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ABSTRACT

Understanding proteins well enough to rationally modify their biological function requires
understanding how these biomolecules behave in their natural cellular, or extra-cellular,
environments. This, in turn, implies understanding their interactions with a wide variety of
other species within a dense and heterogeneous medium. Molecular modelling and simulation
can certainly contribute to improving our understanding in this area, however the range of
molecules and processes involved in the biological systems implies that a range of modelling
techniques will have to be applied, balancing the requirements for accuracy and precision
against the constraints imposed by the size, time and energy scales involved. This article
attempts to summarize the various representations, methodologies and target functions
presently available to molecular modellers, discusses how different combinations of these
basic features can be combined to attack different problems and then considers the role of
hybrid methods, an area where there is still much scope for development.

INTRODUCTION

Proteins have evolved to function within living organisms, which probably represent the most
heterogeneous and complex dynamical systems known to mankind. Beyond the astonishing
range of structures exhibited by proteins themselves, these systems are composed of a broad
range of other molecules which, according to their roles within the system, bind to one
another to form functional assemblies, interact transiently to pass messages inside and outside
the cell, store and convert energy, or catalyze chemical reactions with remarkable specificity.

All of these processes are characterized by three features which make them very
challenging to understand. First, although simple molecular species, such as water molecules
and ions play important roles in biological systems, most processes also involve
macromolecules or macromolecular assemblies which can contain hundreds of thousands of
atoms. Second, biological systems are by definition dynamic, with important time scales
ranging from femtoseconds, the characteristic vibrational frequency of C-H bonds, up to
seconds or minutes, for processes as varied as folding individual proteins or accomplishing
major cellular rearrangements. Third, biological systems are "soft matter", where
conformation and binding result from non-covalent interactions (van der Waals, hydrogen
bonds, ...) and are generally characterized by free energy changes which amount to only a few
kcal mol™ (although the compensating enthalpic and entropic components which underlie
these changes can amount to hundreds of kcal mol™).

Experimental methods to analyze cellular processes at a molecular level are
progressing very rapidly and have resulted not only in fully sequenced genomes for a wide
range of organisms (1), but also in detailed cellular level data ranging from gene expression
patterns to protein interaction networks. Systems biology approaches are already attempting
to use such data to build mathematical models of cellular processes, and the notion of being
able to create and understand a "minimal" cell has moved from the realm of science fiction to
that of a scientific project (2, 3). Despite this progress, the last half century of molecular
biology has clearly demonstrated that a full understanding of biological processes also
requires an understanding of the structures and interactions of the molecules on which these
processes depend. This is particularly true in the case of proteins where properties such as
binding selectivity, thermodynamic efficiency, thermal and mechanical stability all depend on
detailed structure and dynamics. This implies that both structural biology and modelling will
continue to play a significant role in the current biological revolution. However, the new data
available also implies that we need to think more in terms of assemblies and interacting
systems than in terms of individual macromolecules, if we want to modulate a biological



function. Modelling must therefore rise to the challenge of treating much larger and more
complex problems.

Given the characteristics of the systems described above, there can clearly be no
unique way to model all biological objects or processes. This fact is illustrated by the way
different communities look at the same biological entity. If we put aside proteins for a
moment and consider the example of the iconic DNA double helix, a geneticist or
bioinformatician will often be interested only in its base sequence; a physicist may ignore its
sequence and concentrate only on its macroscopic elastic properties; a molecular modeller
may study only its microscopic structure and dynamics and a systems biologist may see it as a
set of interaction nodes in a coupled reaction scheme. Similar examples could be found for
other components of the cellular machinery.

Even for the molecular modeller, the task is not simple. Despite progress in modelling
algorithms and remarkable increases in computer power, it remains impossible to model all
molecular processes with a single approach. Even if quantum mechanics is clearly the
appropriate tool for studying atomic-level processes, this approach has to be abandoned in
favour of classical mechanics when the systems studied become too large or the time scales
too long. Similarly, atomic detail has to be sacrificed when we pass to even larger systems, in
favour of coarse-grain representations or even continuum models. These problems become
still more pressing when our attention passes from single macromolecules to macromolecular
interactions, and then to the formation of multi-macromolecular assemblies or to coupled sets
of macromolecular interactions. Modelling biological systems is therefore an intrinsically
multi-scale task.

A rapid survey of molecular modelling and simulation over the last few decades
demonstrates that these difficulties have led to the development of a wide range of approaches
based on different molecular representations and using different modelling algorithms. Each
approach, like a biological species, has its own niche, defined in terms of the characteristics
discussed above (size, time and energy scales) where it usefully can serve to push forward our
understanding. Like biological species, modelling approaches should not be dragged too far
away from their natural environments if they are to perform well, but equally, they can
sometimes thrive by interactions which extend their range.

We would like to take this opportunity to attempt to summarize the present state of
affairs in biological modelling in the hope that this can help those interested in better
understanding the function of biological molecules, and, notably, in re-engineering protein
function, to take a broader view of the field and the tools available. We will begin by
summarizing what is available today in terms of representations (R) and modelling algorithms
(M) in the form of comparative tables. This classification is necessarily somewhat subjective
and involves considerable simplifications, but it gives an idea of the range of approaches that
can be called upon and of their strengths and weaknesses. In many cases, these tables group
together a family of related approaches within a single column, although this may conceal a
good deal of research and a number of significant refinements. Our apologies to the authors
concerned.

Before discussing how representations and methodologies can be put together, we
briefly discuss the target functions used with various modelling approaches. Having set out
the basic choices available, we then turn to the question of how different approaches can be
combined to hybrid models. This last analysis leads us to conclude that there are still plenty of
possibilities for developing new hybrid approaches, and explains the first part of the title of
this review, a misquote of Richard Feynman's famous 1959 APS lecture heralding
nanotechnology. Lastly, it should be noted that, given the broad scope of this review, we have
only been able to include a few references to illustrate each section. The reader is referred to
more specialized articles to complete this bibliography.



REPRESENTATIONS

In order to simplify comparisons between the different possible representations used for
modelling biological systems, we will consider applications to a standard test case consisting
of a single macromolecule containing S monomers and N atoms. For proteins, S will typically
range from a 100 to a 1000 and N is roughly 10S. For a nucleic acid, S will typically range
from 10-10000, although chromosomal DNA's can be much longer, and N is roughly 30S for
a single-stranded fragment. For membrane lipids, a single molecule contains roughly 100 to
300 atoms, and a 25 A’ fragment of a bilayer membrane will contain as many atoms as a
reasonably sized protein. Depending on the representation these biological systems are
modelled using a varying number of interaction points P.

Each representation occupies one column of Table 1, while its characteristics are given
in the rows of the table. These include a brief description of the representation; the
corresponding number of conformational degrees of freedom (DOF) for our standard test
case; the principle advantages and limitations of the representation and a selection of
keywords. The keywords provide a link between commonly used expressions in the literature
and the classifications adopted in this article. Note that in many cases the keywords refer to
the combinations of representations and methodologies which are discussed in the following
section of this article.



Table 1

R1

Quantum mechanical
molecule

R2

All-atom models

R3

United atom models

Nuclei and electrons are
treated explicitly

Each atom of the system is
represented by a single
interaction point

While basically maintaining
an atomic representation,
certain atoms are grouped
into single pseudoatoms

Description :
(notably groups carrying
non-polar hydrogens such
as CH, CH; and CHs)

3N-6 for the nuclei, plus 3N-6 in Cartesian Up to 2-3x less than all-
the electronic degrees of coordinates, roughly 10x atom models
DOF freedom less in internal
coordinates, if bond
lengths are frozen
Explicit treatment of The most detailed Reduced number of
electrons enables both representation in classical | interaction points
ground and excited molecular mechanics,
electronic states to be corresponding to the
described, allows studies resolution of most
Advantages | of chemical reactions experimental biomolecular
(bond making and structures
breaking, electron transfer,
etc.), and incorporates
effects such as polarization
and charge transfer
Computational cost. Continuous electron Loss of resolution. Time
Electronic correlation density is partitioned onto | gain depends strongly on
required for weak van der | the nuclear coordinates system
Waals interactions. Level leading to partial atomic
Limitations | of theory (basis set, ..) charges. No chemistry. No
needs to be adapted to the | notion of electronic excited
problem. states. Polarization and
charge transfer require
special treatments
Ab initio, Hartree-Fock, All-atom model, explicit United atom model
Keywords | Density Functional Theory, | atomic representation

Semi-empirical methods




Table 1

R4

Bead models

R5
Lattice models

R6
Jointed chain models

These models go farther
than united atom models
by replacing entire groups,
subunits or multiple

Lattice models are related
to polymeric bead models,
but each bead occupies a
node within a regular 2D or

Includes polymers
modelled as jointed
segments of fixed length
and discrete versions of

Description | subunits with single beads. | 3D lattice. No two beads elastic rod models with
Beads may move in can occupy the same deformation nodes
Cartesian space or in positions and chain controlled by elastic
partially constrained crossings are forbidden constants
internal coordinate space
O(S) to O(3S) Depending on the lattice O(S)
each new bead can be
DOF added in a finite number of
positions (3 in a 2D cubic
lattice and 5 in a 3D cubic
lattice).
Significant reduction in The finite nature of the Rapid calculations and, for
number of interaction lattice makes it possible to | the simplest versions,
Ad points enumerate and study all analytical solutions for
vantages . ) .
possible conformations of | properties such as
the polymer persistence length, radius
of gyration, etc
Loss of resolution and "Toy" representation of Low resolution. Chain
reduced internal flexibility. | biopolymers in a highly crossing can occur unless
Limitations | Specific interactions (e.g. simplified conformational excluded volume effects
hydrogen bonds) mustbe | space are included
treated implicitly
Coarse-grained Go model, Hydrophobic- Freely-jointed chain (FJC)
representation, pseudo- Polar (HP) potentials model
K atoms, super-atoms, elastic
eywords

network model, Debye
sphere model,
hydrodynamic bead model




Table 1 R7 R8 R9
Elastic rods and sheets Surface / vo!ume Im.plicit solvent /
representations environment models
Continuum elastic models | Complex macromolecular Solvent effects on a solute
in 1D (rods) or 2D shapes can be reduced to | can be modelled using
(sheets). Models are tessellated surfaces (e.g. mobile or fixed polarizable
mostly isotropic, but rods | with Voronoi polyhedra) or | particles (typically dipoles)
with laterally anisotropic represented by a set of or as a continuous
Descrioti bending and anisotropic monocentric or multicentric | dielectric medium
escription . ) . .
membranes have been functions such as spherical | surrounding a cavity
studied. Such models are | harmonics containing the solute.
used for semi-rigid Similar approaches can be
polymers like dsDNA and applied to membrane
for modelling lipid environments
membranes
Obijects are continuously 6 per object (overall Simple physico-chemical
deformable. Elastic translation and rotation) parameters + grid/particle
DOF constants can be varied density and dipole
magnitude and orientation
for discrete representations
Analytical solutions are Relatively refined Avoids treating molecular
possible. Excluded volume | surface/volume environments (solvent,
Advantages and electrostatic representations can be lipid bilayer, ...) explicitly.
interactions can be added | obtained with few Cavity terms can treat
parameters compared to surface tension effects
atomic representations
Interactions are only local. | Reduced resolution. No Does not account for
Elastic properties can be flexibility specific solute interactions
modified by local or global with the environment
Limitations | structural transitions.
Heterogeneity along rods
or within sheets cannot be
treated analytically
Freely-rotating chain Spherical harmonics, Poisson-Boltzmann,
(FRC), worm-like chain Voronoi polyhedra generalized Born, reaction
Keywords | (WLC), continuum rod Field, PCM model,
model, continuum sheet COSMO model, Langevin
model dipole model
METHODOLOGIES

Each methodology is presented within the columns of Table 2, while the rows of the table
provide a brief description of the methodology; the nature of the input and output data

required; its principal advantages and limitations and related keywords.




Table 2

M1

Surface complementarity
search

M2

Discrete conformational
search

M3

Energy minimization

Take two molecules —often a
small ligand and a
macromolecular receptor —

Generate and score an
ensemble of conformations of
a molecular system in the

Optimize the conformation of
a molecular system to find a
local energy minimum in the

Description | and efficiently search for a space defined by its DOF. space defined by its DOF
putative interaction site Conformations can be
based on conformational generated stochastically or
complementarity via a grid search
A conformation for each A starting conformation, a A starting conformation, the
molecule, a procedure to conformational score, conformational energy and at
search the six-dimensional optional restraints least the first derivatives of
Input space spanned by their this energy with respect to
relative positions and a way the DOF
to score the resulting
conformations
Output Docked conformations and Conformations and their A single conformation and its
their complementarity scores | scores corresponding energy
Fast calculation, particular Fast calculations, but Relatively fast calculations.
with algorithms based on restricted to a limited number | The quality of the minimum
Advantages | Fourier transformation of DOF (judged by the magnitude of
techniques the final gradients) can be
adjusted as required
Internal flexibility is difficult to | An exhaustive search is Will locate a local minimum
treat, and results depend impossible in most practical close to the starting
critically on the chosen cases. In a regular grid conformation. (How close
conformations of the search is limited by the grid depends on the
interacting molecules spacing. representation of the
Limitations molecular system). Reduced
coordinates (R3-R4) lead to
smoother energy
hypersurfaces and generally
allow larger conformational
changes
Rigid-body docking Conformational search, Grid | Simplex, Steepest Descent,
search, Concoord Conjugate Gradient
K (Broyden-Fletcher-Goldfarb-
eywords

Shanno, Fletcher-Reeves,
Polak-Ribiere), Newton-
Raphson




Table 2 M4 M5 M6
Actwateld I.sto_chastlc Normal mode analysis Molecular Dynamics
optimization
Advanced optimization Determine the harmonic Integrate Newton's classical
methods can overcome the vibrational modes and equations of motion to
Descriofi problems of getting trapped associated frequencies of a calculate the trajectory of a
escription | : s ;
in local minima. Both molecular system molecular system in phase
stochastic and analytic space (coordinates and
approaches exist velocities)
Starting conformation, an An energy minimized A molecular starting
optimization scheme and molecular conformation, the conformation, the ability to
related parameters, energy ability to calculate the mass- | calculate its conformational
Input and, in some cases, energy | weighted Hessian matrix energy and the first
derivatives (second derivatives of the derivatives with respect to the
conformational energy with DOF. Fix boundary and
respect to the DOF) thermodynamic conditions
Output A ranked population of (3N-6) eigenvectors and the | Time series of coordinates,
optimized conformations corresponding eigenvalues velocities and energies
Escape from local minima Rapidity. Low-frequency Kinetic energy allows
modes are potentially related | overcoming barriers.
to biological function. Ergodicity implies the
Ad Vibrational entropy can be trajectory can be analyzed
vantages ; L .
calculated. For large systems | using statistical mechanics.
full diagonalization can be Time series can yield kinetic
avoided data
Appropriate choice of Requires a high quality Adequate sampling is
evolving variables and minimum to avoid imaginary | difficult. The fastest
Limitati algorithmic parameters is frequencies. The harmonic molecular motions limit the
imitations | . L ) . o
important. More costly than approximation is valid only integration timestep to the
simple minimizations for relatively small motions order of a few femtoseconds
Genetic algorithms, Vibrational analysis, Molecular Dynamics (MD),
Keywords simulated annealing, Gaussian Network model Essential Dynamics, Replica

Activation-Relaxation
Technique (ART)

(GNM), Lanczos algorithms

Exchange, Car-Parrinello,
Targeted MD




Table 2 M7 M8 M9
Stochastic dynamics Monte Carlo Analy_tlc . specllflc
numerical solutions
Brownian, dissipative and Sample an ensemble of Use an analytic or numerical
hydrodynamic forces are molecular conformations approach to solve a
Description taken into account using satisfying Boltzmann mathematical description of a
stochastic force terms. Can statistics model. This often involves
involve modified soft- solving differential equations
repulsive interactions
A molecular starting A molecular starting Boundary conditions, desired
conformation, the ability to conformation, the ability to level of accuracy, specific
calculate its conformational calculate its conformational parameters
Input energy (and possibly energy | energy. An efficient sampling
derivatives). Mean field scheme such as the
environmental characteristics | Metropolis algorithm (at a
(friction, viscosity,..) defined temperature)
Time series of coordinates, An ensemble of A solution to the
Output velocities and energies conformations and the mathematical problem
associated energies
Explicit sampling of the Well-devised moves allow No inherent limitations of the
medium is either not efficient sampling and underlying models. Direct
necessary as itis convergence. In contrast to relation between parameters
represented via the friction molecular dynamics, forces and results
Ad and random terms or are not usually required
vantages | . .
significantly sped-up by the
use of large integration
timesteps. Motions requiring
large solvent rearrangements
are better sampled
With additional force terms Moves can be difficult to Mathematical complexity.
explicit interactions between | devise and are performed Specific problems may
the medium and the sequentially. Motions require new models. The
molecular system are lost. requiring two or more moves | validity of the model has to
When the medium is to occur simultaneously are be assumed
Limitati represented by a PMF it is impossible. An ensemble of
imitations . . i
static and does not evolve; conformations, not a
flexibility is difficult to include. | consecutive trajectory is
Using exclusively “soft’ obtained
forces, information on
conformational changes is
lost.
Langevin Dynamics, Monte Carlo, Parallel Finite-difference solutions
Brownian Dynamics, Tempering, Replica like in Poisson-Boltzmann
Keywords | Dissipative Particle Dynamics | Exchange MC calculations, elastic rod

models, Helfrich (and other)
membrane models
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TARGET FUNCTIONS

In order to carry out calculations with a chosen representation and methodology we must also
specify the target function that is going to be calculated. This function is easiest to define, but
not necessarily to calculate, in the case of the quantum mechanical representation for which it
is possible to obtain the formation energy of a molecule or molecular system. If enough
computer resources are available, and if the system is not too large, it may be possible to
achieve experimental precision for both ground and excited state properties. Although it is
possible to take electron correlation into effect, this is often prohibitively expensive for large
systems. Density functional approaches, which are often used in such cases, only partially
treat correlation and thus underestimate the van der Waals interactions which play a
significant role in stabilizing biological systems. Quantum mechanical approaches are also
limited by the quality of the basis set or density functional used.

For systems containing more than a few tens of heavy (non-hydrogen) atoms it
generally becomes necessary to introduce further approximations. These can either involve
dividing the system into overlapping fragments (4-6), leading to energy calculations which
scale linearly with the number of electrons in the system (rather than at least the cube of this
number), or neglecting certain categories of electronic integrals. The latter approaches are
termed semiempirical methods (CNDO, INDO, MINDO, AM1, PM3, ...), and require varying
degrees of parameterization. Although they often perform well for a variety of molecules,
they can also fail badly for specific cases and they remain computationally expensive for large
molecular systems. It should be added that, unlike the approaches discussed below, quantum
mechanical approaches can provide not only energies, but also a whole range of other
properties such as electronic densities, bond orders, polarizabilities, electron affinities,
ionization potentials, NMR shielding constants, etc.

The next stage of simplification leads us to so-called force fields, which are the most
common solution for all-atom representations of large systems. Force fields are loosely based
on a perturbation analysis of quantum mechanical energies (7, 8), they however calculate only
conformational energies and not formation energies. Energy values can therefore only be
compared for chemically identical systems (having the same number of atoms, bonded in the
same manner). This also implies that using force fields excludes all aspects of chemistry,
including making or breaking bonds, transferring electrons or protons, or even creating
excited states. Force fields are based on the Born-Oppenheimer approximation, which
assumes that, since electrons move much faster than atomic nuclei, this motion can be
averaged out and the nuclei can be assumed to move in an averaged electronic density. Most
force fields go further in assuming that the density distribution can be divided into atomic
contributions, contracted onto the nuclei and summed with the nuclear charges to yield partial
atomic charges. It is also assumed that the conformational energy can be broken down into a
series of additive terms. These terms typically involve so-called bonded interactions,
representing the energy penalties linked to deforming bond lengths, valence angles or torsion
angles, and non-bonded interactions, covering electrostatic interactions, short-range exchange
repulsion and attractive van der Waals dispersion. Non-bonded interactions are generally dealt
with using pairwise additive terms, Coulomb's law being used for interactions between atomic
partial charges and the so-called Lennard-Jones term being used for repulsion-dispersion
interactions. In addition to calculating atomic partial charges, generally from quantum
mechanical calculations on representative molecular fragments, force fields require the
determination of a very large number of parameters. This number is related to the number of
atomic "classes" which are defined. (Classes allow the chemical environment of given atom
types to be taken into account, e.g. trigonal versus tetrahedral carbon atoms). This choice is
linked to the accuracy required and the chemical variety of molecules that are to be treated.
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For biological molecules, a great deal of effort on the part of the force field builders, and
feedback from the user community, have led to good overall results in treating the
conformations and interactions of the most common biological molecules, although defining
error bars for specific calculations remains difficult. Refinements generally require an
overhaul of the full set of parameters, despite the apparent independence of the energy terms
(9). For the same reason, parameter sets from different force fields cannot generally be mixed.
Major improvements being worked on today include more accurate representations of the
electronic density and treatment of electronic polarization. The computational cost of force
field evaluation is mainly linked to the non-bonded terms, whose number scales as N2,
although methods for dealing with long-range electrostatic interactions can reduce this
dependence to N.log(N) (10).

Despite their apparently physical basis, force fields do not perform well in all cases.
This is notably the case when computational restrictions prevent environmental effects
(solvent and counter ions) and/or entropic contributions from being taken into account
accurately. Simple force field energies are thus not a good guide to the stability of folded
proteins. This difficulty can be overcome by incorporating the missing factors in effective
potentials derived from experimental data. This is the approach adopted by so-called
knowledge-based potentials commonly used for identifying the most likely folds of
polypeptide chains (11) or, more recently, for predicting the stability of biomolecular
interactions (12, 13). These potentials are generally limited to residue-residue interactions,
although they can be formulated on an atom or atomic-group basis if enough data is available
for parameterization. This approach assumes that the database of experimental structures
represents an equilibrium Boltzmann distribution of conformations (although this is difficult
to prove) and can therefore yield effective mean force potentials (14). Knowledge-based
potentials are rapid to evaluate, but since they generally do not have analytic forms, energy
derivatives must be obtained numerically. Derivatives are however unnecessary for
comparing different static molecular conformations as in so-called threading approaches (see
below).

When less experimental data is available, or when data from different sources needs to
be treated together, it is possible to formulate ad hoc potentials which can be used to evaluate
the quality of structural models of the corresponding system. This is typically done using
quadratic penalties whose force constants reflect the accuracy or reliability of the data (15,
16).

Still simpler target functions are used to score predetermined molecular
conformations. Scoring functions are widely used in computer-aided drug design and are
often based on simplified statistical models parameterized to reproduce experimental binding
free energies (17). Scoring functions allow rapid characterizations of very large numbers of
molecules and/or conformations as required in high-throughput virtual screening. However,
the calibration of these functions is often complex and time-consuming and it is difficult to
devise generic functions applicable to a wide range of systems.

Simple physical models are also associated with simplified target functions. One
common example in this category is the so-called Gaussian network approach (18). This is
generally used with bead representations and involves harmonic spring interactions between
beads falling below a given cut-off distance. Springs may have common or distance-related
force constants. The native conformation, for which the springs are constructed, naturally
becomes the energy minimum of the system. Although this approach is simple, it has proved
useful for studying the local flexibility and the low frequency normal modes of
macromolecular systems (19). A still simpler, but related approach, involves so-called Go
potentials which are step functions, generally between residues, indicating whether or not the
interaction distances present within a reference (native) conformation are reproduced. Like
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Gaussian network springs, these potentials lead to optimal energies for the native
conformation of the system studied. They are frequently used in studying protein folding (20).
The last member of this category of target functions are HP potentials (where H stands for
hydrophobic and P for polar), which are again used in protein folding studies, generally with
lattice models. These potentials limit interaction energy contributions to favourable
interactions between hydrophobic beads on neighbouring lattice points and favourable
contributions from polar residues exposed on surface lattice points. A number of variations
are possible for these functions, which capture some of the basic physics behind the
stabilization of native conformations.

For the simplest representations, such as polymer or sheet models, only simple
physical constants are generally required, such as the chain lengths in jointed-chain polymers
or the elastic constants in continuum models. It is however also possible to extend these
models to account for effects such as excluded volume or electrostatic interactions.

The above discussion shows that target functions are often related to the molecular
representation employed, but some flexibility remains. All-atom representations, or united-
atom approximations, are required for using classical force fields, but such representations
can also be treated with knowledge-based potentials. Bead models can be treated within the
Gaussian network approximation, with knowledge-based potentials or with simplified terms
derived from classical force fields (21). It should also be noted that the boundaries between
the different target functions can become blurred. Thus, it is possible to complete DFT
calculations using classical dispersion energy terms (22), or to add physically-based solvent
terms to knowledge-based potentials (23, 24). Equally, it is possible to drift away from
classical force fields by adding adjustable weighting factors to each term in order to better
reproduce experimental data (25). Many other examples of this sort of "boundary crossing"
exist.

PUTTING IT ALL TOGETHER

Having summarized the different representations, modelling methodologies and target
functions, we can now try and bring these elements together into an overall picture. As seen in
the above discussion, the choice of target function is largely subservient to the choice of
representation. We can therefore reasonably limit our overview to combinations of
representations and methodologies. This picture is presented in Table 3, where shaded squares
indicate combinations that are in use, or are at least potentially interesting. Certain
combinations, although physically possible, have been left blank because they have little
practical interest (e.g. energy minimization for elastic rods for which analytical solutions
exist). Other combinations are cross-hatched, indicating that there are currently only a few
examples of their use. As a reader, you are encouraged to tell us if you think this table needs
correcting or extending.
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Table 3. Representation-methodology combinations
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The first point to note from Table 3 is that the shaded squares form horizontal blocks,
showing that, as with target functions, the choice of representation again dominates the
overall picture. We can also see from the structure of the table that it is possible to group
certain representations together into scales for which similar methodological approaches are
applicable. Although this step is somewhat subjective, it helps to simplify the picture by
reducing nine representations to six broader scales. Let's now look briefly at what goes on at
each of these scales.

Quantum-Scale - quantum chemistry

Using a quantum representation, as discussed above, offers significant advantages not only in
terms of accuracy, but also in opening up the route for studying chemical reactions,
interactions with radiation, calculating a wide variety of observable properties
(polarizabilities, electron affinities, ...) and so on. However, the computational cost of such
representations explains why most studies involve one-off calculations or limited geometry
optimization. Linear scaling methods are improving, but not revolutionizing, this situation
(26). Dynamic behaviour is accessible thanks to the Car-Parrinello approach, but in
comparison to classical MD simulations, it remains limited to small systems (tens of heavy
atoms) and to short time scales (a few ps) (27).

Bead-Scale - all-atom and reduced models

This scale contains the broadest and most adaptable class of representations for studying
biological systems. Virtually all the numerical methodologies can be put to use, from scoring
for high-throughput studies of drug candidates or simplified models of macromolecular
docking, to Newtonian or stochastic dynamic simulations covering time scales ranging from
picoseconds to milliseconds. When dynamic properties are not indispensable, a wide variety
of Monte Carlo approaches can also be used, notably for investigating the conformational
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space of individual macromolecules. A great deal of effort has gone into refining simulation
methodologies for this scale. Newtonian molecular dynamics has been extended in many
ways (essential dynamics, targeted dynamics, parallel tempering ...) enabling larger and
slower conformational changes to be studied. In amenable cases, even relatively precise free
energy profiles can be obtained. For still slower processes, various stochastic adaptations
ranging from Brownian dynamics and Langevin dynamics to the dissipative particle approach
can be used, notably for studying protein-protein interactions. For complex conformational
changes, multi-copy approaches, which introduce a mean field strategy to enable
simultaneous studies of partial replicas of the system, have also been shown to be effective.
Although all-atom representations are the most accurate at this scale, reduced models are
finding more and more applications, in the areas of folding (e.g. threading approaches to fold
prediction, one of the varieties of the discrete conformational search methodologies),
structural flexibility (e.g. with Gaussian network models), recognition (many docking
strategies being limited to, or starting from, reduced representations and simplified target
functions) and molecular assembly (e.g. peptide aggregation in lipid bilayers). Structure
refinement is another area of application where bead-scale techniques are routinely used,
ranging from high-resolution atomic (X-ray crystallography, NMR spectroscopy) to coarse-
grain models (electron microscopy and tomography). In this context, the target functions can
be modified to include experimentally derived restraints.

Lattice scale - lattice models

Lattice models, originally derived from physical studies of spin-glasses, have mainly been
used to investigate the underlying principles of protein folding. By dramatically reducing the
number of conformational states available to a linear polymer chain they enable exhaustive
studies of its conformational energy space and of the pathway describing the passage from
unfolded to folded states (28). Lattices started largely as "toy" models of folding, but with
various refinements they can play a useful part in predicting the optimal folds of structurally
uncharacterized amino acid sequences (29). This type of model is also beginning to be used in
the field of macromolecular interactions (30).

Elastic scale — elastic polymer and sheet models

Discrete and continuous approaches belonging to this category are widely used in polymer
physics. In the biological field, they are largely restricted to modelling macromolecules that
behave like long-chain polymers. These include nucleic acids, cytoskeletal filaments (actin,
microtubules), certain muscle proteins and polysaccharides. Single molecule experiments
studying DNA deformability (31) and models of packaging viral genomes inside capsids (32)
are two areas where applications have been found. Analytical solutions exist for various
properties of both continuous and the simplest discrete polymer models, but more complex
discrete models require numerical approaches. 2D continuum models of thin sheets with
elastic free energy have applications ranging from models of lipid membrane patches to
cellular deformations (33). The dynamics of undulating fluid bilayers can also be captured for
example using Brownian dynamics approaches (34).

Shape scale - surface/volume models

Such models, while common in descriptive studies (overall conformation, binding pockets,
etc), have not yet been widely used for modelling biological systems. They can however be
useful as confinement restraints in modelling large molecular assemblies (15) and in studying
the effects of molecular crowding (35, 36). They would however appear to be very promising
for large scale simulations which require a reasonably accurate representation of the space
occupied by a macromolecule, but do not need to deal with all the atoms which comprise this
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space. Rigid-body models are also suitable for docking studies and can be used in conjunction
with experimental X-ray or neutron small-angle scattering data (37).

Implicit scale - simplified molecular environment models

In quantum-scale studies, while gas phase calculations are not representative of the biological
environment, the computational cost of treating an explicit solvent environment is often
prohibitive. An implicit solvent representation offers a computationally cheaper alternative.
Similarly, for bead-scale simulations of biological macromolecules including explicit solvent
molecules, the vast majority of the computational effort is linked to treating the solvent. It is
thus again very advantageous to avoid explicit representations of solvent molecules. Similar
arguments hold for the treatment of lipid bilayers. Simplified solvent models can be discrete
or continuous. Polarizable Langevin dipoles (38) are an example of a discrete model, while
continuum models solve either the Poisson or the Poisson-Boltzmann equations for a
solute/solvent interface (39). Even with continuum representations, analytic solutions are
generally impossible, given the complex shapes of biomolecules. The cost of standard
numerical solutions favour the introduction of further simplifications, such as the Generalized
Born approach (40, 41), although this also implies introducing adjustable parameters.

CONCURRENT MULTI-SCALING

As we discussed in the introduction, the nature of biological systems implies that no single
representation, methodology or target function can be appropriate for solving all biological
modelling problems. Different system sizes, different time scales, different processes and
different requirements for accuracy all suggest that the various strategies discussed above will
all be able to play useful roles in solving specific problems. In some cases, a succession of
different strategies can be used to solve a single problem, with a passage of information from
one level to the next. A simple example of this is using more accurate methods on small
systems to obtain parameters for more approximate treatments of larger systems (e.g. getting
force field parameters from quantum mechanical calculations). However, a closer coupling
can be obtained by using different strategies simultaneously to solve a single problem.

In Table 4 we try to summarize the state of affairs in what we can term "concurrent
multi-scaling", starting from the six modelling scales described in the previous section. The
best established combinations are outlined in black. Again, the reader is encouraged to point
out any improvements that could be made to this table.
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Table 4. Concurrent multi-scaling combinations
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Although this type of concurrent multi-scaling is now frequently discussed and is the subject
of many workshops, there are still relatively few examples of its application in the biological
field. One that has been around for some time is the combination of quantum mechanics and
classical force fields (so-called QM/MM methods), which are typically used to study the
influence of a macromolecular environment on a chemical process. This involves representing
a limited part of the system, for example the active site residues and the substrate of an
enzyme, quantum mechanically, while treating the rest of the system as a perturbation. What
communication exists between the two components of the system, and how the quantum-
classical boundary is treated, depends on the level of integration of the hybrid model. This
type of approach is commonly coupled with energy minimization (42) or limited dynamics
27).

Moving down the scale of accuracy, it is possible to combine all-atom force field
approaches, or quantum-scale models, with an implicit treatment of the solvent and
counterion environment. As discussed above, this represents a considerable time gain,
particularly in molecular dynamics approaches where explicit water molecules often represent
the major computational expense. Since there is generally a geometrically complex interface
between the solute and the solvent, numerical Poisson-Boltzmann solutions are necessary.
Until recently these were too slow for dynamic simulations and also posed problems for the
calculation of derivatives with respect to atomic displacements. This situation is now evolving
(43). Alternatively, approximate methods such as the Generalized Born approach can be used
(44). In either case, it must be assumed that the interactions of individual water molecules at
the solute-solvent interface do not play a major role in determining the behaviour of the
system. Implicit environment approaches are also useful in the field of biological membranes,
notably coupled to bead-scale modelling (45).

These first examples correspond to Q-B coupling for QM/MM methods and to Q-I or B-
I coupling for the combination of explicit solute with implicit solvent (or bilayer) methods.
Although a lot of research is still going on to improve these multi-scale methods, they have
already reached a certain level of maturity.

A more recent area of development involves multi-scale approaches incorporating
elastic models. Biological membranes are an important area of application, where it is
possible, for example, to combine lattice models of protein diffusion within a fluctuating
elastic bilayer model (46). Coupling elastic and bead-scale models is also possible as shown
by a study of the phase separation of mixed lipid bilayers (47). In this case, all components of
the system were treated at both B- and E-scales using a feedback mechanism to couple the
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models. Another example coupling the bead and elastic scales, this time for protein-DNA
interactions, can be found in the modelling of the Lac repressor/operator complex carried out
in the group of Klaus Schulten (48), where an elastic model of a DNA loop is combined with
explicit DNA fragments bound to protein domains.

Another example of inter-scale hybrid methods involves using geometrically defined
objects to study crowding effects on macromolecules (35) or, alternatively, to confine
macromolecular assemblies (15). This corresponds to B-S coupling in Table 4. Other hybrid
methods more conservatively mix different representations within a given scale, such as bead
models containing regions with different resolutions (49), or all-atom and bead
representations, as in (50) and in work underway in our laboratory.

An alternative approach to combining existing scales into a hybrid model involves
specific methods which incorporate only desired properties of a given scale into another one.
As an example, this approach was used to model proton translocation and chemical reactions,
typically studied at the quantum-scale, within a bead-scale representation (51-54).

Looking again at Table 4, we can see that concurrent multi-scale methods have so far
exploited only five of 15 potential inter-scale combinations of the broad classifications used in
constructing this table and only one of six possible intra-scale combinations. Although some
of the total of 21 potential combinations are clearly unpromising, there still seems to be
considerable scope for developing new approaches.

CONCLUSIONS

The aim of this review was to summarize the range of modelling strategies which are
applicable to biological systems in general and proteins in particular. We have tried, as far as
possible, to adopt a systematic approach. The results, summarized in the four tables contained
in the review, show that although designing a modelling strategy requires choosing a
molecular representation, a modelling methodology and a target function, the most important
choice is that of the representation, since this sharply restricts the remaining options. This
overview also suggests that while approaches are available to treat systems of widely varying
size and time scales, with widely varying levels of accuracy, there is still much work to be
done in combining different approaches, both in consecutive and in concurrent hybrid
strategies. Such approaches nevertheless seem to be indispensable if we want our models to
incorporate more of the complexity of biological systems. To return to the title of this review,
there is still plenty of room in the middle.
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