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2 Université Paris Cité, INSERM UMR U1284, 75004 Paris, France7

3 Department of Informatics, Bioinformatics and Computational Biology - i12, TUM-Technical University8

of Munich, Boltzmannstr. 3, Garching, 85748 Munich, Germany9

4 TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltz-10

mannstr. 11, 85748 Garching, Germany11

5 Institute for Advanced Study (TUM-IAS), Lichtenbergstr. 2a, Garching, 85748 Munich, Germany12

6 TUM School of Life Sciences Weihenstephan (TUM-WZW), Alte Akademie 8, Freising, Germany13

7 Institut universitaire de France (IUF)14

15

+ equally contributing authors16

∗ corresponding author: elodie.laine@sorbonne-universite.fr17

1

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2022.12.13.520259doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520259
http://creativecommons.org/licenses/by-nc/4.0/


Abstract18

The wealth of genomic data has boosted the development of computational methods pre-19

dicting the phenotypic outcomes of missense variants. The most accurate ones exploit multiple20

sequence alignments, which can be costly to generate. Recent efforts for democratizing pro-21

tein structure prediction have overcome this bottleneck by leveraging the fast homology search22

of MMseqs2. Here, we show the usefulness of this strategy for mutational outcome prediction23

through a large-scale assessment of 1.5M missense variants across 72 protein families. Our study24

demonstrates the feasibility of producing alignment-based mutational landscape predictions that25

are both high-quality and compute-efficient for entire proteomes. We provide the community26

with the whole human proteome mutational landscape and simplified access to our predictive27

pipeline.28

Keywords— genotype-phenotype relationship, protein mutation, multiple sequence alignment, deep29

mutational scan, evolution30

Significant statement31

Understanding the implications of DNA alterations, particularly missense variants, on our health is paramount.32

This study introduces a faster and more efficient approach to predict these effects, harnessing vast genomic33

data resources. The speed-up is possible by establishing that resource-saving multiple sequence alignments34

suffice even as input to a method fitting few parameters given the alignment. Our results opens the door to35

discovering how tiny changes in our genes can impact our health. They provide valuable insights into the36

genotype-phenotype relationship that could lead to new treatments for genetic diseases.37

Introduction38

In recent years, tremendous progress has been achieved in the prediction of protein 3D structures and39

mutational landscapes (com, 2022; Laine et al., 2021) by leveraging the wealth of publicly available natural40
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protein sequence data (Mirdita et al., 2022; Delmont et al., 2022; uni, 2023; Jumper et al., 2021; Nayfach41

et al., 2021; Camarillo-Guerrero et al., 2021; Mitchell et al., 2020; Levy Karin et al., 2020; Steinegger and42

Söding, 2018; Suzek et al., 2015; Nordberg et al., 2014). State-of-the-art predictors capture arbitrary range43

dependencies between amino acid residues by implicitly accounting for global sequence contexts or explicitly44

exploiting structured information coming from alignments of evolutionary related protein sequences. Very45

efficient algorithms, e.g. MMseqs2 (Steinegger and Söding, 2017), allow for identifying homologous sequences46

and aligning them on a mass scale. Others relying on profile hidden Markov models (HMMs), such as47

JackHMMer/HMMer (Eddy, 2011), carefully generate very large families, achieving a very high sensitivity.48

Several large-scale resources like Pfam (Mistry et al., 2021) and ProteinNet (AlQuraishi, 2019) give access to49

pre-computed multiple sequence alignments (MSAs) built from profile HMMs. These MSAs are associated50

with curated protein families in Pfam, or with experimentally resolved protein 3D structures in ProteinNet.51

The depth, quality, and computational cost of a MSA are important factors contributing to its effective52

usefulness. Nevertheless, precisely assessing the impact of expanding or filtering out sequences on predictive53

performance is difficult. For protein structure prediction, Mirdita and co-authors showed that AlphaFold254

original performance could be attained with much smaller and cheaper alignments through the MMseqs255

(Steinegger and Söding, 2017)-based strategy implemented in ColabFold (Mirdita et al., 2022). This advance56

makes accurate protein structure prediction more accessible and applicable at a much larger scale.57

In this work, we aimed at testing whether the same gain could be obtained for mutational outcome58

prediction. We compared the prediction accuracy achieved by Global Epistatic Model for predicting Muta-59

tional Effects (GEMME) (Laine et al., 2019) from MSAs generated using the ColabFold’s MMseqs2-based60

protocol (Mirdita et al., 2022; Steinegger and Söding, 2017) versus three workflows relying on profile HMMs61

(AlQuraishi, 2019; Mistry et al., 2021; Notin et al., 2022) (Figure 1). GEMME is a fast unsupervised62

MSA-based mutational outcome predictor relying on a few biologically meaningful and interpretable pa-63

rameters. It performs on-par with statistical inference-based methods estimating pairwise couplings (Hopf64

et al., 2017) and also deep learning-based methods, including family-specific models (Frazer et al., 2021;65

Shin et al., 2021; Trinquier et al., 2021; Riesselman et al., 2018) as well as high-capacity protein language66

3

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2022.12.13.520259doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520259
http://creativecommons.org/licenses/by-nc/4.0/


models trained across protein families (Notin et al., 2022; Marquet et al., 2021; Meier et al., 2021) (see also67

(Trinquier et al., 2021; Marquet et al., 2021; Laine et al., 2019) for quantitative comparisons). GEMME is68

freely available for the community through a stand-alone package and a web server. It proved useful for69

discovering functionally important sites in proteins (Tsuboyama et al., 2023; Cagiada et al., 2023), classify-70

ing variants of the human glucokinase (Gersing et al., 2023) and transmembrane proteins (Tiemann et al.,71

2023), among others, and for deciphering the molecular mechanisms underlying diseases such as the Lynch72

syndrome (Abildgaard et al., 2023).73

As GEMME optimized only a few free parameters (Laine et al., 2019), its performance is much more74

sensitive on the quality of the MSA used as input than methods based on machine learning. Thus, GEMME75

strikes us as an optimal proxy for whether or not resource-saving alignment methods such as MMseqs276

suffice for variant effect prediction. We placed ourselves in a context where GEMME relied solely on the77

information contained in a single input MSA to make the predictions (Figure 1). This setup allows for78

a fair comparison of different MSA generation protocols. It contrasts with the original publication (Laine79

et al., 2019) where GEMME would exploit two sets of input sequences. We assessed GEMME predictions80

against a large collection of 87 Deep Mutational Scanning experiments (DMS) totalling ∼1.5M missense81

variants across 72 diverse protein families (Notin et al., 2022) (Additional file 1: Figure S1). We used82

the Spearman rank correlation coefficient to quantify the accuracy of the predictions, as previously done by83

us and others (Notin et al., 2022; Meier et al., 2021; Laine et al., 2019).84

We show that the expand-and-filter many-to-many sequence search strategy implemented in ColabFold85

yields the highest-quality mutational landscapes for most of the proteins. For edge cases, where the filter86

is too drastic, we propose a simple solution to overcome the issue. We facilitated the import of alignments87

generated by ColabFold into the GEMME webserver, simplifying accessibility for users at: http://www.88

lcqb.upmc.fr/GEMME. Moreover, we provide predictions for the entire human proteome at: https://doi.89

org/10.5061/dryad.vdncjsz1s. The other datasets generated and/or analysed during the current study90

are available in the same Dryad repository.91

4

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 19, 2023. ; https://doi.org/10.1101/2022.12.13.520259doi: bioRxiv preprint 

http://www.lcqb.upmc.fr/GEMME
http://www.lcqb.upmc.fr/GEMME
http://www.lcqb.upmc.fr/GEMME
https://doi.org/10.5061/dryad.vdncjsz1s
https://doi.org/10.5061/dryad.vdncjsz1s
https://doi.org/10.5061/dryad.vdncjsz1s
https://doi.org/10.1101/2022.12.13.520259
http://creativecommons.org/licenses/by-nc/4.0/


Results and Discussion92

We refer to the four different MSA generation protocols and resources we considered as ColabFold, ProteinGym-93

MSA, ProteinNet and Pfam (see Methods, Figure 1, and Additional file 1: Table S1). They all proved94

useful for several applications, and they represent a variety of choices in terms of sequence database, search95

algorithm and sequence context. In short, ProteinGym-MSA relies on the profile HMM-based method96

JackHMMer (Eddy, 2011) to search sequences against UniRef100 (Suzek et al., 2015), a non-redundant97

version of UniProt (uni, 2023). The MSAs generated with this protocol have been widely used to assess98

mutational outcome predictors (Notin et al., 2022; Hopf et al., 2017). ColabFold uses the many-against-99

many sequence search algorithm MMseqs2 against the same database as ProteinGym, namely UniRef100.100

The MMseqs2 search strategy differs markedly from JackHMMer in that it uses the 30% sequence identity101

clustered database UniRef30 (Mirdita et al., 2022) as a proxy to Uniref100 to select sequences. This strategy102

involves a series of expansion and filtering steps with different thresholds for which straightforward equiva-103

lents are not available in JackHMMer. Furthermore, ColabFold offers the possibility to include metagenomic104

data from the Big Fantastic Database (BFD) (Jumper et al., 2021). Both ProteinNet and Pfam are large105

readily available resources of MSAs generated from profile HMMs. Their advantage compared to the two106

other protocols is that they do not add any computational overhead on top of GEMME prediction itself.107

One potential drawback though is that they typically do not cover the full protein length and thus lack108

contextual information. Specifically, ProteinNet focuses on protein regions whose 3D structures have been109

experimentally resolved. It uses JackHMMer against Uniprot Archive (Uniparc) (Consortium et al., 2018)110

and a collection of metagenomic sequences (Nordberg et al., 2014). Pfam is centered on manually curated111

protein domains, and we used the largest available MSAs, generated with HMMer against the whole UniPro-112

tKB. We chose to adopt the default parameters settings for each considered protocol or resource. This choice113

guarantees that our findings are comparable to those reported in the literature for these resources and that114

users can reproduce our results without fine-tuning the parameters or algorithms.115
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ColabFold alignments yield high-quality mutational landscapes with fewer116

sequences117

We found that ColabFold and ProteinGym-MSA were the best performing protocols and the only ones118

covering all ∼1.5M mutations from the ProteinGym benchmark (Table 1). The MMseqs2-based ColabFold119

search strategy consistently yielded better predictions than the JackHMMer-based ProteinGym-MSA pro-120

tocol for two thirds of the DMS (Figure 2A). This result holds true whether the ColabFold protocol was121

performed against the union of UniRef100 and the ColabFold environmental database, which is the default122

set up, or only against UniRef100, i.e. the same database as used by ProteinGym-MSA (Additional file123

1: Figure S2). Moreover, the expand-and-filter strategy implemented in ColabFold produced shallower124

alignments, with substantially fewer sequences, than the other protocols (Additional file 1: Table S1125

and Figure S3). For instance, all proteins falling in the ’high’ alignment depth category (Neff/L > 100,126

see Methods) based on their ProteinGym-MSA alignments, would be reclassified in the ’medium’ category127

(1 < Neff/L < 100) based on their ColabFold MSAs (Figure 2B, red triangles, and Additional file 1:128

Figure S4). This decreased alignment depth is accompanied by an improved prediction accuracy, by an129

average Spearman rank correlation difference ∆ρ̄ = 0.032, underlying the relevance of the ColabFold search130

strategy for these proteins. ColabFold also produced shallower alignments for most of the proteins from131

the ’medium’ category (Figure 2B, blue triangles). The differences in alignment depths have a limited132

impact on the prediction accuracy except for two proteins, namely the polymerases PA and PB2 from the133

influenza A virus (Figure 2B, see the two outliers). For these two extreme cases, the ColabFold MSAs are134

20 times shallower than those produced by ProteinGym-MSA, resulting in a lower prediction accuracy by135

∆ρ ∼ −0.3. The reason behind such a difference is the low divergence of these protein families. Indeed,136

the ProteinGym-MSA alignments contain a few tens of thousands of sequences, but almost all of them are137

very similar to the query (Additional file 1: Figure S5A-B, middle panels). GEMME is still able to138

exploit this limited variability to produce good-quality predictions (ρ values of 0.586 and 0.435). However,139

ColabFold’s strategy massively filtered out these similar sequences, down to a few tens (Additional file140
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1: Figure S5A-B, left panels). It brought in more divergent sequences, but they did not counterbalance141

the loss of information and GEMME predictions dramatically deteriorated. Removing the stringent filter142

of ColabFold and thereby expanding the MSAs, allowed for the restoration of prediction accuracies similar143

to those achieved by ProteinGym-MSA (Additional file 1: Figure S5A-B, right panels). We further144

identified two other proteins from the benchmark for which the ColabFold alignments had few sequences145

(less than 200). We obtained a significant gain in performance by removing the filter for these two additional146

cases (Additional file 1: Figure S5C-D). Although the number of concerned proteins in the benchmark147

remains small, this result suggests that removing the filter when the alignment contains less than 200 se-148

quences can be beneficial. A condition for this no-filter strategy to be effective is the presence of numerous149

highly similar sequences, as is often the case for viral protein families. Finally, ColabFold’s default strategy150

expanded the MSAs for all proteins belonging to the ’low’ category, resulting in a small gain in the overall151

performance (Figure 2B, green triangles).152

Environmental sequences marginally contribute to improving predictions153

We assessed the contribution of the environmental sequences in the context of many-to-many sequence154

search with MMseqs2 and pHMMs-based search with JackHMMer (Figure 2C and Additional file 1:155

Figure S6). Augmenting Uniref100’s set of annotated sequences with environmental sequences expands156

the ColabFold MSAs by up to 3 folds without significantly impacting the mutational landscape quality of157

most proteins (Additional file 1: Figure S6A). It slightly improved prediction accuracy for the four158

above-mentioned viral proteins, yet without allowing reaching a good agreement with the experimental159

measurements – the Spearman rank correlation remains below 0.3 (Additional file 1: Figure S6A, see160

purple dots at the bottom left). By contrast, it significantly deteriorated the predictions for the human161

KCNH2 by ∆ρ = −0.14 (Additional file 1: Figure S6A, red outlier). The limited influence of metage-162

nomics can also be observed when using JackHMMer as the search algorithm, as attested by the similar163

performance obtained for ProteinGym-MSA and ProteinNet (Table 1). Both protocols rely on JackHMMer164

as the search algorithm, but while ProteinGym-MSA considers only annotated sequences from UniRef100,165
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ProteinNet searches against the UniParc archive, grouping several databases of annotated sequences, and166

the IMG environmental database. This expanding search results in alignments containing 3 times more167

sequences on average. However, we identified only a few human proteins, namely P53, BRCA1, SUMO1,168

and YAP1, as well as IF1 and CCDB from E. coli, that benefited from this additional information by up to169

∆ρ = 0.11 (Figure 2C and Additional file 1: Figure S6B).170

Mutational landscapes of curated domains and folded regions are not171

better resolved172

One may wonder whether the predictions are better in regions annotated as protein domains or with experi-173

mentally resolved 3D structures compared to unannotated or disordered regions. To test this hypothesis, we174

compared the prediction performance achieved for the full mutational landscapes versus partial landscapes175

focusing only on the regions covered by Pfam or ProteinNet (Additional file 1: Figure S7). In all cases,176

we used the full-length alignments generated with ColabFold or ProteinGym-MSA and ran GEMME over177

the entire proteins. We focused on specific regions only for the computation of the Spearman rank correla-178

tion coefficients. We did not observe any significant differences between the full-length and region-focused179

ρ distributions (Additional file 1: Figure S7).180

Full-length alignments may display unbalanced depths over the different domains of a protein, potentially181

biasing the extraction of signals relevant to mutational outcomes. In order to assess the influence of the182

sequence context, we compared GEMME mutational landscapes predicted from full-length alignments with183

landscapes reconstructed from predictions obtained with domain-centered alignments (Additional file 1:184

Figure S8). Specifically, we ran GEMME on each of the Pfam alignments associated to a given protein,185

each one representing a curated Pfam domain, and we merged the predictions in a single landscape. We186

observed that the landscapes derived from full-length alignments were consistely more accurate than the187

reconstructed ones (Additional file 1: Figure S8). Indeed, the ColabFold strategy led to a higher188

Spearman rank correlation than the Pfam protocol for 70% of the considered DMS (Additional file 1:189
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Figure S9). For the remaining 30%, the gain brought by Pfam does not exceed ∆ρmax = 0.077. Along this190

line, the yeast protein GAL4 gives an illustration of the importance of the extent of the sequence context191

(Figure 2C and Additional file 1: Figure S10). While the ProteinGym-MSA protocol could retrieve192

16,159 sequences by querying the full-length query, the ProteinNet protocol retrieved only 249 sequences by193

querying a very small portion of the protein (6% that is 55 residues out of 881, PDB code: 1HBW). As a194

consequence, ProteinNet yielded a mutational landscape of a much poorer quality compared to ProteinGym,195

with a Spearman rank correlation of 0.217 versus 0.497 computed over the same residue range.196

Expanding on our assessment against the ProteinGym benchmark, we scaled the application of GEMME197

using ColabFold alignments to the entire human proteome. GEMME produced predictions for 20 339 proteins198

(out of a total of 20 484, see Materials and Methods) ranging from 21 to 14 507 residues (Additional file 1:199

Figure S11). It computed all mutational landscapes exploiting the full sequence context of each protein.200

Conclusion201

Multiple sequence alignments are critical to many protein-related questions. For instance, the last edition202

of the Critical Assessment of Structure Prediction (CASP, round 15) showed that MSA-based methods still203

significantly outperform protein language models in predicting protein 3D structures (Rigden et al., 2023;204

Elofsson, 2023). In this report, we assessed the influence of the search algorithm and the database choice for205

generating MSAs on the quality of in silico protein mutational landscapes. We ensured a clear readout of206

the input alignments using an unsupervised predictor relying on a few biologically meaningful parameters.207

The MMseqs2-based strategy implemented in ColabFold showed a good balance between prediction accuracy208

and computational time. It yields the best overall performance on a set of 87 DMS spanning a wide variety209

of proteins and covers protein regions lacking structural data or domain annotations. By controlling the210

number of sequences, it allows running these algorithms on machines with less memory. It is faster than211

classical homology detection methods by orders of magnitude. The users can easily tune the parameters, e.g.212

relax the filtering criteria, for handling protein families with low divergence. We also showed that readily213
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available resources such as ProteinNet and Pfam are valid options, albeit only partially covering the query214

proteins.215

In the last couple of years, a lot of attention has been drawn to optimizing, ensembling, clustering,216

subsampling, and pairing alignments toward improving protein 3D models (Petti et al., 2023), generating217

multiple functional conformations (Wayment-Steele et al., 2022), and resolving interactomes (Bret et al.,218

2023; Bryant et al., 2022). In the context of disease variants calling, Jagota and co-authors recently showed219

that vertebrate alignments exhibit a strong signal that can be used to boost specificity (Jagota et al., 2022).220

Nevertheless, determining which alignments are the most suitable for a given task, predictive method, or221

biological system often remains challenging. Our findings demonstrated that the alignment depth is not222

as good an indicator of prediction accuracy as one might expect. Shallow alignments can yield Spearman223

rank correlation as high as 0.7, and above a certain threshold, adding more sequences does not improve the224

predictions. Achieving accurate predictions with shallower alignments makes it possible to shed light on the225

mutational landscapes of protein families with few members or low divergence and also significantly reduces226

computational burden. In addition, we observed that extending the sequence search space to environmental227

datasets only marginally improves the accuracy of the predictions. Finally, we found that it is beneficial228

to make predictions with the knowledge of the full sequence context, rather than focusing on individual229

domains and concatenating the predictions afterwards. This result emphasises the importance of long-range230

inter-residue dependencies and suggests that deep learning methods are strongly limited by the maximal231

input sequence length, and thus context, they can handle.232

By establishing that fast MSA generation by MMseqs2 suffices, this study demonstrates the feasibility233

of MSA-based computational scans of entire proteomes at a very large scale. Combining ColabFold with234

GEMME, it takes only a few days to generate the complete single-mutational landscape of the human235

proteome on the supercomputer “MeSU” of Sorbonne University (64 CPUs from Intel Xeon E5-4650L236

processors, 910GB shared RAM memory). We made our human proteome-scale predictions available to237

the community. Moreover, our findings imply ways to save resources for other MSA-based methods.238
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Methods239

DMS benchmark set240

We downloaded the ProteinGym substitution benchmark (Notin et al., 2022) from the following repository:241

https://github.com/OATML-Markslab/Tranception. It contains measurements from 87 DMS collected242

for 72 proteins of various sizes (between 72 and 3,423 residue long), functions (e.g. kinases, ion channels, g-243

protein coupled receptors, polymerases, transcription factors, tumor suppressors), and origins (Additional244

file 1: Figure S1A-C). The DMS cover a wide range of functional properties, including thermostability,245

ligand binding, aggregation, viral replication, and drug resistance. Up to four experiments are reported246

for each protein (Additional file 1: Figure S1D). Although the benchmark mostly focuses on single247

point mutations, it also reports multiple amino-acid variant measurements for 11 proteins (Additional file248

2: Table S2). In the following, we considered the whole benchmark, and also a non-redundant version249

comprising only 59 proteins. We extracted these proteins with an adjusted version of UniqueProt (https:250

//rostlab.org/owiki/index.php/Uniqueprot) (Olenyi et al., 2022; Mika and Rost, 2003). Compared251

to the original UniqueProt protocol, we used MMseqs2 instead of PSI-BLAST to improve runtime, and252

discarded alignments of less than 50 residues for pairs of sequences with at least 180 residues to prevent very253

short alignments from removing longer sequences.254

MSA resources and protocols255

Two protocols, ColabFold and ProteinGym-MSA, were available for all 87 DMS (from 72 proteins) from the256

ProteinGym benchmark. ProteinNet was available for 51 (from 42 proteins), Pfam for 52 (from 39 proteins).257

When comparing two methods, we reduced the Spearman rank calculations to their common positions.258

The ColabFold protocol (Mirdita et al., 2022) relies on the very fast MMseqs2 method (Steineg-259

ger and Söding, 2017) (3 iterations) to search against UniRef100 (Suzek et al., 2015), the non-redundant260

version of UniProt (uni, 2023), through a 30% sequence identity clustered version (UniRef30), and a novel261
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database compiling several environmental sequence sets (Additional file 1: Table S1). It maximises262

diversity while limiting the number of sequences through an expand-and-filter strategy. Specifically, it iter-263

atively identifies representative hits, expand them with their cluster members, and filters the latter before264

adding them to the MSA. We used the same sequence queries as those defined in ProteinGym-MSA. For265

all but 5 proteins, the query corresponds to the full-length UniProt sequence. For each query, we generated266

two MSAs by searching against UniRef30 and ColabFold environmental database, respectively, and we then267

concatenated them.268

The ProteinGym-MSA protocol (Notin et al., 2022) relies on the highly sensitive homology269

detection method JackHMMer (Eddy, 2011) (5 iterations) to search against UniRef100 (Suzek et al., 2015),270

the non-redundant version of UniProt (Additional file 1: Table S1). JackHMMer is part of the HMMer271

suite and is based on profile hidden Markov models (HMMs). This protocol is relatively costly, with up to272

several hours for a single input MSA. It was initially described in (Hopf et al., 2017) where it was designed273

and tested on a subset of the current ProteinGym substitution benchmark. Hence, the proteins and DMS274

included in ProteinGym after this seminal publication can be considered as an independent test set. The275

protocol proved useful for large-scale applications (Frazer et al., 2021). In this work, we took the alignments276

provided with the ProteinGym benchmark (Notin et al., 2022).277

The ProteinNet protocol (AlQuraishi, 2019) also performs 5 iterations of JackHMMER, but it278

extends the sequence database to the whole UniProt Archive (Uniparc) (Consortium et al., 2018) comple-279

mented with metagenomic sequences from IMG (Nordberg et al., 2014) (Additional file 1: Table S1).280

Another difference from ProteinGym-MSA is that the queries correspond to sequences extracted from ex-281

perimentally determined protein structures available in the PDB (Berman et al., 2002). The MSAs are282

readily available and organised in a series of data sets, each one encompassing all proteins structurally283

characterised prior to different editions of the Critical Assessment of protein Structure Prediction (CASP)284

(Kryshtafovych et al., 2021). We chose the most complete set, namely ProteinNet12. It covers all proteins285

whose structure was deposited in the PDB before 2016, the year of CASP round XII (Moult et al., 2018).286
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For each protein from the ProteinGym benchmark, we retrieved the corresponding PDB codes from the287

Uniprot website (https://www.uniprot.org) and picked up the structure with the highest coverage among288

those represented in ProteinNet12 (Additional file 2: Table S2). We could treat 42 proteins, out of 72 in289

total. For the remaining ones, the positions covered by the available MSAs were out of the range of mutated290

positions.291

The Pfam database (Mistry et al., 2021) is a resource of manually curated protein domain families.292

Each family, sometimes referred to as a Pfam-A entry, is associated with a profile HMM built using a small293

number of representative sequences, and several MSAs. We chose to work with the full UniProt alignment,294

obtained by searching the family-specific profile-HMM against UniProtKB (Additional file 1: Table295

S1). The proteins sharing the same domain composition will have exactly the same MSAs. To avoid such296

redundancy, we focused on the non-redundant set of 59 proteins from ProteinGym. For each protein, we first297

retrieved its Pfam domain composition and downloaded the corresponding MSAs from the Pfam website298

(https://pfam.xfam.org, release 34.0). We could retrieve at least one (and up to 5) MSA overlapping299

with the range of mutated positions for 39 proteins (Additional file 2: Table S2). Each detected Pfam300

domain appears only once in the set.301

Alignment depth302

We measured the alignment depth as the ratio of the effective number of sequences Neff by the number of303

positions L. The effective number of sequences is computed as a sum of weights (Ekeberg et al., 2013),304

Neff =
N∑
s

πs, (1)

where N is the number of sequences in the MSA and πs is the weight assigned to sequence x(s), computed305

as306

πs =
( N∑

t

I[DH(x(s),x(t)) < θID]
)−1

, (2)
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where DH(x(s),x(t)) is the normalised Hamming distance between the sequences x(s) and x(t) and θID is307

a predefined neighbourhood size (percent divergence). Hence, the weight of a given sequence reflects how308

dissimilar it is to the other sequences in the MSA. To be consistent with (Notin et al., 2022), we set θID = 0.2309

(80% sequence identity) for eukaryotic and prokaryotic proteins, and θID = 0.01 (99% sequence identity)310

for viral proteins.311

In (Notin et al., 2022), MSAs are labeled as low, medium or high depending on the ratio Neff/Lcov,312

where Lcov is the number of positions with less than 30% gaps. Specifically, MSAs with Neff/Lcov < 1313

are considered as shallow (’low’ group) whereas those with Neff/Lcov > 100 are considered as deep (’High’314

group). MSAs with 1 < Neff/Lcov < 100 are in the intermediate ’Medium’ group. In our calculations, we315

consider the ratio between Neff and the total number of positions L, which is equal to the length of the316

target sequence for both ProteinGym-MSA and ColabFold MSAs.317

GEMME methodology and usage318

GEMME exploits the evolutionary history relating the natural protein sequences to estimate the functional319

impact of mutations. It relies on a measure of evolutionary conservation explicitly accounting for the way320

protein sites are segregated along the topology of evolutionary trees (Engelen et al., 2009). A conserved321

position is associated with at least two subtrees of ancient origin and homogeneous with respect to that322

position (all sequences in a subtree display the same amino acid). Since the trees are built from global323

similarities between sequences, the whole sequence context plays a role in estimating the conservation level324

of a given position. The GEMME algorithm makes use of these conservation levels in two main steps. First,325

to compare different substitutions occurring at the same position, it combines amino acid frequencies, com-326

puted with a reduced alphabet, with evolutionary distances representing the mimimum amount of changes327

necessary to accommodate the mutations of interest. We determine the evolutionary distance associated to328

the substitution of a into b at position i as the minimal conservation-weighted Hamming distance between329

the query wild-type sequence and any sequence from the input alignment displaying b at position i. Then,330

to be able to compare substitutions occurring at different positions, GEMME weights the predicted effects331
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with the conservation levels.332

In the original GEMME publication (Laine et al., 2019), we gave two sets of sequences as input to333

GEMME. We used the ProteinGym-MSA protocol to generate an input alignment and we compiled an334

additional set of input sequences using PSI-BLAST (Altschul et al., 1997) against the NCBI’s non-redundant335

(NR) database (O’Leary et al., 2015) (Figure 1). GEMME used the later to estimate the conservation levels,336

and the former to computed amino acid frequencies and evolutionary distances. Since then, we observed that337

the additional set of sequences had a limited impact on the performance (average ∆ρ̄ = 0.012 on the dataset338

reported (Hopf et al., 2017)). Hence, in more recent studies (Tsuboyama et al., 2023; Mohseni Behbahani339

et al., 2023), we solely relied on an input alignment generated with the ProteinGym-MSA protocol. In340

the present work, for all calculations, we asked GEMME to exploit only a single input MSA generated by341

one of the four tested protocols and resources (see Additional file 1: Supplementary Methods for342

computational details).343

Application to the human proteome344

We retrieved 20 586 protein identifiers and their amino acid sequences from the Swiss-Prot reviewed human345

proteome available in UniProt (uni, 2023), as of August 2023. We generated MSAs with the ColabFold346

protocol against UniRef30 v2302 and ColabFold Environmental Database v202108. We systematically re-347

generated the MSAs containing less than 200 sequences without the filter step. We modified the sequences348

that contained undefined residues (’X’ or ’U’ symbol) in the following way. When the undefined residue349

was located at the beginning of the sequence, the corresponding column in the alignment was always filled350

with gaps, and thus we removed that column. Otherwise, we replaced the undefined residue(s) by the most351

frequent amino acid appearing at the corresponding position(s) in the MSA. We ran GEMME through the352

Docker image available at: https://hub.docker.com/r/elodielaine/gemme with default parameters. A353

subset of 102 sequences were too short (≤20 residues) to be considered as proteins and were thus not treated.354

Another subset of 145 proteins displayed MSAs too shallow for GEMME to estimate conservation levels. In355

total, GEMME generated mutational landscapes for 25 339 proteins.356
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Data availability357

The data underlying this article are available in the Dryad repository https://doi.org/10.5061/dryad.358

vdncjsz1s.359
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Table and figure legends360

Table 1: Average Spearman’s rank correlation between predicted values and experimental361

measurements on the ProteinGym substitution benchmark. The Neff categories Low, Medium and362

High were taken from (Notin et al., 2022) and correspond to the ProteinGym-MSA alignments. We use363

this classification as a reference, although proteins may change category between the different protocols (see364

Additional file 1: Figure S4). The Spearman rank correlations are computed either over all residues from365

the target sequences, or only the residue ranges covered by ProteinNet and Pfam, respectively. For each366

alignment depth category or taxon, the best performing protocol is highlighted in bold. The correlations367

over the full-length versus partial proteins are comparable for ColabFold and ProteinGym-MSA protocols368

(Additional file 1: Figure S7).369

Fig. 1: Schematic representation of the workflow. GEMME computes and combines conservations370

levels, amino acid frequencies and evolutionary distances to predict protein mutational landscapes. The371

original protocol (Laine et al., 2019), illustrated with grey arrows, used PSI-BLAST against NCBI’s non-372

redundant database to infer conservation levels, and additionally exploited an input MSA generated with373

JackHMMer against UniRef100 to compute amino acid frequencies and evolutionary distances. In the present374

work, GEMME computed all measures from a single input MSA (see black arrows). We assessed four MSA375

generation protocols and resources, one relying on a many-to-many sequence search (in blue) and the three376

others relying on profile HMMs (in pink). Two resources (filled rectangles) provide large amounts of MSAs,377

covering virtually all protein families or all proteins with an experimentally resolved 3D structure. For each378

protocol or resource, we indicate the maximum number of sequences in the considered MSAs, ranging from379

25 thousands to 1.4 millions.380

Fig. 2: Performance comparison between the different MSA generation protocols. A.381

GEMME’s Spearman rank correlation coefficients (ρ) computed against the 87 DMS sets from the Pro-382

teinGym substitution benchmark. The input MSAs were generated using the ProteinGym-MSA (x-axis)383
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or ColabFold (y-axis) protocols. The colors indicate the taxons of the target sequences and the shapes384

indicate whether the experiment contains only single mutations (circle) or also multiple mutations (square).385

B. Differences in ρ values in function of the number of effective sequence (Neff ) ratio (Additional file 1:386

Supplementary Methods). Positive values correspond to ColabFold performing better than ProteinGym-387

MSA. Each point (triangle) corresponds to a given input MSA (i.e. a given target sequence) and its y-value388

is averaged over the set of DMS experiments (between 1 and 4, see Additional file 1: Figure S1) as-389

sociated to it. The colors indicate the depth of the ProteinGym-MSA alignments, either low, medium or390

high, as defined in (Notin et al., 2022) (see also Methods). C. Comparison of ProteinNet, ColabFold and391

ProteinGym-MSA against the 51 DMS covered by ProteinNet (x-axis). The ρ coefficients are computed over392

the residue spans covered by ProteinNet alignments for all methods. The DMS associated to viral proteins393

are highlighted in bold.394
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Tables521

Table 1: Average Spearman’s rank correlation between predicted values and experimental
measurements on the ProteinGym substitution benchmark.
Set Class #(proteins) #(DMS) ColabFold ProteinGym-MSA ProteinNet Pfam
All 72 87 0.470 0.463 - -

Low 14 20 0.453 0.444 - -
Medium 43 17 0.443 0.446 - -

High 15 50 0.552 0.520 - -
Human 26 32 0.445 0.436 - -

Eukaryote 10 13 0.500 0.479 - -
Prokaryote 17 21 0.529 0.505 - -

Virus 19 21 0.429 0.451 - -
ProteinNet 42 51 0.507 0.497 0.495 -

Human 19 23 0.484 0.466 0.477 -
Eukaryote 6 7 0.539 0.531 0.495 -
Prokaryote 13 17 0.562 0.536 0.540 -

Virus 4 4 0.353 0.453 0.410 -
Pfam 39 52 0.463 0.440 - 0.432

Human 15 20 0.440 0.423 - 0.407
Eukaryote 7 10 0.462 0.448 - 0.436
Prokaryote 9 13 0.517 0.489 - 0.496

Virus 8 9 0.438 0.399 - 0.391
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Figures522

Figure 1: Schematic representation of the workflow.
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Figure 2: Performance comparison between the different MSA generation protocols.
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