the results that we have established for ∞-categories of motives over rigid analytic spaces hold true for ∞-categories of motives over rigid analytic schemes, and often the proof we gave can be read in the context of rigid analytic schemes. This is the case for instance for Proposition 2.2.1. Moreover, Proposition 2.2.3 holds true for rigid analytic schemes, except that the proof of the localisation property requires some extra arguments. These extra arguments can be found in the proof of [Ayo15, Proposition 1.4.21]. Proposition 2.2.7 also extends: with the notation of Construction 3.8.8, the contravariant functor

Keep the notation as in Construction 3.8.8. Given a B-scheme X which is locally of finite type, the analytification functor (3.44) induces a premorphism of sites An X : (RigSm/X an , τ) → (Sm/X, τ).

(3.46)

By the functoriality of the construction of the ∞-categories of motives, (3.46) induces a functor

(This generalises the functor (2.13).) Given a morphism f : Y → X in Sch lft /B, there is an equivalence f an, * • An * X ≃ An * Y • f * . In fact, the generalisation of Proposition 2.2.13 holds true: we have a morphism of CAlg(Pr L )-valued presheaves

on Sch lft /B. Also, note that if Z is a B σ -scheme which is locally of finite type, then An * Z is an equivalence of ∞-categories. Notation 3.8.14. Let B be a scheme, B σ ⊂ B a closed subscheme locally of finite presentation, and

(1) Given a B-scheme X, we set X σ = X × B B σ and X η = X × B B η , and we define the functor

as in the statement of Theorem 3.8.1. More precisely, we denote by i : X σ → X and j : X η → X the obvious inclusions, and set χ X = i * • j * .

(2) Given a rigid analytic B-scheme X, we define the functor

similarly. More precisely, we denote by i : X σ → X and j : X η → X the obvious inclusions, and set χ X = i * • j * .

Remark 3.8.15. In the T-stable case, the collection of functors {χ X } X , for X ∈ Sch/B, is part of a specialisation system in the sense of [Ayo07b, Définition 3.1.1]. In fact, this specialisation system is considered in [Ayo07b, Exemple 3.1.4] where it is called the canonical specialisation system. Similarly, the collection of functors {χ X an •An * X η } X , for X ∈ Sch/B, is part of a specialisation system; see [Ayo15, Proposition 1.4.41]. There are natural transformations

given by the composition of Remark 3.8.16. The natural transformation ρ X is independent of B in the following way. Let B ′ ∈ Sch lft /B and X ∈ Sch lft /B ′ . Then we have two natural transformations "χ X → χ X an • An * X η ", one associated with X considered as a B-scheme and one associated with X considered as a B ′scheme. We claim that these two natural transformations are equivalent. To explain how, we write momentarily χ (X/B) an , An * X η /B , etc., to stress the dependency on the scheme B. There is a canonical isomorphism

and hence an open immersion of rigid analytic B-schemes ι : (X/B ′ ) an → (X/B) an inducing an isomorphism on special fibers. Moreover, we have natural equivalences

Lemma 3.8.17. Let X be a rigid analytic B-scheme. The functor (3.50) is equivalent to the composition of

, where χ X is the functor introduced in Notation 3.1.12.

Proof. For the sake of clarity, we will momentarily write "χ ′ X " instead of "χ X " for the functor introduced in Notation 3.1.12 and use "χ X " to denote the functor introduced in Notation 3.8.14(2) with X considered as a rigid analytic B-scheme via the fully faithful embedding FSch → RigSch.

We have an equivalence χ X ≃ χ X • ι * X which follows from the fact that (ι X ) σ is the identification X σ ≃ X σ . Thus, to prove the lemma, it is enough to show that the two functors

are equivalent. (Note that X η = X rig ; here we use " X η " because we want to think about X as a rigid analytic scheme via the fully faithful embedding of Remark 3.8.6(2).) In order to do that, we remark that the base change functor RigSm/ X → Sm/X σ factors as follows

We deduce immediately from the construction of the ∞-categories of motives that the inverse image functor i * :

where σ * is the equivalence of Theorem 3.1.10 and (-) * is the functor that takes the motive of a rigid analytic X-scheme to the motive of its formal completion. The formal completion functor (-) is right adjoint to the obvious inclusion inc : FSm/ X → RigSch/ X. It follows that (-) * is right adjoint to the functor inc * :

This means that we have an equivalence (-) * ≃ inc * . In conclusion, we see that χ X is equivalent to the composition of

Since j * • inc * is clearly equivalent to the functor ξ X from Notation 3.1.12, the result follows. □ Corollary 3.8.18. The functor χ B obtained by taking X = B in Notation 3.8.14(2) coincides with the functor χ B obtained by taking S = B in Notation 3.1.12.

From Corollary 3.8.18, we see that Theorem 3.8.1 follows from the following statement.

Theorem 3.8.19. Let B be a scheme, B σ ⊂ B a closed subscheme locally of finite presentation up to nilimmersion, and B η ⊂ B its open complement. Assume that every prime number is invertible either in π 0 Λ or in O(B). Assume one of the following alternatives.

(1) We work in the non-hypercomplete case and Λ is eventually coconnective;

(2) We work in the hypercomplete case and B is (Λ, ét)-admissible. Then, for every X ∈ Sch lft /B, the natural transformation ρ X : χ X → χ X an • An * X η , between functors from SH (∧) ét (X η ; Λ) to SH (∧) ét (X σ ; Λ), is an equivalence.

We start by proving a reduction.

Lemma 3.8.20. To prove Theorem 3.8.19, we may assume that Λ is eventually coconnective and that B is essentially of finite type over Spec(Z). In particular, there is no need to distinguish the non-hypercomplete and the hypercomplete cases.

Proof. We first explain how to reduce to the case where Λ is eventually coconnective. For this, we only need to consider the alternative (2). It follows from Propositions 2.4.22 and 3.2.3 that ρ X is a natural transformation between colimit-preserving functors between compactly generated categories. Thus, it is enough to prove that χ X M → χ X an An * X η M is an equivalence for M ∈ SH ∧ ét (X η ; Λ) compact. Arguing as in the second part of the proof of Lemma 3.6.2, we reduce to the following two cases:

• π 0 Λ is a Q-algebra;

• M is ℓ-nilpotent for a prime ℓ invertible on B. In the first case, we may replace Λ by Q and assume that Λ is eventually coconnective as claimed. In the second case, let M 0 ∈ Shv ∧ ét ( Ét/X η ; Λ) ℓ be the object corresponding to M by the equivalence Shv ∧ ét ( Ét/X η ; Λ) ℓ-nil ≃ SH ∧ ét (X η ; Λ) ℓ-nil provided by Theorem 2.10.4. Using also Theorem 2.10.3, we reduce to show that χ X M 0 → χ X an An * X η M 0 is an equivalence. (Here the functors χ X , χ X an and An * X η are defined on étale hypersheaves of Λ-modules by the same formulas as their motivic versions.) Using Lemma 2.4.5, one obtains equivalences

(Indeed, as M 0 is compact, the inverse system (M 0 ⊗ Λ τ ≤r Λ) r consists of eventually coconnective étale sheaves and is eventually constant on homotopy sheaves.) This shows that we may replace M and Λ by M ⊗ Λ τ ≤r Λ and τ ≤r Λ, and assume that Λ is eventually coconnective as claimed.

We now assume that Λ is eventually coconnective and explain how to reduce to the case where B is essentially of finite type over Spec(Z). By Propositions 2.4.19 and 3.2.2, the alternative (2) is covered by the alternative (1). By Remark 3.8.16, we only need to consider the case X = B. The problem is local on B, so we may assume that B is affine given as a limit of a cofiltered inverse system (B α ) α of affine schemes which are essentially of finite type over Z. We may also assume that there are closed subschemes B α, σ ⊂ B α such that, for every β ≤ α, B β, σ is the inverse image of B α, σ , and B σ is the limit of the inverse system (B α, σ ) α . Set B α, η = B α ∖ B α, σ so that B η is the limit of the inverse system (B α, η ) α . Let i α : B α, σ → B α and j α : B α, η → B α be the obvious immersions, and let f α : B → B α and f βα : B β → B α be the obvious morphisms.

We need to show that χ B M → χ B An * X η M is an equivalence for all M ∈ SH ét (B η ; Λ). Since the three functors χ B , χ B and An * X η commute with colimits, we may assume that M is compact. By Proposition 2.5.11, we have an equivalence

in Pr L , and similarly for B σ and B η . Since M ∈ SH ét (B η ; Λ) is assumed compact, we may find an index α 0 , a compact object M α 0 ∈ SH ét (B α 0 , η ; Λ) and an equivalence f * α 0 , η M α 0 ≃ M. We set M α = f * αα 0 , η M. With this, we have an equivalence

is an equivalence. We have a commutative diagram

So, we are left to show that the morphism a

obvious morphisms. This is proven in the same way we proved above that a * σ i ′! Λ → i ! Λ was an equivalence. □

We are finally ready to conclude.

Proof of Theorem 3.8.19. By Lemma 3.8.20, we may assume that B is essentially of finite type over Spec(Z) and work in the hypercomplete case. Since the source and target of ρ X consist of colimit-preserving functors, it is enough to prove that χ X M → χ X an An * X η M is an equivalence when M belongs to set of compact generators of SH ∧ ét (X η ; Λ). By Proposition 3.8.30, we may assume that M = f η, * Λ where f : Y → X is a proper morphism such that Y is regular and Y σ is a normal crossing divisor. By the proper base change theorem, we have equivalences

Thus, replacing X with Y, we may assume that X is regular and X σ a strict normal crossing divisor and, in this case, we only need to show that χ X Λ → χ X an Λ is an equivalence. By Proposition 3.8.21, this morphism admits a section, and thus χ X an Λ is the image of a projector p of χ X Λ. We need to prove that p is the identity, and it is enough to show this after restriction to each irreducible component of X σ . Using Corollary 3.8.32(2), it is enough to do so after restricting to the regular locus of X σ . Said differently, we may assume that X σ is a regular divisor.

From now on, we assume that X is regular and that X σ is a regular divisor defined by the zero locus of a ∈ O(X). We denote by p the projector of χ X provided by Proposition 3.8.21. Our goal is to show that p acts on χ X Λ ≃ Λ ⊕ Λ(-1)[-1] by the identity, and it is enough to show that p is an equivalence. First, note that we have a commutative square

since p is an algebra endomorphism of χ X Λ. (Indeed, the section constructed in Proposition 3.8.21 respects the natural right-lax monoidal structures.) Thus, with respect to the decomposition χ X Λ ≃ Λ ⊕ Λ(-1)[-1], p is given by a triangular matrix p = 1 r 0 q .

Notation 4.3.12. We will denote by RigSH (∧) τ (-; Λ) * : RigSpc op → Pr L (4.10) the functor from Proposition 2.1.21 (in the T-stable case and after forgetting the monoidal structure) and by RigSH (∧) τ (-; Λ) * : RigSpc → Pr R (4.11) the functor deduced from (4.10) using the equivalence (Pr L ) op ≃ Pr R . By Corollary 4.1.6, the restriction of (4.11) to RigSpc prop /S yields a Pr L -valued functor. In particular, we have a functor RigSH (∧) τ (w S (-); Λ) * : WComp/S → Pr L . (4.12)

To go further, we need the following well-known general lemma. 

is an equivalence. In particular, the functor (4.14) sends a morphism f : Y → X in RigSpc wc /S to the functor f ! of Definition 4.3.4.

Proof. Given an object X ∈ RigSpc wc /S , there is an equivalence in Pr L : 

is such that the functor N(b 0 ) → N(b 1 ) takes a ϕ(b 0 )-Cartesian edge to a ϕ(b 1 )-Cartesian edge. Passing to the opposite ∞-categories, condition (⋆ ′ ) says that the natural transformation ϕ op : N op → C op sends a vertex b ∈ B to a coCartesian fibration and an edge of B to a functor preserving coCartesian edges. Applying unstraightening to ϕ op , we obtain a commutative triangle

where p ′ and p ′ • q ′ are the coCartesian fibrations classified by C op and N op . We may assume that q ′ is a fibration for the coCartesian model structure on (Set + ∆ ) /B (see [Lur09, Proposition 3.1.3.7]) which insures that q ′ is an inner fibration (by using [Lur09, Remark 3.1.3.4]). In this case, q ′ is also a coCartesian fibration. To prove this, we argue as in the proof of Lemma 3.4.6. More precisely, by [Lur09, Proposition 2.4.2.11], we know that q ′ is a locally coCartesian fibration and, by [Lur09, Proposition 2.4.2.8], it remains to check that locally q ′ -coCartesian edges can be composed. This follows from the characterisation of locally q ′ -coCartesian edges given in [Lur09, Proposition 2.4.2.11] and condition (⋆ ′ ). That said, the announced diagram D ′ : E ′ → CAT ∞ is the one obtained from q ′ by straightening and composing with the autoequivalence (-) op of CAT ∞ .

Remark 4.4.4. Continuing with the notation and assumptions of Construction 4.4.3, let s : B → E be a coCartesian section. This corresponds, by straightening, to a natural transformation from the constant diagram { * } : B → CAT ∞ to C. Passing to opposite functors and unstraightening, we obtain another coCartesian section s ′ : B → E ′ . It follows from the construction that the two composites

are the same.

Lemma 4.4.5. The condition (⋆) in Construction 4.4.3 is satisfied for p the coCartesian fibration RigSpc op (RigSpc prop ) op → RigSpc op , given by (S , X) → S , and D the functor (4.24) composed with the inclusion Pr L → CAT ∞ .

Proof. A commutative square as in condition (⋆) corresponds to a square of the form (S , X)

Notation 4.4.14. The functors in (4.23) depend on S . To highlight this dependency, we use "! S " in subscript and superscript instead of "!". More explicitly, we denote by RigSH (∧) τ (-; Λ) ! S and RigSH (∧) τ (-; Λ) ! S these functors. Also, given a morphism f : Y → X in RigSpc lft /S , we sometimes denote by f ! S and f ! S the images of f by these functors.

Lemma 4.4.15. Let S be a rigid analytic space and f : Y → X a morphism in RigSpc lft /S . Let g : S ′ → S be a morphism of rigid analytic spaces, and consider the Cartesian square

where f ′ is the base change of f by g. Consider the commutative square where g ′ * is obtained by applying the second functor in (4.21) to the arrow (g, id X ′ ) : (S ′ , X ′ ) → (S , X) and similarly for g ′′ * . This square is left adjointable if f or g is an open immersion. Proof. We may consider the commutative square in the statement as a morphism ( f ! S ′ , f ! S ) in Fun(∆ 1 , CAT ∞ ) between the functors g ′ * and g ′′ * , and our goal is to show that this morphism belongs to the sub-∞-category Fun LAd (∆ 1 , CAT ∞ ) introduced in [Lur17, Definition 4.7.4.16]. By [Lur17, Corollary 4.7.4.18], it would be enough to show that the morphism ( f ! S ′ , f ! S ) is the limit of an inverse system of morphisms in Fun LAd (∆ 1 , CAT ∞ ). By Proposition 4.4.10, the morphism ( f ! S ′ , f ! S ) is the limit of morphisms in Fun(∆ 1 , CAT ∞ ) given by the following commutative squares

are open subspaces which are weakly compactifiable over S . Moreover, the transition maps in this inverse system are given by commutative squares of the same type. Therefore, it is enough the show that these squares are left adjointable, and thus we may assume that X and Y are weakly compactifiable over S . In this case, we may use the explicit construction in Definition 4.3.4 and Theorem 4.1.4(2) to conclude. □ Lemma 4.4.16. Let S be a rigid analytic space and j : S ′ → S an open immersion. Let Y ∈ RigSpc lft /S such that the structure morphism Y → S factors through S ′ . Then, there exists an equivalence of ∞-categories

such that the following condition is satisfied. For every morphism f : Y → X in RigSpc lft /S , the functor f ! S is equivalent, modulo (4.39), to the composition of

where X ′ = S ′ × S X, and j ′ : X ′ → X and f ′ : Y → X ′ are the obvious morphisms.

Proof. The image of the arrow ( j, id) : (S , Y) → (S ′ , Y) by the first functor in (4.21) is a functor

such that, for every f : Y → X as in the statement, the square

τ (Y; Λ) ! S ′ is commutative by Lemma 4.4.15. Thus, to finish the proof, it is enough to show that (4.40) is an equivalence of ∞-categories. By Proposition 4.4.10, the question is local on Y. (Indeed, we may as well prove that the right adjoint of (4.40) is an equivalence of ∞-categories.) Thus, we may assume that Y is weakly compactifiable over S . In this case, we may use the explicit construction in Definition 4.3.4 to conclude. □ Lemma 4.4.17. Let S be a rigid analytic space and let j : U → X an open immersion in RigSpc lft /S . Then the functor j ! S : RigSH (∧) τ (X; Λ) ! S → RigSH (∧) τ (U; Λ) ! S belongs to Pr L and hence admits a right adjoint, which we denote by j ? S .

Proof. Indeed, by Proposition 4.4.10, j ! S is a limit in CAT ∞ of functors of the form RigSH (∧) τ (V; Λ) ! S → RigSH (∧) τ (U ∩ V; Λ) ! S for open subspaces V ⊂ X which are compactifiable over S . By [Lur09, Proposition 5.5.3.13], it is thus enough to prove that j ! S is in Pr L when j is an open immersion between weakly compactifiable rigid analytic S -spaces. In this case, we know that j ! S is equivalent to j * , and the result follows. □ Lemma 4.4.18. Let S be a rigid analytic space, and consider a Cartesian square in

with u an open immersion (resp. a closed immersion). Then, the commutative square

Proof. We only consider the case of open immersions; the case of closed immersions is similar. Using Proposition 4.4.10, [Lur17, Corollary 4.7.4.18] and arguing as in the proof of Lemma 4.4.15, Proof. When i is an open immersion, this follows from Lemma 4.4.15. Thus, we may assume that i is a closed immersion, and we need to prove the analogous statement for the functors i ! S and i ′ ! S ′ . Arguing as in the proof of Lemma 4.4.15, we reduce to the case where X is weakly compactifiable. In this case, the functors i ! S and i ′ ! S ′ coincide with i * and i ′ * , and the result follows. □ Theorem 4.4.22. Let S be a rigid analytic space and let T ∈ RigSpc lft /S . There is a commutative triangle

where the horizontal arrow is the forgetful functor. For X ∈ RigSpc lft /T , the induced equivalence of ∞-categories

Then, the equivalence (4.41) is the composition of

(Here, we denote by (pr X ) * the image by the functor RigSH (∧) τ (-; Λ) ! * of the arrow (g, id T × S X ) : (S , X) → (T, T × S X).) Proof. By Proposition 4.4.10 and Lemma 4.4.18, the composite functors (4.42) are part of a morphism of Pr R -valued sheaves on RigSpc lft /T RigSH (∧) τ (-; Λ) ! T → RigSH (∧) τ (-; Λ) ! S | RigSpc lft /T . Thus, it is enough to prove that the composite functor (4.42) is an equivalence under the following assumptions:

• X is weakly compactifiable over S ;

• X → T factors by an open subspace T ′ ⊂ T which is weakly compactifiable over S . The morphism δ X : X → T × S X is the composition of the open immersion j : T ′ × S X → T × S X and the morphism δ ′ X : X → T ′ × S X. We deduce that the composition of (4.42) is equivalent to the composition of

τ (X; Λ) ! S By Lemma 4.4.16, the functor j ! T is equivalent to the composition of

It follows that the functor j ? T is equivalent to the composition of

τ (X; Λ) ! T ′ , the composition of (4.42) is equivalent to the composition of

τ (X; Λ) ! S where pr ′ X = pr X • j. Therefore, it is enough to prove the theorem with T replaced by T ′ . Said differently, we may assume that X and T are weakly compactifiable over S . In this case, the diagram (4.42) can be identified with

τ (X; Λ) * whose composition is clearly an equivalence. □ Corollary 4.4.23. For every rigid analytic space S and every X ∈ RigSpc lft /S , there is an equivalence of ∞-categories

(4.43) Moreover, these equivalences satisfy the following properties.

(1) Given a Cartesian square of rigid analytic spaces

with f locally of finite type, there is a commutative square of ∞-categories

(2) Given a rigid analytic space S and an open immersion j : X ′ → X in RigSpc lft /S , we have a commutative square