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Introduction

In recent years, tremendous progress has been achieved in the prediction of protein 3D structures and mutational landscapes (com, 2022;[START_REF] Laine | Protein sequence-to-structure learning: Is this the end (-to-end revolution)?[END_REF] by leveraging the wealth of publicly available natural protein sequence data [START_REF] Mirdita | Colabfold: making protein folding accessible to all[END_REF][START_REF] Delmont | Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean[END_REF]uni, 2023;[START_REF] Jumper | Highly accurate protein structure prediction with alphafold[END_REF][START_REF] Nayfach | Metagenomic compendium of 189,680 dna viruses from the human gut microbiome[END_REF][START_REF] Camarillo-Guerrero | Massive expansion of human gut bacteriophage diversity[END_REF][START_REF] Mitchell | Mgnify: the microbiome analysis resource in 2020[END_REF][START_REF] Levy Karin | Metaeuk-sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic metagenomics[END_REF][START_REF] Steinegger | Clustering huge protein sequence sets in linear time[END_REF][START_REF] Suzek | Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches[END_REF][START_REF] Nordberg | The genome portal of the department of energy joint genome institute: 2014 updates[END_REF]. State-of-the-art predictors capture arbitrary range dependencies between amino acid residues by implicitly accounting for global sequence contexts or explicitly exploiting structured information coming from alignments of evolutionary related protein sequences. Very efficient algorithms, e.g. MMseqs2 [START_REF] Steinegger | Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[END_REF], allow for identifying homologous sequences and aligning them on a mass scale. Others relying on profile hidden Markov models (HMMs), such as JackHMMer/HMMer [START_REF] Eddy | Accelerated profile hmm searches[END_REF], carefully generate very large families, achieving a very high sensitivity.

Several large-scale resources like Pfam [START_REF] Mistry | Pfam: The protein families database in 2021[END_REF] and ProteinNet (AlQuraishi, 2019) give access to pre-computed multiple sequence alignments (MSAs) built from profile HMMs. These MSAs are associated with curated protein families in Pfam, or with experimentally resolved protein 3D structures in ProteinNet.

The depth, quality, and computational cost of a MSA are important factors contributing to its effective usefulness. Nevertheless, precisely assessing the impact of expanding or filtering out sequences on predictive performance is difficult. For protein structure prediction, Mirdita and co-authors showed that AlphaFold2 original performance could be attained with much smaller and cheaper alignments through the MMseqs2 [START_REF] Steinegger | Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[END_REF]-based strategy implemented in ColabFold [START_REF] Mirdita | Colabfold: making protein folding accessible to all[END_REF]. This advance makes accurate protein structure prediction more accessible and applicable at a much larger scale.

In this work, we aimed at testing whether the same gain could be obtained for mutational outcome prediction. We compared the prediction accuracy achieved by Global Epistatic Model for predicting Mutational Effects (GEMME) [START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF] from MSAs generated using the ColabFold's MMseqs2-based protocol [START_REF] Mirdita | Colabfold: making protein folding accessible to all[END_REF][START_REF] Steinegger | Mmseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[END_REF] versus three workflows relying on profile HMMs [START_REF] Alquraishi | Proteinnet: a standardized data set for machine learning of protein structure[END_REF][START_REF] Mistry | Pfam: The protein families database in 2021[END_REF][START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF] (Figure 1). GEMME is a fast unsupervised MSA-based mutational outcome predictor relying on a few biologically meaningful and interpretable parameters. It performs on-par with statistical inference-based methods estimating pairwise couplings [START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF] and also deep learning-based methods, including family-specific models [START_REF] Frazer | Disease variant prediction with deep generative models of evolutionary data[END_REF][START_REF] Shin | Protein design and variant prediction using autoregressive generative models[END_REF][START_REF] Trinquier | Efficient generative modeling of protein sequences using simple autoregressive models[END_REF][START_REF] Riesselman | Deep generative models of genetic variation capture the effects of mutations[END_REF] as well as high-capacity protein language models trained across protein families [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF][START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF][START_REF] Meier | Language models enable zero-shot prediction of the effects of mutations on protein function[END_REF] (see also [START_REF] Trinquier | Efficient generative modeling of protein sequences using simple autoregressive models[END_REF][START_REF] Marquet | Embeddings from protein language models predict conservation and variant effects[END_REF][START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF] for quantitative comparisons). GEMME is freely available for the community through a stand-alone package and a web server. It proved useful for discovering functionally important sites in proteins [START_REF] Tsuboyama | Mega-scale experimental analysis of protein folding stability in biology and design[END_REF][START_REF] Cagiada | Discovering functionally important sites in proteins[END_REF], classifying variants of the human glucokinase [START_REF] Gersing | A comprehensive map of human glucokinase variant activity[END_REF] and transmembrane proteins [START_REF] Tiemann | Interpreting the molecular mechanisms of disease variants in human transmembrane proteins[END_REF], among others, and for deciphering the molecular mechanisms underlying diseases such as the Lynch syndrome [START_REF] Abildgaard | Lynch syndrome, molecular mechanisms and variant classification[END_REF].

As GEMME optimized only a few free parameters [START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF], its performance is much more sensitive on the quality of the MSA used as input than methods based on machine learning. Thus, GEMME strikes us as an optimal proxy for whether or not resource-saving alignment methods such as MMseqs2 suffice for variant effect prediction. We placed ourselves in a context where GEMME relied solely on the information contained in a single input MSA to make the predictions (Figure 1). This setup allows for a fair comparison of different MSA generation protocols. It contrasts with the original publication [START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF] where GEMME would exploit two sets of input sequences. We assessed GEMME predictions against a large collection of 87 Deep Mutational Scanning experiments (DMS) totalling ∼1.5M missense variants across 72 diverse protein families [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF] (Additional file 1: Figure S1). We used the Spearman rank correlation coefficient to quantify the accuracy of the predictions, as previously done by us and others [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF][START_REF] Meier | Language models enable zero-shot prediction of the effects of mutations on protein function[END_REF][START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF].

We show that the expand-and-filter many-to-many sequence search strategy implemented in ColabFold yields the highest-quality mutational landscapes for most of the proteins. For edge cases, where the filter is too drastic, we propose a simple solution to overcome the issue. We facilitated the import of alignments generated by ColabFold into the GEMME webserver, simplifying accessibility for users at: http://www. lcqb.upmc.fr/GEMME. Moreover, we provide predictions for the entire human proteome at: https://doi. org/10.5061/dryad.vdncjsz1s. The other datasets generated and/or analysed during the current study are available in the same Dryad repository.

Results and Discussion

We refer to the four different MSA generation protocols and resources we considered as ColabFold, ProteinGym-MSA, ProteinNet and Pfam (see Methods, Figure 1, and Additional file 1: Table S1). They all proved useful for several applications, and they represent a variety of choices in terms of sequence database, search algorithm and sequence context. In short, ProteinGym-MSA relies on the profile HMM-based method JackHMMer [START_REF] Eddy | Accelerated profile hmm searches[END_REF] to search sequences against UniRef100 [START_REF] Suzek | Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches[END_REF], a non-redundant version of UniProt (uni, 2023). The MSAs generated with this protocol have been widely used to assess mutational outcome predictors [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF][START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF]. ColabFold uses the many-againstmany sequence search algorithm MMseqs2 against the same database as ProteinGym, namely UniRef100.

The MMseqs2 search strategy differs markedly from JackHMMer in that it uses the 30% sequence identity clustered database UniRef30 [START_REF] Mirdita | Colabfold: making protein folding accessible to all[END_REF] as a proxy to Uniref100 to select sequences. This strategy involves a series of expansion and filtering steps with different thresholds for which straightforward equivalents are not available in JackHMMer. Furthermore, ColabFold offers the possibility to include metagenomic data from the Big Fantastic Database (BFD) [START_REF] Jumper | Highly accurate protein structure prediction with alphafold[END_REF]. Both ProteinNet and Pfam are large readily available resources of MSAs generated from profile HMMs. Their advantage compared to the two other protocols is that they do not add any computational overhead on top of GEMME prediction itself.

One potential drawback though is that they typically do not cover the full protein length and thus lack contextual information. Specifically, ProteinNet focuses on protein regions whose 3D structures have been experimentally resolved. It uses JackHMMer against Uniprot Archive (Uniparc) [START_REF] Consortium | Uniprot: the universal protein knowledgebase[END_REF] and a collection of metagenomic sequences [START_REF] Nordberg | The genome portal of the department of energy joint genome institute: 2014 updates[END_REF]. Pfam is centered on manually curated protein domains, and we used the largest available MSAs, generated with HMMer against the whole UniPro-tKB. We chose to adopt the default parameters settings for each considered protocol or resource. This choice guarantees that our findings are comparable to those reported in the literature for these resources and that users can reproduce our results without fine-tuning the parameters or algorithms.

ColabFold alignments yield high-quality mutational landscapes with fewer sequences

We found that ColabFold and ProteinGym-MSA were the best performing protocols and the only ones covering all ∼1.5M mutations from the ProteinGym benchmark (Table 1). The MMseqs2-based ColabFold search strategy consistently yielded better predictions than the JackHMMer-based ProteinGym-MSA protocol for two thirds of the DMS (Figure 2A). This result holds true whether the ColabFold protocol was performed against the union of UniRef100 and the ColabFold environmental database, which is the default set up, or only against UniRef100, i.e. the same database as used by ProteinGym-MSA (Additional file 1: Figure S2). Moreover, the expand-and-filter strategy implemented in ColabFold produced shallower alignments, with substantially fewer sequences, than the other protocols (Additional file 1: Table S1 and Figure S3). For instance, all proteins falling in the 'high' alignment depth category (N ef f /L > 100, see Methods) based on their ProteinGym-MSA alignments, would be reclassified in the 'medium' category (1 < N ef f /L < 100) based on their ColabFold MSAs (Figure 2B, red triangles, and Additional file 1: Figure S4). This decreased alignment depth is accompanied by an improved prediction accuracy, by an average Spearman rank correlation difference ∆ρ = 0.032, underlying the relevance of the ColabFold search strategy for these proteins. ColabFold also produced shallower alignments for most of the proteins from the 'medium' category (Figure 2B, blue triangles). The differences in alignment depths have a limited impact on the prediction accuracy except for two proteins, namely the polymerases PA and PB2 from the influenza A virus (Figure 2B, see the two outliers). For these two extreme cases, the ColabFold MSAs are 20 times shallower than those produced by ProteinGym-MSA, resulting in a lower prediction accuracy by ∆ρ ∼ -0.3. The reason behind such a difference is the low divergence of these protein families. Indeed, the ProteinGym-MSA alignments contain a few tens of thousands of sequences, but almost all of them are very similar to the query (Additional file 1: Figure S5A-B, middle panels). GEMME is still able to exploit this limited variability to produce good-quality predictions (ρ values of 0.586 and 0.435). However, ColabFold's strategy massively filtered out these similar sequences, down to a few tens (Additional file 1: Figure S5A-B, left panels). It brought in more divergent sequences, but they did not counterbalance the loss of information and GEMME predictions dramatically deteriorated. Removing the stringent filter of ColabFold and thereby expanding the MSAs, allowed for the restoration of prediction accuracies similar to those achieved by ProteinGym-MSA (Additional file 1: Figure S5A-B, right panels). We further identified two other proteins from the benchmark for which the ColabFold alignments had few sequences (less than 200). We obtained a significant gain in performance by removing the filter for these two additional cases (Additional file 1: Figure S5C-D). Although the number of concerned proteins in the benchmark remains small, this result suggests that removing the filter when the alignment contains less than 200 sequences can be beneficial. A condition for this no-filter strategy to be effective is the presence of numerous highly similar sequences, as is often the case for viral protein families. Finally, ColabFold's default strategy expanded the MSAs for all proteins belonging to the 'low' category, resulting in a small gain in the overall performance (Figure 2B, green triangles).

Environmental sequences marginally contribute to improving predictions

We assessed the contribution of the environmental sequences in the context of many-to-many sequence search with MMseqs2 and pHMMs-based search with JackHMMer (Figure 2C and Additional file 1: Figure S6). Augmenting Uniref100's set of annotated sequences with environmental sequences expands the ColabFold MSAs by up to 3 folds without significantly impacting the mutational landscape quality of most proteins (Additional file 1: Figure S6A). It slightly improved prediction accuracy for the four above-mentioned viral proteins, yet without allowing reaching a good agreement with the experimental measurements -the Spearman rank correlation remains below 0.3 (Additional file 1: Figure S6A, see purple dots at the bottom left). By contrast, it significantly deteriorated the predictions for the human KCNH2 by ∆ρ = -0.14 (Additional file 1: Figure S6A, red outlier). The limited influence of metagenomics can also be observed when using JackHMMer as the search algorithm, as attested by the similar performance obtained for ProteinGym-MSA and ProteinNet (Table 1). Both protocols rely on JackHMMer as the search algorithm, but while ProteinGym-MSA considers only annotated sequences from UniRef100, ProteinNet searches against the UniParc archive, grouping several databases of annotated sequences, and the IMG environmental database. This expanding search results in alignments containing 3 times more sequences on average. However, we identified only a few human proteins, namely P53, BRCA1, SUMO1, and YAP1, as well as IF1 and CCDB from E. coli, that benefited from this additional information by up to ∆ρ = 0.11 (Figure 2C and Additional file 1: Figure S6B).

Mutational landscapes of curated domains and folded regions are not better resolved

One may wonder whether the predictions are better in regions annotated as protein domains or with experimentally resolved 3D structures compared to unannotated or disordered regions. To test this hypothesis, we compared the prediction performance achieved for the full mutational landscapes versus partial landscapes focusing only on the regions covered by Pfam or ProteinNet (Additional file 1: Figure S7). In all cases, we used the full-length alignments generated with ColabFold or ProteinGym-MSA and ran GEMME over the entire proteins. We focused on specific regions only for the computation of the Spearman rank correlation coefficients. We did not observe any significant differences between the full-length and region-focused ρ distributions (Additional file 1: Figure S7).

Full-length alignments may display unbalanced depths over the different domains of a protein, potentially biasing the extraction of signals relevant to mutational outcomes. In order to assess the influence of the sequence context, we compared GEMME mutational landscapes predicted from full-length alignments with landscapes reconstructed from predictions obtained with domain-centered alignments (Additional file 1: Figure S8). Specifically, we ran GEMME on each of the Pfam alignments associated to a given protein, each one representing a curated Pfam domain, and we merged the predictions in a single landscape. We observed that the landscapes derived from full-length alignments were consistely more accurate than the reconstructed ones (Additional file 1: Figure S8). Indeed, the ColabFold strategy led to a higher Spearman rank correlation than the Pfam protocol for 70% of the considered DMS (Additional file 1: Figure S9). For the remaining 30%, the gain brought by Pfam does not exceed ∆ρ max = 0.077. Along this line, the yeast protein GAL4 gives an illustration of the importance of the extent of the sequence context (Figure 2C and Additional file 1: Figure S10). While the ProteinGym-MSA protocol could retrieve 16,159 sequences by querying the full-length query, the ProteinNet protocol retrieved only 249 sequences by querying a very small portion of the protein (6% that is 55 residues out of 881, PDB code: 1HBW). As a consequence, ProteinNet yielded a mutational landscape of a much poorer quality compared to ProteinGym, with a Spearman rank correlation of 0.217 versus 0.497 computed over the same residue range.

Expanding on our assessment against the ProteinGym benchmark, we scaled the application of GEMME using ColabFold alignments to the entire human proteome. GEMME produced predictions for 20 339 proteins (out of a total of 20 484, see Materials and Methods) ranging from 21 to 14 507 residues (Additional file 1: Figure S11). It computed all mutational landscapes exploiting the full sequence context of each protein.

Conclusion

Multiple sequence alignments are critical to many protein-related questions. For instance, the last edition of the Critical Assessment of Structure Prediction (CASP, round 15) showed that MSA-based methods still significantly outperform protein language models in predicting protein 3D structures [START_REF] Rigden | Tertiary structure assessment at casp15[END_REF][START_REF] Elofsson | Progress at protein structure prediction, as seen in casp15[END_REF]. In this report, we assessed the influence of the search algorithm and the database choice for generating MSAs on the quality of in silico protein mutational landscapes. We ensured a clear readout of the input alignments using an unsupervised predictor relying on a few biologically meaningful parameters.

The MMseqs2-based strategy implemented in ColabFold showed a good balance between prediction accuracy and computational time. It yields the best overall performance on a set of 87 DMS spanning a wide variety of proteins and covers protein regions lacking structural data or domain annotations. By controlling the number of sequences, it allows running these algorithms on machines with less memory. It is faster than classical homology detection methods by orders of magnitude. The users can easily tune the parameters, e.g. relax the filtering criteria, for handling protein families with low divergence. We also showed that readily available resources such as ProteinNet and Pfam are valid options, albeit only partially covering the query proteins.

In the last couple of years, a lot of attention has been drawn to optimizing, ensembling, clustering, subsampling, and pairing alignments toward improving protein 3D models [START_REF] Petti | End-to-end learning of multiple sequence alignments with differentiable smithwaterman[END_REF], generating multiple functional conformations [START_REF] Wayment-Steele | Prediction of multiple conformational states by combining sequence clustering with alphafold2[END_REF], and resolving interactomes [START_REF] Bret | From interaction networks to interfaces: Scanning intrinsically disordered regions using alphafold2. bioRxiv[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using alphafold2[END_REF]. In the context of disease variants calling, Jagota and co-authors recently showed that vertebrate alignments exhibit a strong signal that can be used to boost specificity [START_REF] Jagota | Cross-protein transfer learning substantially improves disease variant prediction[END_REF].

Nevertheless, determining which alignments are the most suitable for a given task, predictive method, or biological system often remains challenging. Our findings demonstrated that the alignment depth is not as good an indicator of prediction accuracy as one might expect. Shallow alignments can yield Spearman rank correlation as high as 0.7, and above a certain threshold, adding more sequences does not improve the predictions. Achieving accurate predictions with shallower alignments makes it possible to shed light on the mutational landscapes of protein families with few members or low divergence and also significantly reduces computational burden. In addition, we observed that extending the sequence search space to environmental datasets only marginally improves the accuracy of the predictions. Finally, we found that it is beneficial to make predictions with the knowledge of the full sequence context, rather than focusing on individual domains and concatenating the predictions afterwards. This result emphasises the importance of long-range inter-residue dependencies and suggests that deep learning methods are strongly limited by the maximal input sequence length, and thus context, they can handle.

By establishing that fast MSA generation by MMseqs2 suffices, this study demonstrates the feasibility of MSA-based computational scans of entire proteomes at a very large scale. Combining ColabFold with GEMME, it takes only a few days to generate the complete single-mutational landscape of the human proteome on the supercomputer "MeSU" of Sorbonne University (64 CPUs from Intel Xeon E5-4650L processors, 910GB shared RAM memory). We made our human proteome-scale predictions available to the community. Moreover, our findings imply ways to save resources for other MSA-based methods.

database compiling several environmental sequence sets (Additional file 1: Table S1). It maximises diversity while limiting the number of sequences through an expand-and-filter strategy. Specifically, it iteratively identifies representative hits, expand them with their cluster members, and filters the latter before adding them to the MSA. We used the same sequence queries as those defined in ProteinGym-MSA. For all but 5 proteins, the query corresponds to the full-length UniProt sequence. For each query, we generated two MSAs by searching against UniRef30 and ColabFold environmental database, respectively, and we then concatenated them.

The ProteinGym-MSA protocol [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF] relies on the highly sensitive homology detection method JackHMMer [START_REF] Eddy | Accelerated profile hmm searches[END_REF] (5 iterations) to search against UniRef100 [START_REF] Suzek | Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches[END_REF], the non-redundant version of UniProt (Additional file 1: Table S1). JackHMMer is part of the HMMer suite and is based on profile hidden Markov models (HMMs). This protocol is relatively costly, with up to several hours for a single input MSA. It was initially described in [START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF] where it was designed and tested on a subset of the current ProteinGym substitution benchmark. Hence, the proteins and DMS included in ProteinGym after this seminal publication can be considered as an independent test set. The protocol proved useful for large-scale applications [START_REF] Frazer | Disease variant prediction with deep generative models of evolutionary data[END_REF]. In this work, we took the alignments provided with the ProteinGym benchmark [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF].

The ProteinNet protocol (AlQuraishi, 2019) also performs 5 iterations of JackHMMER, but it extends the sequence database to the whole UniProt Archive (Uniparc) [START_REF] Consortium | Uniprot: the universal protein knowledgebase[END_REF] complemented with metagenomic sequences from IMG [START_REF] Nordberg | The genome portal of the department of energy joint genome institute: 2014 updates[END_REF] (Additional file 1: Table S1).

Another difference from ProteinGym-MSA is that the queries correspond to sequences extracted from experimentally determined protein structures available in the PDB [START_REF] Berman | The Protein Data Bank[END_REF]. The MSAs are readily available and organised in a series of data sets, each one encompassing all proteins structurally characterised prior to different editions of the Critical Assessment of protein Structure Prediction (CASP) [START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (casp)-round xiv[END_REF]. We chose the most complete set, namely ProteinNet12. It covers all proteins whose structure was deposited in the PDB before 2016, the year of CASP round XII [START_REF] Moult | Critical assessment of methods of protein structure prediction (casp)-round xii[END_REF].

For each protein from the ProteinGym benchmark, we retrieved the corresponding PDB codes from the Uniprot website (https://www.uniprot.org) and picked up the structure with the highest coverage among those represented in ProteinNet12 (Additional file 2: Table S2). We could treat 42 proteins, out of 72 in total. For the remaining ones, the positions covered by the available MSAs were out of the range of mutated positions.

The Pfam database [START_REF] Mistry | Pfam: The protein families database in 2021[END_REF] is a resource of manually curated protein domain families.

Each family, sometimes referred to as a Pfam-A entry, is associated with a profile HMM built using a small number of representative sequences, and several MSAs. We chose to work with the full UniProt alignment, obtained by searching the family-specific profile-HMM against UniProtKB (Additional file 1: Table S1). The proteins sharing the same domain composition will have exactly the same MSAs. To avoid such redundancy, we focused on the non-redundant set of 59 proteins from ProteinGym. For each protein, we first retrieved its Pfam domain composition and downloaded the corresponding MSAs from the Pfam website (https://pfam.xfam.org, release 34.0). We could retrieve at least one (and up to 5) MSA overlapping with the range of mutated positions for 39 proteins (Additional file 2: Table S2). Each detected Pfam domain appears only once in the set.

Alignment depth

We measured the alignment depth as the ratio of the effective number of sequences N ef f by the number of positions L. The effective number of sequences is computed as a sum of weights [START_REF] Ekeberg | Improved contact prediction in proteins: using pseudolikelihoods to infer potts models[END_REF],

N ef f = N s π s , ( 1 
)
where N is the number of sequences in the MSA and π s is the weight assigned to sequence x (s) , computed as

π s = N t I[D H (x (s) , x (t) ) < θ ID ] -1 , (2) 
where D H (x (s) , x (t) ) is the normalised Hamming distance between the sequences x (s) and x (t) and θ ID is a predefined neighbourhood size (percent divergence). Hence, the weight of a given sequence reflects how dissimilar it is to the other sequences in the MSA. To be consistent with [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF], we set θ ID = 0.2 (80% sequence identity) for eukaryotic and prokaryotic proteins, and θ ID = 0.01 (99% sequence identity) for viral proteins.

In [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF], MSAs are labeled as low, medium or high depending on the ratio

N ef f /L cov ,
where L cov is the number of positions with less than 30% gaps. Specifically, MSAs with 

N ef f /L cov <

GEMME methodology and usage

GEMME exploits the evolutionary history relating the natural protein sequences to estimate the functional impact of mutations. It relies on a measure of evolutionary conservation explicitly accounting for the way protein sites are segregated along the topology of evolutionary trees [START_REF] Engelen | Joint Evolutionary Trees: A Large-Scale Method To Predict Protein Interfaces Based on Sequence Sampling[END_REF]. A conserved position is associated with at least two subtrees of ancient origin and homogeneous with respect to that position (all sequences in a subtree display the same amino acid). Since the trees are built from global similarities between sequences, the whole sequence context plays a role in estimating the conservation level of a given position. The GEMME algorithm makes use of these conservation levels in two main steps. First, to compare different substitutions occurring at the same position, it combines amino acid frequencies, computed with a reduced alphabet, with evolutionary distances representing the mimimum amount of changes necessary to accommodate the mutations of interest. We determine the evolutionary distance associated to the substitution of a into b at position i as the minimal conservation-weighted Hamming distance between the query wild-type sequence and any sequence from the input alignment displaying b at position i. Then, to be able to compare substitutions occurring at different positions, GEMME weights the predicted effects with the conservation levels.

In the original GEMME publication [START_REF] Laine | Gemme: a simple and fast global epistatic model predicting mutational effects[END_REF], we gave two sets of sequences as input to GEMME. We used the ProteinGym-MSA protocol to generate an input alignment and we compiled an additional set of input sequences using PSI-BLAST [START_REF] Altschul | Gapped blast and psi-blast: a new generation of protein database search programs[END_REF] against the NCBI's non-redundant (NR) database [START_REF] O'leary | Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation[END_REF] (Figure 1). GEMME used the later to estimate the conservation levels, and the former to computed amino acid frequencies and evolutionary distances. Since then, we observed that the additional set of sequences had a limited impact on the performance (average ∆ρ = 0.012 on the dataset reported [START_REF] Hopf | Mutation effects predicted from sequence co-variation[END_REF]). Hence, in more recent studies [START_REF] Tsuboyama | Mega-scale experimental analysis of protein folding stability in biology and design[END_REF][START_REF] Mohseni Behbahani | Deep Local Analysis deconstructs protein-protein interfaces and accurately estimates binding affinity changes upon mutation[END_REF], we solely relied on an input alignment generated with the ProteinGym-MSA protocol. In the present work, for all calculations, we asked GEMME to exploit only a single input MSA generated by one of the four tested protocols and resources (see Additional file 1: Supplementary Methods for computational details).

Application to the human proteome

We retrieved 20 586 protein identifiers and their amino acid sequences from the Swiss-Prot reviewed human proteome available in UniProt (uni, 2023), as of August 2023. We generated MSAs with the ColabFold protocol against UniRef30 v2302 and ColabFold Environmental Database v202108. We systematically regenerated the MSAs containing less than 200 sequences without the filter step. We modified the sequences that contained undefined residues ('X' or 'U' symbol) in the following way. When the undefined residue was located at the beginning of the sequence, the corresponding column in the alignment was always filled with gaps, and thus we removed that column. Otherwise, we replaced the undefined residue(s) by the most frequent amino acid appearing at the corresponding position(s) in the MSA. We ran GEMME through the Docker image available at: https://hub.docker.com/r/elodielaine/gemme with default parameters. A subset of 102 sequences were too short (≤20 residues) to be considered as proteins and were thus not treated.

Another subset of 145 proteins displayed MSAs too shallow for GEMME to estimate conservation levels. In total, GEMME generated mutational landscapes for 25 339 proteins. 
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  1 are considered as shallow ('low' group) whereas those with N ef f /L cov > 100 are considered as deep ('High' group). MSAs with 1 < N ef f /L cov < 100 are in the intermediate 'Medium' group. In our calculations, we consider the ratio between N ef f and the total number of positions L, which is equal to the length of the target sequence for both ProteinGym-MSA and ColabFold MSAs.

Table 1 : Average Spearman's rank correlation between predicted values and experimental measurements on the ProteinGym substitution benchmark.

 1 The N ef f categories Low, Medium and High were taken from[START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF] and correspond to the ProteinGym-MSA alignments. We use this classification as a reference, although proteins may change category between the different protocols (see The Spearman rank correlations are computed either over all residues from the target sequences, or only the residue ranges covered by ProteinNet and Pfam, respectively. For each alignment depth category or taxon, the best performing protocol is highlighted in bold. The correlations over the full-length versus partial proteins are comparable for ColabFold and ProteinGym-MSA protocols
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	Set	Class	#(proteins) #(DMS) ColabFold ProteinGym-MSA ProteinNet Pfam
	All		72	87	0.470	0.463	-	-
		Low	14	20	0.453	0.444	-	-
		Medium	43	17	0.443	0.446	-	-
		High	15	50	0.552	0.520	-	-
		Human	26	32	0.445	0.436	-	-
		Eukaryote	10	13	0.500	0.479	-	-
		Prokaryote	17	21	0.529	0.505	-	-
		Virus	19	21	0.429	0.451	-	-
	ProteinNet		42	51	0.507	0.497	0.495	-
		Human	19	23	0.484	0.466	0.477	-
		Eukaryote	6	7	0.539	0.531	0.495	-
		Prokaryote	13	17	0.562	0.536	0.540	-
		Virus	4	4	0.353	0.453	0.410	-
	Pfam		39	52	0.463	0.440	-	0.432
		Human	15	20	0.440	0.423	-	0.407
		Eukaryote	7	10	0.462	0.448	-	0.436
		Prokaryote	9	13	0.517	0.489	-	0.496
		Virus	8	9	0.438	0.399	-	0.391

Data availability

The data underlying this article are available in the Dryad repository https://doi.org/10.5061/dryad. vdncjsz1s.

Methods

DMS benchmark set

We downloaded the ProteinGym substitution benchmark [START_REF] Notin | Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval[END_REF] from the following repository: https://github.com/OATML-Markslab/Tranception. It contains measurements from 87 DMS collected for 72 proteins of various sizes (between 72 and 3,423 residue long), functions (e.g. kinases, ion channels, gprotein coupled receptors, polymerases, transcription factors, tumor suppressors), and origins (Additional file 1: Figure S1A-C). The DMS cover a wide range of functional properties, including thermostability, ligand binding, aggregation, viral replication, and drug resistance. Up to four experiments are reported for each protein (Additional file 1: Figure S1D). Although the benchmark mostly focuses on single point mutations, it also reports multiple amino-acid variant measurements for 11 proteins (Additional file 2: Table S2). In the following, we considered the whole benchmark, and also a non-redundant version comprising only 59 proteins. We extracted these proteins with an adjusted version of UniqueProt (https: //rostlab.org/owiki/index.php/Uniqueprot) [START_REF] Olenyi | Rostclust redundancy reduction[END_REF][START_REF] Mika | Uniqueprot: creating representative protein sequence sets[END_REF]. Compared to the original UniqueProt protocol, we used MMseqs2 instead of PSI-BLAST to improve runtime, and discarded alignments of less than 50 residues for pairs of sequences with at least 180 residues to prevent very short alignments from removing longer sequences.

MSA resources and protocols

Two protocols, ColabFold and ProteinGym-MSA, were available for all 87 DMS (from 72 proteins) from the ProteinGym benchmark. ProteinNet was available for 51 (from 42 proteins), Pfam for 52 (from 39 proteins).

When comparing two methods, we reduced the Spearman rank calculations to their common positions.

The ColabFold protocol [START_REF] Mirdita | Colabfold: making protein folding accessible to all[END_REF] relies on the very fast MMseqs2 method (Steinegger and Söding, 2017) (3 iterations) to search against UniRef100 [START_REF] Suzek | Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity searches[END_REF], the non-redundant version of UniProt (uni, 2023), through a 30% sequence identity clustered version (UniRef30), and a novel