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Abstract 10

Obstacle detection is a tool adopted in vehicular safety applications, aiming to 11

detect a moving obstacle in an area of interest with the highest accuracy. Dif- 12

ferent sensors are used for this aim, such as LiDAR devices mounted on board 13

of a vehicle that capture images of the surrounding environment. Extending the 14

number of LiDAR sensors can be useful to improve the obstacle detection accu- 15

racy, since multiple images are captured from different distances and directions, 16

and this represents an interesting approach, specially in case of dense networks 17

with cooperative nodes. In this paper we present MuSLi technique, aiming to 18

(i) provide an accurate obstacle detection and (ii) forward alert messages to 19

other cars in the network, in case of correct detection of a pedestrian crossing 20

the street. MuSLi relies on the connected content islands scenario, where each 21

vehicle defined as a content island subscribes to a service in order to receive 22

and share published messages. Specifically, the road safety service allows the 23

detection of an obstacle through multiple LiDAR sensors from neighboring cars. 24

Furthermore, we investigate the fastest transmission mode among those defined 25

in the C-V2X releases to alert the presence of a pedestrian to the other ap- 26

proaching cars. The proposed technique provides the distances by the crossroad 27

in which is better to use V2V, V2I or V2N according to the environment, the 28

scheduling technique and the measured interference. 29
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Machine Learning, Multi-sensor detection.1

1. Introduction2

In the near future, it is envisioned that with 6G we will assist at a new3

era of billions of things, drones, robots, people and vehicles connected to each4

other and generating Zettabytes of digital information [1]. In this context, novel5

services and applications will be more challenging, and enriched with immersive6

communication and characterized with more stringent requirements. In this7

sense, 6G is regarded as the key future generation network, able to tackle these8

challenges, by encompassing both human and machine-centric philosophy [2].9

In the vehicular context, 6G is regarded as the technology allowing the de-10

velopment of simultaneous localization and mapping (SLAM) approaches, for11

enabling advanced cross reality applications encompassing autonomous vehicles12

and drones. In [3], Huang et al. provide a detailed survey on SLAM. In particu-13

lar, they consider Light Detection And Ranging (LiDAR) and Visual SLAM and14

describe the devices, their evolution, the main challenges and finally provide a15

constructive discussion on future directions. With the deployment of 5G around16

the world, research community and industry have already started to investigate17

the 6G network, and specifically the concept of network intelligentization, that18

will replace the virtualization concept that characterized 5G networks [4]. In-19

telligentization is meant as connected intelligence with massive use of Machine20

Learning (ML) capability for enabling the capacity of 6G systems to embrace21

new emerging technologies, such as THz and intelligent reprogrammable sur-22

faces, thus enabling a reprogrammable environment paradigm. The key factors23

in such a kind of complex environment are represented by the massive use of24

Artificial Intelligence (AI) and the high heterogeneity and complexity of the 6G25

systems, where the softwarization concept, featured in 5G networks, will not be26

enough to support the new requirements and applications [5].27

In the context of Internet of Vehicles (IoV) paradigm, as part of the In-28

telligent Transport System (ITS) and with the advent of autonomous vehicles,29
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one of the most important functionality to be developed is the obstacle detec- 1

tion [6, 7]. In order to develop advanced control systems for detecting obstacles, 2

a combination of advanced sensors, radar and camera need to be considered 3

for building an accurate environment perception. A first categorization of sen- 4

sors/devices for obstacle detection considers cooperative and non-cooperative 5

sensors, as described in [8]. Among the different cooperative sensors, we re- 6

mind the Automatic Dependent Surveillance and Broadcasting (ADS-B) and 7

the Traffic Alert Collision Avoidance System (TCAS), while as non-cooperative 8

sensors, we have infrared, electro-optical, acoustic, LiDAR, sonar, radar, etc. 9

In [9], Habermann and Garcia focus on laser sensors for realizing obstacle 10

detection. LiDAR technology is introduced in [10] for collision avoidance, and 11

the authors apply a fusion technique to 3D LiDAR and 2D image data for realiz- 12

ing efficient anti-collision management. The LiDAR sensor and a camera sensor 13

are exploited for obstacle detection; the fusion of the images is then realized, 14

in order to improve the accuracy of the single image and an improvement of 15

the latency is also obtained based on this fusion algorithm. The use of LiDAR 16

for obstacle detection has been employed also in [11], where line segments are 17

extracted by processing raw data of the ranging sensor and downward-looking 18

light detection. This approach allows a good distinction between line segments 19

and obstacles under various road conditions. 20

Anyway, in the most of papers from the literature, the analyzed sensors and 21

the proposed fusion techniques foresee that sensors are mounted on board on 22

the same vehicle, with the constraint to have a limited –single– vision of the in- 23

vestigated area. On the other side, by considering a networked technique where 24

multiple nodes can cooperate in a joint manner for a common task, e.g. the 25

obstacle detection, we expect to obtain an enhanced vision of the investigated 26

area, and then the obstacle detection will be likely more accurate as compared 27

to single sensor-based approaches. 28

Leveraging on current literature results, in this paper we aim to investigate 29

a multi-sensor obstacle detection approach for fast and accurate detection, to be 30

adopted in safety vehicular applications. Specifically, we adopt ML techniques 31

3



for pedestrian detection in vehicular scenarios through the use of multiple Li-1

DAR sensors mounted on vehicles. The pedestrian detection task occurs through2

the collection of multiple signals coming from the available neighboring vehicles,3

that are approaching an area of interest e.g., a crossroad. The fusion of collected4

LiDAR images (i.e., clouds of points) is useful to increase the accuracy of ob-5

stacle detection; as a result, the probability of detection will result increased6

and more accurate.7

1.1. Main contributions8

In this paper, we present a multi sensor LiDAR detection technique, namely9

MuSLi, aiming to detect obstacles in a vehicular environment. We extend the10

“content island” model, as introduced in [12], so that both vehicles (i.e., cars 1
11

and Road Side Units (RSUs) are equipped with various sensors and data cap-12

ture devices, and are able to exchange data to neighboring vehicles and also13

process them. Specifically, content islands are a set of interconnected vehicles14

and RSUs with sensing and processing capabilities, which exchange data using15

a publish/subscribe system. Exchanged messages can either contain data or an16

action trigger, which is a request originating from one vehicle/RSU soliciting ap-17

proaching nodes to process a dataset or simply inquiring for a given query. For18

this aim, we can rely on the Message Queue Telemetry Transport (MQTT) pro-19

tocol to provide the required publish/subscribe-based communication. MQTT20

is a widespread standard in Internet of Things (IoT) for publish/subscribe sys-21

tems, and in the context of vehicular networks, it is being used in a wide range22

of applications such as to provide collision warnings [12], to design a traffic con-23

trol system to minimize the response time of emergency vehicles [13], and for24

sharing energy between two electric vehicles [14].25

Thanks to the LiDAR sensors mounted on board, “content island” cars close26

to a crossroad are able to detect pedestrians crossing the street. They share their27

collected LiDAR clouds in order to perform a detection based on multiple point28

1The terms “vehicle” and “car” are used interchangeable in this paper.)
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clouds for the same pedestrians, and thus improving the detection accuracy. 1

As compared to single-sensor techniques, MuSLi will provide higher obstacle 2

detection probability, reaching an enhancement of 35% of accuracy at a distance 3

of 10 m from the area of interest. As expected, the higher the number of multiple 4

LiDAR point clouds, the higher will be the detection probability. 5

Notice that MuSLi approach has been intended with the twofold goal of (i) 6

obstacle detection, and (ii) alert message forwarding. Indeed, after detecting 7

a pedestrian crossing the street, this information triggers a message forwarding 8

task, where cars will disseminate alerting messages to other approaching cars 9

through Cellular-Vehicle to everything (C-V2X) approach [15]. Different V2X 10

scenarios require the transport of messages with different performance require- 11

ments for the 3GPP system. In [16], Extended Sensors is one of the six different 12

use cases with 3GPP support for V2X scenarios. It enables the exchange of 13

raw or processed data gathered through local sensors or live video data among 14

cars, RSUs, devices of pedestrians and V2X application servers. In the proposed 15

framework, cars approaching to a given area (e.g., a crossroad) may subscribe 16

to the extended sensor service. They are able to publish the contents collected 17

by their on-board sensors (i.e., the LiDAR clouds) and receive data from the 18

other subscribed cars. As a result, the awareness of the road environment is 19

enhanced due to data from multiple sensors. In case of obstacle detection e.g., 20

a pedestrian crossing the crossroad, subscribers can send alarm messages to ap- 21

proaching vehicles. In this context, we also evaluate the delay in message alarm 22

delivery by considering a dynamic and a semi-persistent scheduling strategies, 23

for specific propagation environments such as urban, sub-urban and rural, trans- 24

mission modes i.e., Line-Of-Sight (LoS) and Non-Line-Of-Sight (NLoS), and the 25

amount of interference power in the considered area. The main objectives of 26

this paper are as follows: 27

1. We introduce MuSLi technique, aiming to detect obstacles in vehicular 28

environments. A source vehicle, defined also as content island, exploits 29

the collection of multiple LiDAR point clouds coming from neighboring 30

5



cars, close to an area of interest (e.g., a crossroad), which are able to1

detect an obstacle thanks to their LiDAR sensors installed on board. A2

pool of signals from multiple LiDAR sensors are collected and processed3

by means of a ML approach, for a more accurate obstacle detection, as4

compared to single-sensor approaches;5

2. MuSLi is intended with the twofold aim of both (i) obstacle detection6

and (ii) alert message forwarding. The latter task is triggered by the7

previous one, in case of positive obstacle detection. Alert messages are8

then forwarded to approaching cars, by means of C-V2X. We will evaluate9

different communication strategies on some propagation environments and10

signal interference levels, in order to select the optimal communication11

mode that can guarantee the fastest message forwarding;12

3. MuSLi runs at application level as in [17] and allows data exchange among13

cars according to a typical distribution protocol such as MQTT. The per-14

formance assessment of MuSLi is carried out by means of simulation results15

expressed as both the accuracy of obstacle detection and the latency in16

transmitting alert messages via C-V2X. According to the environment,17

propagation conditions and distances from the approaching cars, we will18

discuss about the optimal transmission method to provide a reduced la-19

tency in message delivery.20

This paper is organized as follows. In Section 2 we present the system model21

adopted to represent mathematically the reference scenario. We detail the for-22

mulation of the MuSLi performance, expressed in terms of outage probability23

and latency in different communication and transmission modes. An optimiza-24

tion problem related to the latency on transmission links is also addressed. Our25

proposed MuSLi technique is presented in Section 3, where we first introduce26

how obstacle detection occurs through an ML approach, and then how to for-27

ward alert messages in case an obstacle is detected. A more detailed description28

of how MuSLi can detect an obstacle is presented in Section 4. The effectiveness29

of MuSLi is then assessed in Section 5 for different communication modes and30
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Figure 1: Schematic of content island vehicle, relying on MQTT for message exchange.

vehicular scenarios. Finally, conclusions are drawn at the end of the paper. 1

2. System Model 2

A short description of the reference scenario and the different communication 3

modes, providing different network performance, is introduced hereafter. 4

2.1. Reference Scenario 5

In the following, we report the scenario and the modeling of the reference 6

system. We consider that one or more cars are close to a crossroad. Each 7

car, defined as content island, is equipped with a LiDAR sensor able to scan 8

the crossroad area and to detect possible pedestrians crossing the neighboring 9

streets. Based on the detection performed by cars close to the crossroad, alert- 10

ing messages are sent to other cars approaching the crossroad, with the aim of 11

signaling the presence of pedestrians (hard to be seen by the drivers due to the 12

distance), thus allowing them to properly adapt their speed. Message exchange 13

and forwarding occur by means of a publish/subscribe system. For instance, a 14

node can be subscribed to a service i.e., road safety, and receive a published 15

message i.e., a warning alert related to obstacle detection, from another node in 16

a given area. Similarly, a source node collects different information from neigh- 17

boring cars i.e., LiDAR images, process them and finally publish the obtained 18

result i.e., obstacle detection. 19

7



MEC

eNB / gNB

V2V NLoS

V2V LoS

APP 
Server

V2N LoSV2N NLoS

V2I LoS

V2I NLoS

Figure 2: Connected content islands reference scenario, where different communication and

transmission modes are allowed.

The content island cars are based on the model introduced in [12, 18]. In1

this paper, we consider the island core is comprised of an MQTT broker, a2

Virtual Processing Client (VPC), and the multicast daemon, as well depicted3

in Figure 1. The MQTT broker is the element to which LiDAR sensor present4

inside a vehicle is connected. By connecting to the broker, it may publish5

information that is delivered to other cars having subscribed to such a service.6

A VPC is a special client aims to control the flow of data information, while the7

groupcast daemon is a service used by the VPC to send and receive broadcast8

message from neighboring content island cars. For this purpose, VPC sets up9

MQTT messages to connect multiple content islands for data exchange.10

After introducing the content island vehicle concept, in Figure 2 we report11

the elements envisaged in a “Connected Content Islands” scenario. In addition12

to the cars able to transmit messages among them at short distances, RSUs13

are present along the roads and able to directly communicate to the cars in14

proximity. Moreover, it is possible to provide communication among cars by15

using local deployed base stations (i.e., eNB and gNB). From Figure 2, the16

following vehicular communication modes are highlighted:17
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• Vehicle-to-Vehicle (V2V), in case the communication occurs between two 1

On-Board Units (OBUs) mounted on the content island cars; 2

• Vehicle-to-Infrastructure (V2I), in case the communication occurs between 3

an OBU and a content island RSU; 4

• Vehicle-to-Network (V2N), in case of communications among content is- 5

land cars through a local base station over the cellular network, thus en- 6

larging its reachable area. In this case, we observe the communication can 7

occur through a Cloud server or a Mobile/Multi-access Edge Computing 8

(MEC) node, which relay the message. 9

Notice that all these communication modes are possible for both LoS and NLoS 10

transmission links, due to the presence of obstacles (e.g., buildings, trees, etc.) 11

along the transmission range. In the next section, we will observe that the most 12

appropriate communication mode depends on channel conditions and specific 13

scenario characteristics that affect the signal propagation. 14

2.2. Evaluation Model 15

In order to assess the performance of the considered system, we evaluate 16

the outage probability for different transmission modes both in downlink and 17

uplink2, which indicates the probability that a message sent by a vehicle is 18

correctly received by a destination node i.e., 19

Pout = Pr {SINR < ρ0} , (1)

where ρ0 is the Signal-to-Interference plus Noise (SINR) threshold for the con- 20

sidered service. In Eq. (1), the SINR parameter can be expressed as: 21

SINR =
PT ·GTGR

L(d)
·

 1

η ·
(

1 + I
η

)
 , (2)

where PT [W] is the transmitting power, GT and GR are the antenna gains for 22

the transmitter and the receiver respectively, L(d) is the pathloss accounting for 23

2We assume that downlink and uplink are balanced.
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Table 1: Main parameters adopted in different environments and communication modes.

V2V V2I V2N

hveh = 1.5 m hBS = 4 m hBS = 10 m

GT/R = 3 dB GT/R = 3 dB
UMi UMa Rural

GT/R = 10 dB GT/R = 15 dB GT/R = 18 dB

the losses due to the distance d [m] between the transmitter and the receiver,1

and η [W] is the thermal noise power. The ratio I/η is the noise raise caused by2

the extra interference due to other simultaneous communications occurring in3

the same Physical Resource Blocks (PRBs).4

In Eq. (2), the expression of pathloss depends according to different scenar-5

ios and transmission modes. Specifically, from [19], we have considered three6

different environments i.e., (i) Urban Micro, (UMi), (ii) Urban Macro, (UMa),7

and (iii) Rural, and the radio transmission in case of (i) LoS and (ii) NLoS.8

Only the slow fading has been taken into account, since the small-scale fading9

is compensated in the Orthogonal Frequency-Division Multiplexing (OFDM)10

receiver by the one tap equalizer. Table 1 collects the parameters adopted for11

the computation of pathloss in case of different environments and transmission12

modes, where hveh [m] and hBS [m] are the heights of the vehicle and of the13

Base Station (BS), in case of V2V, V2I and V2N, respectively. For the results14

in Section 5, we considered PT = 20 dBm and ρ0 = 15 dB [20, 21].15

Specifically, we have considered that in Urban Micro (i.e., street canyon,16

open area) the BSs are mounted below rooftop levels of surrounding buildings.17

Open area is intended to real-life scenarios capture, such as a city or station18

square. On the other side, in Urban Macro, the BSs are mounted above rooftop19

levels of surrounding buildings, while the rural deployment scenario focuses on20

larger and continuous coverage. The key characteristics of this scenario are21

continuous wide area coverage supporting high speed cars.22
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Figure 3: Vehicular communication modes in the considered scenario.

2.3. Latency assessment 1

According to the schematic in Figure 3, we considered different vehicular 2

communication modes i.e., V2V, V2I, and V2N, and for each of them, the 3

communication involves different elements in the reference network. In V2V 4

mode, the communication occurs directly between two neighboring cars in LoS, 5

and no further element is considered (black arrow in Figure 3). In V2I, a 6

vehicle approaching to a RSU transmits a message to it (i.e., blue arrow of 7

V2I connectivity link), which relays it to another approaching vehicle (i.e., blue 8

arrow of I2V connectivity link). Finally, in V2N mode a vehicle communicates 9

with a local Multi-Access Edge Computing (MEC) or a remote Cloud server 10

through the local eNB/gNB, and then the message will be redirected toward 11

a destination vehicle (see red arrows in Figure 3). In this case the destination 12

vehicle will receive the alerting message through the transmission link from the 13

eNB/gNB, after the processing performed by the MEC or by the remote Cloud 14

in the network. In Figure 3 communication paths of the three communication 15

modes are highlighted in black, blue and red lines, for V2V, V2I and V2N, 16

respectively. 17
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Table 2: Latency ranges [ms] in case of (i) Dynamic and (ii) Semi-persistent scheduling.

Parameter LTE/5G 5G 5G V2I V2V

@15kHz @60kHz Mini-slot

Dynamic scheduling

Frame alignment [3, 6] [3, 6] [0.5, 1] [0.5, 1.5] [0.5, 1.5]

PHY transmission [15, 18] [4, 5] [0.3, 0.8] [9, 11] [9, 11]

eNB/gNB - MEC/GW [2, 5] [2, 5] [4, 6] - -

GW-Cloud [3, 5] [3, 5] [4, 6] - -

Semi-Persistent Scheduling (SPS)

Frame alignment [3, 5] [3, 5] [0.5, 1] [0.5, 1.5] [0.5, 1.5]

PHY transmission [5, 8] [1, 2] [0.3, 0.8] [1, 2] [1, 2]

eNB/gNB - MEC/GW [2, 5] [2, 5] [4, 6] - -

GW-Cloud [3, 5] [3, 5] [4, 6] - -

In order to assess the latencies for each scenario and in each environment,1

in Table 2 we report the range of values, elaborated from [22] and [23]. In our2

analysis, in addition to V2I and V2V, for V2N we considered (i) two sub-carrier3

spacing (SCS) values of 15 kHz and 60 kHz, with a slot duration of 1 ms and4

0.125 ms, respectively, and (ii) a mini-slot case with 7 OFDM symbols. More-5

over, we considered two types of scheduling i.e., (i) Semi-Persistent Scheduling6

(SPS) and (ii) Dynamic scheduling [24]. In the first case, we assume that the7

Physical Resource Block (PRB) is already scheduled and no contention has to8

be performed by the transmitting OBU. In the second case, before transmit-9

ting, the OBU has to send a scheduling request message, then waits for the10

PRB assignment through the Downlink Control Information (DCI) and finally,11

transmits the alert message [24]. Based on data collected in Table 2, in Figure 412

we show the multiple contributions for the computation of the latency Cumu-13

lative Distribution Function (CDF), computed for each communication mode14

(i.e., V2V, V2I, and V2N), in case of dynamic and semi-persistent scheduling,15

12
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Figure 4: Comparison of the latency CDF in case (a) semi-persistent and (b) dynamic schedul-

ing, respectively.

and assuming no packet loss. Specifically, we consider the latency of physical 1

transmission as the sum of different latencies such as the downlink and uplink 2

transmission delay, the downlink and uplink slot alignment, and the UE and BS 3

processing. 4

However, in a real environment, packet loss can occur, thus increasing the 5

delay in communications between connected cars approaching to the crossroad. 6

It depends on the number of retransmissions and on the outage probability. 7

Then, for each communication mode i.e., V2V, V2I and V2N, and for each 8

environment i.e., UMi, UMa, and rural, the number of retransmissions varies 9

based on the distance between (i) two cars, (ii) the approaching car and the 10

RSU, and (iii) the car and the eNB/gNB, respectively, as well as the interference 11

power. We can define the overall latency L [ms] as: 12

Lm = Ntx,avg (Pout) · δm(CDF ≥ χ), (3)

where δm [ms] is the delay occurring for a single alert message successful trans- 13

mission, which depends on the m-th transmission mode i.e., m = [1, 2, 3], corre- 14

sponding to V2V, V2I, and V2N, respectively, and is associated to the latency 15

CDF, which should be higher than a given threshold χ. For design purpose, it 16
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is possible to consider the average or any other percentile value of the latency1

CDF , which is depicted in Figure 4 (e.g., the 90-th percentile or 99-th per-2

centile). In Eq. (3), Ntx,avg is the average number of transmissions necessary to3

deliver an alert message to a destination node, based on the outage probability4

Pout obtained for a given scenario, which is equal to:5

Ntx,avg =
1

M

M∑
i=1

Ntx,i(pi < Pout), (4)

where Ntx,i is the number of transmissions necessary to deliver the i-th alert6

message, depending on a given transmission probability pi that should be lower7

than the outage probability associated to a given scenario and communication8

mode, and M is the number of messages to be delivered. Finally, MuSLi will9

select the optimal transmission mode (i.e., m?) defined as:10

m? = arg minLm. (5)

3. MuSLi technique11

The main tasks of MuSLi approach are detailed in Algorithm 1. MuSLi is12

a technique for (i) fast and accurate obstacle detection and (ii) resulting alert13

message forwarding. For the obstacle detection, multiple cars are involved in14

this task, so that multiple LiDAR point clouds are collected and processed in15

order to compute a joint detection. If the detection score is higher than a given16

threshold, MuSLi will transmit alert messages related to the presence of an17

obstacle in a given position on the road. Messages transmission occurs through18

C-V2X communications, in case of V2V, V2I and V2N modes, and different19

transmissions links, such as LoS and NLoS.20

Let us assume that in a given reference environment i.e., Urban Micro, Urban21

Macro, and Rural, a source vehicle i.e., VTx, is approaching to an area of interest22

where it is likely to find an obstacle (e.g., a pedestrian crossing the street). It is23

able to communicate with its neighboring vehicles i.e., (v−1) vehicles, according24

to the m-th (with m = [1, 2, 3]) communication modes (i.e., V2V, V2I, and V2N,25

corresponding to m = 1, m = 2, and m = 3, respectively). The source vehicle26
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and the other (v−1) vehicles are equipped with LiDAR sensors and periodically 1

scan the environment acquiring clouds of LiDAR points. All these acquired data 2

are exchanged among vehicles and the cumulated LiDAR cloud resulting from 3

the sum of collected clouds by the other vehicles is the input for an on board 4

neural network, detailed in Section 4, with the aim of pedestrian detection. As a 5

result, MuSLi will provide information about the presence of finding an obstacle 6

at distance d [m] from the source vehicle (or in general from a dcross distance 7

from the area of interest). 8

Let n = [1, 2, . . . , Nd] be the index of the output from the neural network, 9

related to the obstacle detection decision. We assume that the n-th Boolean 10

variableOn represents the single information about obstacle detected (i.e., On = 11

1) or not (i.e., On = 0) in case the n-th output of the neural network (i.e., the 12

confidence score Dn) is higher than a given threshold Dth (i.e., D ≥ Dth). In 13

case that the majority of the Nd outputs is positive, MuSLi will consider the 14

obstacle as present and detected i.e., O = 1, and will act for message forwarding 15

from the source vehicle to other approaching vehicles (i.e., Nv). On the other 16

side, the obstacle is assumed as not present and will be discarded i.e., O = 0. 17

This is mathematically expressed as: 18

O =


1 if

∑Nd

n=1On < dNd/2e+ 1

0 otherwise

(6)

Based on the given reference environment, the functionAlert message forwarding()19

will compute the outage probability Pout towards the i-th recipient vehicle and 20

the expected latency for the m-th communication modes (i.e., Lm). An opti- 21

mization of the latency will occur, so that the source vehicle will be forced to 22

transmit an alert message through the m-th communication mode that provides 23

the lowest latency i.e., m?. More details about the mathematical modeling of 24

the MuSLi technique are provided in next Section 4. The proposed algorithm 25

works under the constraint of a maximum allowable number of retransmissions 26

of warning messages i.e., Nmax,tx. This parameter has been introduced in order 27

to limit the latency in case of high values of outage probability that can affect 28

15



16

Algorithm 1: MuSLi Pseudocode

Input : VTx . Source vehicle

v . Available vehicles for obstacle detection

p
(`)
c . Point cloud from the `-th vehicle

Dth . Threshold for obstacle detection

n . Index of decision

Nd . Number of decisions

r . Index of retransmissions

Nmax,tx . Maximum number of retransmissions

Output: O . Boolean variable for obstacle detection

foreach n = [1, Nd] do

foreach p
(`)
c , ` = [1, v] do

compute Pc . Eq. (7)

Pc enters the detector

compute D . Detection score

if D ≥ Dth then
On = 1 . Single output of detected obstacle

else
On = 0 . Single output of obstacle not detected

if O =
(∑Nd

n=1On
)
≥ dNd/2e+ 1 then

Input : S . Reference environment

m . Index of transmission mode

Nv . Number of vehicles for forwarding

D . Set of VTx-Nv distances

Output: m? . Optimal transmission mode

Alert message forwarding(S,m)

foreach i = [1, Nv] do

compute Pout(di) with di ∈ D . Outage probability

compute Lm . Latency for V2V, V2I and V2N

minm=[1,3] Lm . Optimal transmission mode selection

m? : Lm? = minm=[1,3] Lm . Compute m?

while r < Nmax,tx, r = [1, Nmax,tx] do
send message to the i-th vehicle by m?

if successful transmission then
exit

r + 1← r

else
Obstacle is not detected and will be discarded



the success of message delivery. In case of an error occurs in the r-th transmis- 1

sion of a warning message, with r = [1, . . . , Nmax,tx], the vehicle that detected 2

the crossing pedestrian will try again to send a message until a maximum num- 3

ber of transmission i.e., Nmax,tx. When the maximum number of attempts is 4

reached i.e., r → Nmax,tx, the vehicle stops sending warning messages and no 5

info is forwarded to the approaching vehicle, then achieving an infinity latency. 6

In case of obstacle detection but the obstacle is not present (i.e., false po- 7

sitive), the MuSLi algorithm still sends the warning messages. Similarly, if the 8

obstacle detection is negative but the obstacle is present (i.e., false negative), 9

MuSLi does not send the warning messages. In order to limit these flaws, we in- 10

troduced the possibility to consider multiple outputs of the neural network (i.e., 11

On) in sequence from the neural network and take a decision on the pedestrian 12

detection on a majority basis. 13

In order to improve the detection of the on board-mounted LiDAR, we as- 14

sume that the vehicles close to the crossroad collect the LiDAR traces of the 15

same scene autonomously, but from different points of view. Then, they share 16

each own LiDAR trace with the other vehicles. Each vehicle is able to superim- 17

pose its own LiDAR trace with the other received traces, by properly translating 18

and rotating them to synchronize them with its collected trace. Now, the neu- 19

ral network is able to provide whether (and where) a pedestrian is crossing the 20

street. The superimposed traces increase the accuracy of the LiDAR detection, 21

with respect to a single trace. An example of a single and a superimposed 22

LiDAR point clouds is reported in Figure 5. 23

4. Multi-LiDAR Sensor Detection 24

4.1. Testbed for Evaluation 25

In order to evaluate the combination of multiple points of clouds from LiDAR 26

sensors mounted on vehicles, we used the open-source simulator CARLA [25] for 27

autonomous driving to implement the dedicated testbed. The flexibility and de- 28

gree of realism offered by this simulator allowed creating complex environments, 29

17



(a) (b)

Figure 5: Example of detection image obtained from (a) one single point cloud of a LiDAR

sensor mounted on board of one vehicle, and (b) four superimposed clouds coming from multi-

ple LiDAR sensors mounted on four different vehicles. The pedestrian detection is highlighted

in the red circle.

which form the basis for precise and reproducible experiments. We implemented1

the scenario depicted in Figure 6, using the bundled map Town07. The main2

scene is composed by 4 vehicles actors, each one equipped with a LiDAR sensor.3

4

The simulated LiDAR characteristics are analogue to the Velodyne HDL32E5

device i.e., 20 Hz capture frequency, 32 channels, 360◦ horizontal Field of View6

(FOV), +10◦ to −30◦ vertical FOV, [80, 100] m range with usable returns up7

to 70 m, ≈ 1.39 million points per second. Our simulation framework gives the8

possibility to create snapshots of the environment that contain actors position,9

synchronized reading from every sensors (e.g., LiDAR, GNSS, mounted cameras,10

Radar and so on) at a specific moment of the simulated time.11

In order to enforce the reproducibility of our experiments, we configured12

the underlying rendering engine to perform in synchronous mode. Using this13

method, the rendering engine processes a single step and then it waits for the14

client permission to go ahead with another. We chose a single step duration15

equal to 50 ms of simulated time, thus obtaining 20 steps for 1 second. In16

this experiment, we started by spawning a pedestrian willing to cross the road17

18



Figure 6: Simulated scenario for obstacle detection, where one pedestrian is crossing the area

along the four pedestrian crossings.

with a constant speed of 1.3 m/s at the east intersection side. After that, we 1

collected several snapshots of the environment, consisting in 40 LiDAR point 2

clouds coming from the car denoted by number 1 in Figure 6. The simulation 3

continued by moving the car backwards of a distance of dcross at steps of 5 m 4

from the crossroad, resetting the walker to the initial position, and restarting 5

the environment snapshot collection from the beginning. Eventually, we re- 6

peated the entire process by adding more vehicles (i.e., car 2, 3 and 4) to the 7

detection system, and comparing the obtained detection performances between 8

the single car scenario versus the multiple cars one. In order to achieve more 9

stable results, we added an additional step, which consisted in trying different 10

pedestrian starting locations (i.e., north, west, south) and averaging the detec- 11

tion outcome of the four configurations. Notice that the use of any compression 12

and pre-processing methods is out of the scope of the paper. Each point cloud is 13

19



about 805 kB but spatial and temporal redundancy can be removed in order to1

reduce the amount of data to be exchanged among cars close to the crossroad.2

In [26] some methods to remove the redundancy in time and space are proposed3

and analyzed.4

4.2. Point clouds merging5

The first vehicle of the environment is the ego car (i.e., vehicle 1). For this6

experiment, all the point clouds have to be references using the ego coordinate7

system. During the simulation, after obtaining each LiDAR scan, we translate8

and rotate the entire point cloud in respect to the ego car location. This is9

expressed as p
(1)
c i.e., the point cloud from vehicle 1. Similarly, this applies to10

the other available vehicles. The transformed point clouds coming from the `-th11

available vehicle i.e., p
(`)
c , are then merged in a round-robin fashion with the12

previous ones, resulting into Pc defined as follows:13

Pc =

v∑
`=1

p(`)c , (7)

where v represents the number of vehicles involved into the LiDAR obstacle14

detection. It is worth noting that, more importantly, for increasing values of v,15

the obstacle detection will be more accurate.16

At the end of this stage, we collected a total of four point clouds i.e., from17

v1 to v4, for each snapshot. In the next section we will compare the pedestrian18

detection performances based on these configurations.19

4.3. Pedestrian detection and evaluation20

In 3D Object Detection, the aim is to predict three dimensional rotated21

bounding boxes from a point cloud. The output obtained from the point cloud22

merge state, is thus used as an input to a neural network in charge to detect23

the four pedestrians. In particular we compared the detection performances24

obtained using a single point cloud i.e., data from the ego car, with the merged25

point clouds i.e., combined LiDARs as from Eq. (7). The neural network26

pipeline is based on CenterPoint [27], which is a two stages 3D Object Detection27

20



network. CenterPoint relies on the same keypoint estimation approach used in 1

CenterNet [28], which consists in predicting a heatmap Ŷ ∈ [0, 1]W×H×K where 2

W and H are respectively the width and height of the input image and K is the 3

number of classes. Every local maximum of the predicted heatmap corresponds 4

to an object center. For each of them, CenterNet regresses to a 2D bounding box 5

by means of the size map Ŝ ∈ RW×H×2. In almost all neural networks for 3D 6

Object Detection, the point cloud is initially quantized into regular bins, which 7

can be Voxels or Pillars, by the VoxelNet [29] or PointPillars [30] backbones, 8

respectively. 9

After this stage, an encoder is in charge of extracting features, producing a 10

feature map M ∈ RW×L×F , where W and L are width and length, and F is 11

the number of channels. These dimensions depend on the backbone properties 12

such as size or stride. In the same way as CenterNet, the feature map is used 13

to obtain a heatmap where the peaks correspond to the object centers from 14

a 2D bird-eye view. In the last stage of the neural network architecture, all 15

the other 3D properties (i.e., boxes size and orientation) are regressed starting 16

from the object centers. In particular, this stage is made of a shared two- 17

layer MLP (i.e., multilayer perception), which is in charge of (i) obtaining the 18

class confidence score and (ii) box regression prediction. For every detection, 19

the network outputs a confidence score D ∈ [0, 1], which is compared with a 20

threshold value Dth. To complete the evaluation, we took advantage of an 21

existing CenterPoint model pre-trained on the NuScenes dataset [31], which is 22

made of ≈ 390k LiDAR sweeps distributed in 1, 000 scenes. The NuScenes car 23

equipment consists of 6 cameras, 1 LiDAR, 5 RADAR, GNSS and IMU. The 24

LiDAR sensor is a Velodyne HDL32E, which has analogue specifications of our 25

simulated one. This similarity allowed skipping the training part and assess the 26

performances directly by inference on the simulated LiDAR sweeps. 27

At this point, we compared the detector output from the ego car versus the 28

merged point clouds, with the ground truth snapshots made in the simulation 29

environment. The evaluation metric for overlaps is 2D BEV (i.e., bird-eye view) 30
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Intersection over Union (or IoU), which is defined as:1

IoU =
AO
AU

, (8)

where AO and AU are the area of overlap and union, respectively. Although2

it is possible to evaluate the system using a 3D IoU [32], for the purpose of3

this work we considered adequate a simpler method, such as the classic one4

presented in the previous paragraph. Once an obstacle has been detected, the5

proposed system sends the warning message to the other cars approaching the6

crossroad, and provides them the pedestrian position detected by the LiDAR.7

Nevertheless, concerning the accuracy necessary to provide the considered ser-8

vice (i.e., pedestrian detection and warning transmission), it is required that9

the approaching car is aware of the lane in which the pedestrian is crossing. In10

this way, this car can properly adapt its speed based on its planned route. In11

the event that the vehicle receives the crossing pedestrian’s position that is in12

the lane is going to occupy, it should reduce its speed accordingly in order not13

to run over the pedestrian, otherwise it can take its motion unchanged.14

In order to assess the performances of object detection, we relied on the15

commonly used metrics Precision P, Recall R and F1 Score. These metrics are16

derived by first classifying the detector outcome in four distinct categories, which17

are: Tp (true positives), Fp (false positives), Tn (true negatives) and Fn (false18

negatives). Specifically, true positives are defined as the number of correctly19

identified bounding boxes. False positives are the detections that correspond20

to none of the ground truth boxes. False negatives are defined as the count of21

boxes, which were not detected. Eventually, true negatives are generally ignored22

in object detection tasks, and more significant in object classification. In our23

case, this value is always assumed equal to zero. The mathematical formulations24

of the considered metrics are expressed as follows:25

P =
Tp

Tp + Fp
, (9)

and26

R =
Tp

Tp + Fn
. (10)
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Figure 7: F1 score versus the detection threshold.

Precision and recall can be combined to define another metric, which is the F1 1

Score, defined as the harmonic mean between P and R. It yields: 2

F1 = 2 · P · R
P +R

, (11)

whose highest value is 1, which indicates perfect precision and recall. 3

5. Simulation results 4

In this section, the performance assessment of MuSLi will take into account 5

(i) the detection accuracy, and (ii) network KPIs, such as the outage probability 6

and latency related to message forwarding. In the latter case, each of these KPIs 7

has been evaluated for different scenarios and transmission modes. 8

Regarding the pedestrian detection assessment, we investigated the on-board 9

neural network behavior versus the confidence score threshold for the object 10

detection i.e., Dth. As shown by Figure 7, the threshold set to 0.4 maximizes 11

the F1 score. This value has been considered in the following simulation results. 12
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Figure 8: Comparison of the performance results (F1 score) obtained for a single scan (i.e., v =

1) and multiple merged LiDAR scans (i.e., v ≥ 2), from one and multiple cars, respectively.

We initially evaluate the LiDAR clouds computed in case of (i) traditional single1

vehicle detection, and (ii) MuSLi approach, with one single and multiple LiDAR2

sensors mounted on different vehicles, respectively. In Figure 8, a comparison3

between the single vehicle (i.e., v = 1) and multiple vehicles (i.e., 2 ≤ v ≤4

5) performances is shown. It is worth noting that for this specific scenario,5

the performance gain obtained by adding the fourth vehicle is limited, and so6

we can approximate the most appropriate number of vehicles achieving high7

performance with MuSLi as 4. Indeed, adding the fifth car in the obstacle8

detection mechanism does not increase the overall performance gain, and the9

F1 score for v = 5 is almost the same as the curve for v = 4. This result is due10

to the position of the fifth car, which is laying behind the first car and then its11

vision is “hindered” by this car. Notice that the choice of v = 4 is also due to12

the need of keeping low the computational cost, as it is linearly dependent on13

the number of vehicles involved in the object detection. Moreover, the presence14

of two more cars at the intersection allows the pedestrian detector to reach15
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Figure 9: Uncertaintly vs. the number of cars and for different distances to the crossroad.

an F1 score of 0.72 at the distance of 10 meters. Compared to F1 = 0.29 1

obtained from a single vehicle at the same distance, we achieve a performance 2

boost of 0.43, which corresponds to a 148% increase. Instead, if we consider 3

the case which involves only the first two cars, the performance boost is equal 4

to 0.17 that is a 58% increase, which is still enough to consider this kind of 5

approach. Furthermore, from Figure 9 it is evident the uncertainty U defined as 6

U = 1−F1 is reduced as the number of cars sharing point clouds increases, for 7

example from U = 0.28 to U = 0.1 at dcross = 0 m or from U = 0.7 to U = 0.25 8

at dcross = 10 m, corresponding to v = 1 and v = 5, respectively. 9

The position accuracy of the LiDAR is quite high (on the order of 20 cm 10

at maximum). In our settings we considered the typical IoU value of 0.5 [27]. 11

Thus, assuming an area of a pedestrian of 50×30 cm2 (in 2D from high view), the 12

maximum error in localizing a pedestrian is 16.5 cm for F1 values in Figure 8. 13

Notice that if some phenomena like blind spots occur, we still can obtain a 14

similar accuracy by entirely removing the car from the network elements in 15

charge of the obstacle detection, therefore assuming a total occlusion from that 16

car. It follows that, for partially occluded cars, the F1 score at a specific distance 17
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Figure 10: Comparison of the outage probability versus the distance, in case Urban Micro

scenario, for (a) low and (b) high interference, respectively.

will fall between the curve computed for v cars i.e. F1(v), and that for (v − 1)1

cars i.e., F1(v − 1), where v is the number of the cars participating in the2

obstacle detection mechanism.3

Network performance related to MuSLi technique is described as follows and4

are based on parameters in Table 1. Figure 10 depicts the outage probability in5

case of Urban Micro scenario [19] and for LoS and NLoS transmission modes.6

Also, we assume two different cases for (i) low interference (i.e., I/η + 1 = 5 dB)7

and (ii) high interference (i.e., I/η + 1 = 10 dB), which both refer to noise raise8

with respect to the thermal noise power, respectively depicted in Figure 10 (a)9

and (b). Such values represent average lower and upper bounds and have been10

chosen to take into account the variability of interference due for example to11

the increase of the number of simultaneous transmitters in the considered area,12

thus investigating the outage probability ranges.13

As expected, we observe that for a given distance, the outage probability in-14

creases. For instance, in case of low interference, the outage probability achieved15

with LoS and V2I communication mode is 10−3 at ≈ 170 m, while the same16

value is reached at shorter distance i.e., ≈ 120 m, in case of high interference.17
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Figure 11: Comparison of the outage probability versus the distance, in case of Urban Macro

scenario, for (a) low and (b) high interference, respectively.

Furthermore, performance in case of NLoS is worse as compared to LoS, as well 1

as better results are obtained with V2N, followed by V2I, and then V2V. No- 2

tice that it depends on the transmission ranges achievable in case of different 3

communication modes. Indeed, in V2V, communications are guaranteed in case 4

of short ranges, reaching an outage probability of 10−3 around 70 m, while a 5

similar value is reached with V2N at 420 m, both for LoS and low interference, 6

as shown in Figure 10 (a). 7

Similar considerations can be taken observing the outage probabilities in case 8

of Urban Macro and Rural scenarios, respectively in Figure 11 and Figure 12. 9

Moving from Urban Micro to Rural, the reachable transmission ranges with 10

outage probability ≤ 10−3 increase. For instance, in Figure 12 (a) for V2V 11

LoS and Rural scenario at low interference, the outage probability ≤ 10−3 is 12

guaranteed till 270 m, while the same value of outage probability is guaranteed 13

till 190 m in case of Urban Macro, for V2I LoS and low interference, as depicted 14

in Figure 11 (a). Finally, notice that in same cases, the outage probability for 15

V2N transmission mode is not shown, due to favorable propagation conditions 16

that occur mainly in Rural scenario (see Figure 12). 17
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Figure 12: Comparison of the outage probability versus the distance, in case of Rural scenario,

for (a) low and (b) high interference, respectively.
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Figure 13: Semi-persistent scheduling. Comparison of the latency vs. the distance from a

destination vehicle, for (a) V2V, and (b) V2I connectivity mode.

In the following, we are now describing the performance of message forward-1

ing through MuSLi, in case that an obstacle has been detected. Without lack2

of generality, we consider only the Urban Micro environment, and the main3

parameters adopted in our simulations are reported in Table 2. In all the fig-4
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Figure 14: Semi-persistent scheduling. Comparison of the latency vs. the distance from a

destination vehicle, in case of V2N connectivity mode via Cloud, for (a) 15kHz, (b) 60kHz,

and (c) minislot transmission.
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Figure 15: Semi-persistent scheduling. Comparison of the latency vs. the distance from a

destination vehicle, in case of V2N connectivity mode via MEC, for (a) 15kHz, (b) 60kHz,

and (c) minislot transmission.

ures related to the latency, we considered the 90-th percentile of the related 1

CDFs, as depicted in Figure 4. Similar results and considerations can be ob- 2

tained in the other environments (i.e., Urban Macro and Rural), not reported 3

for brevity. Notice that the number of retransmissions affects the latency ac- 4

cording to the experienced outage probability, as expressed in Eq. (3). We can 5

observe that for the typical operation points of the communication system (e.g., 6

for Pout ≤ 0.2), the number of re-transmissions is very low (i.e., approximately 7
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Figure 16: Dynamic scheduling. Comparison of the latency vs. the distance from a destination

vehicle, for (a) V2V, and (b) V2I connectivity mode.
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Figure 17: Dynamic scheduling. Comparison of the latency vs. the distance from a destination

vehicle, in case of V2N connectivity mode via Cloud, for (a) 15kHz, (b) 60kHz, and (c) minislot

transmission.

1.25 for Pout = 0.2), while for Pout = 0.9 (unrealistic case) the average num-1

ber of retransmissions is 10. In the following simulations, we set the maximum2

number of retransmissions to 10.3

In Figure 13 we have computed the message transmission latency for each4

transmission mode. We observe that latencies are slightly constant for low dis-5

tances, while they increase as retransmissions are required when the outage6
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Figure 18: Dynamic scheduling. Comparison of the latency vs. the distance from a destination

vehicle, in case of V2N connectivity mode via MEC, for (a) 15kHz, (b) 60kHz, and (c) minislot

transmission.

probability is not anymore negligible. The slope (i.e., smooth or fast) and the 1

initial value (i.e., smaller or higher) of latency are both affected by the com- 2

munication modes, the noise due to interferents, and the scheduling techniques. 3

Specifically, the semi-persistent scheduling provides lower latency than the case 4

of dynamic scheduling due to absence of scheduling request procedure. 5

From Figure 13 to Figure 15 latencies are for semi-persistent scheduling case. 6

In Figure 13 (a) and (b) latency for V2V and V2I are reported, respectively. 7

In Figure 14 latency in case of V2X application is located in the cloud for (a) 8

15 kHz, (b) 60 kHz, and (c) minislot transmission respectively, while in Figure 15 9

latency if the V2X application is located in a closer MEC for (a) 15 kHz, (b) 10

60 kHz, and (c) minislot transmission respectively. 11

Considering for example the NLoS and high interference cases, V2V com- 12

munications mode allows to have lower latency up to d = 110 m, guaranteeing a 13

latency lower than 20 ms. V2I overcomes V2V from d = 110 m up to d = 190 m 14

and for higher distances V2N-MEC 3 at 15 kHz is preferable since retranmissions 15

are lower than those in V2V and V2I. V2N-MEC can experience lower latency 16

3Results of V2N-Cloud are not considered here, since they are slightly higher than those

of V2N-MEC.
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in case of 60 kHz and minislot, which guarantees a latency between 20 ms and1

80 ms in the range from d = 110 m and d = 180 m, overcoming V2I in the same2

range.3

Similar to the previous organization, from Figure 16 to Figure 18 latencies4

are for dynamic scheduling case. Latency for V2V in Figure 16 (a), for V2I5

in Figure 16 (b), for V2N-Cloud in Figure 17 (a) 15 kHz, (b) 60 kHz, and (c)6

minislot transmission) and for V2N-MEC in Figure 18 (a) 15 kHz, (b) 60 kHz,7

and (c) minislot transmission) are reported, respectively. Considering also in8

this case the example of NLoS and high interference values, V2V presents lower9

latencies (lower than 20 ms) but for reduced distancies (i.e., d ≤ 85 m). For10

d > 85 m, V2N-MEC at 60 kHz provides lower latencies for the alert message11

delivery. In case of mini-slot, V2N results comparable to V2V up to 50 m and12

overcomes it for greater distances.13

6. Conclusions14

Due to the increasing popularity of connected vehicles, it is becoming essen-15

tial to report the presence of obstacles on the roadway automatically by using16

on board advanced sensors such as infrared, electro-optical, acoustic, LiDAR,17

sonar, radar, etc. In this paper we presented the MuSLi technique, aiming to18

detect obstacles in a vehicular environment. Vehicles, defined as content islands,19

subscribe to an extended sensor service when approaching to an area of inter-20

est, and publish the contents collected by LiDAR sensors in order to improve21

the detection accuracy. In case of pedestrian detection, a source vehicle sends22

alert messages to other approaching vehicles through C-V2X. MuSLi is evalu-23

ated in case of specific propagation environments, transmission modes (i.e., LoS24

and NLoS, the type of implemented scheduling and the amount of interference25

power in the considering area.26

Results are expressed in terms of outage transmissions and latency to deliver27

the alert messages. For example, they showed that V2V should be preferred up28

to 115 m in an Urban Micro environment in case a SPS strategy is adopted,29
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while switching to V2I up to 160 m and to V2N (with SCS of 60 kHz) for 1

greater distances of the approaching vehicle to the considered crossroad. In 2

case of dynamic scheduling V2V should be preferred up to 85 m, switching to 3

V2N (with SCS of 60 kHz) for greater distances. 4

As future work, we can consider LiDAR sensors mounted on fixed positions 5

along the road, such as on RSUs placed on the traffic lights. In this case RSUs 6

can “observe” the road from a position without obstacles i.e., in LoS. However, 7

a few limitations can occur since the RSUs deployment is not always possible, 8

such as in rural area where the vehicular density is low and pedestrian cannot 9

be forced to cross the road to pedestrian crossings. On the other side, RSUs 10

equipped with LiDAR sensors are useful in scenarios with low visibility due 11

to road bends or bumps. Then, the deployment of LiDAR-based infrastruc- 12

ture nodes should be accordingly designed. Furthermore, the use of unmanned 13

aerial vehicles can be investigated to improve the warning message transmission 14

performance by properly locating them in specific areas. 15
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