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Non-directed polymers in heavy-tail random
environment in dimension d > 2

Quentin Berger* Niccolod Torri® Ran Wei*

Abstract

In this article we study a non-directed polymer model in dimension d > 2: we
consider a simple symmetric random walk on Z¢ which interacts with a random
environment, represented by i.i.d. random variables (w;),cz¢. The model consists in
modifying the law of the random walk up to time (or length) N by the exponential
of >, cr, Blws — h) where Ry is the range of the walk, ie. the set of visited sites
up to time N, and 8 > 0, h € R are two parameters. We study the behavior of the
model in a weak-coupling regime, that is taking 8 := Sy vanishing as the length
N goes to infinity, and in the case where the random variables w have a heavy tail
with exponent a € (0,d). We are able to obtain precisely the behavior of polymer
trajectories under all possible weak-coupling regimes Sy = EN ~7 with v > 0: we find
the correct transversal fluctuation exponent £ for the polymer (it depends on a and
v) and we give the limiting distribution of the rescaled log-partition function. This
extends existing works to the non-directed case and to higher dimensions.
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1 Introduction

We consider in this paper a non-directed polymer model in which a simple symmetric
random walk on Z? (with d > 2) interacts with a random environment. This model is
closely related to the celebrated directed polymer model, for which we refer to [17] for
a complete overview. The main difference here is that the random walk is not directed:
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Non-directed polymers in dimension d > 2

it can come back to a site that has already been visited, but the interaction is however
counted only once (in the spirit of the excited random walk, see [3]). The model can
also be viewed as a randomly perturbed version of random walks penalized or rewarded
by their ranges, depending on the positivity or negativity of the external field. The
non-directed polymer model was first introduced by [25] (with exponential moment
conditions on the environment) and its study was followed in [5] with a detailed analysis
in dimension d = 1. Here, we investigate the case of a heavy-tail random environment,
in analogy with [7, 19, 24] for the directed polymer model — our results can be viewed
as a extension of [7, 19, 24] to a non-directed setting (and to higher dimensions).

1.1 The non-directed polymer model

Let S = (S,)n>0 be a simple symmetric random walk on Z® with d > 1. We denote the
probability and expectation with respect to S by P and E respectively. Let w = (w,) ez
be a field of i.i.d. random variables (the environment), independent of S. The probability
and expectation with respect to w are denoted by IP and IE respectively.

The non-directed polymer model up to time N is defined via the following Gibbs’
transform: for a given realization w of the random environment and for g > 0 (the inverse
temperature) and h € R (an external field), let

dPy,
T (S) := exp > Blw (1.1)
TERN
where Ry := {So,..., Sy} is the range of the random walk up to time N. The partition
function Z“” N is the constant which makes P‘” N.p @ probability measure and is equal to
ZR’,’% = E{exp ( Z Blwy — h))} . (1.2)
TERN

Note that if w = 0 (i.e. when there is no disorder) and Sh = ¢ € (0, +0o0), then (1.1)
becomes the model of a random walk penalized by its range, defined by dPN <(9) =
ﬁ e~ <IR~1, That model has been well-studied (starting with the seminal work [ 1) and
is now well-understood: with high P .-probability, Ry is close to a d-dimensional ball
with an explicit radius pg .N'/(4+2) without holes (see [11, 4, 20]).

When w is non-trivial, the model (1.1) describes a self-attracting (if h > 0) or self-
repulsing (if » < 0) polymer interacting with a random environment. At each site, the
polymer chain interacts with the disorder exactly once, which may model a screened
interaction, one monomer “absorbing” all the interaction at a specific site. We have
chosen to stick to this setting in order to pursue the study initiated in [5, 25], which
considers this model as a disordered version of a random walk penalized by its range.

Remark 1.1. One could study a polymer interacting repeatedly with the disorder, that is

ap4"
dgﬁ (S) = Zi i exp (Zﬁ wg, — h))

(note that the term —(SAN in the Hamiltonian is a constant and thus does not change
the measure). In that case, large values of w, will play an overwhelming role in the
measure, since their effect can be accumulated by returning repeatedly to a given site.
One can therefore expect a very strong localization phenomenon, the polymer staying
on one site with the largest possible w,, with high probability. In the literature, this
model is referred to as the parabolic Anderson model and the one-site localization for
heavy-tailed environment has been proven in [13], see [28] for a continuous-time version
of the result.
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Non-directed polymers in dimension d > 2

The main goal is then to understand the shape of typical polymer trajectories
(Si)o<i<n under the measure P‘X,% as N — oo. One of the main question is to know if and
how the presence of the environment perturbs the structure of the typical trajectories
of the walk. In particular, one is interested in describing the end-to-end (or wandering)
exponent ¢ and the fluctuation (or volume) exponent x, that are loosely speaking defined
as:

ESL(ISv[?) = N*,  Var(log Zy') = N?X.

For comparison, let us stress that the random walk (.S,,),,>0 in dimension d, is replaced
in the directed polymer model by a directed random walk (n, S, ),>0 in dimension 1 + d.
In particular, the parameter h does not have any influence on the polymer measure,
since the number of visited sites is deterministic (and no site is visited twice). An
important feature of the directed polymer model is that a phase transition is known to
occur: when w, have an exponential moment, if 5 is (striclty) smaller than some critical
value §., then trajectories are diffusive (£ = 1/2, x = 0), whereas if § is (stricly) larger
than . trajectories exhibit some localization properties and are conjectured to have a
super-diffusive behavior (at least in low dimensions) — for instance, in dimension 1 + 1 it
is conjectured that ¢ = 2/3 and x = 1/3. The critical value §. is known to be 5. = 0 in
dimension 1 + 1 and 1 + 2 (hence there is no phase transition) and 3. > 0 in dimension
1 + d with d > 3. We refer to [17] and references therein for more details.

In the non-directed case, however, the parameter h plays an important role, and
random walk trajectories with a large range are rewarded or penalized (depending on
whether h is positive or negative). In analogy with the directed polymer model, the
presence of a random environment should still have a stretching effect. The competition
between the folding effect of range penalties and the stretching effect of a random
environment has been recently investigated in detail in the case of dimension d = 1,
[5] (in particular, it has been found that £ = 2/3 when A = 0). But such a study
appears difficult in higher dimension, because the range of the simple random walk
then has a complex geometry. However, in the case of a heavy-tail random environment,
the localization features of the model become more salient, since a few sites in the
environment will have a much higher value than the others: we are indeed able to
describe quite precisely the behavior of the non-directed polymers in that case. This
generalizes the study in [7, 19] to the case of non-directed polymers and to higher
dimensions. Let us stress that as a by-product of our results we have that in the
heavy-tail setting there is no phase transition: 5. = 0 in any dimension.

Weak-coupling regime.

A recent approach for studying disordered system, initiated in [1], and which has been
developed extensively over the past few years, is to consider weak-coupling regimes, see
e.g.[6, 14, 15, 19, 25]. The idea is to take the inverse temperature Sy vanishing as N
goes to infinity. In the papers cited above, the goal is to find the appropriate scaling
for B in order for the partition function to converge to a non-trivial random variable.
This regime is called of intermediate disorder: loosely speaking, it corresponds to a
regime in which disorder just kicks in, in the sense that it is still felt in the limit, but is
not strong enough to make the (averaged) disordered measure singular with respect to
the reference measure.
We will assume that there is some v > 0 and some S € (0, c0) such that

lim N8y =8, asN — +oo, (1.3)
N—oc0

and we will write Sy ~ SN ~7; we may also consider the case 5 = 0 or § = +00. We think
of v as a parameter one can play with, which tunes the speed at which 8y goes to zero.
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We could actually work with general sequences (Sy)n>1 (in particular, the important
relation is (1.5) below), but we stick to the pure power case (1.3) in order to clarify the
exposition — it will capture all the essential features of the model, see Remark 2.9.

Let us also stress that we will consider h fixed, seen as a centering term for the
disorder w,.

Heavy-tail environment.

Our main assumption in this paper is that w = (w,),ez« are i.i.d. random variables, with
a pure power tail behavior. We assume that there exists some « > 0 such that

Plwy >t) ~t™, ast — +oo. (1.4)

Also here, we could consider a more general asymptotic behavior in (1.4), for instance
replacing the pure power ¢t~ by L(¢)t~* with L(-) a slowly varying function. However,
we stick to the pure power case as in (1.4) for the sake of clarity — again, it will capture
all the essential features of the model.

For simplicity, we also assume that w > 0, but this does not hide anything deep.

1.2 Heuristics for the phase diagram

Let us present a Flory argument to guess the wandering and fluctuation exponents.
The idea is to find the correct transversal fluctuations rny (with NV 1/2 < ry < N) such
that the entropic cost for the random walk to stretch to a distance r is balanced by the
possible energetic gain from high weights w, contained in a ball of radius ry. At the
exponential level:

¢ the entropic cost is of order 7“]2\, /N ;

« the energetic gain is of order By (r%)'/®, where (r%)/* is the order of the maximal
weight w, in a ball of radius ry.

Hence, the energy-entropy balance leads to the relation
2
B () ~ TWN (N2 <ry < N). (1.5)

In the case we are interested in, that is if Sy ~ N~7 with « > 0, this gives rny ~ N¢ with
¢ verifying
g—’y:2§fl — gzw, (1.6)
« 200 — d
provided that ¢ € [3,1], that is =2 < 4 < 5 (note that this range of parameter v
is non-empty only if o« > d/2). However, this picture should fail when « is large (in
particular when « > d), because then the strategy of visiting mostly high-energy sites
should be outperformed by a collective optimization (that is still poorly understood,
especially in dimension d > 3). We refer to [10] for a discussion on that matter. We
therefore focus our attention on the case o < d.

When 0 < v < djTa, then since the transversal fluctuations cannot exceed N, the
energetic gain should always overcome the entropic cost: we should have £ = 1. On the
other hand, when ~v > % fora > d/2 ory > djT"‘ for a < d/2, then the energetic gain
can never overcome the entropic cost of reaching distance much larger than N/2: we
should have £ = 1/2.

To summarize, one should have the following three regions when a < d.

A Ifae(0,d) andy < =2, then & = 1.

B. Ifa e (4,d)and v € (=2, 4), then ¢ = 211 ¢ (1 1),
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C. If o € (0,d) and v > max{-L, 9=} then ¢ = 1.

2007«
We refer to Figure 1 below for a graphical representation of these regions, and to [7,
Fig. 1] for a comparison with the corresponding picture in the directed polymer in
dimension 1 + 1 (where conjectures for larger values of a have the merit to exist). Our
main results consist in establishing this phase diagram.

5

d d a
2

Figure 1: Phase diagram for the wandering exponent £ depending on the parameters «,~, with
a € (0,d). We have identified three regions. In region A, we have £ = 1. In region C, we have { = %

a(l—y)
2a—d

region B interpolates between regions A and C: all values £ € (%, 1) can be attained. On the other

In region B, we have { = € (%, 1). Note that when o € (%, d), the wandering exponent £ in

hand, region B does not exist when «a € (0, g): the wandering exponent £ drops abruptly from 1 to %
and no intermediate transversal fluctuations are possible.

1.3 Definition of quantities arising in the scaling limit

Our results additionally provide the scaling limit of the log-partition function in all
weak-coupling regimes when « € (0,d). In order to describe the limit, let us introduce
the continuum counterparts of the random environment and of random walk trajectories,
and define the corresponding notion of energy and entropy.

The continuum environment arises as the extremal field of (w,),cza: we let P :=
{(z;,w;)} be a Poisson point process on R%x (0, +00) of intensity n(dz, dw) = aw~ 11, g dz dw.
With a slight abuse of notation (it will not draw any confusion), we denote its law by IP.

We also let

D= {s:[0,1] = R": 5(0) = 0, s continuous and a.e. differentiable}, (1.7)

which represents the set of allowed paths (corresponding to scaling limits of random
walk trajectories). Then, for a path s € D, we define its energy

7(s) = 7P (s) := Z Wl (zes(0,1])) - (1.8)
(z,w)EP

To define the entropic cost, let us observe that we have the following large deviation
principles for the simple random walk: for v € (0,1] and « € R? (we omit integer parts
to lighten notation), cf. Lemma B.1 in Appendix

. 1 wlg(2) ife=1
e — — &Y u ?
N =y 108 P(Suy = 2N?) = {g llz1? if¢e(3,1),

where J4(-) is a given rate function; we stress that J(z) < +oo if ||z[j; <1 and J(z) = +o0
if |«[|; > 1, with ||z[|; the ¢ norm of .
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We then define two different entropic cost functions for a path s € D — or rather for
the image s([0, 1])— depending on whether the path comes from the scaling of a random
walk trajectory with wandering exponent { =1 or ¢ € (%, 1). In the case £ = 1, we define

Ent(s) := inf /01 Ja((s0 ) (t))dt, (1.9)
where the infimum is over
@ :={p:[0,1] 28 1[0,1] : ¢ is non-decreasing and a.e. differentiable}. (1.10)
In the case € € (%, 1), we define analogously
'd
Ent(s) :;Ielfp ; 5“(30@) (t)||2dt = / || (¢ Hdt . (1.11)

The second identity comes from the fact that: (i) the right-hand side is a lower bound
for the left-hand side (by Cauchy-Schwarz inequality); (ii) the lower bound is attained
for the parametrization of s by its length, that is choosing ¢ such that fo“a(u) ||s’(t)]|dt =
ufo |s"(¢)||dt for u € [0, 1].

Let us also stress that J4(x) >
seD.

The continuous energy-entropy variational problem that we expect to arise as the
scaling limit of the log-partition function are sup cp { Br(s) — Ent(s } the entropy term
Ent(s) being one of (1.9) or (1.11) depending on the scaling con51dered As an important
part of the proofs, we will show that these continuous variational problems are well-
defined.

||#||2 for all z € R, so that Ent(s) > LEnt(s) for all

1 1
2 d

2 Main Results

Before we state our results, let us define more precisely what we intend when we say
that the polymer has transversal fluctuations N¢.

Definition 2.1. We say that (S,,)o<n<n has transversal fluctuations of order r under
P“]i,’_hBN if for any ¢ > 0 there exists some n € (0,1) such that for all N large enough

w,h

N,BN( max I1S%|l € [, ] N> >1—¢ with P-probability larger than 1 — ¢ .

We separate our results according to the different regions we consider. In all the rest
of the paper, we work in dimension d > 2.

Notational disclaimer. For two sequences (ap)n>1, (bn)n>1, We write a,, ~ by, if lim,,_,o ay /by, =

1, ap < by, if lim, o ap /b, =0, and a,, < b, if 0 < liminf a,, /b, < limsupa, /b, < cc.

2.1 Region A: o € (0,d), v < djTa

Our first result gives the scaling limit of the model in region A of Figure 1. This is
the analogue of what Auffinger and Louidor [2] proved in the context of the directed
polymer model in dimension 1 + 1: the following result therefore generalizes [2] to the
non-directed framework and to higher dimensions.

Theorem 2.2. Let o € (0,d) and let (8n)n>1 be such that limy_, Nd*TQBN =4 €
(0,+00]. Then for any fixed h € R, we have the following convergence in distribution, as
N — oo,

log ZN B 9, 7\23 = sup {m(s) - %Ent(s)} , (2.1)

1
5NNd/ s€D,Ent(s)<+oo

where 7(s) and Ent(s) are defined in (1.8) and (1.9) respectively.
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Remark 2.3. Let us stress that by an extended version of Skorokhod representation
theorem, see [27, Cor. 5.12], one can upgrade the convergence (2.1) to an almost sure
one. More precisely, if we look at Zj\“/ng as a function of PW) := ($7UJI)I€[,N7N]dQZzi
and the continuous limit 73 = 73(P), then by [27, Cor. 5.12], the convergence in
distribution in Theorem 2.2 implies that there exist some random elements PO and

P defined on the same proi)ablhty space such that P 2 @ P, p 2 @ ‘P and such that
limpy o0 W log Z s ,h ( N)) = 75(P) almost surely.

It therefore makes sense to work conditionally on 7A'5 > 0, even at the discrete level.
We have the following corollary, which says that conditionally on 73 > 0, transversal
fluctuations are of order V.

Proposition 2.4. Let o € (0,d) and let (6n)n>1 be such that limy_, Nd'TTaﬂNA: B e
(0,+00]. Then (Sy)o<n<n has transversal fluctuations of order N under P4 (|75 > 0).

Let us now give some property on the variational problem 773, and in particular state
that it is well-defined.

Proposition 2.5. When a € (0,d), the variational problem 7}3 defined in (2.1) is a.s.
finite for all § € (0,+o0]. Moreover, letting . = B.(P) := inf{ﬁ > 0: Tz > 0}, we have
that P(B. € (0,00)) = 1ifa € (0,%) and P(8. = 0) = 1 ifa € (£, d).

Remark 2.6. We could have formulated the convergence in distribution in Theorem 2.2
as follows:

1 ~ ~
— log ZIU\J,”%N LGN sup {Bn(s) —Ent(s)} =BTz, asN —oco.
N s€D,Ent(s)<+o0

However, in the case 8 = +o0, this would only give that - log ZN's R , goes to +oo. The
formulation of Theorem 2.2 allows us to treat the case 6 —|—oo, in which Sy N¥ is
much larger than N — in particular, it includes the case v < d?TO‘. In that case, the
entropy term disappears in 7A'Oo, even though the constraint that paths have a finite

entropy Ent(s) has to remain (for instance to avoid having paths of length larger than 1).

2.2 RegionB: o€ (4,d), =2 <y < L

In region B, our result is the analogous to Theorem 2.5 in [7] in the context of the
directed polymer model in dimension 1 4 1: this generalizes [7] to the non-directed
framework and to higher dimensions. Here, we will fix the parameter h to be equal to
gt == E[wo] € (0, 00), which is well defined since o > ¢ > 1.
Theorem 2.7. Leta € (4,d) and vy € (=2, L. Let (ﬁN)N>1 verify limy 0o N'fn = B €
(0,4+00). Then (
&= al=y) o (%, 1). Additionally, we have the following convergence in distribution, as

2a—d
N — oo,

Sn)o<n<n has transversal fluctuations of order N* under P;(,’%N”, where

w ()
log Z3 " h= S T = sup pr(s) — Ent(s)}, (2.2)
,Z\/v2£ 1 7 s€D,Ent(s)<+oo { }

where 7(s) and Ent(s) are defined in (1.8) and (1.11) respectively.

Let us stress that the choice of h = p is crucial because the contribution of the small
values of the environment (that is Syw, < 1) to the partition function is negligible only if
we center the random variables w,. This centering term is also needed in the directed
case, cf. Section 4.2 Eq. (4.27) of [7].

The fact that the variational problem 73 is well-defined in the case a € (%, d) is non-
trivial, and relies on (non-directed) entropic last-passage percolation (E-LPP) estimates,
introduced in [9]. Properties of the variational problem 7z are summarized in the
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following Proposition, which is the analogous of [8, Thm. 2.4] (and generalizes it to the
non-directed case and to higher dimensions).

Proposition 2.8. If o € (%, d), the variational problem 7Tz defined in (2.2) is a.s. positive
and finite for all § € (0, +00). Moreover, IE[(73)"] < co for any k < o — d/2, and we have

the scaling relation

T @ BEasa T . (2.3)

On the other hand, if a € (0, 4], we have T3 = +oc a.s., forall 3 > 0.

Remark 2.9. If we consider more general sequences [y, then the corresponding
transversal fluctuations ry are given by the relation (1.5), that is ry ~ (IV ﬁN)ﬁ.
In analogy with [7, Thms. 2.5-2.7], we should find three different scaling limits in region
B, according to whether /N log N < rxn (corresponding to the bulk of region B Theo-
rem 2.7 above), ry =< /N log N or VN <« ry < /N log N (corresponding to boundary
regions between region B and region C). We have chosen here to consider only pure
powers for 8y (and for ry) in order to keep the exposition clearer — the arguments
from [7] could be adapted here but it would significantly lengthen the paper.

2.3 Region C: a € (0,d), v > max{4=2 <

a 2«

In region C, we will show that transversal fluctuations of the polymer are of order
N'/2, As a preliminary remark, let us stress that for any z € R¢\ {0} (omitting integer
parts to lighten notation), we have the following asymptotics for P(x\/ﬁ € Rn). Setting
vy :=log N ifd =2and v, = N2~1if d > 3, we have

{flo;'Q/Q u te "du ifd =2,

lim vyP(z2VN € Ry) = f(z) :=
wP( v) = /@) 2/\df01pd(u,x)du ifd >3,

N—oc0

(2.4)

where A\ := P(S,, # 0,Vn > 1) is the escape probability and py(t, z) := (2rt/d)~%/2¢ 5 ll=I*
is the heat kernel of a d-dimensional Brownian motion with covariance matrix éId. The
asymptotics (2.4) can be derived from Uchiyama’s results [32]: see [32, Thm. 1.6] for
the case of dimension d = 2 and [32, Thm. 1.7] for dimensions d > 3.

In region C, the cases a € (0,4), v > =% and a € (%,d), v > 4 need to be treated
separately, similarly to the case of the directed polymer model [7].

Case a € (4,d)

We start with the case a € ( %, d),y> %, which is easier to state. Let us introduce some
quantities that arise in the limit: we stress that different objects arise depending on the
dimension.

Proposition 2.10. In dimension d > 5, define
Xi= 3 (w, — WP(r € Reo) :E{ 3 (wx—,u)}, (2.5)
z€Z TER o
where we recall that j = E[wo]. Then the random variable X is well-defined if o > 5%

Proposition 2.11. In dimensions d = 2,3 and a € (%, 2), define

1
Wy — LeP 1~ Bw) f(e)P(da, dw) + / wf(@)(P —n)(dz,dw), (2.6)
RdXR+ RdXR+
with f(z) defined in (2.4) and n(dz,dw) = aw~*"1dz dw the intensity measure for P.
If o € (4,2), then for any 3 € (0,00), the random variable W in (2.6) is almost surely
finite.
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We are now ready to state our results in the case a € (%,d), v > %. It is the
analogous of Theorem 1.4 in [19] for the directed polymer model in dimension 1 + 1: it
generalizes [19] to the non-directed case and to higher dimensions. Here again, we need
to fix h = p := Elug).

Theorem 2.12. [et o € (%,d) and let (fn)n>1 be such that limy_,« N%BN = f €
[0,400). Then (S,)o<n<n has transversal fluctuations of order N2 under P%’,h;v“. We
also have the following convergences in distribution, as N — oo:

eIfa e (2V g,d) (in particular d > 3), then setting ay = N'/* ford = 3, ay =

(log N)Y/2 ford = 4, and ay = 1 for d > 5 we have:

_, 1 @ |N(0,0%3Var(w)) ifd= 3,4,
wh=p = 2 d
anbBn (102; ZN bx QWaf(W)ﬂNEHRNH) — {X ifd> 5, (2.7)

for some explicit constant o4; recall X has been defined in (2.5).
e Ifa € (%, 2) (in particular d = 2 or d = 3), then setting v,, := log N for d = 2 and
v, = NY/2 for d = 3, we have
UN w,h=p (d)

———log Z%'H ~5 Wy, 2.8

BNN% g N,Bn B ( )
with W3 defined in (2.6) — if § = 0 the first term in (2.6) is set to zero, see Proposi-
tion 2.14 below.

Remark 2.13. Let us stress that when a > d/2, in dimension d > 3 we have % E[|Ry|] ~
Cgled/O‘ (assume S > 0 to simplify), so in particular it goes to 0 as N — co. One can
easily check that we always have (ayf8n)~! x S3E[Rn|] = +0o when o > 2V % (and
thus, d > 3), so the centering in (2.7) is non-trivial.

Case a € (0, %)

In this second case, recall Theorem 2.2 and Proposition 2.5. If « € (0, %) and Sy ~
BN—(d=a)/a a5 N — oo, then the scaling limit of the log-partition function has been
identified as 773 However, when a € (0, %) we have 7} = 0 when 8 < 3., with 8, =
B.(P) > 0 a.s.: in that case, the scaling limit is thus trivial. Our next result shows that
when 3 < S, then transversal fluctuations are necessarily of order v/N; this has to be
compared with Proposition 2.4 which asserts that transversal fluctuations are of order N
when 8 > 3. This shows that when a € (0, 4) we cannot have intermediate fluctuations
between N'/2 and N: the system exhibits a sharp phase transition at the critical point
B = B.. Our result is the analogous of Theorem 2.12 in [7], and generalizes it to the
non-directed case and to higher dimensions.

Let us define another quantity, analogous to ;g defined in (2.6).
Proposition 2.14. For « € (0,1) U (1,2), define

wf(x)(P — dz, dw), ifa € (1,2),
Wy — {fmm f(@)(P = n)(dz, dv),  ifa e (1,2 2.9)
f]Rd><1R+ wf(z)P(dx,dw), ifa € (0,1),
with f(x) defined in (2.4) and n(dz,dw) = aw~*"'dx dw the intensity measure for P. If
a € (0,1), then W, is a.s. finite in any dimension d. If « € (1,2), then W) is a.s. finite if
and only if o < ﬁ'

Recall that by an extended version of Skorokhod represenAtation thegrem [27, Cor. 5.12]
(cf. Remark 2.3), it makes sense to work conditionally on 73 > 0 or 73 = 0, even at the
discrete level. If a > 1, we need to take h = p := E[wy] and if & < 1, then h may be any
real number.
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Theorem 2.15. Let a € (0, %), and let (By)n>1 be such that limy oo N5 By = B €
[0,400). Then conditionally on the event {7} =0} (i.e. 8 < B.) the polymer (S,)o<n<n

has transversal fluctuations of order N'/? under P“X,’%N. Moreover, conditionally on

{77; = 0}, we have the following convergences in distribution, as N — oc.
« If o € (7%, %) (in particular d > 5), then we have

ﬂiN log z"=r 1% x| (2.10)
with X defined in (2.5).
e Ifa < min(%7 d—iz) (in particular « < 2) and « # 1, then
v

Bﬁ log Zi7l5,, < Wo, (2.11)
N [e3

where v,, :=log N ifd = 2 and v,, = Ni-1ifd > 3, with W, defined in (2.9).

Remark 2.16. The case a = 1in (2.11) could be treated similarly to what is done in [19,
Thm 1.4]. In the case a = 1, a centering term for log ZX,’}%N is needed in (2.11) and the
scaling limit should be Wy = [, (o w/f(@)(P — n)(dz, dw) + [ray (1 oy wf(2)P(dz, dw).
Since this is fairly technical, we prefer to omit the details for simplicity.

2.4 Comparison with directed polymers

As we stressed in the introduction of this paper, the model (1.1) is closely related
to the directed polymer model — our results can be seen as an extension of existing
results to a non-directed setting and to higher dimension. Let us now briefly discuss
this relation by comparing the techniques exploited in the present article with the one
developed for the directed polymer.

* In Region A our results extend [2, 24], where the authors considered the directed
polymer in dimension 1 + 1. In this region, only a few points give an energy contribution
to the variational problem: the random walk linearly interpolates between these points
to get the maximal energy reward to compensate the entropy cost. The fact that we
can approximate the problem by considering only a finite number of points allows us to
extend and exploit the techniques introduced for the directed case: the scheme of the
proof is very close to the one in [2].

* In Region B, our results extend the analysis performed in [7] to the non-directed
framework. In particular our techniques are based on the non-directed Entropy-
controlled last passage percolation (E-LPP) introduced in [9] (as an extension of the
directed E-LPP of [8]), a crucial step consisting in showing that we can restrict the
partition function to trajectories staying at scale N¢. The extension to a non-directed
setting and to higher dimension is the main novelty here, as discussed in Appendix A.
Overall, the proof follows the same scheme as in [7], but several adaptations are needed,
with some tedious technicalities.

* In region C, we perform a polynomial expansion analysis, in the same spirit as in
[19] for the directed polymer model with heavy-tail disorder. The crucial difference here
is that in our non-directed case the geometry of the range plays a central role in the
behavior of the model (and so in the polynomial expansion analysis). We therefore have
to use here a local central limit theorem for the range, considering the probability that
a point at scale v/N belongs to the range Ry, i.e. P(zv/N € Ry). Even if the proofs in
region C start from the same idea as in [19], the technical treatment of the polynomial
expansion requires new ideas and becomes more technical and dimension dependent.
Let us stress that the case of dimension d = 2 requires particular care, because then
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P(x\/N € Ry ) scales as log N, compared to the polynomial behavior N 51 in dimension
d > 3.

To conclude, let us comment on the limiting random variables that appear in Theo-
rems 2.12-2.15; note that they indeed depend on the dimension. The random variable
Wg (see Propositions 2.11-2.14) appears when o < 2, in dimensions d = 2,3 or when
B = 0: it is the analogous of Wéa) defined in [19, p. 4011] (see also [19, Thm. 1.4]).
When « > 2, then in dimensions d = 3,4, analogously to [19, Thm. 1.2] a normal random
variable appears, whereas in dimension d > 5 a new random variable X pops up (see
Proposition 2.10 for the definition of A’), which to our knowledge has no analogous in
the literature.

2.5 Further comments and conjectures

Our article solves completely the case a € (0,d), but there are several aspects that
remain to be tackled:

« In Region B and in Region C with o > min{2, ¢, 7%}, the parameter % is needed
to be set equal to i to center the environment: the case of a general h should be
investigated;

* More precise statements on the convergence of paths could be extracted from
our results, in particular one could try to prove in some cases a localization of the
trajectories near an optimal path;

* The case a > d is still a challenge: the wandering exponent ¢ is not known — except
in the intermediate disorder regime (Region C), where £ = 1/2 (but one still has to
understand the corrrect scaling for Sy).

In this section, we develop further on these aspects, we comment their relation with
the literature, and we present some open problems and conjectures.

2.5.1 About the external field ~

It is not hard to see that in Region A, the parameter h is unimportant. On the other
hand, for Region B and for Region C with @ > min{2, %, ﬁ} we can see from the proofs
(cf. Sections 6-8) that a centering is needed, so h needs to be fixed equal to p = E[wo].
In order to make the proofs more transparent (which are already quite technical) and
to simplify some non-central arguments, we have chosen to stick to a non-negative
disorder: this is used in particular in Region A and B (they are related to the discrete
energy-entropy variational problems, cf. Section 4). This also has the advantage to
illustrate when a centering of the environment is crucial or not. Without the assumption
of non-negativity of the disorder, the proofs may require some extra technical work, and
one should still center the w by the parameter & when needed (or take E[wy] = 0 and
h = 0).

Furthermore, we can also consider a more general setting for our non-directed
polymer model, by considering the following:

= Z“th eXP( Z (BNwz — hN)>,

N,Bn TERN

APy
AT

with Ay = hN—¢ and ¢ € R (note that in this article, hy is simply Sy h). The above model
can be viewed as a perturbed version of a random walk penalized by its range and is
more challenging. The case of the dimension d = 1 has been analyzed thoroughly, see
[5]. In particular, we can expect that when hy is large enough (at least compared to
Bn), i.e. when the penalty by the size of the range dominates, then the polymer folds
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into a ball (similarly to [4, 11, 20]). However, contrary to the homogeneous model where
the center of the ball is random, the location of the ball may be completely determined
by the environment, since the polymer tends to maximize the sum of w’s seen in the
ball—see [12] for the one-dimensional case. On the other hand, there should be a
regime where a balance is found between the energy and the entropy (the penalization
by the range is negligible—this is somehow the focus of this article), and a regime
where a balance is found between the penalization by the range and the energy (the
entropic cost of having an unusual range being out-weighted by the range penalty). For
a € (0,d), the phase diagram of the above model should be similar to the one found in
the one-dimensional case, cf. [5].

2.5.2 About the geometry of the range

In this paper we consider the scaling limits of the logarithmic partition function and we
describe the transversal fluctuations of the walk. Such results are the starting point to
push further the analysis of the geometry of the range R . In this setting we conjecture
that the limits of the logarithmic partition function contain all the information to describe
the geometry of the random walk. To be more precise, in Region A and B we conjecture
that the supremum of the variational problem 77; and 73 is attained by some unique
continuous path that we call §* and s* respectively, by analogy with [2, 8]. We then
conjecture that the typical range of the random walk is concentrated around these paths.
More precisely, if we look at a path as a set, i.e. if we consider its support in R¢, then we
conjecture that under the hypothesis of Theorem 2.2, for any € > 0,

. w,h 1 ~k P
Jim PYA (NRN CB.(3 )) Py, (2.12)

and under the hypothesis of Theorem 2.7, for any € > 0,

1

. w,h
lim P (Nf

N EN sy Ry C %ds*)) P, (2.13)

where B.(y) = {x € R?: d(z,v) < ¢} and P is the coupling between the discrete and
continuous disorder introduced in Remark 2.3.

In region C we expect that ﬁR ~ converges to a continuous limit, which should be
a random perturbation of a Brownian motion range (but a precise statement is harder to
state).

2.5.3 About the intermediate disorder regime (region C)

In [25], Huang considers the intermediate disorder regime of the model (that is a regime
where £ = 1/2 but disorder has a non-trivial effect), in the case of a disorder with finite
exponential moment, i.e. E[e®*+] < +o0 (or roughly speaking, o = +00). More precisely,
Huang [25] shows that, taking

By =BN"Y4ifd=1, PBy=BN2logN ifd=2, By=BNY*ifd=3,
(2.14)
for some 3 > 0 and taking hy = By log E[ef~“=], then Z}‘(,%% converges in distribution
toward a random variable ZE’ given by an explicit Wiener chaos expansion.

Our Theorem 2.12 is the analogue of this result in the case % < a < d (and any

dimension d > 2). In particular, (2.7)-(2.8) states that the choice Sy = §N*d/20‘ is the
correct scaling in order to observe non-trivial fluctuations for Z]“(,”’éN. Analogously to
what is done in [19] for the directed polymer, one could try to extend our Theorem 2.15
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to the case a > d, i.e. to study the intermediate disorder regime for all values of a. We
leave this as an open problem, but let us comment on the expected results.

In dimension d = 2, we expect that the correct intermediate disorder scaling is
By = BN—4/22 = N~V forall 1 < o < 2 (the scaling limit is then given by Theorem 2.12)
and that one reaches the scaling Sy = N~'/2log N given in (2.14) for all a > 2, with
then the scaling limit as in [25].

In dimension d = 3, we expect that the correct intermediate disorder scaling is
By = BN—4/22 = N=3/2a for all 3 < a < 6, with a scaling limit similar to Theorem 2.12,
and that one reaches the scaling Sy = N~'/4 given in (2.14) for all « > 6, with then the
same scaling limit as in [25]. A way to understand this comes from (2.7): loosely speaking,
it says that in dimension d = 3, taking By = BN ~3/2% we get that Zylsy =1+ BNNVAZ
for some random variable Z. This approximation may remain valid for some a > d but
it must fail when By N'/4 = BN—3/2041/4 hecomes of order 1 (that is when « reaches
the value 6), at which point all terms in the polynomial chaos expansion of the partition
function are of the same order.

In dimension d > 4, the correct intermediate disorder scaling should be gy =
BN —d4/2o for any a > d/2, with a scaling limit similar to Theorem 2.12. Indeed, the
convergence (2.7) states that taking Sy = EN_d/Qa we have Z]“(,’V%N ~ 1+ fnyanZ for
some random variable Z: since ay = (log N)'/? in dimension d = 4 and ay = 1 in
dimension d > 5, we have that fyay — 0 for any a < +oco. In that case, we should
therefore have that lim,,_, o ZR}’:%N = 1, with fluctuations of order Syay. Additionally, for
disorder with exponential moments (i.e. « = +00), the approximation Z]“\’,’_"éN ~ 1+0nanZ

suggests that: in dimension d = 4, one should take Sy = B/(log N)'/2 to observe a non-
trivial scaling limit for ZJ“\’,”’;N (disorder is marginally relevant); in dimension d > 5, one
should have that Z;J,’g has a non-trivial limit for small (but fixed) 8 — in other words,
there is a weak disorder phase (disorder is irrelevant), in analogy with the directed

polymer model in dimension d > 3.

2.5.4 About the transversal fluctuations in the case o > d

Let us now consider the case of 3 fixed and let us recall the Flory argument presented
in Section 1.2: for ¢ > 1/2, the energetic gain of a polymer in a box of size N¢ is of
order N%/® while the entropic cost of going at distance N¢ is of order N%~1. The
energy-entropy balance leads to the prediction that { = 5-*—. This should hold as long
as ¢ € (1/2,1). In particular, if & < d we should have that ¢ = 1: this is what is proven (in
a more general framework) in the present paper, see Theorem 2.2 (Region A).

When a > d, in comparison with the directed polymer literature (see e.g. [23]), we
may conjecture that there exists some a. such that for a € (d,a.) we have { = >~
and for a > «. we have £ = &, where £ = £.(8) > 1/2 is the fluctuation exponent
obtained for a disorder with finite exponential moments. Such «,. should therefore solve
the equation Qa(id =¢,, thatis a. = ngjl; by convention o, = +oo when . = 1/2. This
fact has indeed been proven in dimension d = 1 in [5], in the non-directed setting of the
present paper: in that case we have { = 1ifa € (0,1), { = 525 if a € (0,2) and & = %
for all a > 2.

The question in dimension d > 2 remains quite mysterious (both for non-directed and
directed polymers), in particular because the fluctuation exponent &, is unknown. It is
expected that, at least in low dimensions, there is some critical value 3. below which
&= % (which would lead to a. = +00) and above which £, > 1/2 (which would lead
to a. < 400). In view of the previous subsection, one could argue that in dimension
d = 2,3 we have . = 0, but for now this is purely speculative. Let us also mention that
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the existence of an upper critical dimension dy above which &.(d, 5) = % for all j is still
controversial, see e.g. [29]. In order to extend the analysis of the problem to a > d, a
first step would be to study the existence and dependence on the parameters of the
conjectured exponent f..

2.6 Organization of the rest of the paper

We now present the organization of the paper and describe how the proofs are
organized.

¢ In Section 3 we prove that the variational problems 73, 7\'5 and the random variables
X and Wg, W, are well-defined (i.e. Propositions 2.5, 2.8, 2.10, 2.11 and 2.14). Along
the way we discuss their main properties.

e In Section 4 we present the main auxiliary results about the discrete approximation
of the energy-entropy variational problems 73 and 7A'ﬁ that we use to prove Theorems 2.2-
2.7. These results extend the analogue results obtained in [8, 9] to the d-dimensional and
non-directed case; they are related to the Entropy-controlled Last-Passage Percolation
(E-LPP). Some results on the non-directed version of the E-LPP are postponed to the
Appendix A.

e In Section 5 we prove Theorem 2.2, i.e. region A. To prove this, we first reduce to a
partition function restricted to the largest L weights ZJ(\%N, see (5.1), by showing that
the contribution of all smaller weights is negligible, see Lemma 5.1. We then show that
log Zﬁ%N, properly rescaled, converges to the continuous variational problem restricted

to the largest L weights, see Lemma 5.2.

e In Section 6 we prove Theorem 2.7. As a crucial first step, in Section 6.1, we
show that we can restrict the partition function to trajectories staying at scale N¢,
see Proposition 6.1. To achieve this, we need to show that the entropic cost to reach a
distance hy > N¢ cannot be overcompensated by an energetic gain at scale h,,: this
is the purpose of Lemma 6.2. This relies once again on controlling the contribution of
different ranges of weights to the partition function; the most technical part actually
consists in controlling the contribution of intermediate weights, which requires a detailed
analysis to match the energetic gain with the entropic cost. Once trajectories have been
reduced to being at scale N¢, the convergence of the partition function is performed in
Section 6.2, see Proposition 6.3; the strategy of the proof is similar to what is done in
Section 5 for region A.

e In Section 7 we prove Theorem 2.12. The idea of the proof is based on a truncation
of the environment (7.3) which allows us to prove that the main contribution comes from
trajectories that stay at scale N'/2. The convergence of the partition function defined on
the truncated environment is presented in Lemma 7.2. Its proof is based on a polynomial
expansion analysis (7.11) in which we show that the convergence is led by the first term.
Different random limits arise depending on the tail exponent « and the dimension d. If
« > 2 the limit is Gaussian in small dimensions (d = 3,4) and in high dimension (d > 5)
the limit is described by the averaged (w.r.t. the random walk) sum of the environment
on R, see the definition (2.5) of X'. If & < 2 the limit conveys the heavy-tail structure
of the environment, see the definition (2.6) of Wg.

e In Section 8 we prove Theorem 2.15. The most technical issue consists in showing
that conditionally on {7A'5 = 0} the main contribution to the partition function comes
from trajectories that stay at scale N'/2, see Section 8.1; in particular, this shows that
trajectories cannot have intermediate scale. Then, the strategy is similar to that used in
Section 7, combining a truncation of the environment and using a polynomial expansion.

e Finally, we collect in Appendix several technical estimates. As mentioned above,
Appendix A provides useful results for the non-directed E-LPP. In Appendix B, we collect
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some simple random walk estimates: large and moderate deviations, probabilities that a
given set is visited, intersection of ranges of independent walks. In Appendix C, we give
estimates on exponential moments of a truncated version of the environment.

3 Properties of the limiting variational problems and random
variables

In this section, we prove the well-posedness of the variational problems 7A'5 and 73 (in
Section 3.2, together with some of their properties), of X (in Section 3.3) and of W3 and
W, (in Section 3.4).

3.1 Some notation: order statistics and truncated energy

We introduce some notation to describe the contribution of large weights to the
variational problems 73, 73. For ¢ > 0 we define

D, = {s € D: Ent(s) < oo, sup ||s(t)]| < q}7 (3.1)
0<t<1

and for a realization of P, we set P, := {(z,w) € P, ||z|| < ¢}. Then, the energy along a
path s € D, is given by

Tq(s) == Z wlizeso,1))y- (3.2)
(mvw)epq

In the ball A, := {x € R?,||z|| < ¢} we can also label the points of P by using the order
statistics:

(xaw)(x,w)epq = (Y'L(q)?M'Eq)),LZl) (3.3)

where the distribution of (Y(?, M{?),, is given as follows:

(i) MEQ) = (caq)¥*(E1 4 - + &)YV, with (&);en i.i.d. exponential random variables
of parameter 1; this is the sequence of weights, ng) being the i-th largest weight
in A,. See for instance [18] or [24].
(i1) (Yl(q))izl are i.i.d. uniform random variables on A,, independent of (&;);cn; these
are the location of the weights;
We then define the truncated analogue of (3.2):

L
‘ _ (9)
7 (5) = 2 MLy oy (3.4)
=1

and we also let 7r,§,>e)(s) = m4(s) — wéé)(s) .
Remark 3.1. Notice that if s € D verifies Ent(s) < B with B > 1, then the length of the
path s is bounded by 1/2B/d < B, and so we have s € Dp.

3.2 On the variational problems 75 and ﬁ;

Recall that 73 and 7A73 are defined respectively in (2.2) and (2.1). Here, we prove
Propositions 2.5-2.8: We mostly focus on the first one (i.e. on 73): we treat 773 along
the way, since the results follow from a simple comparison with 73 (recall that Ent(s) >
LEnt(s) for all s), or with identical arguments.

Before we start, let us stress that for almost every realization of P, the maps 3 — 73
and 3 — 773 are non-decreasing and continuous. The proof of this fact is identical to that
of [8, Thm. 2.4] (see Section 4.5 in [8]), so we omit it.
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Proof of the scaling relation (2.3)

Consider the Poisson Point Process P on R? x R.; with intensity (dz, dw) = cw~*"tdzdw.
If we consider, for a > 0, the scaling tranformation ¢,(z,w) = (az,a?“w), then we
have that ¢,(P) @ P; notice also that 7%*F(s) = a%*n(s/a) and Ent(as) = a*Ent(s).
Therefore, since D = %D, by applying the scaling ¢,, we get

sup {Ba‘d/u‘w(s) — Ent(s)} @ sup {Bn(s) — a®Ent(s)},

s€D, Ent(s)<oo s€D, Ent(s)<oco

so that 7j,-a/a @ a*Tpq-2. This implies (2.3). O

Finiteness of 73 (and of 773)

For any interval [a, ) let us define

Ts(la,b)) ==  sup  {Bw(s) —Ent(s)}. (3.5)

s:Ent(s)€[a,b)

In such a way, we have that

Ts =T3([0,1)) Vsup Tp ([2’“, 2k+1)) )
E>0
Using the scaling properties of P and that having Ent(s) < 2 implies s € D, (see Remark
3.1), we get that

T ([2%,25) @ sup {2%57((8) —2"Ent(s)} < B2%s sup  {m(s)} —2".
s€D ,Ent(s)€[1,2) s€D ,Ent(s)<2
(3.6)
The following lemma is the key result to prove the finiteness of 73. Its proof is similar
to that of [8, Lemma 4.1] and is based on entropy-controlled last-passage percolation
(E-LPP) estimates. We postpone its proof to Appendix A.

Lemma 3.2. Let o € (0,d). For any 0 < a < « there is a constant ¢ = ¢, such that for
anyt>1,

IP( sup  {7w(s)} > t) <et ™.
s€D ,Ent(s)<2

In particular, it shows that for any a < d we have that supg,(s)<2{7(s)} is a.s. finite.

Using Lemma 3.2 we can conclude the proof of the finiteness of 73 when o € (%, d).
For any ¢ > 0, using (3.6) and Lemma 3.2 we get that for any a < «

]P<T5([2k’2kﬂ)) > t) = ]P( sup  w(s) > A2 (¢ + 2’“))
s€D,Ent(s)<2 (3.7)
<eprokia (t427) 77

Then, for any ¢ > 1, a union bound gives

e’} log, t
P(Ts >t) < ZIP(']};([Q’C’QkJrl)) > t) < pe (ta Z ok e + Z 2ak(12‘i)>’
k=0 k=0 k>log, t
(3.8)
where we split the series at k = log,t and used that ¢t + 2* > ¢ for k < log,t, and
t+ 2% > 2% for k > log,t. Since a > d/2, we obtain that P(7; > t) is smaller than a
constant (that depends on a, «, 3) times

ot o) e,
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In particular, for any a < « there is some constant ¢’ = ¢, g > 0 such that for any ¢t > 1
P(T; > t) < dt-alems), (3.9)
This concludes the proof that 73 is a.s. finite when o € (g, d). Also, since a can be chosen

arbitrarily close to «, this proves that E[(73)"] < oo for any x < a — d/2. O
Remark 3.3. Notice that, from the definition 2.1 of 7A]3 we have for all § € (0, +oc],

~

Ts

IN

sup {m(s)} < sup {m(s)}. (3.10)
seD,Bnt(s)<+oo s€D,Ent(s)<d/2

For the second inequality we used that J4(z) = +o0 if ||z]l; > 1, and in particular if
|z]|?> > 1: this shows that if the length of s is larger than 1 (in particular if Ent(s) > d/2),
then Ent(s) = +o0o0. Thanks to Lemma 3.2 (up to a scaling), this shows that for any

ES

a € (0,d), Tg is a.s. finite for all 5 > 0.

Positivity of 7; (and of 75)

Let us consider the random set, for any k € Z

d
G = {(m,w) ep, 2?1l < §||3[:||2 < 2% Bw > 22k+1}. (3.11)
If G, # 0, let (z,w) € G and s be the straight line from the origin to z, which verifies
Ent(s) = 2||z||>. Therefore, on the event Gy, # ), we have
d. 2 2k
7}32[3w—§|\m|| > 24F (3.12)

Notice that (|Gx|)kez are independent Poisson random variables with mean

oo
aw * tdw = Cad,B ok(d=2a)

n(1Gx]) = / » /
2k\/1/d<||z||<2k4/2/d B122k+1

Hence, we get that limy_, o, P(Gy # 0) = 1 if a > d/2: this proves that P(3k, Tz > 22F) =
1 (by 75 < 22k — G, = () and the independence of |Gk|), so that Tz > 0 almost surely, for
any o € (4,d). O
Remark 3.4. The same argument can be used to prove that 773 > 0 almost surely for any
o € (4,a), using that J4(z) ~ £[|z|| as ||z|| | 0, see Lemma B.1. This proves the last part
of Proposition 2.5, i.e. that 5. = 0 a.s. when a € (%, d).

Infiniteness of 7; for a € (0, 4]

As far as the case a < d/2 is concerned, since (|Gx|)x>1 are independent, the Borel-
Cantelli lemma ensures that a.s. G, # () for infinitely many k& > 1. This proves that almost
surely, T3 > 22" for infinitely many k > 1, that is T3 = +o0 a.s. when « € (0, %] O
Remark 3.5. Note that we have proven that 773 < +ooa.s. forall 8 > 0, for any a € (0,d).
The reason is that in that case trajectories s with Ent(s) < 400 cannot exit the ball of
radius 1; there is no contradiction with the fact that 73 = +o0o when a < d/2.

Case a € (0, %), proof of 3. > 0
We now prove the part o € (0, g) in Proposition 2.5, i.e. that 7A‘5 = 0 for 8 sufficiently

small when « € (0, %) or equivalently 5. > 0 a.s. We proceed as in [31, Section 6].
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Let 53 be a maximizer of ’/7\-5 which a.s. exists (and is unique) — the proof of the
existence and uniqueness of a maximizer is identical to that given in [8, Sec. 4.6]. In the
following preliminary result we show that for any «a € (0, d), if § is small, then 53 has a
small entropy (and is therefore confined in a small ball around the origin). We denote
the length of s by ||$||so-

Lemma 3.6. For any fixed « € (0,d), P-a.s., for any € > 0 there exists fy = fo(e) € (0,1)
such that Ent(Sg) < e for all 3 < f3; in particular, since Ent(sg) > 1|/55]|2, we get that

185lloc < V2.

Proof. We proceed by contradiction. Suppose that there exists € > 0 and a sequence
(Br)k>1 with limy_, o B = 0 such that Ent(5g,) > ¢. Using (3.10), we have
0<To < sup  {r(s)} — —. (3.13)
s€D,Ent(s)<d/2 Br
By Lemma 3.2, the right hand side becomes negative as k gets large, which leads to a
contradiction. O

We can now deduce that there exists 8. > 0 such that 7A'5 =0if 8 < B.. Lete > 0 and
ﬁo = ﬁo( ) € (0,1) as in Lemma 3.6, that is Ent(53) < ¢ for all 8 < ;. Moreover define
— Ent(55) < e. Then, since Ent(s) > LEnt(s), we get that if 5 < f

’733 < sup {r(s)} — = < sup {m(s)} - £ (3.14)
s€D, Exlt(s)§§5 ﬂ s€D,Ent(s)<deg B

W

For any € > 0, since P(5y(¢) > 0) = 1, we can find some § > 0 such that IP(5y(¢) > §) >
1 — €. Then with probability large than 1 — ¢,

To<  sup {n(s)}— & (3.15)
s€D, Ent(s)<des d

Now, i£ g5 = 0, then 8. > 6 > 0. Otherwise, if €5 > 0, we use the following union bound
for P(7s > 0)

NE

IP( sup {W(s)}>§5/5):

P(  sup {ﬂ(s)}>§5/5,§5€(27(’€+1),271€]6)
s, Ent(s)<dg&s b

0 s, Ent(s)<d&s

o

IP( sup {m(s)} > 2*('“*1)5/5).
0 s, Ent(s)<d2—Fe

>
Il

(3.16)
Now, setting t = 2~ 1~k(1=d/2a)1=d/2a /5 and ¢, = 27 F¢, we get that for any k > 0

P sup {m(s)} > 2_(k+1)5/6) = IP( sup  {7(s)} > t(e d/(zo‘)) <ct™?,
s, Ent(s)<d2~*e s, Ent(s)<dey,

where for the last inequality we used the scaling ¢, above with a = ,/¢; to get that

SUDppt(s)<de,, 7(5) has the same law as 52/(26“)

With the definition of ¢, we end up with

SUDpyt(s)<a T1(8), together with Lemma 3.2.

oo

IP( sup {7‘(‘(8)} > E) < c0%/2e5 (35D 22]“%(1_%) < claéa/Qad_“/Q, (3.17)
s, Ent(s)<d& 4 k=0

where we used that a < d/2 to see that the sum is finite. Finally, we have

P(B. > 0) > 1—e — ¢, ,§%/2ed/4=/2 (3.18)
Letting first § — 0 and then ¢ — 0, we conclude that (3. > 0) = 1 for a € (0, ). O
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3.3 Well-posedness of X

We now prove Proposition 2.10. Notice that the condition o > d/(d — 2) ensures that
a > 1 so in particular u := E[wy] exists. Let us denote @, := w, — u for simplicity. We
prove that X = .. @, P(z € Ro) converges PP-a.s., using Kolmogorov’s three-series
theorem.
Before we turn to the control of the three series, let us stress that when a > d/(d — 2)
we have
Y PreRL)*< Y G@)* < +o0, (3.19)
zeZ? zeZ
where G(z) = )" P(S, = z) is the Green function. The fact that the sum is finite is
due to the fact that G(z) ~ c||z||* ¢ as 2 — oo in dimension d > 3 and that a > d/(d — 2).
We now control the three series in Kolmogorov’s three-series theorem.
(i) The first series is

Y P(|@:P(z € Ro) 1) <C Y Pz € Roo)® < +00,

z€Z4 =y

where we used Assumption (1.4) for the first inequailty.
(ii) The second series is

Z ’E[sz(x € ROO)]]-{\MP(;CEROQ)SI}” <C Z P(I € Roo)a < +o00,
€7 z€Z?

where we used that E[w] = 0 and E[01{jy,>,}] < cu' = for any u > 1.
(iii) The third series is

Z Pz e ROO)2V3r(‘Dz]l{lalP(xeRoo)gl}) <

{Zmezd P(r € Reo)* < +00 ifa<2,
x€Z4

Zwezd P(I S Roo)2 log m < +o00 ifa>2.

where we used that E[@?15|<,}] is bounded by a constant times u*~“ if @ < 2, by a
constant times log(1/u) if & = 2 and by a constant if o > 2. The fact that the second
series is finite comes from the fact that P(z € R,,) < G(x) with G(z) ~ c|z||>~¢ as
x — oo and 2 > ﬁ with d > 5. This concludes the proof of Proposition 2.10. O

3.4 Well-posedness of W3

In this part, we prove Propositions 2.11 and 2.14, starting with the second one. Let us
stress that by (2.4), f is a radially decreasing function, with the following asymptotics:

f@)=0@ ) asz— oco. (3.20)
log(1/|z]l), ~ ford =2,

~ — 0. 3.21

fx)~c {x||2_d, ford> 3, asz ( )

Recall that W, and Wj are defined in (2.9) and (2.6) respectively.

Proof of Proposition 2.14. We start with the case « € (0,1). By [27, Theorem 10.15], W,
is finite if and only if the following integral is finite:

1/f(z) o0
/ (wf(z) A1) w™ @ Ddz dw = / f(x)/ w” *dzdw + / / w™ Iz dw
R xRy R4 0 R J1/f(x)

=(2=+1) [ pa)as,

l-a «
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where we used that a € (0, 1) to compute both integrals on the first line. This is always
finite, thanks to the asymptotics (3.20)-(3.21) of f.
For the case « € (1,2),thanks again to [27, Theorem 10.15], W) is finite if and only if

[ @rar nuf@) u e e = (1 +
RIXRy

) " f(x)*dx

2—a a-—1

is finite (the calculation is the same as above, using « € (1,2)). Thanks to the asymp-
totics (3.20)-(3.21) of f, this is finite if and only if o < 5%5. O

Proof of Proposition 2.11. Recall that we deal here with the case a € (%, 2) with dimen-
sions d = 2, 3. Recalling the definition (2.6) of W3, and using Proposition 2.14, we simply
need to show that

/ % (e? =1 — Bw) f(z)P(dz,dw) < +o0.
RIXRy

To simplify notation, we only treat the case 5 = 1; the case g > 0 is identical. Now, by
[27, Theorem 10.15], we need to show that

/ ((ew —-1- w)f(w) A 1) w™ M dzdw < +oo. (3.22)
RIxR4

Note that when w € [0, 1] we have ¢¥ — 1 — w < cw?: hence, the restriction of the above
intergral to R? x [0, 1] is bounded by

1
/ (w?f(z) A)w™ T+ dzdw < / f(l‘)/ W dwdy = — / f(z)dz,
R4x[0,1] R 0 2o

which is finite thanks to the asymptotics (3.20)-(3.21) of f.
On the other hand, using that e — 1 — w < €%, we also get that the restriction of the
integral in (3.22) to R? x (1,00) is bounded by

/ (e f(x) AD)w™ FYdz dw
R4x(1,00)

< C’/ (/ ewefc”””‘lzdx)wf(pra)dw—|—/ (/ dx)w7(1+°‘)dw
1 [|]|2> 22 1 [|o]|2 < 22

< C’/ w= ) dqoy + " /Oo wz= @D gy .
1 1

(3.23)

For the first inequality we used that there are constants C, ¢ such that f(z) < Cecl=ll?
for all ||z]|? > 2/c. For the second inequality, we used that: (i) in the first term we have
eve—cllzl* < ¢=5121*  which is integrable on RY; (ii) in the second term we bounded the
volume of the ball of radius y/2w/c by a constant times w2, To conclude, we get that
the first integral in (3.23) is always finite, while we use that a > d/2 to get that the
second integral is finite. O

4 Discrete approximation of the variational problems

In this section, we present the main auxiliary results that we use to prove Theo-
rems 2.2-2.7; they are also of independent interest. They extend analogous results
obtained in [8, 9] to the d-dimensional case. We start with the definition of important
quantities that are used throughout the rest of the article, then we state the convergence
result.
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4.1 Discrete energy-entropy variational problems

Let us introduce the discrete analogue of the variational problem in (2.2). It will
appear naturally when considering the log-partition function with trajectories restricted
to staying in a ball of radius 5 < NN; when the scale is vy = N some other entropy func-
tional need to be considered, analogously to (1.9) — we will treat that case afterwards.

Discrete entropy of a set of points.

For any set A = (1,...,7;) € (R%)* of ordered distinct points (with a slight abuse of
notation, we sometimes interpret A as a subset of R?), we define the entropy related to
the set A by
AL 2
Ent(A) = Q(in_l«i_l) : (4.1)
=1

where xy = 0 by convention. Note that the entropy of a set A depends on the order of

the points of A. Note also that if we consider s the linear interpolation of the points of
A, we recover the continuous entropy (1.11).

We also introduce the entropy for a N-step random walk to visit A (see Lemma B.4):

k
B . Z dllwi —xial* 1
EntN(A) = (]:t0<t112.f.‘.<tk§N §ﬁ = NEHt(A), (42)

1=
The second identity is due to the fact that the infimum is attained for ¢; — t;_1 =

lwi—zi—1|l
S lzi—zial|

Energy (and truncated energy) of a set of points.

Forr > 0, let
A ={z € 7% ]| <7}

be the ball in Z? with radius r centered at the origin. We can write the random environ-
ment w in A, using its ordered statistic: we let Mi(’") be the i-th largest value of (w;)zea,

and Yi(r) its position. Then (Y;(T))Li’f is a random permutation of A, and
(o D)aen, = (M7, YL (43)

The energy collected by a set A = (z1,...,2;) C A, and its contribution from the ¢
largest weights (1 < ¢ < |A,.|) are defined by

|A,| L
._ (r) O(A) — (r)
0. (A) = M, Liytieays OO(A) =) M, Liyeay (4.4)

=1 i=1

where {y € A} means that there is some 1 < i < k such that x; = y, with a slight abuse
of notation. Let us also set Q?Z)(A) =Q.(A) - Qg)(A).

Discrete variational problem.
Let us now define the discrete variational problem

(R max {BQ,(A) — Enty(A)}. (4.5)

)
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We also define the analogous variational problems restricted to the ¢ largest weights and
beyond the /¢-th largest weight by

B,(6) ._ (0 _
TNy = gncaﬁ{ﬂﬂr (A) —Enty(A)}, (4.6)
TR = max {5079(A) - Entw(4)}. (4.7)

The following result gives an explicit bound on the tail of the (discrete) variational
problem. It will be useful to prove that small weights have a negligible contribution to
the variational problems, uniformly in V. Its proof relies on E-LPP estimates and is very
similar to [8, Prop. 2.6]; its proof is included in Appendix A.

Proposition 4.1. The following hold true:
» There exists a constant ¢, such that forany N > 1,r>1,8>0,1</¢ < |A,| and
t>1,
P (T3 2 tN x (Bré—1)?) < et mifa, (4.8)

* There exists a constant ¢, such that forany N >1,r>1,8>0,1<¢ < |A,| and
t>1,

P (Tﬁ;f” > N x (m%—lﬁ—é)?) < ct” T (4.9)
Adaptation for trajectories at scale N.
We also define entropy arising when considering trajectories at a scale N instead of N¢.

For A = (x1,...,7x) € R and N > 1, let us define the N-step entropy

k

~ . Ti — Tij—1

Enty(A) := f ti —ti_1)J (é)
nen (8) 0:t0<t112“'<tk§Nzl( ! i=1)Ja ti—ti1 /)’

1=

(4.10)

where J, is the large deviation rate function for the random walk, see Lemma B.1. Also,
we let Ent(A) .= Ent, (A). Note that if we consider s the linear interpolation of the points
of A, Ent(A) recovers the continuous entropy (1.11).

Let us stress that we have Enty(A) > 1Enty(A) forall N > 1, since Jq(z) > 4|z,
cf. Lemma B.1. Then, we can define the analogous variational problems as in (4.5),
(4.6) and (4.7), replacing the entropy Enty(A) with Ent(A). One difference here is that
we only consider trajectories at scale N: we therefore take » = N (notice also that
Enty(A) = 400 if A has one point outside Ay, recalling that Jy(z) = +oc if |[z]|; > 1).
We define

TE = Juax {BON(A) - Enty(A)}, (4.11)
f?\']gv(f) — Anézj’\}fv {BQ%)(A) _ EntN(A)}7 4.12)
Ta*" = max {500(A) - Enty (A)}. (.13)

Using that EntN(A) > %EntN(A), we get that 735 < éTﬁng, and similarly for 776’([) and

'?15 ,(>e)' Proposition 4.1 therefore remains valid for the variational problems (4.12)-(4.13),
up to a change in the constants.

4.2 Convergence of the discrete variational problem to the continuous one

In this section, we prove that the discrete variational problems (4.5) and (4.11), when
properly rescaled, converge to their continuous counterparts (2.2) and (2.1).
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Recall the definition (3.1) of D, the set of paths staying in A, (the ball of radius g),
and the definition (3.4) of Wy) (s), the contribution to 7(s) from the ¢ largest weights in
A,. We have the following convergences

Proposition 4.2. Leta € (£,d), letq > 0 and £ > 0. Let By be such thatlimy_,o N%/o=(X-Dgy =
B € (0,400). Then, for any ¢ € IN we have that

N Z
Vo= 1Tﬁq1\(,s — %’q = {Br(s) — Ent(s)} . (4.14)

We also have that, for any fixed q > 0,

li © = — Ent 5. 4.15
A T = Tha = p (50 =) as (419
Finally, by monotonicity, we have lim,_,, 73,4 = 7 almost surely.
We have the analogous statement for the discrete variational problem (4.12).

Proposition 4.3. Let o € (%,d). We let By such that limy_,.o Na~ 18y = 8 € (0, +0].
Then, for any ¢ € IN we have that

~

ﬂNNd/a TﬁN 09, o 7}, = sup {W(E) nt(s)} : (4.16)
s€D1,Ent(s)<+o0

We also have that limy_, ;o 773“) = 773 almost surely.

Notice that the restriction s € D; in (4.16) is harmless since we have Ent(s) = 400
for all s ¢ D;.

Proof of Propositions 4.2 and 4.3. Let us define ry = ¢N?¢ for simplicity. We label the
points A, according to the ordered statistics (Mi(TN)J/Z-(TN))Li]N‘, see (4.3). In the
same way, in the ball A, we label the points of P according to the ordered statistic

(M{? Y{9),5,, cf. (3.3). Then, by the Skorokhod representation theorem (cf. [18,
Section 9.4], also in the same spirit of Remark 2.3), we have that for any fixed ¢ € NN,

1 T T
ﬁ(Yf Ny —>N%O (Y@ .y,
1 T T
~ (Ml( N)v"‘ng( N)) N_wo (M(Q) ’ng)).
Then, for each Ay = (Yi(lm), e sz'S:N))' thanks to the continuous mapping theorem, we

get that N*(%*l)ﬁNQgQ (An) converges to BWS(SA), where sa is the linear interpolation
of A= (YZ,..., Y1) (see the definitions (4.4) of Q") and (3.4) of 7"’ (). We also obtain
that N~(¢~UEntx(Ay) converges to Ent(sa). Since the maxima in (4.6) and (4.14)
are over finitely many terms (in fact 26y, we get (4.14). The convergence (4.16) in
Theorem 4.3 follows from exactly the same argument taking ry = N (here ¢ = 1), and
using that N~ Ent (Ay) converges to Ent(A).

Finally, (4.15) simply follows from the monotonicity in ¢, and the fact that 773 e <7Ts
which is finite almost surely. The limits lim,, 75, = 73 and lim/_, 7;3 7}; also

follow by monotonicity. O
5 Region A: proof of Theorem 2.2 and Proposition 2.4
In this section, we prove Theorem 2.2. First of all, notice that for any 7 € R we have
—Nﬂ F wh 0 wh NBn|h| r7w,h=0
Nz <zl < NPV ZE R0,
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Hence, we get

|h| 1 w,h=0 1 w,h A 1 w,h=0
_Nd_T” +mlogZNﬂN SmlogZNVENSNd?TG +mlogZN,ﬁN .

Since d > a, the terms |h|N~(4=%)/ go to 0 and we therefore only need to prove the

result for ZK,’%JZVO. In the rest of this section, we will write Zy g, = Zf,’%;o for simplicity.

We only treat the case where limy_,o, Sy N(@~®)/* = 3 € (0, 400) for notational clarity;
the case where 3 = 400 follows in a similar manner.

5.1 Convergence of the rescaled log-partition function

Let us prove Theorem 2.2. Our strategy is based on three steps: Step 1. most of the
contribution to Zy g, comes from some large disorder weights; Step 2. the log-partition
function, when restricted to finitely many weights and rescaled by Sy N%©, has a weak
limit; Step 3. combine the first two steps to conclude the proof of the convergence.

Let us introduce some notation. Recall the order statistics defined in (4.3). For any
L € N, we define, for p € R

L
Zy sy =B {eXp <pﬂN ZM}N)I{Y;MEM})} , (5.1)
=1
[An|
L N
Z1(V>,pB)N ::E{eXp (pﬁzv Z Mi( )]l{YySN)GRN}>:|. (5.2)
i=L+1

Step 1. For any fixed L and n € (0, 1), by Holder’s inequality, we have

1 n
(L) 0 (o, (>L) T+
INpy = (ZN,(1+n)BN) (ZN,<1+n*1)BN) )
so that for any fixed L < N, since the disorder is positive, we get

1

log z1) 5.3
T+ og (5.3)

N7(1+7]71)ﬁN :

log Zl(\flj)ﬁN < log ZNﬁN < log Z](Vljz +

_n
Hmby T 1 4y
We now show that the last term in (5.3) can be made arbitrarily small compared with

BnN?< by choosing L large: this is the content of the following lemma.

Lemma 5.1. Assume that limy_; ﬁNNg*1 = > 0. For any e > 0 and any p > 0, there
are some Ly > 0 and some Ny such that for any L > Ly and N > Ny we have

1 (>L)
P(WlogZN)pﬁN > 5) <e.

Proof. Notice that for any realization R of the range, we have

[AN]
L
> MM yneryy < sup gt (a),
i=L+1 ACAN,Enty (A)<EN

where we recall the notation (4.4) for QE\?L) (A). We have used here that any set of points
(z1,...,x) visited by the random walk before time N must verify Zle |z; — zi—1]] < N
and hence have a N-step entropy Enty(A) < gN (recall the definitions (4.1)-(4.2)). We
therefore get that

1 (>L) P (>L)
———logZ < sup Oy 7 (A).
BNNd/O‘ N,pBn Nd/« A Bntn(A)<EN N
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Now, we simply have to use Lemma A.4 (noting that Enty(A) = N~1Ent(A)), which
states that for any L and any ¢ > 1

IP( sup QE\?L)(A) >tL5_<1xNi) < torfa
A Ent(A)< N2

Fixing ¢ large enough so that the upper bound is smaller than ¢ (uniformly for L > 1)
and then choosing L large enough so that tLi~w < ¢/p, we obtain the conclusion of
Lemma 5.1. O

Step 2. Once the number of weights is fixed, we can prove the following convergence
in distribution.

Proposition 5.2. For any positive integer L and real number p > 0, we have the following
convergence in distribution

1 L)y (@ L)
By N/a log Z psy — Tps ">
where 77,@) is defined in (4.16).
Proof. Let us denote Y, := {Yl(N)7 e ,YL(N)} the set of the (random) positions of the L

largest weights in Ay. Then, we can write

ZEse = > exp (BN (A)) P(Ry N TL = 4)
ACY

where we used the convention that the points of A are ordered, i.e. A = (z1,...,zk),
and used some abuse of notation in writing A C Y. Also, let us note that we use the
notation Ry N YT, = A to state that the points in A are visited in the correct order by
the random walk, and that no other point in Y, is visited. We then have the following
lower and upper bounds:

L L
28 > exp (ASS% {pﬁNﬂgv}N FlogP (RyNTy =A) }) ,

Z2{) <2 Llexp (ASS% {pﬂNQEVL}N +1logP (A C Ry) }) ,
where again we used the conventions that A = (x1,...,x;) are ordered points in Y, and
that we denoted A C Ry the fact that the points in A are visited in the correct order by
the random walk. Recalling the definition (4.6) of the discrete variational problem 7A' ]5 ’(Z),
we can therefore rewrite

L 0B, (L . =
IOgZJ(V,LﬁN — T]\‘;ﬂN () > Alcnlf% {Entn(A) +1logP (Ry N YL =A)},
(L) 7pbuu(D) L 5 (5.4)
log Zy 5 — TR <log(2"L!) + Asg% {Entn(A) +logP (A CRy)}.
In view of the convergence in Proposition 4.3, we therefore only have to prove that the
upper and lower bounds are negligible. More precisely, since there are only finitely
many terms in the infimum (or in the supremum) and since Sy N¥® ~ SN with 8 > 0,
we only have to prove that for any distinct indices iy, ..., i, the (random) subset A =
(Yi(lN)7 . ,YiiN)) of T, verifies
1+ 1~
N|EntN(A) +logP (RyNTL=A)| 2,0 and N|EntN(A) +1logP (A CRy)| 2.
(5.5)
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Note that for any fixed L, for any € > 0 we have
L
IP(EIl <ij<L st |V -v®™| < z—:N) < (2>]P (Hyl(N) —vM) < 5N> <Ot

The points in Y, are therefore at distance at least ¢V from each other, with IP-probability
larger than 1 — ce?. Thanks to Lemma B.3 — and to the definition (4.10) of Enty(A) —,
this shows that

1~
N|EntN(A) +logP(ACRy)|—0 (5.6)

with high P-probability. Notice also that P(RyNTr = A) =P(A C Ry, RnvN(TL\A) =
) and that P(Ry N (Y \ A) =0 | A C Ry) — 1 with high P-probability (using Lemma
B.4 and that the points in T are distant by at least e N with high P-probability). From
(5.6), we therefore also get that

1 -
N|EntN(A) —|—logP(RN NnNY, = A) ‘ — 0,

with high P-probability. This proves (5.5) and concludes the proof. O

Step 3. Conclusion. Note that, as stressed in Proposition 4.3, we have limy,_, 7A'p(ﬁL ) —

~

Tpg almost surely. Due to the continuity in § (see Section 3.2) we also have that
lim,_;q ﬁﬁ = 7}; a.s.

The conclusion of the proof is then just a matter of combining the different steps in the
correct order. For any fixed € > 0, (i) we choose 1 = 7. € (0, 1) sufficiently small (in (5.3))

and then Ly > 0 so that for any L > Lg both 7A’5(L) and ﬁﬁﬁ)n) ; are at distance less than

€ from 7A'B with [P-probability larger than 1 — ¢; (ii) we fix some L large enough so that the
conclusion of Lemma 5.1 holds, with p = 1+7~!. The conclusion then follows by applying
Proposition 5.2 to both sides of the inequality (5.3) (by Skorokhod’s representation
theorem, cf. Remark 2.3, we can work as if the convergence in Proposition 5.2 is an
almost sure convergence). O

5.2 Transversal fluctuations: proof of Proposition 2.4
Since the transversal fluctuations are at most N, we therefore only have to prove
that for any € > 0 there exists some 1 > 0 such that for all IV large enough
h
Pl (max (1S, <9 ) <e,
with large [P-probability conditionally on ﬁ; > 0.
The same proof as above can easily be adapted to show that we have the following

convergence in distribution (it can be upgraded to an almost sure convergence by
Skorokhod’s representation theorem)

1 w,h (d) = 1
———log Z\/ max ||Sp|| <nN) —= Tz, = sup m(s) — zEnt(s){,
By Nd/e N,ﬁN(lénSNH I ) B «eD, Bnt(a) <t { (s) B ( )}

(5.7)
where we set ij,’y%N (A) =E[exp (X ,cr, Bv(we — h))14], and D, is defined in (3.1).
This shows in particular, using Skorokhod’s representation theorem (see Remark 2.3),
that

1 w,h
e ’ <
BNNd/a log PN’BN ( 121na<xz\z ”Sn” " N)

1 h 1 h ~ ~
= W 10g Z]L:}/,ﬁN ( 1?}?’2(]\[ HSTLH < 77N) - W logZ]‘:nyﬁN — 7—6777 — 723 a.s.
(5.8)
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Noting that lim, o 7A'577, = 0 a.s., then conditionally on having 773 > 0 we can choose 7,
small enough so that 7A'g,n - 773 is negative, with high (conditional) IP-probability. From the
convergence in (5.8), on the event 7, — 75 < 0 we have that log P“I(,’,%N (maxi<p<n [|Sn| <
nN) goes to —oo, that is P‘X;’%N (maxi<n<n |Snl] < nN) goes to 0 (exponentially fast).
This concludes the proof. O

6 Region B: proof of Theorem 2.7

In this section we prove Theorem 2.7. Recall that we choose h = u: we denote
PY/ ¥ and Zy' " by Py g, and Zy s, respectively. Recall that o € (£,d) and that
limy o0 ANN"7 = B € (0+ 00) with v € (=2, 4. Define ¢ := 21=1 which turns out
to be the end-to-end critical exponent, and note that we have £ € (%, 1) for the range of
parameters considered.

Let My := maxi<p<n ||Sn|lc (this notation is used in the rest of the paper). For

any g > 0, we split Zy g, as follows

Zngny = Znpy (My > qNE) + Znpy (My < qNE) ) (6.1)

where Zy g, (A) = E[exp (Y, cr, On(we — 1)) 1a].

We divide the proof into three parts: Step 1. we show that Zy 5, (My > ¢N¢) is small
for ¢ large with high IP-probability, which shows that Z ~N.ay (Mn > gN ¢) is negligible
compared with Zy s,; Step 2. we show that log Zy s (My < ¢N¢), when suitably
rescaled, converges in distribution to 73,4; Step 3. we let ¢ — co and we conclude our
main result.

The main difference here with respect to Section 5 is the fact that we need to control
the partition function with trajectories My > qN ¢ (we had ¢ = 1 in the previous section):
this brings many additional technical difficulties and makes the first step much more
difficult.

6.1 Step 1. Controlling Zy s, (My > gN°¢)
We prove the following estimate, slightly more general than what we need.

Proposition 6.1. Suppose that Sy N%/® < ¢N%~! for all N, for some constant c. There
exist positive constants c1,co and v > 0, such that for any sequence Ay > 1, we can find
Ny such that for any N > Ny we have

IP(ZN,ﬂN (MN Z AN NE) Z €7CIA?VN2§_1) S CQAR,V

Proof. We partition the interval [AxN¢, N] into blocks
By = [2"INS 2F NS, k=logy Ay 4+ 1,--- ,logy (N1 7¢) (6.2)
and we divide the partition function according to the value of My:

Ing(Nl_E)
ZN,ﬁN (MNZANNg) = Z ZN (MN EBk’N). (63)
k=log, An+1

By applying Cauchy-Schwarz inequality, we have
(ZN.,BN (MN S Bk’]\{))2 < P(MN > Qk_lNg) X ZNyng (MN < QkNg) . (6.4)
Then, a simple random walk estimate gives that there are some constants Cy, ¢4 such

thatforall N > 1landallk > 1

g2kt N2E-1

P(My >2"'N%) < Cye (6.5)
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To obtain this, we can for instance use a union bound on the different coordinates,
to reduce to one-dimensional random walk estimates, for which such an inequality is
classical, see e.g. [22].
Let ¢; > 0 sufficiently small such that
400
Z C;/Q emca?t TINT < emc1 AN N*7 (6.6)
k=log, An+1

By a union bound, we obtain
P(Zw oy (My = AxN¢) > emar 4k V")

log, (N'7¢)
< > P (ZN,BN (My € Bin) > C§/26_0d22k7w2§71)
k=log, An+1
+0o0 )
< Z P <ZN,2ﬁN (MN < QkNé) > ecdzzk_lNZE_l) s
k=log, An+1
(6.7)

where we used (6.4) and (6.5) for the last inequality. The result then follows directly
from Lemma 6.2 below. O

We formulate the following result in a general manner, since it will also be useful
when o € (0, %). We still write Zy g, = Z;“,”%?‘, with 4 = E[wy] when @ > 1 and p any
real number when « € (0,1).

Lemma 6.2. Assume that o € (0,d) and let (hx) ny>1 be a sequence verifying limy o h3 /N =
+o00 and hy < N. Define ey := NﬁNh‘]iV/a*Z. For any constant cy, there exist constants
¢ > 0 and v > 0 such that for N sufficiently large

2

P (Zwe (My < hy) > eo"3/N) < oo+ (%N)*V. 6.8)

As a consequence, when o > 4, if By N$%/® < ¢N2¢~1 then letting hy = ¢N¢ we get that
en < cq%*“. Hence, one can choose gy > 1 such that for any q > qy we have

P (Zw s (My < gN) > 00N ) < g, (6.9)

The proof is analogous to that of Lemma 4.1 in [7]; let us warn the reader that it is
quite technical.

Proof of Lemma 6.2. Let us note that the bound is trivial if ey > 1. We will therefore
assume that ey < 1 for all NV; in particular we have ﬁNhU]i,/o‘ < h%/N.

Let us split Zy g, (My < hy) into three pieces, that we will control separately. By
Holder’s inequality (using also that x> 0), we have

_ 1 1 1 >
log Zn o (My < h) < glog 270+ log 5650 + 3 log 273, (6.10)
where we defined, for any p € R,

Z](VTPQ/;N =E GXP( Z Pﬂwall{/anpQ})]l{MNghN}}, (6.11)

- TERN
Z](V%:PQB]N =E exp ( Z pﬁNW@’]l{BNsz(LQ]})]I{ZWNShN}}7 (612)

) TERN
Z\0) . = E|exp ( Y PBv(ws — M)]l{ﬁwagl})]l{MNghN}}v (6.13)

) TERN
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where @) := @Qn is a constant depending on N and will be chosen later (it will be of the
form (h%;/N)¢ for some ¢ € (0,1)). We now deal with the three terms separately.

First term: (6.11).

We want to show that by properly choosing Q of the form (h3,/N)¢ for a well chosen
¢ € (0,1), we have for N large enough

2 2 _
(>Q) hy AN
IP(logZNgﬂN >COW) <05N+(N> . (6.14)
Let £ := {y = (h%/N)' =9, where ¢ is fixed (small enough). We consider the partition
function restricted to the ¢ largest weights, as follows

Z](\f)BBN _ElieXp<ZS/8 M"N)]]_{YULN)GR }>:| (615)
i=1

where (M(hN), Y(hN))DO is the ordered statistics introduced in (4.3).

(2

Now, since Byhy d/o < ch%;/N, we have that

IP([aNM,Sh“ > Q) < 1P(M,§’”V> > cﬁQNh;V2h§lV/a) < (czl/aNQ/h?V) (616

where we have used Lemma 5.1 in [8] for the last inequality (see (A.12) in Appendix).
We now choose Q = ¢~=(1-9"* hN ; recall that ¢ = (%)(1_6). In particular, note that
Q = (h%,/N)¢ for some ¢ € (0,1), and so it goes to infinity as N — oco.

Since (Y/*NQ/h% < ¢%/3* if § has been fixed small enough, we therefore get that
with probability larger than 1 — (c£%/3*)~ we have

{z€RN: Brvw, > Q) T = [y y "y (6.17)
We stress that on this event we have Zz(v>3%) ZJ(\% 5 and we now turn to Z](\f?g - Recall

the notation (4.4) of Q‘(A). By Lemma B.4, we have that

£ Q A 4
20, = S SN ApAacry) < S () exp (65NQ§1;(A)702EntN(A)>
acr{") acr{")

(recall that we view A = (x1,...,2) as an ordered subset of TéhN )). Therefore, recalling
the definition (4.6) of the variational problem Tﬁ;ﬁ”, we have, setting C5 := 6/C5

2y <00 exp (T, (019

Then for N large enough, using the definition of £ = (h%;/N)'~%, we get

h2
log Zy 55, < £(log{ +log(2C1)) + CoTy 5" < 620 Zg + CaTasv @ (6.19)

where ¢y is a fixed constant (appearing in (6.14)). Recalling the definition ey :=
d/a—2
NBnhy , we therefore get that

h3, h3
(s, 2 ) 22 (155 2 22

38n,(£) Co -2 d_q
< P(7-1€71NN > mEN N(CL%ﬁN(hN)“

Then, one simply needs to use Proposition 4.1 to get that the last term is bounded by a
constant times E%d/(a+d). This, together with (6.16), establishes (6.14).

, (6.20)
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Second term: (6.12).

We now show that there exists some ¢ € (0,1), such that for any C' > 0 and N large

enough,
13\ W\~
P <log 2530 = () ) <eo(F) (6.21)

We again decompose Z](é}ggz]v), according to the contribution of different ranges of

values in the environment. We fix § (appearing in the definition of ) and ¢ above) small
enough so that 6 := (1 — 5)% > 1 (recall a < d). Then, for j > 0, we set

b = (%)MH) = ()", (6.22)
Q; = (%)(@)*éﬂfﬁ)“ _ (fzv)leaj“‘s)m, (6.23)

where we used the definition of ¢ above. Note that ¢y = ¢, Qo = @ and that each pair
(¢;,Q;) has a similar form to (¢,Q), and let us stress that {;_; < ¢; and Q;_1 > @, for
any j > 1. Now, let x be the smallest integer such that §*(1 — §)3/2 > o, and note that for
such x we have Q,, < 1.

Then, thanks to Holder’s inequality, we have

1,Q 1< ;
log Z\ 53V < —>log Z, s (6.24)
=1
where we have set
ZQ s = E[GXP( > 3“5N%1{ﬁNwme<Qj,Qj_1]}>]1{MN<hN}] : (6.25)
TERN
Thanks to an union bound we only need to show that forany j =1,...,k,
. 2 (¢ h2 —v
(i) hiy N
P <log Zp 2 C(5Y) ) <co() (6.26)
to get (6.21).
By the same argument used for Zﬁ%}v, see (6.16)-(6.17), we get that

{z € Ry : Bywe > Qj} C Ty o= {Y{"™) oy} (6.27)

with probability larger than 1 — (céj/ 3“)*“51‘. Hence, as above, we are reduced to
controlling

2 2
2 s < B {exp <3an_1 > {Y;hmeRN})] =y > ErUP(RyNTY, = A).
k=1 k=0 Achj,|A\=k
(6.28)
We split the sum in (6.28) at some level K = K := (¢;)!/4+9/64 (this is needed in (6.30)
below) and we use Lemma B.4 to bound the probability P(A C Ry) > P(Ry N Ty, = A)
for k > K. We get

4
ZJ(\-;??MN < e3RQi1K 4 Z Z (C1)F exp (3KQJ_1I<; — CQEntN(A))
k=K ACY.; |Al=k (6.29)
< e3rQi—1K + Hj R
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where we have set

£;

Z (> Foxp (66Qs 1k~ Co _inf  Enin(d)).

ACTy, | A=k

We now use Entropic LPP estimates to control the last infimum. We let

12k 12k h2 (1_5)*1/2
Bpi=—Q,; 1k=— "Ny a k
k 02 Qj 1 02 N 7 )

where we used the definition (6.23) and the fact that /;_; = 61/ o together with the

definition § = (1 — §)< <. Then, thanks to Theorem A.1 in Appendlx, we obtain

/(NBk)1/2€;/d)dk

IP( inf  Enty(A) < Bk) =P (LZNBk)(hN) > k) < (C Ik

ACTy, | A2k

so that using the definition of By, we end up with

L 1 dk
i < < Va7 2aa-5)1/Z .—1/2 < (of \—kO/4
P(mriﬁﬁmzk Entw(A) < Bk) - (c(@) k ) < (ctj) )

where we have used in the last inequality that k > K := (¢;)/4+%/64 (and took & small
enough). By a union bound, this leads to

P inf  Ent(A)>Bp VK <k</{;)>1— ko/4 > e’ (6.
(ACY};'AM nt(A) > B,V _k_zj)_ k;((ce) (ct;)~%"" . (6.30)

Moreover, on this event, we get that for N large enough

oo

Z < ) Y6~ 1k<2€kexp< 4rk(h3, /N))

k=K

where we used in the last inequality that Q;_1 > Q,—1 = (h,/N)? for some ¥ = ¥,, > 0
(recall (6.23)), and that (h%,/N)” goes to infinity. Now using that £; < £,, < (h%;/N)?" (179,
we get that for N large enough

H; <

M8

exp ( — 2kk(h2,/N) ) < exp ( — w(h3/N) ) (6.31)

k=1

Note also that KQ; 1 < (h%;/N)¢; ~9/4d < (2 /N)=9/4 goes to 0 as N — oco: going back

to (6.29), we therefore get that on the event considered in (6.30), for N large enough
we have Z](\?,)BKﬁN < c(h% /N)C.
Combining this with (6.27) and (6.30), we therefore obtain that

P (Zfé)gng > 2) (c;) 70473 4 (ct) s, (6.32)

. . 1-5
which proves (6.26), recalling that ¢; > ¢ = (h3,/N)

Third term: (6.13)

We now show that there exists a constant C such that
JP(logZ(< RN ) < C( )_". (6.33)
N.3bn N N
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To bound (6.33) we note that there is some C' > 0 such that ¢* < 1+ z + Cz? for
|z| < 4. Therefore, for N large enough (so that 36yu < 1), we obtain

<
ZGahy < E{ IT (4385w = Igsyw<1y + C'Br(we — 1) Lipyw, <13) } (6.34)
TERN

Note that E[(w — u#)1s,u<13] < 0 as soon as ﬁg,l > p (our assumption implies that
By — 0). Hence, using also that |[Ry| < N, we get that

exp (CNBY) ifa<?2,
exp (CNBF log(1/Bn)) ifa>2,
(6.35)
where we used that the truncated expectation is bounded by a constant times (1/8x)?~
if @ < 2, by a constant times log(1/5y) if & = 2, and by a constant if o > 2.
Then by Markov’s inequality and (6.35), we have that

_ N
B[z < (14 CAEl - ) < |

2 2 «a s
]P(IOgZ](V 3% > ohN) < 6_007IE[Z](\/<;23 } < e_COhTNX exp(CNﬁN), if a < 2,
) N " exp(CN B} log(1/BN)),  ifa>2.
(6.36)
It suffices to show that h > N?5%/\* log(1/Bn) (==} N=% 0 Since BN/”L%Q < ch2,/N, we
get that:
* If o < 2 then ) , )
N o hN a—2 9—d hN a—2
0= ‘() mrse(F) (6.37)

because d > 2.
+ If on the other hand o > 2, we can choose ¢ > 0 sufficiently small, such that

2 dy, d 2.\ -« 2 (1-44d.
222\[612\, log(1/8x) < c—ﬁ?\, e < ch2t” ”Es(%fv) < N1-E4ske o (’KTV)
(6.38)
using that hy >> N'/2 for the third inequality and that h%,/N < N for the last inequality.
All together, this proves (6.33).

The conclusion of Lemma 6.2 then simply follows by combining (6.14), (6.21) and
(6.33). O

6.2 Step 2: convergence of log Zy(My < gN¢)
We now prove the following convergence.

Proposition 6.3. Assume that limy_,, Sy N%/*N~(¢=1 = g ¢ (0, +00). Then for all
q € (0,400) we have the following convergence in distribution

1
N2£ 1 IOgZNﬁN(MN < qNg) —> 7?511’
where T3 4 is defined in (4.15).

Once trajectories are restricted to staying in a ball of radius ¢/N¢, the proof of the
convergence is very similar to the proof in Section 5. We follow the same steps: (i) first
we show that most of the contribution to the partition function comes from large disorder

weights; (ii) we prove that the log-partition function, when restricted to finitely many
weights, converges in distribution; (iii) we send the number of weights to infinity.

Step 2.(i)-a. First of all, we show that we can restrict the partition function to weights
wz > 1/Bn. Recall the notations Z](V o3 I (6.13), and define analogously Z;f;g by

EJP 0 (2020), paper O. https://www.imstat.org/ejp
Page 32/66


https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Non-directed polymers in dimension d > 2

replacing 1g,., <1} With 1,5, ~1} inside (6.13); take hy = gN¢. For any i € (0,1), by
Holder’s inequality, we have

1 n
7 € 7(>1) THn [ 5(<1) THn
Znon(My < aN*) < (ZN,<1+n)/3N) (ZN,(Hn*l)ﬁN) ) (6.39)
and by applying Holder’s inequality to ZJ(\,>(11)_7]) sy W€ also have for any n € (0,1)
1 n
> =(>1) T [ 5(<1) 7T
ZN,BN(MN < qNé) > (ZN,(l—TI)ﬁN> (ZN,(I—n_l),BN> . (640)

Note that if Syw > 1 and NV large enough, we have

(1-2n)fnw < (1=n)By(w—p) and (1+7)8n(w —p) < (1+7)Bnw,

~(>1) ~(>1) (>1) (>1)
so that we can replace ZN7(1+77)BN and ZN7(1_7])BN by ZN,(1+n)6N and ZN,(1—277),3N respec-
tively, where
ZZ(V>791/)3N = E[exp <p5N Z Wz]l{ﬂNwT>1}> ]]-{MNSqN§}:| . (6.41)
TERN

We need to control the upper bound for (6.39) and the lower bound for (6.40) (note
that 1 —n~1,7 —1 < 0). Now notice that adapting (6.36), we easily get that for any p > 0,
any ¢ > 0

PN~ V1og ZE)), > €) < exp(C, N log(1/6) — eN*),

which goes to 0 as N — oo (the proof of (6.35) is carried out for p = 3 but it is easily
adapted to any p > 0). For p < 0, a slight modification in (6.34)-(6.35) is needed. Note
that we have E[—fn (w — 1) L{gyw, <13 = B[Sy (w — p)L{y0,>13] < CBY, which gives an
extra term in (6.35) for p < 0 and it follows that

P(~ N~ Vg 2§D < —2) < exp(C,N B3 log(1/By) — eN*1) V5,

From (6.39)-(6.40) we simply need to prove the convergence in distribution of
(26— >1
N=C&D1og ZGY 1o Tpa.
Notice also that thanks to (6.21), we also have that for any p > 0

1
————log Z](\}:/?B]N — 0, in probability.

N26-1

Using Holder’s inequality as in (6.39) and (6.40), we are therefore reduced to showing
that for any p > 0 we have the following convergence in distribution

d
log 252 % Ts,. (6.42)

N2E-1

Step 2.(i)-b. We now show that we can restrict the partition function to a finite number
of weights. Analogously to Section 5 (see (5.1)-(5.2)), we define for any L € NN,

L
() ._ (gN*®)
ZNsPﬁN =E [GXP (pﬁN z; Mi ]l{Yi(qNE)GRN}>:| s (6.43)
1=
(L,0) - (aN*®)
L.t L gN
ZN’P»BN = E|:€Xp (pﬁN ZL: Mi H{Y§(1N£)€RN}>:| s (644)
i=L+1
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where we consider the order statistics (Mi(qNs), Yi(qNg)) in the (discrete) ball of radius
qN¢. Recall that £ := (h% /N)1 79 = (¢?)N%~1)1=2,

Thanks to Holder’s inequality, we get that for any n € (0, 1), analogously to (5.3), then
for N large enough we have

L L Lt
log ZJ(V,E)BN < log ZJ(V>/%)N < T+ n log ZJ(V an)ﬁN + 1 10 Z](V(l)+n 1) (6.45)

with probability going to 1 as N — oo (more precisely on the event {6NM£QN£) >Q >

/J’NMe(qNé)}. Recall (6.16) and N‘dﬁ/aMéqNg)—>M(LQ) in Proposition 4.3). We now prove
the analogous of Lemma 5.1 to show that the last term is negligible.

Lemma 6.4. For any € > 0 and any p > 0, we have

lim sup lim su IP( lo Z(L v >E) =0.
L—)oop N—>+£ N2 N.pBn

Proof. Note that we easily have, as in the calculation leading to (6.18),

zZyh o<y VU P (A € Ry) < 01201 exp (CQTquvfg’bL)) . (6.46)

ACTENS

Then
I (>L)

N~ og 71 <IN~V log(£2C7) + Oy N~ 26~ 1>T NeNe

Note that since ¢ = (¢? N*~1)1=% with ¢ fixed, the first term goes to 0 as N — oo (recall
€ > 1/2). For the second term, using that By ~ BN?~1-4/ we get that for any ¢ > 0

CpBn,(>L - - CpBn,(>L 1 a4 1.1 _1\2
P (TN,q?st D) 5 (205) e N 1) :IP<TN£VN5 CL S o [2E-H N « ( C,Bn(gN¢) &1L a) 7
where the constant C’ depends on p,lq,lﬂ. Then, using Proposition 4.1-(4.9), provided
that L is large enough so that C’eL2(c~7) > 1, we get

P (T

_ __alLd
O S LeN#TY) <o (Cler?a i) T <o e

for some exponent a > 0. This concludes the proof of Lemma 6.4. O

Step 2.(ii). Once the number of weights is fixed, we can prove the following convergence
in distribution. The proof is identical to that of Proposition 5.2 (replacing Ent with Ent)
and is omitted.

Proposition 6.5. For any positive integer L and any p > 0, we have the following
convergence

1 (L) @) (L)
N2E-1 log Zy BN 7;ﬂ,q’

where 7;3@) is defined in (4.14).

Step 2.(iii). As mentioned in Proposition 4.2, we have that T converges to Tpa.q
as L — oo. Thanks to the continuity in 3, we also have that 7;,5# converges to 7,34
as p — 1. The conclusion of the proof of Proposition 6.3 then follows from combining
Proposition 6.5 with Lemma 6.4 (and Step 2.(i)-a), letting L — oo then p to 1.
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6.3 Step 3: letting ¢ — ©

Going back to (6.1), the conclusion of the convergence in Theorem 2.7 simply follows
from Step 1 (Proposition 6.1) and Step 2 (Proposition 6.3). Indeed, thanks to Proposition
6.1, we get that if ¢ has been fixed large enough, then with probability 1 — cq™” we have
for N large enough

Znpn(My < aN*) < Zngy < Znpy(My < gN®) + 1.

Using Proposition 6.3 and noting that 7z > 0 a.s. and then letting ¢ — co concludes the
proof of (2.1) (recall that 73 , converges to 73 as ¢ — 0o, by monotonicity).

6.4 Transversal fluctuations

Let us first prove that the transversal fluctuations are at least of order N¢, analogously
to what is done in Section 5.2. Notice that for any > 0 we have thanks to Proposition 6.3
and (2.1) (using Skorokhod’s representation theorem, cf. Remark 2.3)

# IOgPN”gN (MN S nNE) = #(log ZN,ﬂN (MN S nNg)—IOgZN”@N) — 7%’,7—7;3
(6.47)

Since we have 73 > 0 and lim, o 73,, = 0 a.s., we can choose 1 small enough so that
Tsn, — T3 is negative with high P-probability. From (6.47), on the event 73, — 73 < 0
we have that Py(My < 1 N¢) goes to 0: this concludes the proof that transversal
fluctuations are at least of order N¢.

Then we prove that the transversal fluctuations are at most of order N¢. We have
that

ﬁlogPNﬁN (MN > 717N5> = % log Zn g <MN > 717N5) - % log Zn g -

The second term above converges to 73, which is positive a.s.. For the first term, we
have that Zy g, (Mn > n7IN¢) < exp(—cin 2N%~1) with P-probability larger than
1 — n¥ by Proposition 6.1. Therefore, P(My > n~!N¢) vanishes exponentially fast with
P-probability close to 1 for small enough 7, which concludes the result.

7 Region C: proof of Theorems 2.12

We will prove the result in the case limy_so SxN3s = 8 € [0, 4+00). We start with the
case o > 2 before we turn to the case o < 2. We again use the notation Zy g, for Z;‘\’,’%;“.

7.1 The case a € (2V 4,d)

We first focus on the convergence (2.7) of Theorem 2.12. For simplicity, we treat the
case where 3y decays at most polynomially; the case where 5y decays faster (and thus
B = 0) is even simpler. Note that the condition o € (2 V g, d) implies in particular that
d > 3, and recall the definition (2.5) of X in dimension d > 5.

To simplify the notation, let us suppose that Var(w,) = 1 and observe that the
convergence (2.7) is equivalent to

1 12 _ @ [N(0,02) ifd=34,
BNE[RNI] _ d
e 2 Z 1) — (7.1)
anBn ( N.on ) {X ifd>5.

since both imply that e~ 2#XEIR~Zy 5 converges to 1 in probability.

Step 1. Truncation of the environment. Let us set

ky = (log N)"N & (7.2)
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where n € (2%, 1) and let us define the truncated environment
W= (w — ,U/)]l{wgkn} . (73)

Let us also define \y = log E[e#¥%°]. The next lemma compares the partition function
Zn,py With its counterpart with the truncated environment w.

Lemma 7.1. Let o € (2V £,d) . Assume that Sy < cN~%2® for some constant c. Then
for any a > 0, we have that N*(Zy s, — Z% 5, ) — 0 in P-probability.

Proof. First, we show that we can reduce the partition function to trajectories with
transversal fluctuations at most /N log N. Assume that Sy NV /20 < ¢, with @ > d/2, then
forany Ay >1

P (Zny (My = Ay V/NlogN) 2 =43 96V} < a3 (7.4)

This result is identical to Proposition 6.1, replacing N¢ with /Nlog N (so N%*~! is
replaced with log NV): the proof is identical and relies on Lemma 6.2 (in which we can
take hy = +/Nlog N), so we omit it. Thanks to (7.4), we can therefore choose a sequence
Ay going to infinity (let us take Ay = loglog N) in order to get that for any a > 0,
N“ZI“\’,:ZTI“(MN > Ay v/Nlog N) goes to 0 in probability.

On the other hand, using Cauchy-Swartz inequality we also have that

E[Z%,BN (MN > AN \% NIOgN)] = E[e/\NlRNlIL{JWN>AN\/mﬂ
< E[2VR]Y2P(My > Ayy/Nlog )2

Now, since o > 2, Ay ~ %512\, (see Lemma C.1). In particular, since Sy < eN—4/22 we get
that [Ay| < C'N-%%, so Axy|Rn| < AN goes to 0 as N — oo since a < d. Also, the last
probability in (7.5) is bounded by exp(—cAZ% log N) = N~¢4%. By Markov’s inequality,
we therefore get that N “Z% B (My > An+v/Nlog N) goes to 0 in probability, using again
that AN — OQ.

All together, it remains to prove that

(7.5)

N(Zn oy (M < Any/Nlog N) =25 5, (My < Ay/NlogN)) =0 in P-probability.

(7.6)
But a union bound simply gives that
P(ax, 2|l < Anv/Nlog N @, # w, — u) < AL (Nlog N)*?P(w > k) 77

< A% (N log N)¥2(log N) =" N~/2.

where we used that ky = (log N)?N%2® and our assumption (1.4). Since n > d/2a,
choosing Any = loglog N we have that this probability goes to 0. This proves (7.6) and
concludes the proof of Lemma 7.1 O

Step 2. Convergence of the partition function with truncated environment.
To conclude the proof of Theorem 2.12-(2.7), and in view of (7.1) and Lemma 7.1
(recall we assumed that Sy decays at most polynomially), we simply need to show the
following lemma. For simplicity, let us assume that Var(w) = 1 and let us denote =y :=
1Var(w)B% E[|Rn|] the centering term in Theorem 2.12-(2.7); note that (cf. Remark 2.13)
limy o €~ = 1. Recall the definition (2.5) of X, and recall that we have set ay = N/4
ford =3, ay = (logN)'/? ford =4 and ay = 1 for d > 5.
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Lemma 7.2. Assume that By < cN~%/2% Ifa € (2V £,d), then we have the following
convergence in distribution

1 ~ =\ (@ |N(0,0%) ifd = 3,4,
— (Z9 , —e=N) 5 7.8
aNBN( N.An ) {X ifd>5. (7.8)

o (d)
Ifd > 5 and o € (%5, %), then we have g%(ZN,ﬂN —-1)— .
Remark 7.3. We included here the result for o € (Tizv %) since the proof is identical to

that of (7.8); this will be useful to treat the case o < d/2.

As a preliminary to the proof of Lemma 7.2, let us collect some important estimates.
Thanks to Lemma C.1, we get that [e*¥ — 1| < CS% and Ay ~ 3% when a > 2 and
leAv — 1] < Ceclo8N)" 3% when o € (1,2]. In particular, we have

Ay <COB% ifae (2,d), Ay <CePNENBe ifae(1,2]. (7.9)

Note that (7.9) implies that limy_,oo AN = 0.
Also, define ¢, := exp(BnyW, — An) — 1, which will be used in both lemmas. Note that
E[e,] = 0 and that thanks to Lemma C.1, we get as for Ay

E[(0)?] < CB% ifa e (2,d), E[(e)?] < CePVENpS ifa e (1,2]. (7.10)

In fact, we have that E[(g0)?] ~ 8% when a > 2. The bounds (7.9)-(7.10), combined with
the fact that Sykn < c(log N)", will be used extensively throughout the proof.

Proof of Lemma 7.2. Note that e**=€”x} =1+ (e — 1)1(,cr, for any u € R. Writing
this with v = Syw; — Ay so that e* — 1 = ¢,, we expand the product in the partition
function as follows:

7% 50 = E[GAN\RN\ I1a +511{z€RN})} — B[R] £ S B[R ] 4 Yy,
z€Z? zeZd

(7.11)

where we set

Yy = Z Z (f[gzi>E[eANIRNlIL{(fcl,...,mk)G’RN}} ; (7.12)

k22 (21, zp)e@®)r =1
xitey,i,5=1,...k
where (z1,...,2;) € Ry means that the points z1, ...,z are visited in this given order;
in particular, we do not have the combinatorial term &!.
We now control all terms, starting with Y .

Last term in (7.11). We show that ——Yn converges in probability to zero. Since

Bnan

Ele.] = 0, we only need to control the second moment of Y. Because the ¢, are
independent, we easily get that
% 2
E[(YN)Q] = Z Z E[(‘Eo)ﬂ E|:6AN|RN|]l{(fl/’l’m,Ik)ERN}} : (7.13)
k22 (gq,..., zp)e(Zhk
TiFx,1,j=1,

Now, using the fact that |Ry| < N and Markov’s property, we get

2
Z E|:6ANIRNIIL{(xl,...,ﬂfk)ERN}] S ezN/\N Z P((xlv"'vwk) € RN)2

(@1,i) E(ZT)" (@1,..sz1) (2N
T AT, 4,5=1,....k T AT, 4,5=1,....k
k
<c( Y Paery)?)
€74
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where we also used that Ay N goes to 0, as seen above. We denote Jy := > . P(z €
Rn)?. Then, we have Jy ~ cqa%, as N — oo, as outlined in Lemma B.5 in the appendix.
Using the bound (7.10) on E[(g¢)?], we conclude that by E[(¢,)?]Jx — 0,

1 C k B In ifa € (2,d),
——_E[(Y SN (E[ )2y <o NN
/812\/@?\/ [( N) ] ﬁNa’N ];2( [(50) ] N) = {eQC(IOgN) JBJZV(afl)JN ifac (1’2].
(7.14)

This readily goes to 0 as N — oo.
First term in (7.11). We now show that

lim
N—oc0 aN N

‘E ANRN],eENha»}::o, (7.15)

Let us start with the case o« > 2. Lemma C.1 gives in that case that |\y — %612\4 <
Cec'(los N)" g3na Hence, we get

1 ANIR 18% IR 152 ¢(log Ny L p2n(a—1)
BNTN’E[G N NI] fE[ezﬁN\ N\H < §BN|N§Ce (log N) aﬂN N,
which goes to 0 as N — oo. Indeed, if a € (2,3), we have that By ' < ¢cN~ “5e7 . in

dimension d > 4 we get that 8% 'N < cN'=2(e=1/e which goes to 0 since a > 2; in
dimension d = 3, using that ay = N'/* we get that ay! % !N < N3(1=2(@=1)/2) which
also goes to 0 since a > 2. If a € [3,d), we simply use that A3, N < CN'~%/, which goes
to 0 since o < d. Additionnally, recalling that Ey = 1% E[ ], we have

’E[ezﬁmm} _ eaN’ < = AAREIRN 51 Var(|Ry))
Bnan

< C'B%Nlog N,

BNaN

where we expanded ¢z~ (IR~ |=ElIR~1) _1 to get the first inequality (recall that 52 N goes
to 0), and used that Var(|Ry|) ~ ¢sN log N in dimension d = 3 and Var(|Ry|) ~ ¢4N in
dimension d > 4 (see [26]), together with the definition of a). This proves (7.15) in the
case o € (2,d).

In the case a € (di 2] (in particular d > 5), we use (7.9) to get that

1
7’E[€/\N|RN|] . 1] < B ANN < Cecllos M) ga=1

BN
which goes to 0 as N — oo, because %(a — 1) > 1. This proves (7.15) in the case
a€E (d 5, 2].
Second term in (7.11). Let us rewrite it as
1

— Z —P (@€ Ry)+ > B[R - 1) 1gen,,y)| - (7.16)

f Byan =,

TEZ TEZ

The second term in (7.16) goes to zero in probability. Indeed, it is centered in
expectation, and its second moment is bounded by

s > El0)’)(MN —1)"P(a € Ry) < CE[(€O)2]§)\J\2’N)2JN
ﬂNCLN ezd 22

Using that Jy ~ cqa% as N — oo (cf. Lemma B.5) and that Ay, E[(g0)?] < Cecllos V)" 312,
see (7.9) and (7.10), this is bounded by a constant times ec(l°2 N)"B?V(QAZ)*ZNQ. Ifa>2
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this is bounded by N°()(5%N)? so this goes to 0; if a € (5%5,2] this is bounded by
NeM(B%71N)?, so this also goes to 0, as seen above.
We now rewrite the first term in (7.16) as

ﬁ Z (wz — p)P(z € Ry) + Z (e2 — Bn(we — p))P(z € Ry), (7.17)

TEZ zeZd

anfn

and we now show that the second term goes to 0 in probability.

Ifa € (dfdQ, 2] (d > 5), we control the expectation of its absolute value. Using that
|BN@.| < Bykn < c(log N)" and recalling that £, = e’¥%==*~ — 1, we can perform a
Taylor expansion to get that

1 1 n ~
E[[e = Bn(ws = )] < 5= (BuBllws = alLgu, 5kny) + An + Ce* 08N (BB +X3))
By BN

< kLo 4 e ton ) gact

where we used that E[@?] < Ckx “logky < C'B% %(log N)©, together with a similar
bound on Ay, see (7.9). Therefore, the expectation of the absolute value of the second
term in (7.17) is bounded by a constant times ky *N + ¢¢ (e N)" 32~ N': this goes to 0
as N — oo, thanks to the condition « > d/(d — 2). By Markov’s inequality, the second
term in (7.17) goes to 0 in probability.

If a € (2,d), since the expectation of the second term in (7.17) is 0, we control its
second moment: by independence of the w,, it is equal to

where we have used that Jy =) ., P(z € Ry) < ca%, see Lemma B.5. Now, we can
use the same Taylor expansion as above, to get that

1 C
@E[(Em — B (we — M))z} < 3

< CkJQV—a + Ce¢ (o N)"ﬁ](ic//\él—Q '

(BRE[(@r = 1)L, shny] + W + Cete0o N (BUELG] + X))

where we used here that Ay ~ 3% as N — oo and that E[@?] is bounded by Cky “logky <
Cﬁj‘{f‘*(log N )C/ if @ < 4 and by a constant if & > 4. This shows that the variance of the
second term in (7.17) goes to 0, so this term goes to 0 in probability.

All together, combining (7.11) with (7.14)-(7.15) and (7.16)-(7.17), we have shown
that

1 ~ =
7(Z1“\’,76N — SV le>2y Z Bn(wy — p)P(z € RN)> 2.
anpBn ot

It therefore only remains to show that

LS P e Ry) D (7.18)
an

recZd

N(0,0%) ifd=3,4,
X itd>5.

Note that in Lemma 7.2, when d > 5 and « € (2, %) we used a centering equal to 1 instead
of €&~ . This is not an issue since in that case we have that ﬁg,l(eEN —1) < ¢y N goes to
0as N — oc.

In dimension d > 5, (7.18) follows simply by monotone convergence, recalling that A’
is a.s. finite if a > d%‘l? see Proposition 2.10.

In dimension d = 3, 4, the random variables ay' (w, — )P (x € Ry) are independent,
centered and have variance a]_\,QP(x € Ry )?. Since ay — oo, this goes to 0 uniformly for
x € Z%. Hence, we directly get (7.18), for instance with a characteristic function analysis
with the constant 02 := imy_00 Ay’ Y ,cz¢ P(z € Ry)?% recall Lemma B.5. O
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7.2 The case a € (£,2)

Note that this regime is nonempty only for d = 2, 3. Also, since a > g > 1, we have
i = Elwg] < 4+00. Let us stress that, similarly as (7.1) above, the convergence (2.8) is
equivalent to the convergence in distribution

UN

ByNis

The steps are the same as in Section 7.1. The case of the dimension d = 3 is very similar,
but some adaptations are needed in dimension d = 2.

(Zn.gw —1) LWy (7.19)

Step 1. Truncation of the environment. Let us set

log N1 N 5 ifd=3
j— {(Og ) ! ’ (7.20)

(loglog N)'Ns  ifd=2,

where 7 € (:,1). We again define the truncated environment & = (w — pt)L{, <, ; and
we set \y = log E[¢#~“0]. The next lemma is analogous to Lemma 7.1.

Lemma 7.4. Let a € (2, %). Assume that Sy < cN~%2* for some constant c. Then for
any a > 0, we have that:
(i) ifd =3, N*(Znpy — 2% 5,) — 0 in P-probability;
(i) if d = 2, (log N)*(Zn sy — Z% 3, ) — 0 in P-probability.
Before we start the proof, let us stress that Lemma C.1 gives some estimates on Ay:
since « € (1,2), we have

(log N)" ifd=3,

7.21
(loglog N)" ifd=2. ( )

Ay < CePVEN o < CePvhn N=4/2 - with fyky = {
Proof. In the case of dimension d = 3, the proof is identical to that of Lemma 7.1: the only
difference here is that we do not have Ay < CB]QV. Instead, we use (7.21) instead which
gives that Ay N < Ce(8M)" N1=4 goes to 0 as N — oo; this was used to bound (7.5).

We therefore focus on the case of dimension d = 2; the idea of the proof is identical,
with some adaptation. First of all, analogously to (7.4), we get that for any sequence
AN > 1

P (ZNﬁN (My > Ay /Nloglog N) > e~c1A% loglog N — (1o N)—ClA?v) < Ay . (7.22)

Again, this is identical to Proposition 6.1, replacing N¢ with /N loglog N: in particular,
this relies on Lemma 6.2 in which we can take hy = /N log NV log N. Therefore, choosing
a sequence Ay — oo (we take Ay = logloglog N), we get that (log N)“ij,ﬁ?‘(MN >

An v/ Nloglog N) goes to 0 in probability.
Then, as in (7.5), we have that

E[2% 5. (My > Axy/Nloglog N)| < E[e?VRN 2P (My > Ayy/Nloglog N)'/?
E

1/2 _.A2
[62AN|72N|] / e cANloglogN.

IN

(7.23)

The main difference here is that we cannot use the bound Ay|Ry| < Ay N since we
do not have AyN — 0 as N — oo, see (7.21). However, we may use the fact that
|R | is of the order N/log N to obtain that Ay|R | — 0 with high P-probability. More
precisely, using that E[|Ry|] < CN/log N (see e.g. [16, Eq. (5.3.39)]) we have that, for a
sufficiently large C’

N
P(|RN\ > 20’—) < P(|RN\ _E[Ry[]=>C < emclog ) (7.04)

, N log log N)
log N

(log N)?
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where we used [16, Thm. 8.5.1] for the last inequality. We therefore get that

’ 4
E[62AN\RN\] < e4C )\NN/logN_FeZ)\NNefc(logN) )

Now, thanks to (7.21), we get that Ay N = o(log N) as N — oo. Hence, from (7.23), we
get that

E[ZJG\)/,[%N (MN > AN\/W)] < CO(log N)chf\,

so that (log N)*Z% 5. (Mn > Ay+/Nloglog N) — 0 in P-probability thanks to Markov’s
inequality.
Finally, notice that similarly to (7.7), we have that

IP(Elac7 lz|| < An+/Nloglog N ,w, # wz—u) < ¢ A% (N loglog N)¥?(loglog N)~*"N~/2
(7.25)
which goes to 0 as N — oo since an > d/2, and Ay = logloglog N. Therefore, we

get that Zy g, (My > Ay/Nloglog N) is equal to Z5 5 (My > An+/Nloglog N) with
P-probability going to 1. This concludes the proof of Lemma 7.4. O

Step 2. Convergence of the partition function with truncated environment.
To conclude the proof of Theorem 2.12-(2.8), and in view of (7.19) and Lemma 7.4, it
remains to prove the following lemma. (In dimension d = 2, we need to assume that
By N4/2« decays slower than any power of log N, but this does not hide anything deep;
one simply needs to use a more restrictive truncation, but this actually simplifies many
of the arguments so we do not treat this case.)

Lemma 7.5. Let o € (%,2). If limy o BNNY?® = B € [0,+00) then we have the

following convergence in distribution
UN & (d)
By Nd/2a (ZNpy —1) — Ws.
Proof. We use the same notation as in Step 2 of Section 7.1. Defining ¢, := exp(By@, —
An) — 1, and using a polynomial chaos expansion similar to (7.11), we get

ZRpy — 1= B[R 1] 4 3" e Bl RN 1, cp ] + Y (7.26)
z€Z4

where we defined Y as in (7.12). We first prove that the last term is negligible: the
computation in d = 3 follows closely the computations (7.13)—(7.14), while dimension
d = 2 is more delicate. In the second part of the proof we show that the first two terms
give the main contribution to the convergence. This part is quite technical and we split
it into three steps.

Last term in (7.26). Let us prove that vy Y /(Bx N%/?%) goes to 0 in probability.

We start with the case of dimension d = 3, which we essentially already treated.
Reasoning as in (7.13)—(7.14), we computed the second moment of Y in the case
a € (1,2): we have that

E[Y%] <O (B3 Jn)" < Cetles M g2 (7.27)
E>2

where we bounded [Ry| < N, used that Jy < ¢N'/? in dimension d = 3 (see Lemma B.5)
and the bound (7.10). Since vy = N'/2, we obtain

2 Ky
(M%) E[Y}] < Ce2(os M N2 g™ < ¢reellos M) y2=d (7.28)
N
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This term goes to 0, which concludes the proof in the case of dimension d = 3.

Turning to the case of dimension d = 2, we need to be more careful: we cannot
simply bound |R x| by N since we do not have Ay N — 0 anymore. The calculation of
E[Y?%] in (7.13) remains valid. Then, decomposing the expectation according to whether
|Rn| < 2C'N/log N or not, we obtain

2
E{e/\NlRNl]l{(Il ..... Ik)eRN}:|

- 20'N Y\ °
< (620 101;NP(($17.”,;C]€) S RN) +6>\NNP((1'1,... ) S RNa|RN‘ =1 gN)>
’ C/N
< 9¢4C %P((xl, cyzy) € Ry): 4262 NP (..., 1p) € Ry)P <|RN| 1 gN>
(7.29)

where for the last inequality we used that (a + b)? < 2(a? + b?) together with Cauchy-
Schwarz inequality. Now, we have that Ay N = o(log N) (recall (7.21)) and also that
P(|Ry| > 2C'N/log N) < e=<(ee N)" if ' has been fixed large enough, thanks to (7.24).

Hence, summing (7.29) over (z1,. .., ;) and using Markov’s property, we finally get that
2 k , k
> E[&N'RN'H{m ,,,,, m)GRN}} < C( Y P(e RN)2) +e e (logN)4( > Ple RN))
(:El,...,Ik)G(Zd)k T €Z4 z€Z

Ti#T5,1,5=1,...k

All together, going back to (7.13), we obtain that when d = 2 the bound (7.27) is replaced

with
E . E
E[Y}] < CY " (Bl(g0)?)n)" + e~ 8N 3™ (B](0) Y| E[[ R [])
k>2 E>2
Now, we have that E[()?] < Ce(IOgIOgN B% by Lemma C.1, that Jy < C(logN by
Lemma B.5 and that E[|Ry|] < logN by [16, Eq. (5.3.39)]. Using that vy = log N, we
obtain
UN 2 2 2_2(loglog N)" p2(a—1) 2,1( 1 g Nyt 1 )

E[Y%] < C(log N & lo8 N2 o —— gN) ___ -

(ﬂNN%> [ N]—C(Og ) € BN (10gN)4+€ (10gN)2 )
(7.30)

and note that 5]2\,(a_1)N2*d/°‘ < c. This term goes to 0, which concludes the proof when
d=2.

First terms in (7.26). We can rewrite these terms as
E[e)\N\RN\ _ 1] + Z EIE[(GANlRNl _ ]_ I]-{xERN} Z esP :L’ c RN)
r€Z r€Z4

=E[MRN 1 - (1—e™)Ry[] + Y E[(M RN = 1)1 er ] (7.31)

€74

A Z AnGe _ 1 )P(z € Ry),

Tz€Z

where we used that ¢, = e ¥ (¢/¥¥ — 1) — 1 4 ¢~*~ for the last identity. Let us denote
I, IT and III the three terms in (7.31). We show that the first two terms are negligible.

Term I. For the first term in (7.31), let us first treat the case of dimension d = 3,
which is simpler. Using that Ay — 0 and Ay |Ry| < AyN — 0, a Taylor expansion gives
that it is bounded by a constant times (\xN)2. Hence, using that Ay < Cec(los8N)" ¢,
we get that

UN I< O 2c(log Ny}UNﬁ]QVailNzi% < O ecllog N)"Ngfd 7

BNNia
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where we used that vy = N'/2 in dimension d = 3. This goes to 0 as N — .

The case of dimension d = 2 is a bit more delicate. On the event {|Ry| < 2C'N/log N},
we can again use a Taylor expansion, since AyN/log N — 0, so that the term inside
the expectation is bounded in absolute value by a constant times A% N?/(log N)2. On
the event {|Ryx| > 2C’'N/log N}, we bound the absolute value of the term inside the
expectation by eN* — 1+ eAyN < CAyNe?(oe V) We therefore get that

eQ(log log N)"

I <
=c (log V)2

6]2V(1N2 + e—c’(log N)46](§¢[N,

A2, N2 N
N Neolog N)p 20" <
(log Ny2 T AN IVe (IR >2¢ logN) =

where we used (7.24) for the last inequality. Since vy = log NV, we get that

n
N e2(10g log N)

< 20-1 2= 55 | (oo Ne—¢ (log N)* ga—1 pp1—s4 7.32
ByN3ze —  logN B +log Ve Py ( :

which goes to 0 as N — oo, noticing that S 'N1-9/20 < ¢, 201 N2-55 < ¢ and
S (%, 1).

Term II. We prove that vyII/(3yN%2*) goes to 0 in probability, by controlling its
second moment. Since the ¢, are centered and independent, we have

E[(I1)%] < Ele?] Z E[(eAN\RN\ — 1)]l{x€RN}r. (7.33)
T €LY

We start with the simpler case of dimension d = 3. Using that e*¥ /RNl — 1 < Ay N
and recalling the definition Jy, we get that

E[(I1)?] < cB[(20)*] (A N)2Jy < CeelesN)" g2 N3

where we used the bounds (7.9)-(7.10) together with the fact that Jy < N1'/2 in dimension
d = 3, see Lemma B.5. Hence, using also that vy = N'/2 we get that
UN 2 2 1 ¢ (log N)" p3a—2 75— 2 1 ¢ (log N)" arZ—3d
(W>E[(II)]SC€ & 61\7 N2 QSCE € Nz LI

which goes to 0 as N — oc.

In the case of dimension d = 2, we proceed as above. Writing eNIRNl 1 <
An|Rn|e*~RyT and decomposing according to whether we have |Ry| < 2C'N/log N or
not, we get similarly to (7.29)

E [(EAN\RN\ B 1) ]l{:reRN}:|2 - C(;‘)gé:;)gp(x cRn)*+ /\NNeANNP(J? € RN)P(\RN| > 20’%) .

Summing over z and using the bound (7.24) together with Ay N = o(log N) and E[|Rn|] <
N, we get from (7.33) that

ANN)? 4
e+ CEI Ay N2t )

< 0/63(10g log N)"’BZQVQN2<(IOg N)_4 + e—c’(log N)4) )

E[(IT)?] < CE[ej]

For the second inequality, we used the bounds (7.9)-(7.10) (and also that 4N < ¢) and
that Jy < CN/(log N)?, see Lemma B.5. Since vy = log N, we get that

2 b 7 _ ’
(Goveras) BIAD?) < €eXoslos M gEe DN (1og N) 72 o (log N)?e= (06 ")
N ¢

(7.34)
which goes to 0 as NV — oo, using that ﬁ]‘f,*lNl—d/%t <c
Term III. We show the following lemma to control the third term in (7.31).
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Lemma 7.6. Letd =2,3 and a € (%, 2). We have the following convergence in distribu-
tion:
N BN, (d)
BN zzzd(e " T UP@ e Ry) T W, (7.35)
xe

with Wg defined in (2.6).

Going back to (7.26), and combining (7.27)-(7.30) with (7.31) and the estimates (7.32)-
(7.34), then Lemma 7.6 concludes the proof of Lemma 7.5, noting also that e~ goes to
las N — oo. O

Proof of Lemma 7.6. To prove (7.35), we adapt the method developed in [19, Thm. 1.4].
We consider only the case limy_, Sy N%¥?* = 3 € (0,400); the case 3 = 0 can be dealt
with similarly, one simply needs to keep track of the dependence in S in all estimates
— note also that we have W3 — W, as 8 — 0. Also, for = € 7%, we use the notation
fn(z) =vNP(x € Ry).

We prove the convergence of 3 ;. (8 N%/2%) =1 (e#v¥= —1) f (z). As in Equation (39)
in [19], we fixe > 0, K > 0, and we define w; = (w; — 1) L1(o, —)<-na/20). Recall the defi-
nition of &, in (7.20). We use the following decomposition of 3 4 (By N4/2%) =1 (efv &= —

1) fn(z):

1 @ —d/ 20~
> g (O 1) In@) F NG Y ale)
lz|I<KVN lz|<KVN
(W17#)>5Nd/2a

1 ~e ~c
+ X gy (% BF) falo)
[zl <KVN
¥]E BN&§ _ 1 _ ~e # BNGe _
+ 5y e onEE| X I@ XD g (M 1) Sl
lzl<KVN llzl|>KvVN
(7.36)

We control each term separately: the first two terms bring the main contribution; we
show that the last three terms can be made arbitrarily small by taking € small or K large.

1st term in (7.36). We split the term into

1 = 1 -
BNWy _ BNWy _

Z By Nd/2e (e : 1) fu(x)+ Z By Nd/2a (e N 1) Iy ().

*VNL|z|<EVN llzl|<e* VN
(We—p) >N/ 2 (wo—p)>eN/2e

(7.37)

For the first term we partition Bx X (e, 00) into rectangles with diameter 6 > 0, where

Br :={z € R?: ||z|| < K}. By denoting this partition &5, 7 a patch of &5 and (2, w,)

the center of m, we can write the first term above as

1 @
Z Z By Nd/2e (eﬁN v 1)fN(I)]l{(ﬁ,%)€ﬂ}
T€Ps e/ N<2l| <K VN

1 w
= 2 (HosWgE™ =Dfla) > Lggsmmen
TEPs eoV/N<||z||<KVN
(7.38)

where we also used that limy_,o, SxN~%?* = 3 € [0, 00) (with by convention %(e'@ww —

1) = w, when 3 = 0) and limy_,. fn(2v/N) = f(2), see (2.4); here o5(1) denotes errors
that are negligible as § “\, 0 for fixed .
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It is now not hard to check that (see [19, p. 4036])

Y L smen — P(n) weakly, (7.39)
o<||z|<KVN

where P(7) is a Poisson point measure on 7 with intensity n(dz, dw) = aw~ (@t dzdw.
Thus, by first sending N — oo and then letting § — 0, we have the following
convergence in distribution:

1 &, (d)
> By Nd/2a (eﬂN% - 1) fn(x) —>/
VNS o <KVE (B

(wg—p)>eNY/22

1 (P —1) f(z)P(dz, dw) .
\Bea) X (e,00) B

(7.40)
Note that [27, Theorem 10.15] ensures that the integral is well-defined (in particular at
w = 400, recall also the proof of Proposition 2.11 in Section 3.4).
For the second term in (7.37) we show that uniformly on NV € IN

1 _

(Ve a/2 /2

IP( E By N2 (6 1) fn(x) >e > < cqe®*log(1l/e). (7.41)
lzl|<e*VN

@y >eNI/2

Since w,, < @,, we replace w,, by @,. Moreover, we consider the event A = { max wy <
lzl|<evN

Nd/ M} and split (7.41) according to A: the probability in the left-hand side of (7.41) is
bounded by

1 )
n>< ) Mdzza(eﬂw—1>1{w1>gmna}ffv<x>>sa/2;A>+1P<AC)~ (7.42)
lzll<eovn N

Since By N?%/?* < ¢, we have that on A, (e’¥%: — 1) < C By N2>, Then, note that we
have

|/ (2) = f(z/VN)| =

unP(z € Ry) — f(x/\/N)‘ < cf(z/VN) (7.43)

for all z € Z®\ {0} with ||z|| < Kv/N by [32, Thm. 1.8] (in dimension d > 3) and [32,
Thm. 1.6] (in dimension d = 2) and by a Riemann sum approximation (and dominated
convergence), we have

<Ce N2 N fy(@) < e f(x)dz,

Bl > lg,senazapfa(z)
2| <eo VN Bee

lzll<eevN

where we used that P(@, > eN%/2%) < Ce *N~%2 Then from asymptotic esti-
mates on f, see (3.21), we easily obtain that this is bounded by a constant times
£2%log(1/¢). Therefore, by Markov’s inequality, the first term of (7.42) is bounded by
C"e=3/21og(1/e) < e*/?1og(1/e).

Finally, since P(A°) = P( maxrwm > N4/2¢) < 24, we complete the proof of
|z]|<exvV'N
(7.41).

2nd term in (7.36). Using that wy — u is centered, we easily get from (1.4) that

N—oco

N%(l_%)E[a}S] = —N%(l_%)E[(WO - //L)]l{(wo_u)>5Nd/2a}:| — —a/ w-w” Yy .
e
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Again by (7.43) and a Riemann-sum approximation (and dominated convergence), we
get that

lim N~% ) fN(:c):/ f(z)dz. (7.44)

N—o0 <
lell<KVE i<k

All together, we get that the second term in (7.36) verifies

lim N~%2°E[&E] Z fn(z) = —/ wf(z)n(dz, dw) . (7.45)

N—oo
Izl <KVE Brex(e,+o0)

Combining (7.40) with (7.45), we obtain that the sum of the first term in (7.37) and the
second term in (7.36) converges in distribution to

l(eﬂ“’ —1—pw)f(z)P(dz,dw) +

/(B \Boa)x (e, 400) B wf(x)(P —n)(dz, dw)

/(BK\Bsﬂ)X(EH-OO)

- / wf(z)n(de,dw) .
B.o X(E,OO)
(7.46)

Note that the third integral above is bounded by c,e'*®log(1/¢). Letting ¢ | 0 and
K 1 400 and by (7.41), one recovers W, see Proposition 2.11; when 8 = 0, the first
term is equal to zero. It therefore remains to control the remaining terms in (7.36).

3rd term in (7.36). We control the second moment of this term, since it has zero
mean. By a Taylor expansion, using that |Sy@wZ:| < Cef, we have that

E[ (" —E[e™])°] = B[e* ] B[] < CAAB[(35)?] < C's* gL NF ),

where the last inequality holds since o < 2. Hence, recalling that fx(z) = vnP(z € Ry),
we get that the third term of (7.36) has a second moment

1 . . 2
E |:< Z W (e'BNwZ — E[eﬁNUJI]> fN(l')) :| S ngiaNig’U]zvjN S 0/5270[,
lz|<KVN

(7.47)
where for the last inequality we used the definition of vy (see Section 2.3) together with
Lemma B.5 for d = 2, 3.

4th term in (7.36). Again, by a Taylor expansion, and using E [(&§)?] < ce2o N7a(2-a),
we have

1 @g ~ BN ~e\2 2—a d o d
WE[GBA’ 0—1_BNUJ8] SCWE[(OJS) ]SC& BNN%‘N 2,
Now, using (7.44) and the fact that Sy N%/?* < ¢, we get that the 4th term in (7.36)
verifies

1 ~e _ _
05 G qam Bl —1-px3f] 3 fu@ <o (748)
lz|| <KVN

5th term in (7.36). Here, we follow the line of proof of [19, Lem. 5.1]: we prove that
(recall the notation w, = w, — u)

1 _
BN@s _ -K d—2
which can be made arbitrarily small by taking K large, since o > d/2. Note that since
w; < @,, this enables us to control the last term in (7.36).
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To prove (7.49), we decompose the sum according to whether @, is smaller or larger
than 1/
To control the part of the sum with &, < 1/5x, we use Lemma C.1 to get that

E|:|6ﬁNsz]l{J;1§1/ﬁN} _ 1‘} < Clﬂf\y].

Hence, the sum over the terms with @, < 1/8x has L' norm bounded by

1 - a4
Bl > gyl e S iy@)] < GuNEe N ST fa(a)
llzll>K VN N lz||>K VN
Sc'/ f(z)dez,
[l > K

where we used Sy < cN —d/2a gnd the same Riemann-sum approximation as in (7.44).
Then from asymptotic estimates on f, see (3.20), we easily obtain that this is bounded by
a constant times e—¢K” . Hence, applying Markov’s inequality, we get that the probability
that this part of the sum is larger than e~* /2 is bounded by ce®e—¢K” < cKd-20,

Let us now control the sum over the terms with w, > 1/8y. We write

1 5 .
P( 5 s - Dl i) > )

lzl|l>K VN

K~ 'VN

< Z P Z eBNa’w]l{wz>1/5N}fN(x)>BNNd/2aeK2j2). (7.50)
7=1 lell€ (i +11KVN

Now, we set N = |{z € Z¢, 0, > 1/8y .||l € (j,j + 1JKVN}|, and we bound each

probability in the sum by

IP(NJ.K > eKdeﬁNNd/m)

tP Yo Ly fn(e) > By NP Ko NE < eKj1+dBNNd/2°‘> :
lzll €. +11KVN
(7.51)

First of all, by Markov’s inequality, since the number of sites verifying ||z|| € (4, j+1]KvVN
is bounded by a constant times Kj?~' N%/2 and since P(w, > 1/8y) < A%, we get that

IP(NJK > eKjd+lﬁNNd/2a) < Ce—Kj—(d-i—l)(BNNd/Qa)—l % ded—1NgB% < KT K2
(7.52)

where we used that 35" < cN¥@~1)/2% For the second probability in (7.51), we use that

fn(x) is bounded above by e=%" K yniformly for ||| > jK VN (recall (3.20)), we bound

the number of terms in the sum by ¢/ j!+¢3y N%/2 (using the condition on N*) and we

bound e?¥®= by its maximum. We then obtain that the second probability in (7.51) is

bounded by

IP(eKj1+de*cj2K2 max {e’BN@”} > e*K2*j*2) .
lzlle(,i+11KVN
Now, using that e2K j—(+d)9=jeci”K* > '5°K* ypiformly in j > 1 and noting that
Nd/2 B% < ¢, we get by a union bound that the above probability is bounded by

cjd—leNg]P(ecBNLDz > ec/j2K2) < cjd—l—QaKd—QaN%B]o\cf < C/jd—1—2aKd—2a ) (753)
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All together, summing over j for (7.52) and (7.53) (recall that a > d/2), we get that
the probability in (7.50) is bounded by a constant times K%~ 4+ K?=2_ This concludes
the proof of (7.49).

Conclusion of the proof. Recall that the sum of the first two terms in (7.36) converge
to (7.46). Then, we let £ | 0 and we use (7.47)-(7.48) to get that the 3rd and 4th term
in (7.36) become negligible. Finally, letting K 1 oo, (7.49) makes sure that the 5th term
in (7.36) goes to 0 in probability.

7.3 Transversal fluctuations

Let us first show that the transversal fluctuations are at least of order v/N. Since
Znpx(My <V N) = Zn g Pn gy (My < 7V N) and because Zy g, — 1 in P-probability,
we can focus on Zy g, (My < nV'N).

By the same argument as (7.6)-(7.7), ZNﬁN(MN < n\/ﬁ) - Z]‘T\’,}ﬁN (My < n\/]V) —0
in IP-probability. We then have

_ _ ~ 13
P(Zngy(My <nVN) > ¢) §1P<|ZN’BN (My <VN) = Z5 5, (My < nVN)| > 2)
+ P(ZgﬁN(MN <nvVN) > ;)

where the second term is bounded above by C.(1 — 6_67’2), thanks to the Markov’s
inequality and reasoning as in (7.5), which can be made arbitrarily small by choosing
small enough 7: this concludes the proof that transversal fluctuations are at least of
order v/N.

The proof for transversal fluctuations are at most of order v/N is very similar, where
one just needs to restrict the path to { My < Ay+/Nlog N} first (see Lemma 7.1 for more
details), so we omit it.

O

8 Region C: proof of Theorem 2.15

Here we have limpy_, o BNNg_l = f € [0,400), and we work conditionally on the
event § < f3., i.e. Tg = 0in Theorem 2.2. Recall that if o > 1 we set ;4 = E[w], whereas
when a < 1 we let p be any real number; we again use the notation Zy g, = Z]f,:%i“.

8.1 Preliminary: paths cannot stay at scale NV nor at an intermediate scale

First of all, let us stress that conditionally on having 773 = 0, paths cannot stay at
scale N. Indeed, similarly to what is done in Section 5 (see in particular (5.7)), we have
that forany n > 0

log Z;{’,’,%N (My >nN) — 7732,, = sup {W(S)—%Ent(s)} .
SED 5upy e, 15 (1)1 >, Ent(s) <+oo

1
BN/«

Now, on the event that 7A}g = 0 we have 775277 < 0 a.s., see Lemma A.5 in Appendix.
Hence, if limy_,oc Sy N¥*~1 = 3 > 0, we get that for any n > 0,

lim P (250, (My = 0N) = e |75 = 0) = 0. 8.1)

N—o00

If imy_yoo By N¥ =1 = 0, in view of Remark 2.6, one has

. 1 w,h . 1
Jim ¥ log Zy s (My >nN) = lim ¥ logP(My >nN) <0,

N—o0
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so the conclusion 8.1 remains valid.
Let us now prove here the analogous of Proposition 6.1, stating that paths cannot
stay at some intermediate scale between N'/2 and N.

Lemma 8.1. Assume that limy_, BNNCFTQ = B € [0,+00). Then, there exists some

v’ > 0 and a constant ¢, such that for any Ay € [v/log N, N'/4] and anyn € (0,1) we have
that for N sufficiently large

lP(log Iy (My € [ANVN, nN)) > —clA?V) <en” —|—CAR,V/.

Proof. The proof is very similar to that of Proposition 6.1. First, we divide the partition
function as

Zn,px (M € [ANVN,0N)) = Zn gy (My € [ANVN,N*/) + Zy 5 (My € [N**,9N)).
(8.2)
For the first term, we divide the partition function as

% logy N

B O € LANVRLNY) = 3 o (0 € VAL 2441V

k=log, AN (8 3)
% logy, N )

< Z e—cg% \/ZN,BN (MN < 2k+1\/ﬁ) .

k=log, An

where we used Cauchy-Schwarz inequality for the second inequality, together with the
fact that P(My > 2¥v/N) < exp(—c2?*). Now, applying Lemma 6.2 with hy = 2¥v/N, we
get for the range of k considered that for any fixed constant ¢y > 0

P (Zy,o (My < 2T 1VN) 2 exp(co2?) ) < o/ N-HE27 4 =20k,

where we used that ey = NBNh%O‘_2 < ¢pN—1(d/a=2) gince hyy < N3/* and o < 4.
Together with (8.3), a union bound therefore shows that, provided that ¢; has been
chosen small enough, we have

]P(ZN,BN (My € [ANVN, N3/%)) > e—w‘?v) < "AR + c(log N)N~5(5-2)  (8.4)

Note that the second term is bounded by A;,”/ since Ay < N1/4,
For the second term in (8.2), we proceed analogously: we decompose it as

%logQN
Zn.pn (My € [N3/* nN)) = Z Zn gy (My € 27F 71N, 27FN))
h=losa (8.5)
%log2N
< Z 6762_%1\[21\[751\, (MN < 27]6]\7) .

k=—logy n

Again, we can apply Lemma 6.2 with hy = 27¥N to get for the range of k considered
that

IP(ZN,BN (My <27FN) > exp (002_2kN)) < HE2r L N2 (8.6)

where we used ey = NByh%* 2 < ¢32-k(4/2=2, together with the fact that h2, /N >
N2,
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Again, together with (8.5), a union bound therefore shows that, provided that ¢; has
been chosen small enough, we have

IP(ZN,BN (My € [N¥/*9N)) > e_clNl/z) < 'pE=2" 4+ ¢(log N)N /2, (8.7)

Note again that the second term is bounded by AJ_\,”/ since Ay < N/, Combining (8.4)
and (8.7) therefore concludes the proof of Lemma 8.1. O

8.2 The case a € (0,1)

We first prove (2.11), in the case a € (0,1). We show the following: if o € (0, 1), then
for any h € R,

UN w,h (d)

Recall that vy = log N in dimension d = 2 and vy = N%-1! in dimension d > 3.

Proof of (8.8). First of all, using (8.1) and Lemma 8.1, we get that for any a > 0 there is
some A > 0 such that

lim P(N“(Zi}, = Zis, (My < AV/N1ogN)) > 2| T3 =0) = 0.

N—o0

Therefore, we may focus on the convergence of Z]“(,’,}/;N (My < Ay/Nlog N). We have

w,h IANTT T
e~ IPIBNN ZN’ﬁN (MN =4 NIOgN) < elhlBn N
= h=0 = 9

Z;JI,BN (MN < A\/NlogN)

so that, for any h € R, noting that Sy N < cN 2-d/a _ (), we have

‘ Zylh (My < AYNTogN)
Zyl Y (My < AYNlogN)

- 1‘ < C|h|BNN. (8.9)

Notice that vy /(Bx N%2%) x By N < N2(1-3) log N and goes to 0 as N — oo (the factor
log N factor is present only in dimension d = 2). Hence, in view of (8.9), we therefore
only have to prove the result for h = 0, that is

UN w,h=0 (d)
W(ZNwﬁN (MNSA\/NIOgN)f].) *)WO, (810)
since it also implies that ZR’,’%?O (My < Ay/NlogN) goes to 1 in probability.

Now, since the w’s are non-negative, on the event My < Ay/N log N we have

IP( Z ww>N%(logN)g)§IP( Z ww>N%(logN)g>
veRy || <AVNTog N
d
2

< (Ay/Nlog N)?P(wy > N7 (log N) &) < CA%(log N)~ %
where we used a union bound for the second inequality. Hence, with [P probability going

to 1, we have that Sy ZweRN wy < BNNz%(logN)% — 0 on the event Ay = {My <
A+/Nlog N}. By a Taylor expansion, we therefore have

‘Z%Z%;O(MN < A\/]W))_P(AN)_ﬂNE[ Z wI]l{MNSA\/NlogN}:H < (5NN%(10€;N)%>2’
TERN
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with P-probability going to 1 as N — co. Notice that since Sy < ¢N'~% and vy <
N?/2=1log N, we get that

UN
BNNd/2o¢

2d
a

X (BNN%(logN)%)2 < NE(-3 )(logN)

which goes to 0 as N — oo since o < 1.
Note that 1 — P(Ax) < N —c4” and A is large enough. All together, it boils down to
proving that
UN (d)

Nd/2aE[ Z wl’]l{MNSA\/m}} — Wy (8.11)
TERN

Recalling the notation fy(z) = vyP(x € Ry ), we have the following bound

UN
’]\m/za Z WzP(-TERNaMNSA\/NIOgN]_ Z Nd/zafN( )
TERN |z||<AvVNlog N
UN

= Nd/2a |, |\<A\/7N Tog N

w.
— L (P(Myn > Ay/Nlog N) +log NP(|Ry| > AN/log N) 14—
e 5 (PO > AR VP 1051

{w}B[IRN L ary > Ay N Tog W}

4
2

<N

which goes to 0 in probability provided that A has been fixed large enough. Therefore,
the convergence (8.11) is equivalent to showing
S el D owy _/ wf(z)P(dz, dw), (8.12)
lzll<AVNTog N ROxRE

with P a Poisson point process on R? x R* with intensity aw~®~'dzdw. The proof is very
similar to the proof of Lemma 7.6 — see in particular the method used in (7.38)-(7.39).

Since w~® is integrable around 0 when a € (0,1), by the same argument as in
(7.38)—(7.39), we have analogously to (7.40)

Z Nd/zafw() )/B wf(z)P(de, dw). (8.13)

Iz <K VN KxXRe

For the remaining term in (8.12), we get that it verifies

— _ a

p( Y gmawek)<Yr( Y whsrieaE).
KVN<|z||<AV/Nlog N k=1 lzll€(2k—1 2% K VN
(8.14)
2
Since fn(z) < Ce~¢l*I"/N we get that this probability is bounded by a constant times
Z 2 KNS P (wo > C’Q_kK_leCﬂkil)KzN%) < cz:(2’““I(’)"l"ro‘e_c‘)‘ycK2 <ce @K
k=1 k=1

(8.15)

Combining this with (8.13) we obtain (8.12) by letting N — oo and then K — oc. O

8.3 The case a € (1,%)

We now prove (2.10) and (2.11) in the case a € (1, ) in particular d > 3. The proof
is similar to what is done in Section 7: first we truncate the environment and then we
prove the convergence of the partition function with truncated environment.

Step 1. Truncation of the environment. Let us define the truncation level

ky = (log N)&Nza | (8.16)
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and the truncated environment w = (w — u)l,<ky}- Let us stress that Syky
c(log N)¥/«N1=d4/2¢ goes to 0 as N — oo, since o < d/2. We again define \y
log IEJ[eBN‘“] and we notice that thanks to Lemma C.1 (in the case Syky < 1) we have

IA

An < CBNELY® < N2 5 (log N)© . (8.17)

In particular, Ay N goes to 0 as N — oo since a < d/2.

Lemma 8.2. Let a € (1, %) Assume that limy_, BNN%Q = € [0,+00). Then for any
a > 0, conditionally on T3 = 0, N®(Znpx — Z% 3, ) goes to 0 in probability.

Proof. Using (8.1) and Lemma 8.1, we get that for any a > 0 there is some A > 0 such
that

lim P (N(Zy,s — Znax (My < A/ NlogN)) > = ‘ 73=0) =0.

N —oc0

Now, using the definition (8.16), we have that

4
2

IP(EIx, |z < AV/Nlog N, &y # we — ,L) < AYNlog N)?P(w > ky) < ¢ (log N)~

Therefore, we get that

lim IP(ZMN(MN < AYN1ogN)) # 2% 5 (My < A\/NlogN))) =0.

N—o0

It therefore only remains to observe that, by Markov’s inequality,

P(NZ5 5, (Mn > AY/N1ogN) > £) < e N"E[Z5, 5, (My > Ay/Nlog V)]
< e 'eMNNP(My > A\/NlogN) .

Hence, we get that

IP(N“Z%ﬁN(MN > Ay/NlogN) > g) < Ce'N*P(My > Ay/Nlog N),

which goes to zero provided A is fixed large enough. This concludes the proof. O

Step 2. Convergence of the truncated partition function. Thanks to Lemma 8.2, it
therefore only remains to prove the convergence of the truncated partition function.

Let us stress that when d > 5 and a € (ﬁ, %) then we may apply Lemma 7.2:
the only requirement is to have Sy < ¢cN~%2% and Byky < c(log N)" for some n < 1
(to apply the bounds (7.9)-(7.10)), which is clearly the case here. This proves the
convergence (2.10) in Theorem 2.15.

We therefore focus on the case o € (1, % A ﬁ): to conclude the proof of the conver-

gence (2.11) in Theorem 2.15, we need to prove the following:

&V;’V%(ZMN —1) ‘D oWy, (8.18)
with W, defined in (2.9). This is analogous to Lemma 7.5, and let us stress that this
lemma uses the condition « > d/2 only to control (7.49). Let us rapidly go over the
different steps of the proof, the main changes occuring in the proof of Lemma 8.3 below,
which is the analogous of Lemma 7.6.

Recall that we define \y := log E[e#~¥“] and ¢, := e/¥%=~A~ _1; let us stress that using
that Sxkn goes to 0, a simple Taylor expansion gives that E[e?] < CA3E[@?] + C\% <
C' B3 k3.
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We perform the same chaos expansion as (7.26) to get

Zipy — 1 =B[N 1]+ N e B[RV 1 er ] + Y, (8.19)
TEZ

where Yy is defined as (7.12).

Note that Y is centered, and following the same computation as in (7.27)-(7.14),
we have that E[Y?%] < C(E[(g0)?]Jn)? < CBxkN 2*J% Hence, in view of the definition
of ky = (log N)¥/*N4/2%, of the definition of vy = N%/2~1 and Jy < cN'/? (recall d > 3),
we get that

d
a

2 1
(L) E[Y2] < CB4N# 3 (log N)¢ < C'N#~4 (log N)C, (8.20)

6NNd/20z
which goes to 0 as N — oo since o < d. Therefore, UNYN/ﬂNNd/2O‘ goes to 0 in
probability.

We now handle the first two terms on the right-hand side of (8.19): we use the same
decomposition as in (7.31) and the same notation I, II, ITI for the three terms. We now
control the different terms.

For the term I, using (8.17) (in particular Ay N — 0) we have that I < ¢(A\yN)? <
Nzﬂf\,kf\,ﬂga. Using the definition of vy and ky and since Sy < ¢N'~%/®, we therefore
get that

UN 2— L4 C_ ini-d c
WI<0N 2a Q(IOgN) SCN2 a(lOgN) , (8.21)
which goes to 0 since a < d.

For the term II, it is centered and we have E[(II)?] < CE[(g0)?](ANN)?Jn <

c’ ﬂj‘vkﬁ,—g“N 2 Jn. Using the definition of vy and ky, we therefore get that

2
(7”N ) E[(I1)%] < CALNE—% Jy(log N)C < N2~8-% (log N)C < N2~ §-(2Vd=2)+<
BNNd/2a
(8.22)
where we used that Jy < ¢N'/2 and a < 4 A ;4. This goes to 0 as N — oo since d > 3.

For the term II], it is easy to see that smce ﬂNwO < Bnkn — 0, we have by a Taylor
expansion

‘e’\NIII ~ By Y @Pre RN)‘ <cf% S @PP(r € Ry).
zE€Z4 reZ4

Hence, using that E[w?] < k>~® we obtain that

UN A ~ 2— 1—
WEHG NIII—ﬂN zz:dwxP(IERN)H Nd/2 BNk QN<CN 2a(10gN)
fASY/A
(8.23)
which goes to 0 as N — oo since a < d/2.
All together, the proof of (8.18) boils down to showing the following lemma
Lemma 8.3. Ifa € (1,%) and d < 2% (or equivalently o € (1,2 A 5%5), we have the
convergence
Nd/m > @GP e Ry) % Wy. (8.24)

reZd

Proof. The following procedure is similar to the proof of Lemma 7.6. Note that Lemma 7.6
uses the condition « > d/2, in particular to ensure that the limit Wg is finite. Here, the
condition « > d/(d — 2) also appears naturally, in particular to ensure that the limit W,
is finite, see Proposition 2.14.
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We write fy(z) = vyP(z € Ry) and we use the following decomposition: for a fixed
constant K (large)

UN ~ 1 ~ 1 ~
N2 > @P@eRy) = Ndj2a > @afn(@) + Ndj2a > Gafnlx).
z€LY Izl <KVN lzl|>KVN

For the second term, we proceed as in (8.14)-(8.15) to get that it is bounded by K1
’ 2
with probability larger than 1 — ce™¢ %, uniformly in N.
For the first term, then defining w; = (w; — p)1y,,, <. na/20), We decompose it further
as

1 ~ 1 - 1 ~ ~
Ndjza Z WmfN(x)"_W Z E[wi]fN(x)—kW Z (we—El[wg]) fn ().
el <K VN lz|<KVN =zl <KVN
(wz —p)>eNd/2a
(8.25)
By the same argument as for (7.40) and (7.45) in Lemma 7.6, we get that the sum of

the first two terms converge in distribution to

/ wf(x)(P —n)(de, dw). (8.26)
Bk x(g,00)

Note that it is then valid to send ¢ | 0 and K 1 oo in (8.26), since o < d/(d — 2) (recall
Proposition 2.14). It therefore remains to prove that the last term in (8.25) is negligible.
To conclude the proof, we will show that for any € > 0, there exists M. which verifies
lim. o M. = +o0, such that
_lig— Ll
P Y N EEfa() 2 M ”) <oM e, (8.27)
Izl <KVN
where we denoted @, = W; — [E[WE] for simplicity. Then, sending N — oo and then letting
e )} 0and K 7T oo, this concludes the proof of Lemma 8.3.

To prove (8.27), we split the sum according to whether &, f,, () is larger or smaller
than M_N%?2* For the first sum, we use Markov’s inequality to get that

1. _1(a-
IP( >, N7%wifN(x)]l{wng(g;pMENd/?a}Z§M5 3 1))
lzl|<KVN

i(a-1 — —e
< Mz Z fn(z)N 2a:[E[wm]]'{wi,>M5Nd/2afN(lﬂ)_l}] .
llzl|<KVN
(8.28)

Notice that fy(z) < vy = N¥271, 50 N4/2% f5(2)~1 > N1~z (@=1) and goes to 4o as
N — oo since we have d < 2a/(a — 1): hence we can use the following estimate

B[S (s, w20 py()-1y) < CMETON 7 [y ()27 (8.29)
This shows that (8.28) is bounded by

CMAOTINTE S @) < oMY,
lzl|<KVN

where we have used an integral comparison, using that [, f(z)*dz < oo since a(d—2) <
d, recall (3.21)(3.20).
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It remains to control the sum with terms @° fy(z) smaller than M. N%/?*, With an
exponential Chernov’s bound (and using the independence of the different terms in the
sum), we get

_l(n—
P( S NG N (@) Ly (o <ar vz > M 1))
Izl <KVE

lin—
SeXP(— Fe 1)) 11 E[exp (MS‘_IN_%EZJ‘N(w)ﬂ{w;fm)gzwgwd/h})}’
2l <KVN
(8.30)

We now estimate the exponential moment. Let ¢ € (1,2) be such that o < { < d%‘lQ. We
write that

E [exp (M‘gilNiz%‘w;fN(x)ﬂ{wifN(x)SMgNd/%})}
1 _ 1) A o [
<14+ MO N7 () B[@5 L ge fy () <. Nas2ay] + CMECTINT2 B [J@5|¢] £ ()¢
<14 C'MAe DN TS fy(2)C

where the first term is negative for large enough N, since E[w:] = 0, E[@] - 0as N — oo
by a > 1, and N2 fy(z)~! — oo as N — oo, and that E[[05]¢] < Ce¢~* N3~ for
the second term. Going back to (8.30), and using that 1 + z < e? for any z € R, we get
that the probability in the left-hand side of (8.30) is bounded by

exp <_ME§(a—1)+C/M52(a—1)E(—(xN—g Z fN(x)C) < cexp (_ME%(a—1)+C//M62(a—1)E(—a) ,
lz||<KVN

where we used again a sum integral comparison together with the fact that fRd f(z)edz <
+o00 for any a < d/(d — 2). Therefore, choosing M, = ¢~ (¢~®)/(e=1) the second term is
a constant and we get that (8.30) is bounded by exp(—Mg(o‘fl)/Q), which concludes the
proof of (8.27). O

8.4 Transversal fluctuations

The proof for transversal fluctuations are of order v N is a mimic of Subsection 7.3
and we omit it.

A Entropy-controlled Last-Passage Percolation (E-LPP)

Recall that A, is the ball of radius r in R?, and that A, = A, N Z<. For any m € N, let
Tf}? denote a set of m independent random variables (Zi)g’ll uniform in A,., and let Tg,?
denote a set of m distinct sites taken uniformly in A,. We define the Entropy-controlled
Last-Passage Percolation (E-LPP) as the maximal cardinality of a subset A of Tg) or Tgﬁ)
with entropy smaller than B (recall the definition 4.1).

More precisely, we define the continuous and discrete E-LPP as follows

2B (r) .= max{|A| : A ¢ T, Ent(A) < B},

m

(A.1)
LS,?)(T) :=max{|A]: A C T(mr),Ent(A) < B}.

This continuous non-directed E-LPP has been considered in [9, Sec. 3], in dimension
d = 2. The generalization of [9, Thm. 3.1] to the discrete E-LPP and to higher dimensions
is straightforward (we give a brief proof below for the sake of completeness).
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Theorem A.1l. There exists a constant c; > 0 such that, for any B > 0 we have that for
any k >1

PP > 1) < (L) (0> ) < (L) o

We have the following corollary, whose proof is also given below.

Corollary A.2. For any b < d, there exists a constant ¢, 4, only depending on b and the
dimension d, such that for any B > 0, any m > 1 and anyr,

2P0 Y P\
B (BY/2mt/d/r)y Am < Gy B (BY/2ml/d/r)y Am S G- (A-3)

Proof of Theorem A.1. The proof relies on a first moment estimate. We prove the bound
only in the continuous setting, the computations being the same in the discrete setting,
using sum integral comparisons.

For any B > 0 we let Ey(B) = {A = (z;)_;: Ent(A) < B} and we denote A, the
number of sets A C ’I'(mr) with |A| = k, that have entropy at most B. Markov’s inequality

gives that
P(ZLP)(r) > k) = PNy > 1) < E[NG].

By exchangeability of the points in Tg,?, we get that

m!  Vol(Fx(B))
(m—k)!  (cqrd)x
(A.4)
where we used that 71, ..., Z; are independent uniform random variables in the domain
A, which has volume cqr?. Then, we can compute the volume of E}(B) by iteration, and
we find that

EN;] = (T]Z)IP(H 0 € &k st (Zorys s Zotry) € Br(B)) =

d/2 ))krr(d)k B2 < (Cd]idm)k

Vol(Ey(B)) = (r( (dk +1) -

d
5+1
Going back to (A.4), and using that Tt ) < mk, this concludes the proof. O

Proof of Corollary A.2. We only prove the continuous case. The discrete case follows by
the same argument. Note that if m < B'/?m!/?/r, the result is trivial. Hence, we assume
that m > B/2m!/4/r. Choose c, such that ¢, > cqk(®*~1/* for all k, with ¢, the constant
in (A.2).

* If ¢, B¥?m/r? < 1/2, then

E {(.,2{;3)(7"))1 SiCkb‘llP (2P ) 2 k) < ZCkb 1(cdfdk/dm)
= (A.5)
<oy (a2 < gcchjfjm <20 (0 2m)"
k=1

* If ¢, BY?m/r? > 1/2, note that c,u®® > ¢ Vv 1 for large u, then

o0 o0 1/b pl/2 1/d
E[(.,Sﬁ%B)(r) )b] :/ IP(D%%B)(T) > ul/b>du < C+/ (Cdu—l/b)du Bl
B2m1/d]r o Bi2mi/d ]y .
(A.6)
Since du'/*B'/?m!/?/r > ¢/u'/®, we get that the last integral is bounded by a constant.
O
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A.1 Applications of E-LPP
We now apply Theorem A.1 to prove Lemma 3.2 and Proposition 4.1.

Proof of Lemma 3.2.

Let us start by recalling Remark 3.1: if s € D is such that Ent(s) < 2, then we have
s € Dsy. For any m € IN, we denote TE,QL) = {Y§2)7 1 < ¢ < m}, where we recall that
(Y?);>1 are the positions of the order statistics of (w,z) € Py = {(w,z) € P, ||z < 2}
and are i.i.d. uniform random variables in A;. Recalling that the ordered statistics of
weights (MZ@))Ql is a.s. decreasing, using (3.2) we have that

oo 291 [
_ _ (2) (2)
ma(s) = Z wlizeso1y = Z Z M ]l{Y("”es([o my = ZM Lo (2), (A7)
(w,z)EP2 J=0i=27 =0

where .,2”,%2)(2) is the continuous E-LPP defined above in (A.1). Let 6 > 0 be such that

1_ é > ¢. A union bound gives that for any ¢ > 0,

(03

(2) £2) J(—1+0)
1P((‘,':Erslll(i))<2{7r2 } > t) ZIP( ggwrl( ) > Ct27\a ) (A.8)
where 1/C = Z jeIN 2(2=%+9) Then, (A.8) is smaller than

3 [P(£20@) > Colom2+ 020+74) + P (MY > ¢,
§=0

t 1
v 9i(=5+9) A.
log,(2 +t) )} , (A9)

where Cj is a constant chosen (large enough) below, and C; depends on C' and Cy. We
use (A.2) with m = 27! and k = Cjlog, t2U+1)/¢ Then if Cy is taken large enough, we

have o
i 1 dCo logy (2+1)2%
P(fg(ﬁl@) > Cplogy (2 + t)2(J+1)/d) < (5) 2

For the second term in (A.9), we recall that M( ) @ (2f)d/aGamma( )=/, so that
E[(MEZ))O‘] < ci~!, where c is a constant independent of i. Therefore, using Markov’s
inequality we get that

P(Mg) >0 2J'<*i+5>> < clogy(2 + t)¢ 2%

log, (2 + 1)
All together, we get that

IP( sup  {ma(s)} > t) < Z <610g2(2 + )T 4 2dCO(1°g2(2+t))2(jH)/d>
s:Ent(s)<2 j=0

< logy(2+ 1)t + 't < " log, (2 + 1),

where the constant ¢”” depends only on d, and C; has been fixed large enough so that
’Cy > «. This concludes the proof, by replacing the exponent « by some a < « and
getting rid of the term log,(2 + t)* by adjusting the constant. O

Proof of Proposition 4.1.

To prove Proposition 4.1, we start by bounding the tail of Qg)(A), Q?D(A) in Lemmas
A.3 and A.4 respectively.
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Lemma A.3. Let a € (0,d). There exists a constant ¢, such that for any B > 0, r > 0 and
t>1,

P 00() 0kt ) < oo,
Ent(A)<B

Proof. The proof is the discrete version of Lemma 3.2 proven above: using the discrete
E-LPP defined in (A.1), we can write

logy £ 23+ 1 log, ¢
sup QA < D DT M0y < Z O, ) (A.10)
Ent(A)<B =0 i

The proof then follows the same lines as above, but we keep some details to help
keep track of the different parameters. Let § > 0 be such that 1/a — 1/d > 2§ and let
1/C =y 22, 201/d=1/e420) For ¢ € [0,1], by two consecutive union bounds we get

©) d_1p1/2 & M( )Lngl( ) (2 -1 426)
a~ J Ja—at
P(Ents(lip))<BQr (A)>txre""B ) g P rd/a B2y > Ct27\a

log, £ ) log, £ (B) ( )
Z IP( Wt 52—+J‘5> Z 1P< 2L S Cytf(2 e ”).

/r
(A.11)

For the first term above, we can use Lemma 5.1 in [8] to get that tor any « > 0 and
~|, we have

P (Mzm S urd/ag—l/a) < (cu)=o*. (A.12)

For the second term, we apply Makov’s inequality together with Corollary A.2 with b = d.
All together, we get that the left-hand side of (A.11) is bounded by

Z Ctl 6 a2j27j2j6a + 261(022(j+1)5t8)7d < Clt(lfe)a + C/tfad ) (A.13)
7=0 §=0
Finally, we choose € = a/(a + d) and the proof is completed. O

Lemma A.4. For any
andt > 1,

P sup Q(>£) >t><ra Lypi—a pi/2 Sct_%fd.
Ent(A)<B

Proof. The proof is similar to that of the previous lemma. Similarly to (A.10), we can
write

logy (|Ar|/£) 5
sup  QPOA) < Y MELE, ().
Ent(A)<B =0
Using (A.12), we have
P Mzr.fé S C t175(2j)7§+6 < (Ct175)72ja627j2ja56 (A.14)
rd/apl/a 1 - :
and by Markov’s inequality and Corollary A.2
,B) (r) o
P 27+1£/ > 02t£(2j+1) 3+6 < (C 2(]+1)6) dtfad' (A.15)
Bz /r
The result follows by a similar bound to (A.13). O
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Proof of Proposition 4.1. Let us introduce

Tl (la,b)) = {6 O(A) - EntN(A)}. (A.16)

ACA, ,Ent(A) la,b)

For any b > 0, we can then decompose the variational problem as

T = max { T90([0,0)), sup {7 (12°0,2"10)) } }
E>0

2Fp
< QO (A v QO _
_AcATI,%?;?(A)gbB r(8) 2;% BAcAT,Errﬂ(ai()gzkﬂb " N

Choosing b = ¢(N3r&~1)2 and applying a union bound, we get

(Tﬁ ,(£) > tN % ﬁrpa ) Z]P max Qg) > Qk—ltNB(Tg—1)2)
=0  ACA, Ent(A)<2ti(NBra 1)

Therefore, applying Lemma A.3 (with B = 2¥¢(N8r&~1)2 and ¢’ = 2¥/2-1¢1/2), we obtain
that

—+o0
P (Tﬁjﬁ") > N x (ﬁr%*ﬁ) <Y trimyT Dt < e (A.17)
k=0

For (4.9) the proof follows the same lines as (A.16)-(A.17), by applying Lemma A.4
instead of Lemma A.3. O

Let us now prove another technical result: we show that the paths that maximize
T3 are concentrated around the argmax of the variational problem, which is needed to
get (8.1) — this is the analogous of Lemma 4.1 in [2].

Lemma A.5. On the event {77; = 0}, for any n € (0,1) we have that

’?-5-271 = sup {7r( ) — Ent } <0, a.s. (A.18)
s€Dq,sup ||s]|>n,Ent(s)<+oo

Proof. Recall the definition (3.1) of D; and (3.4) of wg") (recall that Ent(s) = +oo if
supjo,q) IIs|| > 1). For £ > 1, we define

~(0 ¢ ~
P = sup |7 (s) — W(Z)(s)| , 773(;7 = sup {7‘(5 )(s) - %Ent(s)} .
s€Dy s€D1,sup ||s||>n,Ent(s)<+oo

For all £ we have that ’7}3277 < 7A76’(Qn + p®), so the proof is a consequence of the following:

lim p® =0, as., hmsupTﬂ Sy <0 as (A.19)

£—+o0 £—+00

To prove the first part of (A.19), reasoning as in the proof of (4.13) in [8], an integra-
tion by part gives that

w(s) — 7O (s Z ZL(M; — M;41) + limsup M,,.%,. (A.20)

i1l n— 00

where M; := Mgl) and .%, = Zn(dm)(l) are defined in (3.3) and (A.1) respectively; note
that the restriction Ent(s) < 4occ implies that s has length at most 1, so Ent(s) < d/2.
The law of large numbers gives lim, ., nt/*M,, = ¢; a.s., and Theorem A.1 gives
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limsup,,_,., n~ /%%, < +ooa.s. Since o < d, we therefore conclude that limsup,, .. M,,.%,, =
0a.s.

To complete the proof of the first part of (A.19), we let U, := >, , Zi(M; — M)
and we show that U, < 400 a.s., by showing that E[UE} is finite. For any ¢ > 0, by
Cauchy-Schwarz inequality we have that

v < (X 679) (3 - v )

i>L i>L

1/2

Then, we get that for £ large enough

IE][UZQ] < CZilHEIE[(.,%)ﬂIE[(Mi _ Miﬂ)ﬂ < Zi25+2/d72/a—1 < +oo,
i>4 i>0

where we used Corollary A.2 and the fact that E[(M; — M;41)2] < ¢i=272/ (see for
instance Equation (7.2) in [24]). Provided ¢ is small enough so thate + 1/d — 1/a < 0,
we obtain that E[U?] < co so Uy < oo a.s. We therefore get that limy_,o, Uy = 0, which
proves the first part of (A.19).

We prove the second part of (A.19) by contradiction. Note that by (1.9)-(1.10), if
Ent(s) < +o0, there exists some parametrization ¢ € ® such that (s o ¢)(¢) is 1-Lipschitz
on [0,1] and 7(s) = m(s o @) for all ¢ € ®. Hence, it is enough to consider only 1-Lipschitz
paths {s € D; : ||s'|| < 1}. Let us suppose that there exists a sequence 5*) such that
sup |39 > n and lim sup Zg)(fe“)) > 0, where we set Zg)(s) =710 (s) — %Ent(s) (and
Zg(s) when £ = 400).

We observe that s — Z [(f)(s) is upper semi-continuous because Ent(s) is lower semi-
continuous (it is a rate function of a large deviation principle) and s — w(e)(s) is upper
semi-continuous by construction (we refer to Lemma 4.4 in [8] for more details). Since
the set of 1-Lipshitz functions on [0, 1] is compact for the uniform norm by Ascoli-Arzela
theorem, we can suppose that 3(¥) converges uniformly to § as ¢ — +oo. Then, using the
upper semi-continuity we get

7\23 > Z5(3) > limsup Z5(39) > lim sup Zél)(éﬂ)) >0.

L— 400 {—+o00

Using that when 7}3 = 0 the maximiser is unique and is given by 53 = 0, we conclude that
§ = 0, which contradicts the fact that sup ||s|| > 7. O

Remark A.6. In general, we can define

To.lls—5sll>n = sup {m(s) — 3Ent(s)},
s€D, sup ||s—353]|>n, Ent(s)<+oo

where 53 is the maximiser of ’?}3 ; and similarly for 7g | s_s,|>, With sz the maximizer
of 73. This requires the existence and uniqueness of the maximisers 53, sg, which follows
sAimilarly to SeAction 4.6 in [8]. Then, one has the analogous of Lemma A.5, that is
To.lls-5alzn < T and T jjs—sy )2y < T 2.5.

B Simple random walk estimates

Let us collect some technical results on d-dimensional simple random walks that we use
in the article.
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B.1 Large and moderate deviations for the simple random walk

Lemma B.1. Let (S,)n>0 be a simple symmetric random walk on Z®. Let ¢ € (3, 1] be

fixed. Then, for any = € R¢, denote xg\‘;) the element of Z® with the same parity as N

closest to xN¢. Then we have the local large deviation result.

Ja(x) ife=1,

1
lim ————logP(Sy = z{%)) = { .
N—eo N2~ sllel> ifee(3.1),

where J,4(+) is a given rate function, which verifies J(||z|1) < Ja(z) < J(||=|1) + logd,
where J(t) = (1 +t)log(1+1t) + 3(1 —t)log(1 — t) is the large deviation rate function for
the random walk in dimension d = 1; in particular, we have J;(x) < o0 if ||z|; <1 and
Ja(z) = +o0 if ||z1 > 1. We also have Jy(z) > }||z||? for all z € R?, and Jy(z) ~ &||z|?

as ||z[| 4. 0.

Proof. This is a standard result, that directly derives from local large deviation results
for the simple random walk in dimension d = 1, by decomposing over the number of
steps in each direction. Let us just treat the case of £ = 1, the case £ € (%, 1) being
analogous. The rate function J; can be related to the rate function J in the following way,
decomposing over the proportion of the time spent in each direction

d
Ju(z)=  inf (3(22) + tog(duy)) B.1
=, 8 S +outi), o)
up+--Fug=1 "=
where the term Zle u; log(du;) comes from the entropic cost of spending a proportion u;
of the time in direction i; more precisely, we have limy _, —% log(W}(wNﬂd*N) =
S wg log(duy).
The rate function J; does not appear to have a nice expression, but some properties
can be derived. Note that J(-) being an even function we can replace J(z;/u;) by J(|z;|/u;)
in the above expression. Since J(+) is a convex function we get that

d d
S wd () = 3( X lenl) = 3.

1=

Hence, using also that Zle u; log(du;) > 0 forall uq,...,uq € [0,1] with ug +---+ug =1,
we get that J;(z) > J(||z||1). On the other hand, since Zle u; log(du;) < logd, taking
u; = |z;|/||z]|» we obtain that Jg(x) < J(||z||1) + log d.

To prove the last inequality, let us simply notice that J(¢) > %tQ forallt € R, so we get
that Jy(x) > ||z||} > 3|z||%. Also, notice that when ||z | 0, we have that J4(z) — 0: for
instance, taking u; = 1 in (B.1), we get that J4(z) < 2 S°% | J(dx;). Since the infimum in
(B.1) goes to 0, it means that it is attained for some u; approaching é (so that log(du;)
goes to 0), and we therefore get that J4(z) ~ 52?:1 J(dz;) as ||z|| } 0. Using that
J(t) ~ 3t? ast | 0, we get that Jq(z) ~ £ z|>. O

B.2 Probabilities that a given set of points is visited

Here, for clarity, we separate the cases ¢ € (%, 1) and £ = 1. For a set of (ordered)
points A = (y1,...,yx) € Z%, with some abuse of notation we write A C Ry to mean
that the points of A are visited in their order by the random walk before time N: put
otherwise

{ACRN}={30<t1 < - <ty <N,st. Sy, =w1,, S, =ur}- (B.2)

We now state large deviation principles for events {A C Ry }.
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Lemma B.2. Let¢ € (%, 1). For any ordered set A = (x1,--- ,x;) C R? of distinct points,
we have (omitting integer parts for notational simplicity)

. 1
lim e log P (11 NS, ... 2xN¥) € Ryv) = Ent(4),

N—oo
where the entropy Ent(A) is defined in (4.1).

Proof. We only treat the case k = 2 to lighten notation; the general case is analogous.

Lower bound: By a local large deviation, see e.g. [30, Theorem 3], we get

P(E|1<s<t<N s.t. S, = zN*¢ St—yN§> >1<HlaXNP(S = xN¢ Sy = yN?®)
s<

d 2 12
— max C—dd exp (N251<||96|| I ly — | +0(1))>

0<usl (y(1 —u))2 N4 2\ wu 1—u

2 —_ 2 . . .
Now the term 121 ¢ 1¥=21" js minimal for u = — =
“ I—u llll+1]

=zl and choosing that specific u
gives that

P(H 1<s<t<N,st S, = xN£75t — yN§> > c?\;{fzy e_N2£—1(1+0(1))Ent(A) ,

which proves the lower bound. Note that if ||z| and ||y — z|| are bounded away from 0
and oo, then so is cq 4 y-

Upper bound: Using again [30, Theorem 3], we have that

N N
P(E1<s<t<Nst S =aN5S=yN) <> 3 P(S,=aN 8 =yN®)

s=1t=s+1

33 g (e (B e ) e
=N NIRRT - ®

where the o(1) is uniform in N. To get an upper bound for (B.3), we minimize the quantity
in the exponent, which is N25_1Ent(A) (as above). Then for any d > 1, (B.3) is bounded
above by a constant times

e~ (14 (1)) N2~ 1Ent(A) —(140(1)) N2~ 1Ent(A)
’ > Z G ayiE SeNe :
s=1t= s+1

which gives the upper bound. O

Let us state the analogous result in the case £ = 1. We do not prove it, since it is
analogous to Lemma B.2.

Lemma B.3. For any ordered set A = (zy,--- ,x;) C R? of distinct points, we have
(omitting integer parts for notational simplicity)

lim f—logP((ale,...,ka) CRy) = Ent(A),

N—oc0

where the entropy ﬁnt(A) is defined in (4.10).

Notice here that the definition (4.10) of the entropy Ent(A) includes the infimum over
the choices of times 0 < t; < --- < t; < 1 at which the random walk visits the points.

To conclude, we give a uniform upper bound on the probability that a given set is
visited.
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Lemma B.4. There are positive constants C := C;(d) and Cs := C3(d) such that for any
set A = (xq,--- ,x4) C Z% of distinct points, we have in dimension d > 2

(A c RN) (Cl)é Ent(A)’
where Enty (A) is defined in (4.2).

Proof. We write zo = 0 and ko = 0 by convention. Let us start with the case of dimension
d > 3. By a union bound (recalling (B.2)), we have

P((il,...7 CRN Z Z HP SkFl :wk—xk,l).

ki1=1 ki=ky_1+1i=1

Now, by standard local large deviation results, there exist constants c;, co such that for
anyt > 1and z € Z%,
C1 _ 2
P(St = x) < W@ c2|ll /t.

Thus, since forall 0 = vy < u; < --- < uy < 1 we have

; ”2__‘2 11” > Ent(A), (B.4)
we get that
N N L
P((21,...,20) CRy) < e ¥EA 3~ 57 H 0 _k e < < (Cy)fe~ RE0MA).

k1=1 ke=ky_1+1i=1

which concludes the proof in dimension d > 3.
For the case of the dimension d = 2, instead of the union bound, we use that, by
Markov’a property

N ¢
P((.’l]l,...7.’17g) C RN) < Z Z H Hyi ooy = ki —kic1),

N
k=1 ky=ky_1+1i=1

where H, = min{t > 1, 5; = z} is the hitting time of the site z. Now, from Uchiyama’s

[32, Thm. 1.4], we get that uniformly for x € Z< \ {0}

log(l + ||.’E||) 7c||m 2

—k) < /51 s atialn -
Pl =k) < Cpnce@+ 1) 2 Likzelle)}
Using again (B.4), we get
N
log(1 + ||lzi — il
P < F Ent(A .
((x1,...,2¢) CRy) < cle” F H ( Z U~ Fo1)Tos(1 T Fr — ki1)?

=1 Nki=ki_1+c|lzi—zi_q||
All the sums are bounded, so this concludes the proof in the case of the dimension
d=2. O

Intersection of ranges of independent random walks
Recall that Jy = Zzezd P(l‘ € RN)Q.
Lemma B.5. We have the following asymptotics, as N — 400,

N . .
N ifd=2, logN ifd=4,
Iy = (1+0(1)){ TN In = (L+o(1) 4 8T
csVIN ifd=3, cd ifd=5.
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Proof. First of all, we can rewrite Jy = E®?[Jy]|, with Jy := |RS\}) N Rg\?)| the intersec-
tion of ranges R} and R'? of two independent random walks 51) and S®. In Chen’s

book [16], the weak convergence of 7y is considered: in dimension d = 2, WJN is
shown to converge in distribution, see [16, Thm. 5.3.4]; in dimension d = 3, ﬁjN is
shown to converge in distribution, see [16, Thm. 5.3.4]; in dimension d = 4, @j '~ is
shown to converge in distribution, see [16, Thm. 5.5.1]. The convergence of the expecta-
tion Jy = E[Jy]| then comes as a consequence of the uniformity in the integrability of

Jn, see [16, § 6.2].

In dimension d = 5, Jx converges to |Rso l)ﬂR(z)

of its expectation Jy follows by monotone convergence, the fact that ]E[|R(1) NRE | <
400 being given in (3.19) (with o = 2). O

C Technical estimate on the environment

We collect here some estimates that are needed along the paper.

Lemma C.1. For any non-negative integer p < o and any sequence ky > 1, we have:
e If fnky 2> 1,

» 5i BN ifp+1>a,
‘E[exp(ﬂN(w 1) Liw<iny)] — Z NIE )| < CePrkn B logky ifp+1=a,
i=1 Pl ifp+1<a;

(C.1)

o If Bykn < 1, in the case a < p+ 1, we get
p Bl )
[Eexp(Bn (@ — i) Tpusin))] — 1= D VBl - p))| < CoNRN " (€2)
i=1
with an extra factor log k in the upper bound if « = p + 1.
Proof. We can use that for any » € R, we have [e” — > /| 5 | < |z[P*'el*l. Hence, we get

that

[E[exp(B (@ — 1) Lwsr)] -1 = 30 E[@ - )]

p %
< Z Py Eflw — pl'Liwskyy) + ¥ B E[lw — pP ™M Lw<kyy] -

And since p < a, we have for any i < p E[|w — p|'1{,>ky3] < Ckiy ®. On the other hand,
if @ > p+ 1, then El|w — p[P* 1 cpy] < Cs if a < p + 1, then Ellw — pP+ 1 1j,cpyy] <
Ok if o = p+ 1, then Efjw — P gy<kyy] < Clog k. We therefore get that

b
B ;
[E[exp(Bn (@ = 1)L ugiy))] =1 = D HE[w - )]
i=1
kN ifp+1>a,
< C(P Y — k™ + CePNoN (Bykn )Pt ky®loghky  ifp+1=a,
k;X,(pH) ifp+1<a.

Then, in the case where Sy ky > 1, bounding k57"~ by 8% 7" in the case p+1 > a, we
get (C.1). On the other hand, if Syky < 1, considering only the case a < p + 1, we get
(C.2). O
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