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Abstract

In this article we study a non-directed polymer model in dimension d ≥ 2: we
consider a simple symmetric random walk on Zd which interacts with a random
environment, represented by i.i.d. random variables (ωx)x∈Zd . The model consists in
modifying the law of the random walk up to time (or length) N by the exponential
of

∑
x∈RN

β(ωx − h) where RN is the range of the walk, i.e. the set of visited sites
up to time N , and β ≥ 0, h ∈ R are two parameters. We study the behavior of the
model in a weak-coupling regime, that is taking β := βN vanishing as the length
N goes to infinity, and in the case where the random variables ω have a heavy tail
with exponent α ∈ (0, d). We are able to obtain precisely the behavior of polymer
trajectories under all possible weak-coupling regimes βN = β̂N−γ with γ ≥ 0: we find
the correct transversal fluctuation exponent ξ for the polymer (it depends on α and
γ) and we give the limiting distribution of the rescaled log-partition function. This
extends existing works to the non-directed case and to higher dimensions.
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1 Introduction

We consider in this paper a non-directed polymer model in which a simple symmetric
random walk on Zd (with d ≥ 2) interacts with a random environment. This model is
closely related to the celebrated directed polymer model, for which we refer to [17] for
a complete overview. The main difference here is that the random walk is not directed:
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Non-directed polymers in dimension d ≥ 2

it can come back to a site that has already been visited, but the interaction is however
counted only once (in the spirit of the excited random walk, see [3]). The model can
also be viewed as a randomly perturbed version of random walks penalized or rewarded
by their ranges, depending on the positivity or negativity of the external field. The
non-directed polymer model was first introduced by [25] (with exponential moment
conditions on the environment) and its study was followed in [5] with a detailed analysis
in dimension d = 1. Here, we investigate the case of a heavy-tail random environment,
in analogy with [7, 19, 24] for the directed polymer model — our results can be viewed
as a extension of [7, 19, 24] to a non-directed setting (and to higher dimensions).

1.1 The non-directed polymer model

Let S = (Sn)n≥0 be a simple symmetric random walk on Zd with d ≥ 1. We denote the
probability and expectation with respect to S by P and E respectively. Let ω = (ωx)x∈Zd

be a field of i.i.d. random variables (the environment), independent of S. The probability
and expectation with respect to ω are denoted by P and E respectively.

The non-directed polymer model up to time N is defined via the following Gibbs’
transform: for a given realization ω of the random environment and for β ≥ 0 (the inverse
temperature) and h ∈ R (an external field), let

dPω,h
N,β

dP
(S) :=

1

Zω,h
N,β

exp

( ∑
x∈RN

β(ωx − h)

)
, (1.1)

where RN := {S0, . . . , SN} is the range of the random walk up to time N . The partition
function Zω,h

N,β is the constant which makes Pω,h
N,β a probability measure and is equal to

Zω,h
N,β := E

[
exp

( ∑
x∈RN

β(ωx − h)
)]

. (1.2)

Note that if ω ≡ 0 (i.e. when there is no disorder) and βh ≡ c ∈ (0,+∞), then (1.1)
becomes the model of a random walk penalized by its range, defined by dPN,c

dP (S) :=
1

ZN,c
e−c|RN |. That model has been well-studied (starting with the seminal work [21]) and

is now well-understood: with high PN,c-probability, RN is close to a d-dimensional ball
with an explicit radius ρd,cN

1/(d+2) without holes (see [11, 4, 20]).
When ω is non-trivial, the model (1.1) describes a self-attracting (if h > 0) or self-

repulsing (if h < 0) polymer interacting with a random environment. At each site, the
polymer chain interacts with the disorder exactly once, which may model a screened
interaction, one monomer “absorbing” all the interaction at a specific site. We have
chosen to stick to this setting in order to pursue the study initiated in [5, 25], which
considers this model as a disordered version of a random walk penalized by its range.

Remark 1.1. One could study a polymer interacting repeatedly with the disorder, that is

dP̃ω,h
N,β

dP
(S) :=

1

Z̃ω,h
N,β

exp
( N∑

i=1

β(ωSi − h)
)

(note that the term −βhN in the Hamiltonian is a constant and thus does not change
the measure). In that case, large values of ωx will play an overwhelming role in the
measure, since their effect can be accumulated by returning repeatedly to a given site.
One can therefore expect a very strong localization phenomenon, the polymer staying
on one site with the largest possible ωx, with high probability. In the literature, this
model is referred to as the parabolic Anderson model and the one-site localization for
heavy-tailed environment has been proven in [13], see [28] for a continuous-time version
of the result.
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Non-directed polymers in dimension d ≥ 2

The main goal is then to understand the shape of typical polymer trajectories
(Si)0≤i≤N under the measure Pω,h

N,β , as N → ∞. One of the main question is to know if and
how the presence of the environment perturbs the structure of the typical trajectories
of the walk. In particular, one is interested in describing the end-to-end (or wandering)
exponent ξ and the fluctuation (or volume) exponent χ, that are loosely speaking defined
as:

Eω,h
N,β(∥SN∥2) ≈ N2ξ , Var(logZω,h

N,β) ≈ N2χ .

For comparison, let us stress that the random walk (Sn)n≥0 in dimension d, is replaced
in the directed polymer model by a directed random walk (n, Sn)n≥0 in dimension 1 + d.
In particular, the parameter h does not have any influence on the polymer measure,
since the number of visited sites is deterministic (and no site is visited twice). An
important feature of the directed polymer model is that a phase transition is known to
occur: when ωx have an exponential moment, if β is (striclty) smaller than some critical
value βc, then trajectories are diffusive (ξ = 1/2, χ = 0), whereas if β is (stricly) larger
than βc trajectories exhibit some localization properties and are conjectured to have a
super-diffusive behavior (at least in low dimensions) — for instance, in dimension 1 + 1 it
is conjectured that ξ = 2/3 and χ = 1/3. The critical value βc is known to be βc = 0 in
dimension 1 + 1 and 1 + 2 (hence there is no phase transition) and βc > 0 in dimension
1 + d with d ≥ 3. We refer to [17] and references therein for more details.

In the non-directed case, however, the parameter h plays an important role, and
random walk trajectories with a large range are rewarded or penalized (depending on
whether h is positive or negative). In analogy with the directed polymer model, the
presence of a random environment should still have a stretching effect. The competition
between the folding effect of range penalties and the stretching effect of a random
environment has been recently investigated in detail in the case of dimension d = 1,
[5] (in particular, it has been found that ξ = 2/3 when h = 0). But such a study
appears difficult in higher dimension, because the range of the simple random walk
then has a complex geometry. However, in the case of a heavy-tail random environment,
the localization features of the model become more salient, since a few sites in the
environment will have a much higher value than the others: we are indeed able to
describe quite precisely the behavior of the non-directed polymers in that case. This
generalizes the study in [7, 19] to the case of non-directed polymers and to higher
dimensions. Let us stress that as a by-product of our results we have that in the
heavy-tail setting there is no phase transition: βc = 0 in any dimension.

Weak-coupling regime.

A recent approach for studying disordered system, initiated in [1], and which has been
developed extensively over the past few years, is to consider weak-coupling regimes, see
e.g. [6, 14, 15, 19, 25]. The idea is to take the inverse temperature βN vanishing as N

goes to infinity. In the papers cited above, the goal is to find the appropriate scaling
for βN in order for the partition function to converge to a non-trivial random variable.
This regime is called of intermediate disorder: loosely speaking, it corresponds to a
regime in which disorder just kicks in, in the sense that it is still felt in the limit, but is
not strong enough to make the (averaged) disordered measure singular with respect to
the reference measure.

We will assume that there is some γ ≥ 0 and some β ∈ (0,∞) such that

lim
N→∞

NγβN = β , as N → +∞ , (1.3)

and we will write βN ∼ βN−γ ; we may also consider the case β = 0 or β = +∞. We think
of γ as a parameter one can play with, which tunes the speed at which βN goes to zero.
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Non-directed polymers in dimension d ≥ 2

We could actually work with general sequences (βN )N≥1 (in particular, the important
relation is (1.5) below), but we stick to the pure power case (1.3) in order to clarify the
exposition — it will capture all the essential features of the model, see Remark 2.9.

Let us also stress that we will consider h fixed, seen as a centering term for the
disorder ωx.

Heavy-tail environment.

Our main assumption in this paper is that ω = (ωx)x∈Zd are i.i.d. random variables, with
a pure power tail behavior. We assume that there exists some α > 0 such that

P(ω0 > t) ∼ t−α , as t → +∞ . (1.4)

Also here, we could consider a more general asymptotic behavior in (1.4), for instance
replacing the pure power t−α by L(t)t−α with L(·) a slowly varying function. However,
we stick to the pure power case as in (1.4) for the sake of clarity — again, it will capture
all the essential features of the model.

For simplicity, we also assume that ω ≥ 0, but this does not hide anything deep.

1.2 Heuristics for the phase diagram

Let us present a Flory argument to guess the wandering and fluctuation exponents.
The idea is to find the correct transversal fluctuations rN (with N1/2 ≤ rN ≤ N ) such
that the entropic cost for the random walk to stretch to a distance rN is balanced by the
possible energetic gain from high weights ωx contained in a ball of radius rN . At the
exponential level:

• the entropic cost is of order r2N/N ;

• the energetic gain is of order βN (rdN )1/α, where (rdN )1/α is the order of the maximal
weight ωx in a ball of radius rN .

Hence, the energy-entropy balance leads to the relation

βN (rN )d/α ∼ r2N
N

(N1/2 ≤ rN ≤ N). (1.5)

In the case we are interested in, that is if βN ∼ N−γ with γ ≥ 0, this gives rN ∼ Nξ with
ξ verifying

ξd

α
− γ = 2ξ − 1 ⇐⇒ ξ =

α(1− γ)

2α− d
, (1.6)

provided that ξ ∈ [ 12 , 1], that is d−α
α ≤ γ ≤ d

2α (note that this range of parameter γ

is non-empty only if α > d/2). However, this picture should fail when α is large (in
particular when α > d), because then the strategy of visiting mostly high-energy sites
should be outperformed by a collective optimization (that is still poorly understood,
especially in dimension d ≥ 3). We refer to [10] for a discussion on that matter. We
therefore focus our attention on the case α < d.

When 0 ≤ γ < d−α
α , then since the transversal fluctuations cannot exceed N , the

energetic gain should always overcome the entropic cost: we should have ξ = 1. On the
other hand, when γ > d

2α for α > d/2 or γ > d−α
α for α < d/2, then the energetic gain

can never overcome the entropic cost of reaching distance much larger than N1/2: we
should have ξ = 1/2.

To summarize, one should have the following three regions when α < d.

A. If α ∈ (0, d) and γ < d−α
α , then ξ = 1.

B. If α ∈ (d2 , d) and γ ∈ (d−α
α , d

2α ), then ξ = α(1−γ)
2α−d ∈ ( 12 , 1).

EJP 0 (2020), paper 0.
Page 4/66

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-directed polymers in dimension d ≥ 2

C. If α ∈ (0, d) and γ > max{ d
2α ,

d−α
α }, then ξ = 1

2 .

We refer to Figure 1 below for a graphical representation of these regions, and to [7,
Fig. 1] for a comparison with the corresponding picture in the directed polymer in
dimension 1 + 1 (where conjectures for larger values of α have the merit to exist). Our
main results consist in establishing this phase diagram.

A.

C.
B.

Figure 1: Phase diagram for the wandering exponent ξ depending on the parameters α, γ, with
α ∈ (0, d). We have identified three regions. In region A, we have ξ = 1. In region C, we have ξ = 1

2
.

In region B, we have ξ =
α(1−γ)
2α−d

∈ ( 1
2
, 1). Note that when α ∈ ( d

2
, d), the wandering exponent ξ in

region B interpolates between regions A and C: all values ξ ∈ ( 1
2
, 1) can be attained. On the other

hand, region B does not exist when α ∈ (0, d
2
): the wandering exponent ξ drops abruptly from 1 to 1

2
and no intermediate transversal fluctuations are possible.

1.3 Definition of quantities arising in the scaling limit

Our results additionally provide the scaling limit of the log-partition function in all
weak-coupling regimes when α ∈ (0, d). In order to describe the limit, let us introduce
the continuum counterparts of the random environment and of random walk trajectories,
and define the corresponding notion of energy and entropy.

The continuum environment arises as the extremal field of (ωx)x∈Zd : we let P :=

{(xi, wi)} be a Poisson point process onRd×(0,+∞) of intensity η(dx,dw) = αw−(1+α)
1{w>0}dxdw.

With a slight abuse of notation (it will not draw any confusion), we denote its law by P.
We also let

D :=
{
s : [0, 1] → R

d : s(0) = 0, s continuous and a.e. differentiable
}
, (1.7)

which represents the set of allowed paths (corresponding to scaling limits of random
walk trajectories). Then, for a path s ∈ D, we define its energy

π(s) = πP(s) :=
∑

(x,w)∈P

w1{x∈s([0,1])} . (1.8)

To define the entropic cost, let us observe that we have the following large deviation
principles for the simple random walk: for u ∈ (0, 1] and x ∈ Rd (we omit integer parts
to lighten notation), cf. Lemma B.1 in Appendix

lim
N→∞

− 1

N2ξ−1
logP(SuN = xNξ) =

{
u Jd(

x
u ) if ξ = 1 ,

d
2
∥x∥2

u if ξ ∈ ( 12 , 1) ,

where Jd(·) is a given rate function; we stress that J(x) < +∞ if ∥x∥1 ≤ 1 and J(x) = +∞
if ∥x∥1 > 1, with ∥x∥1 the ℓ1 norm of x.
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Non-directed polymers in dimension d ≥ 2

We then define two different entropic cost functions for a path s ∈ D — or rather for
the image s([0, 1])— depending on whether the path comes from the scaling of a random
walk trajectory with wandering exponent ξ = 1 or ξ ∈ ( 12 , 1). In the case ξ = 1, we define

Ênt(s) := inf
φ∈Φ

∫ 1

0

Jd
(
(s ◦ φ)′(t)

)
dt , (1.9)

where the infimum is over

Φ := {φ : [0, 1]
onto−→ [0, 1] : φ is non-decreasing and a.e. differentiable}. (1.10)

In the case ξ ∈ ( 12 , 1), we define analogously

Ent(s) = inf
φ∈Φ

∫ 1

0

d

2
∥(s ◦ φ)′(t)∥2dt = d

2

(∫ 1

0

∥s′(t)∥dt
)2

. (1.11)

The second identity comes from the fact that: (i) the right-hand side is a lower bound
for the left-hand side (by Cauchy–Schwarz inequality); (ii) the lower bound is attained

for the parametrization of s by its length, that is choosing φ such that
∫ φ(u)

0
∥s′(t)∥dt =

u
∫ 1

0
∥s′(t)∥dt for u ∈ [0, 1].

Let us also stress that Jd(x) ≥ 1
2∥x∥

2 for all x ∈ Rd, so that Ênt(s) ≥ 1
dEnt(s) for all

s ∈ D.

The continuous energy-entropy variational problem that we expect to arise as the
scaling limit of the log-partition function are sups∈D

{
βπ(s)− Ent(s)

}
, the entropy term

Ent(s) being one of (1.9) or (1.11) depending on the scaling considered. As an important
part of the proofs, we will show that these continuous variational problems are well-
defined.

2 Main Results

Before we state our results, let us define more precisely what we intend when we say
that the polymer has transversal fluctuations Nξ.

Definition 2.1. We say that (Sn)0≤n≤N has transversal fluctuations of order rN under
Pω,h

N,βN
if for any ε > 0 there exists some η ∈ (0, 1) such that for all N large enough

Pω,h
N,βN

(
max

1≤n≤N
∥Sn∥ ∈ [η, 1

η ] rN

)
≥ 1− ε with P-probability larger than 1− ε .

We separate our results according to the different regions we consider. In all the rest
of the paper, we work in dimension d ≥ 2.

Notational disclaimer. For two sequences (an)n≥1, (bn)n≥1, we write an ∼ bn if limn→∞ an/bn =

1, an ≪ bn if limn→∞ an/bn = 0, and an ≍ bn if 0 < lim inf an/bn ≤ lim sup an/bn < ∞.

2.1 Region A: α ∈ (0, d), γ ≤ d−α
α

Our first result gives the scaling limit of the model in region A of Figure 1. This is
the analogue of what Auffinger and Louidor [2] proved in the context of the directed
polymer model in dimension 1 + 1: the following result therefore generalizes [2] to the
non-directed framework and to higher dimensions.

Theorem 2.2. Let α ∈ (0, d) and let (βN )N≥1 be such that limN→∞ N
d−α
α βN = β ∈

(0,+∞]. Then for any fixed h ∈ R, we have the following convergence in distribution, as
N → ∞,

1

βNNd/α
logZω,h

N,βN

(d)−→ T̂β := sup
s∈D,Ênt(s)<+∞

{
π(s)− 1

β Ênt(s)
}
, (2.1)

where π(s) and Ênt(s) are defined in (1.8) and (1.9) respectively.
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Non-directed polymers in dimension d ≥ 2

Remark 2.3. Let us stress that by an extended version of Skorokhod representation
theorem, see [27, Cor. 5.12], one can upgrade the convergence (2.1) to an almost sure
one. More precisely, if we look at Zω,h

N,βN
as a function of P(N) := (x, ωx)x∈[−N,N ]d∩Zd

and the continuous limit T̂β = T̂β(P), then by [27, Cor. 5.12], the convergence in

distribution in Theorem 2.2 implies that there exist some random elements P̃(N) and

P̃ defined on the same probability space such that P̃(N) (d)
= P(N), P̃ (d)

= P and such that
limN→∞

1
βNNd/α logZω,h

N,βN
(P̃(N)) = T̂β(P̃) almost surely.

It therefore makes sense to work conditionally on T̂β > 0, even at the discrete level.

We have the following corollary, which says that conditionally on T̂β > 0, transversal
fluctuations are of order N .

Proposition 2.4. Let α ∈ (0, d) and let (βN )N≥1 be such that limN→∞ N
d−α
α βN = β ∈

(0,+∞]. Then (Sn)0≤n≤N has transversal fluctuations of order N under Pω,h
N,βN

(
· | T̂β > 0

)
.

Let us now give some property on the variational problem T̂β , and in particular state
that it is well-defined.

Proposition 2.5. When α ∈ (0, d), the variational problem T̂β defined in (2.1) is a.s.

finite for all β ∈ (0,+∞]. Moreover, letting βc = βc(P) := inf{β > 0: T̂β > 0}, we have
that P(βc ∈ (0,∞)) = 1 if α ∈ (0, d

2 ) and P(βc = 0) = 1 if α ∈ (d2 , d).

Remark 2.6. We could have formulated the convergence in distribution in Theorem 2.2
as follows:

1

N
logZω,h

N,βN

(d)−→ sup
s∈D,Ênt(s)<+∞

{
βπ(s)− Ênt(s)

}
= β T̂β , as N → ∞ .

However, in the case β = +∞, this would only give that 1
N logZω,h

N,βN
goes to +∞. The

formulation of Theorem 2.2 allows us to treat the case β = +∞, in which βNNd/α is
much larger than N — in particular, it includes the case γ < d−α

α . In that case, the

entropy term disappears in T̂∞, even though the constraint that paths have a finite
entropy Ênt(s) has to remain (for instance to avoid having paths of length larger than 1).

2.2 Region B: α ∈ (d2 , d),
d−α
α < γ < d

2α

In region B, our result is the analogous to Theorem 2.5 in [7] in the context of the
directed polymer model in dimension 1 + 1: this generalizes [7] to the non-directed
framework and to higher dimensions. Here, we will fix the parameter h to be equal to
µ := E[ω0] ∈ (0,∞), which is well defined since α > d

2 ≥ 1.

Theorem 2.7. Let α ∈ (d2 , d) and γ ∈ (d−α
α , d

2α ). Let (βN )N≥1 verify limN→∞ NγβN = β ∈
(0,+∞). Then (Sn)0≤n≤N has transversal fluctuations of order Nξ under Pω,h=µ

N,βN
, where

ξ := α(1−γ)
2α−d ∈ ( 12 , 1). Additionally, we have the following convergence in distribution, as

N → ∞,
1

N2ξ−1
logZω,h=µ

N,βN

(d)−→ Tβ := sup
s∈D,Ent(s)<+∞

{
βπ(s)− Ent(s)

}
, (2.2)

where π(s) and Ent(s) are defined in (1.8) and (1.11) respectively.

Let us stress that the choice of h = µ is crucial because the contribution of the small
values of the environment (that is βNωx ≤ 1) to the partition function is negligible only if
we center the random variables ωx. This centering term is also needed in the directed
case, cf. Section 4.2 Eq. (4.27) of [7].

The fact that the variational problem Tβ is well-defined in the case α ∈ (d2 , d) is non-
trivial, and relies on (non-directed) entropic last-passage percolation (E-LPP) estimates,
introduced in [9]. Properties of the variational problem Tβ are summarized in the
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Non-directed polymers in dimension d ≥ 2

following Proposition, which is the analogous of [8, Thm. 2.4] (and generalizes it to the
non-directed case and to higher dimensions).

Proposition 2.8. If α ∈ (d2 , d), the variational problem Tβ defined in (2.2) is a.s. positive
and finite for all β ∈ (0,+∞). Moreover, E[(Tβ)κ] < ∞ for any κ < α− d/2, and we have
the scaling relation

Tβ
(d)
= β

2α
2α−d T1 . (2.3)

On the other hand, if α ∈ (0, d
2 ], we have Tβ = +∞ a.s., for all β > 0.

Remark 2.9. If we consider more general sequences βN , then the corresponding
transversal fluctuations rN are given by the relation (1.5), that is rN ∼ (NβN )

α
2α−d .

In analogy with [7, Thms. 2.5–2.7], we should find three different scaling limits in region
B, according to whether

√
N logN ≪ rN (corresponding to the bulk of region B Theo-

rem 2.7 above), rN ≍
√
N logN or

√
N ≪ rN ≪

√
N logN (corresponding to boundary

regions between region B and region C). We have chosen here to consider only pure
powers for βN (and for rN ) in order to keep the exposition clearer — the arguments
from [7] could be adapted here but it would significantly lengthen the paper.

2.3 Region C: α ∈ (0, d), γ ≥ max{d−α
α , d

2α}
In region C, we will show that transversal fluctuations of the polymer are of order

N1/2. As a preliminary remark, let us stress that for any x ∈ Rd \ {0} (omitting integer
parts to lighten notation), we have the following asymptotics for P(x

√
N ∈ RN ). Setting

vn := logN if d = 2 and vn = N
d
2−1 if d ≥ 3, we have

lim
N→∞

vNP
(
x
√
N ∈ RN

)
= f(x) :=

{∫∞
∥x∥2/2

u−1e−udu if d = 2,

2λd

∫ 1

0
ρd(u, x)du if d ≥ 3 ,

(2.4)

where λd := P(Sn ̸= 0 ,∀n ≥ 1) is the escape probability and ρd(t, x) := (2πt/d)−d/2e−
d
2t∥x∥

2

is the heat kernel of a d-dimensional Brownian motion with covariance matrix 1
d Id. The

asymptotics (2.4) can be derived from Uchiyama’s results [32]: see [32, Thm. 1.6] for
the case of dimension d = 2 and [32, Thm. 1.7] for dimensions d ≥ 3.

In region C, the cases α ∈ (0, d
2 ), γ ≥ d−α

α and α ∈ (d2 , d), γ ≥ d
2α need to be treated

separately, similarly to the case of the directed polymer model [7].

Case α ∈ (d2 , d)

We start with the case α ∈ (d2 , d), γ ≥ d
2α , which is easier to state. Let us introduce some

quantities that arise in the limit: we stress that different objects arise depending on the
dimension.

Proposition 2.10. In dimension d ≥ 5, define

X :=
∑
x∈Zd

(ωx − µ)P(x ∈ R∞) = E
[ ∑
x∈R∞

(ωx − µ)
]
, (2.5)

where we recall that µ = E[ω0]. Then the random variable X is well-defined if α > d
d−2 .

Proposition 2.11. In dimensions d = 2, 3 and α ∈ (d2 , 2), define

Wβ =

∫
Rd×R+

1

β

(
eβw − 1− βw

)
f(x)P(dx, dw) +

∫
Rd×R+

wf(x)(P − η)(dx, dw), (2.6)

with f(x) defined in (2.4) and η(dx,dw) = αw−α−1dx dw the intensity measure for P.
If α ∈ (d2 , 2), then for any β ∈ (0,∞), the random variable Wβ in (2.6) is almost surely
finite.
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We are now ready to state our results in the case α ∈ (d2 , d), γ ≥ d
2α . It is the

analogous of Theorem 1.4 in [19] for the directed polymer model in dimension 1 + 1: it
generalizes [19] to the non-directed case and to higher dimensions. Here again, we need
to fix h = µ := E[µ0].

Theorem 2.12. Let α ∈ (d2 , d) and let (βN )N≥1 be such that limN→∞ N
d
2α βN = β ∈

[0,+∞). Then (Sn)0≤n≤N has transversal fluctuations of order N1/2 under Pω,h=µ
N,βN

. We
also have the following convergences in distribution, as N → ∞:

• If α ∈ (2 ∨ d
2 , d) (in particular d ≥ 3), then setting aN = N1/4 for d = 3, aN =

(logN)1/2 for d = 4, and aN = 1 for d ≥ 5 we have:

1

aNβN

(
logZω,h=µ

N,βN
− 1

2
Var(ω)β2

NE[|RN |]
)

(d)−→

{
N (0, σ2

dVar(ω)) if d = 3, 4,

X if d ≥ 5 ,
(2.7)

for some explicit constant σd; recall X has been defined in (2.5).
• If α ∈ (d2 , 2) (in particular d = 2 or d = 3), then setting vn := logN for d = 2 and

vn = N1/2 for d = 3, we have

vN

βNN
d
2α

logZω,h=µ
N,βN

(d)−→ Wβ , (2.8)

with Wβ defined in (2.6) — if β = 0 the first term in (2.6) is set to zero, see Proposi-
tion 2.14 below.

Remark 2.13. Let us stress that when α > d/2, in dimension d ≥ 3 we have β2
NE[|RN |] ∼

cβN
1−d/α (assume β > 0 to simplify), so in particular it goes to 0 as N → ∞. One can

easily check that we always have (aNβN )−1 × β2
NE[|RN |] → +∞ when α > 2 ∨ d

2 (and
thus, d ≥ 3), so the centering in (2.7) is non-trivial.

Case α ∈ (0, d
2 )

In this second case, recall Theorem 2.2 and Proposition 2.5. If α ∈ (0, d
2 ) and βN ∼

βN−(d−α)/α as N → ∞, then the scaling limit of the log-partition function has been
identified as T̂β. However, when α ∈ (0, d

2 ) we have T̂β = 0 when β ≤ βc, with βc =

βc(P) > 0 a.s.: in that case, the scaling limit is thus trivial. Our next result shows that
when β ≤ βc, then transversal fluctuations are necessarily of order

√
N ; this has to be

compared with Proposition 2.4 which asserts that transversal fluctuations are of order N
when β > βc. This shows that when α ∈ (0, d

2 ) we cannot have intermediate fluctuations
between N1/2 and N : the system exhibits a sharp phase transition at the critical point
β = βc. Our result is the analogous of Theorem 2.12 in [7], and generalizes it to the
non-directed case and to higher dimensions.

Let us define another quantity, analogous to Wβ defined in (2.6).

Proposition 2.14. For α ∈ (0, 1) ∪ (1, 2), define

W0 =

{∫
Rd×R+

wf(x)(P − η)(dx, dw), if α ∈ (1, 2),∫
Rd×R+

wf(x)P(dx,dw), if α ∈ (0, 1) ,
(2.9)

with f(x) defined in (2.4) and η(dx, dw) = αw−α−1dx dw the intensity measure for P. If
α ∈ (0, 1), then W0 is a.s. finite in any dimension d. If α ∈ (1, 2), then W0 is a.s. finite if
and only if α < d

d−2 .

Recall that by an extended version of Skorokhod representation theorem [27, Cor. 5.12]
(cf. Remark 2.3), it makes sense to work conditionally on T̂β > 0 or T̂β = 0, even at the
discrete level. If α > 1, we need to take h = µ := E[ω0] and if α < 1, then h may be any
real number.
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Theorem 2.15. Let α ∈ (0, d
2 ), and let (βN )N≥1 be such that limN→∞ N

d−α
α βN = β ∈

[0,+∞). Then conditionally on the event {T̂β = 0} (i.e. β ≤ βc) the polymer (Sn)0≤n≤N

has transversal fluctuations of order N1/2 under Pω,h
N,βN

. Moreover, conditionally on

{T̂β = 0}, we have the following convergences in distribution, as N → ∞.
• If α ∈ ( d

d−2 ,
d
2 ) (in particular d ≥ 5), then we have

1

βN
logZω,h=µ

N,βN

(d)−→ X , (2.10)

with X defined in (2.5).
• If α < min(d2 ,

d
d−2 ) (in particular α < 2) and α ̸= 1, then

vN

βNN
d
2α

logZω,h
N,βN

(d)−→ W0, (2.11)

where vn := logN if d = 2 and vn = N
d
2−1 if d ≥ 3, with W0 defined in (2.9).

Remark 2.16. The case α = 1 in (2.11) could be treated similarly to what is done in [19,
Thm 1.4]. In the case α = 1, a centering term for logZω,h

N,βN
is needed in (2.11) and the

scaling limit should be W0 =
∫
Rd×(0,1]

wf(x)(P − η)(dx, dw) +
∫
Rd×(1,∞)

ωf(x)P(dx, dw).
Since this is fairly technical, we prefer to omit the details for simplicity.

2.4 Comparison with directed polymers

As we stressed in the introduction of this paper, the model (1.1) is closely related
to the directed polymer model — our results can be seen as an extension of existing
results to a non-directed setting and to higher dimension. Let us now briefly discuss
this relation by comparing the techniques exploited in the present article with the one
developed for the directed polymer.

• In Region A our results extend [2, 24], where the authors considered the directed
polymer in dimension 1 + 1. In this region, only a few points give an energy contribution
to the variational problem: the random walk linearly interpolates between these points
to get the maximal energy reward to compensate the entropy cost. The fact that we
can approximate the problem by considering only a finite number of points allows us to
extend and exploit the techniques introduced for the directed case: the scheme of the
proof is very close to the one in [2].

• In Region B, our results extend the analysis performed in [7] to the non-directed
framework. In particular our techniques are based on the non-directed Entropy-
controlled last passage percolation (E-LPP) introduced in [9] (as an extension of the
directed E-LPP of [8]), a crucial step consisting in showing that we can restrict the
partition function to trajectories staying at scale Nξ. The extension to a non-directed
setting and to higher dimension is the main novelty here, as discussed in Appendix A.
Overall, the proof follows the same scheme as in [7], but several adaptations are needed,
with some tedious technicalities.

• In region C, we perform a polynomial expansion analysis, in the same spirit as in
[19] for the directed polymer model with heavy-tail disorder. The crucial difference here
is that in our non-directed case the geometry of the range plays a central role in the
behavior of the model (and so in the polynomial expansion analysis). We therefore have
to use here a local central limit theorem for the range, considering the probability that
a point at scale

√
N belongs to the range RN , i.e. P(x

√
N ∈ RN ). Even if the proofs in

region C start from the same idea as in [19], the technical treatment of the polynomial
expansion requires new ideas and becomes more technical and dimension dependent.
Let us stress that the case of dimension d = 2 requires particular care, because then
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P(x
√
N ∈ RN ) scales as logN , compared to the polynomial behavior N

d
2−1 in dimension

d ≥ 3.
To conclude, let us comment on the limiting random variables that appear in Theo-

rems 2.12-2.15; note that they indeed depend on the dimension. The random variable
Wβ (see Propositions 2.11-2.14) appears when α < 2, in dimensions d = 2, 3 or when

β = 0: it is the analogous of W(α)
β defined in [19, p. 4011] (see also [19, Thm. 1.4]).

When α > 2, then in dimensions d = 3, 4, analogously to [19, Thm. 1.2] a normal random
variable appears, whereas in dimension d ≥ 5 a new random variable X pops up (see
Proposition 2.10 for the definition of X ), which to our knowledge has no analogous in
the literature.

2.5 Further comments and conjectures

Our article solves completely the case α ∈ (0, d), but there are several aspects that
remain to be tackled:

• In Region B and in Region C with α > min{2, d
2 ,

d
d−2}, the parameter h is needed

to be set equal to µ to center the environment: the case of a general h should be
investigated;

• More precise statements on the convergence of paths could be extracted from
our results, in particular one could try to prove in some cases a localization of the
trajectories near an optimal path;

• The case α > d is still a challenge: the wandering exponent ξ is not known — except
in the intermediate disorder regime (Region C), where ξ = 1/2 (but one still has to
understand the corrrect scaling for βN ).

In this section, we develop further on these aspects, we comment their relation with
the literature, and we present some open problems and conjectures.

2.5.1 About the external field h

It is not hard to see that in Region A, the parameter h is unimportant. On the other
hand, for Region B and for Region C with α > min{2, d

2 ,
d

d−2}, we can see from the proofs
(cf. Sections 6-8) that a centering is needed, so h needs to be fixed equal to µ = E[ω0].
In order to make the proofs more transparent (which are already quite technical) and
to simplify some non-central arguments, we have chosen to stick to a non-negative
disorder: this is used in particular in Region A and B (they are related to the discrete
energy-entropy variational problems, cf. Section 4). This also has the advantage to
illustrate when a centering of the environment is crucial or not. Without the assumption
of non-negativity of the disorder, the proofs may require some extra technical work, and
one should still center the ω by the parameter h when needed (or take E[ω0] = 0 and
h = 0).

Furthermore, we can also consider a more general setting for our non-directed
polymer model, by considering the following:

dPω,hN

N,βN

dP
(S) :=

1

Zω,hN

N,βN

exp

( ∑
x∈RN

(βNωx − hN )

)
,

with hN = ĥN−ζ and ζ ∈ R (note that in this article, hN is simply βNh). The above model
can be viewed as a perturbed version of a random walk penalized by its range and is
more challenging. The case of the dimension d = 1 has been analyzed thoroughly, see
[5]. In particular, we can expect that when hN is large enough (at least compared to
βN ), i.e. when the penalty by the size of the range dominates, then the polymer folds

EJP 0 (2020), paper 0.
Page 11/66

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-directed polymers in dimension d ≥ 2

into a ball (similarly to [4, 11, 20]). However, contrary to the homogeneous model where
the center of the ball is random, the location of the ball may be completely determined
by the environment, since the polymer tends to maximize the sum of ω’s seen in the
ball—see [12] for the one-dimensional case. On the other hand, there should be a
regime where a balance is found between the energy and the entropy (the penalization
by the range is negligible—this is somehow the focus of this article), and a regime
where a balance is found between the penalization by the range and the energy (the
entropic cost of having an unusual range being out-weighted by the range penalty). For
α ∈ (0, d), the phase diagram of the above model should be similar to the one found in
the one-dimensional case, cf. [5].

2.5.2 About the geometry of the range

In this paper we consider the scaling limits of the logarithmic partition function and we
describe the transversal fluctuations of the walk. Such results are the starting point to
push further the analysis of the geometry of the range RN . In this setting we conjecture
that the limits of the logarithmic partition function contain all the information to describe
the geometry of the random walk. To be more precise, in Region A and B we conjecture
that the supremum of the variational problem T̂β and Tβ is attained by some unique
continuous path that we call ŝ∗ and s∗ respectively, by analogy with [2, 8]. We then
conjecture that the typical range of the random walk is concentrated around these paths.
More precisely, if we look at a path as a set, i.e. if we consider its support in Rd, then we
conjecture that under the hypothesis of Theorem 2.2, for any ε > 0,

lim
N→∞

Pω,h
N,βN

( 1

N
RN ⊂ Bε(ŝ

∗)
)
P−→ 1, (2.12)

and under the hypothesis of Theorem 2.7, for any ε > 0,

lim
N→∞

Pω,h
N,βN

( 1

Nξ
RN ⊂ Bε(s

∗)
)
P−→ 1, (2.13)

where Bε(γ) = {x ∈ Rd : d(x, γ) < ε} and P is the coupling between the discrete and
continuous disorder introduced in Remark 2.3.

In region C we expect that 1√
N
RN converges to a continuous limit, which should be

a random perturbation of a Brownian motion range (but a precise statement is harder to
state).

2.5.3 About the intermediate disorder regime (region C)

In [25], Huang considers the intermediate disorder regime of the model (that is a regime
where ξ = 1/2 but disorder has a non-trivial effect), in the case of a disorder with finite
exponential moment, i.e. E[eβωx ] < +∞ (or roughly speaking, α = +∞). More precisely,
Huang [25] shows that, taking

βN = β̂N−1/4 if d = 1 , βN = β̂N−1/2 logN if d = 2 , βN = β̂N−1/4 if d = 3 ,

(2.14)
for some β̂ > 0 and taking hN = β−1

N logE[eβNωx ], then Zω,hN

N,βN
converges in distribution

toward a random variable Zβ̂ , given by an explicit Wiener chaos expansion.

Our Theorem 2.12 is the analogue of this result in the case d
2 < α < d (and any

dimension d ≥ 2). In particular, (2.7)-(2.8) states that the choice βN = β̂N−d/2α is the
correct scaling in order to observe non-trivial fluctuations for Zω,µ

N,βN
. Analogously to

what is done in [19] for the directed polymer, one could try to extend our Theorem 2.15
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to the case α > d, i.e. to study the intermediate disorder regime for all values of α. We
leave this as an open problem, but let us comment on the expected results.

In dimension d = 2, we expect that the correct intermediate disorder scaling is
βN = β̂N−d/2α = N−1/α for all 1 < α < 2 (the scaling limit is then given by Theorem 2.12)
and that one reaches the scaling βN = N−1/2 logN given in (2.14) for all α > 2, with
then the scaling limit as in [25].

In dimension d = 3, we expect that the correct intermediate disorder scaling is
βN = β̂N−d/2α = N−3/2α for all 3

2 < α < 6, with a scaling limit similar to Theorem 2.12,
and that one reaches the scaling βN = N−1/4 given in (2.14) for all α > 6, with then the
same scaling limit as in [25]. A way to understand this comes from (2.7): loosely speaking,
it says that in dimension d = 3, taking βN = β̂N−3/2α we get that Zω,µ

N,βN
≈ 1 + βNN1/4Z

for some random variable Z. This approximation may remain valid for some α > d but
it must fail when βNN1/4 = β̂N−3/2α+1/4 becomes of order 1 (that is when α reaches
the value 6), at which point all terms in the polynomial chaos expansion of the partition
function are of the same order.

In dimension d ≥ 4, the correct intermediate disorder scaling should be βN =

β̂N−d/2α for any α > d/2, with a scaling limit similar to Theorem 2.12. Indeed, the
convergence (2.7) states that taking βN = β̂N−d/2α we have Zω,µ

N,βN
≈ 1 + βNaNZ for

some random variable Z: since aN = (logN)1/2 in dimension d = 4 and aN = 1 in
dimension d ≥ 5, we have that βNaN → 0 for any α < +∞. In that case, we should
therefore have that limn→∞ Zω,µ

N,βN
= 1, with fluctuations of order βNaN . Additionally, for

disorder with exponential moments (i.e. α = +∞), the approximation Zω,µ
N,βN

≈ 1+βNaNZ
suggests that: in dimension d = 4, one should take βN = β̂/(logN)1/2 to observe a non-
trivial scaling limit for Zω,µ

N,βN
(disorder is marginally relevant); in dimension d ≥ 5, one

should have that Zω,µ
N,β has a non-trivial limit for small (but fixed) β — in other words,

there is a weak disorder phase (disorder is irrelevant), in analogy with the directed
polymer model in dimension d ≥ 3.

2.5.4 About the transversal fluctuations in the case α > d

Let us now consider the case of β fixed and let us recall the Flory argument presented
in Section 1.2: for ξ > 1/2, the energetic gain of a polymer in a box of size Nξ is of
order Ndξ/α, while the entropic cost of going at distance Nξ is of order N2ξ−1. The
energy-entropy balance leads to the prediction that ξ = α

2α−d . This should hold as long
as ξ ∈ (1/2, 1). In particular, if α < d we should have that ξ = 1: this is what is proven (in
a more general framework) in the present paper, see Theorem 2.2 (Region A).

When α > d, in comparison with the directed polymer literature (see e.g. [23]), we
may conjecture that there exists some αc such that for α ∈ (d, αc) we have ξ = α

2α−d

and for α > αc we have ξ = ξc, where ξc = ξc(β) ≥ 1/2 is the fluctuation exponent
obtained for a disorder with finite exponential moments. Such αc should therefore solve
the equation α

2α−d = ξc, that is αc =
dξc

2ξc−1 ; by convention αc = +∞ when ξc = 1/2. This
fact has indeed been proven in dimension d = 1 in [5], in the non-directed setting of the
present paper: in that case we have ξ = 1 if α ∈ (0, 1), ξ = α

2α−1 if α ∈ (0, 2) and ξ = 2
3

for all α > 2.

The question in dimension d ≥ 2 remains quite mysterious (both for non-directed and
directed polymers), in particular because the fluctuation exponent ξc is unknown. It is
expected that, at least in low dimensions, there is some critical value βc below which
ξc = 1

2 (which would lead to αc = +∞) and above which ξc > 1/2 (which would lead
to αc < +∞). In view of the previous subsection, one could argue that in dimension
d = 2, 3 we have βc = 0, but for now this is purely speculative. Let us also mention that
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the existence of an upper critical dimension d0 above which ξc(d, β) =
1
2 for all β is still

controversial, see e.g. [29]. In order to extend the analysis of the problem to α > d, a
first step would be to study the existence and dependence on the parameters of the
conjectured exponent βc.

2.6 Organization of the rest of the paper

We now present the organization of the paper and describe how the proofs are
organized.

• In Section 3 we prove that the variational problems Tβ , T̂β and the random variables
X and Wβ ,W0 are well-defined (i.e. Propositions 2.5, 2.8, 2.10, 2.11 and 2.14). Along
the way we discuss their main properties.

• In Section 4 we present the main auxiliary results about the discrete approximation
of the energy-entropy variational problems Tβ and T̂β that we use to prove Theorems 2.2-
2.7. These results extend the analogue results obtained in [8, 9] to the d-dimensional and
non-directed case; they are related to the Entropy-controlled Last-Passage Percolation
(E-LPP). Some results on the non-directed version of the E-LPP are postponed to the
Appendix A.

• In Section 5 we prove Theorem 2.2, i.e. region A. To prove this, we first reduce to a
partition function restricted to the largest L weights Z

(L)
N,βN

, see (5.1), by showing that
the contribution of all smaller weights is negligible, see Lemma 5.1. We then show that
logZ

(L)
N,βN

, properly rescaled, converges to the continuous variational problem restricted
to the largest L weights, see Lemma 5.2.

• In Section 6 we prove Theorem 2.7. As a crucial first step, in Section 6.1, we
show that we can restrict the partition function to trajectories staying at scale Nξ,
see Proposition 6.1. To achieve this, we need to show that the entropic cost to reach a
distance hN ≫ Nξ cannot be overcompensated by an energetic gain at scale hn: this
is the purpose of Lemma 6.2. This relies once again on controlling the contribution of
different ranges of weights to the partition function; the most technical part actually
consists in controlling the contribution of intermediate weights, which requires a detailed
analysis to match the energetic gain with the entropic cost. Once trajectories have been
reduced to being at scale Nξ, the convergence of the partition function is performed in
Section 6.2, see Proposition 6.3; the strategy of the proof is similar to what is done in
Section 5 for region A.

• In Section 7 we prove Theorem 2.12. The idea of the proof is based on a truncation
of the environment (7.3) which allows us to prove that the main contribution comes from
trajectories that stay at scale N1/2. The convergence of the partition function defined on
the truncated environment is presented in Lemma 7.2. Its proof is based on a polynomial
expansion analysis (7.11) in which we show that the convergence is led by the first term.
Different random limits arise depending on the tail exponent α and the dimension d. If
α > 2 the limit is Gaussian in small dimensions (d = 3, 4) and in high dimension (d ≥ 5)
the limit is described by the averaged (w.r.t. the random walk) sum of the environment
on R∞, see the definition (2.5) of X . If α < 2 the limit conveys the heavy-tail structure
of the environment, see the definition (2.6) of Wβ .

• In Section 8 we prove Theorem 2.15. The most technical issue consists in showing
that conditionally on {T̂β = 0} the main contribution to the partition function comes
from trajectories that stay at scale N1/2, see Section 8.1; in particular, this shows that
trajectories cannot have intermediate scale. Then, the strategy is similar to that used in
Section 7, combining a truncation of the environment and using a polynomial expansion.

• Finally, we collect in Appendix several technical estimates. As mentioned above,
Appendix A provides useful results for the non-directed E-LPP. In Appendix B, we collect
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some simple random walk estimates: large and moderate deviations, probabilities that a
given set is visited, intersection of ranges of independent walks. In Appendix C, we give
estimates on exponential moments of a truncated version of the environment.

3 Properties of the limiting variational problems and random
variables

In this section, we prove the well-posedness of the variational problems T̂β and Tβ (in
Section 3.2, together with some of their properties), of X (in Section 3.3) and of Wβ and
W0 (in Section 3.4).

3.1 Some notation: order statistics and truncated energy

We introduce some notation to describe the contribution of large weights to the
variational problems T̂β , Tβ . For q > 0 we define

Dq :=
{
s ∈ D : Ent(s) < ∞, sup

0≤t≤1
∥s(t)∥ ≤ q

}
, (3.1)

and for a realization of P, we set Pq := {(x,w) ∈ P , ∥x∥ ≤ q}. Then, the energy along a
path s ∈ Dq is given by

πq(s) :=
∑

(x,w)∈Pq

w1{x∈s([0,1])}. (3.2)

In the ball Λq := {x ∈ Rd , ∥x∥ ≤ q} we can also label the points of P by using the order
statistics:

(x,w)(x,w)∈Pq
=
(
Y

(q)
i ,M

(q)
i

)
i≥1

, (3.3)

where the distribution of (Y(q)
i ,M

(q)
i )i≥1 is given as follows:

(i) M
(q)
i = (cdq)

d/α(E1 + · · ·+ Ei)−1/α, with (Ei)i∈N i.i.d. exponential random variables

of parameter 1; this is the sequence of weights, M(q)
i being the i-th largest weight

in Λq. See for instance [18] or [24].

(ii) (Y
(q)
i )i≥1 are i.i.d. uniform random variables on Λq, independent of (Ei)i∈N; these

are the location of the weights;

We then define the truncated analogue of (3.2):

π(ℓ)
q (s) =

ℓ∑
i=1

M
(q)
i 1{Y(q)

i ∈s([0,1])}, (3.4)

and we also let π(>ℓ)
q (s) = πq(s)− π

(ℓ)
q (s) .

Remark 3.1. Notice that if s ∈ D verifies Ent(s) ≤ B with B ≥ 1, then the length of the
path s is bounded by

√
2B/d ≤ B, and so we have s ∈ DB.

3.2 On the variational problems Tβ and T̂β
Recall that Tβ and T̂β are defined respectively in (2.2) and (2.1). Here, we prove

Propositions 2.5-2.8: We mostly focus on the first one (i.e. on Tβ): we treat T̂β along

the way, since the results follow from a simple comparison with Tβ (recall that Ênt(s) ≥
1
dEnt(s) for all s), or with identical arguments.

Before we start, let us stress that for almost every realization of P, the maps β 7→ Tβ
and β 7→ T̂β are non-decreasing and continuous. The proof of this fact is identical to that
of [8, Thm. 2.4] (see Section 4.5 in [8]), so we omit it.
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Proof of the scaling relation (2.3)

Consider the Poisson Point Process P onRd×R+ with intensity η(dx, dw) = αw−α−1dxdw.
If we consider, for a > 0, the scaling tranformation ϕa(x,w) = (ax, ad/αw), then we

have that ϕa(P)
(d)
= P; notice also that πϕa⋆P(s) = ad/απ(s/a) and Ent(as) = a2Ent(s).

Therefore, since D = 1
aD, by applying the scaling ϕa, we get

sup
s∈D,Ent(s)<∞

{
βa−d/απ(s)− Ent(s)

} (d)
= sup

s∈D,Ent(s)<∞

{
βπ(s)− a2Ent(s)

}
,

so that Tβa−d/α

(d)
= a2Tβa−2 . This implies (2.3).

Finiteness of Tβ (and of T̂β)

For any interval [a, b) let us define

Tβ([a, b)) := sup
s:Ent(s)∈[a,b)

{
βπ(s)− Ent(s)

}
. (3.5)

In such a way, we have that

Tβ = Tβ
(
[0, 1)

)
∨ sup

k≥0
Tβ
(
[2k, 2k+1)

)
.

Using the scaling properties of P and that having Ent(s) ≤ 2 implies s ∈ D2 (see Remark
3.1), we get that

Tβ
(
[2k, 2k+1)

) (d)
= sup

s∈D ,Ent(s)∈[1,2)

{
2

dk
2α βπ(s)− 2kEnt(s)

}
≤ β2

dk
2α sup

s∈D ,Ent(s)<2

{π(s)} − 2k .

(3.6)
The following lemma is the key result to prove the finiteness of Tβ. Its proof is similar
to that of [8, Lemma 4.1] and is based on entropy-controlled last-passage percolation
(E-LPP) estimates. We postpone its proof to Appendix A.

Lemma 3.2. Let α ∈ (0, d). For any 0 < a < α there is a constant c = ca,α such that for
any t > 1,

P

(
sup

s∈D ,Ent(s)<2

{π(s)} > t
)
≤ c t−a .

In particular, it shows that for any α < d we have that supEnt(s)<2{π(s)} is a.s. finite.

Using Lemma 3.2 we can conclude the proof of the finiteness of Tβ when α ∈ (d2 , d).
For any t > 0, using (3.6) and Lemma 3.2 we get that for any a < α

P

(
Tβ
(
[2k, 2k+1)

)
> t
)
≤ P

(
sup

s∈D,Ent(s)≤2

π(s) > β−12−
dk
2α (t+ 2k)

)
≤ c βa 2k

da
2α

(
t+ 2k

)−a
.

(3.7)

Then, for any t ≥ 1, a union bound gives

P
(
Tβ > t

)
≤

∞∑
k=0

P

(
Tβ
(
[2k, 2k+1)

)
> t
)
≤ c′aβ

a

(
t−a

log2 t∑
k=0

2k
da
2α +

∑
k>log2 t

2−ak(1− d
2α )

)
,

(3.8)
where we split the series at k = log2 t and used that t + 2k ≥ t for k ≤ log2 t, and
t + 2k ≥ 2k for k > log2 t. Since α > d/2, we obtain that P(Tβ > t) is smaller than a
constant (that depends on a, α, β) times

t−at
da
2α + t−a(1− d

2α ) = 2t−a(1− d
2α ) .

EJP 0 (2020), paper 0.
Page 16/66

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-directed polymers in dimension d ≥ 2

In particular, for any a < α there is some constant c′ = ca,α,β > 0 such that for any t ≥ 1

P
(
Tβ > t

)
≤ c′t−

a
α (α− d

2 ) . (3.9)

This concludes the proof that Tβ is a.s. finite when α ∈ (d2 , d). Also, since a can be chosen
arbitrarily close to α, this proves that E[(Tβ)κ] < ∞ for any κ < α− d/2.

Remark 3.3. Notice that, from the definition 2.1 of T̂β , we have for all β ∈ (0,+∞],

T̂β ≤ sup
s∈D,Ênt(s)<+∞

{
π(s)

}
≤ sup

s∈D,Ent(s)≤d/2

{
π(s)

}
. (3.10)

For the second inequality we used that Jd(x) = +∞ if ∥x∥1 > 1, and in particular if
∥x∥2 > 1: this shows that if the length of s is larger than 1 (in particular if Ent(s) > d/2),
then Ênt(s) = +∞. Thanks to Lemma 3.2 (up to a scaling), this shows that for any
α ∈ (0, d), T̂β is a.s. finite for all β > 0.

Positivity of Tβ (and of T̂β)

Let us consider the random set, for any k ∈ Z

Gk :=
{
(x,w) ∈ P , 22k−1 ≤ d

2
∥x∥2 ≤ 22k , βw > 22k+1

}
. (3.11)

If Gk ̸= ∅, let (x,w) ∈ Gk and s be the straight line from the origin to x, which verifies
Ent(s) = d

2∥x∥
2. Therefore, on the event Gk ̸= ∅, we have

Tβ ≥ βw − d

2
∥x∥2 ≥ 22k . (3.12)

Notice that (|Gk|)k∈Z are independent Poisson random variables with mean

η(|Gk|) =
∫
2k
√

1/d≤∥x∥≤2k
√

2/d

dx

∫ ∞

β−122k+1

αw−α−1dw = cα,d,β 2
k(d−2α) .

Hence, we get that limk→−∞P(Gk ̸= ∅) = 1 if α > d/2: this proves that P(∃k, Tβ ≥ 22k) =

1 (by Tβ < 22k ⇒ Gk = ∅ and the independence of |Gk|), so that Tβ > 0 almost surely, for
any α ∈ (d2 , d).

Remark 3.4. The same argument can be used to prove that T̂β > 0 almost surely for any
α ∈ (d2 , α), using that Jd(x) ∼ d

2∥x∥
2 as ∥x∥ ↓ 0, see Lemma B.1. This proves the last part

of Proposition 2.5, i.e. that βc = 0 a.s. when α ∈ (d2 , d).

Infiniteness of Tβ for α ∈ (0, d
2 ]

As far as the case α ≤ d/2 is concerned, since (|Gk|)k≥1 are independent, the Borel-
Cantelli lemma ensures that a.s. Gk ̸= ∅ for infinitely many k ≥ 1. This proves that almost
surely, Tβ ≥ 22k for infinitely many k ≥ 1, that is Tβ = +∞ a.s. when α ∈ (0, d

2 ].

Remark 3.5. Note that we have proven that T̂β < +∞ a.s. for all β > 0, for any α ∈ (0, d).

The reason is that in that case trajectories s with Ênt(s) < +∞ cannot exit the ball of
radius 1; there is no contradiction with the fact that Tβ = +∞ when α ≤ d/2.

Case α ∈ (0, d
2 ), proof of βc > 0

We now prove the part α ∈ (0, d
2 ) in Proposition 2.5, i.e. that T̂β = 0 for β sufficiently

small when α ∈ (0, d
2 ), or equivalently βc > 0 a.s. We proceed as in [31, Section 6].
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Let ŝβ be a maximizer of T̂β, which a.s. exists (and is unique) — the proof of the
existence and uniqueness of a maximizer is identical to that given in [8, Sec. 4.6]. In the
following preliminary result we show that for any α ∈ (0, d), if β is small, then ŝβ has a
small entropy (and is therefore confined in a small ball around the origin). We denote
the length of s by ∥s∥∞.

Lemma 3.6. For any fixed α ∈ (0, d), P-a.s., for any ε > 0 there exists β0 = β0(ε) ∈ (0, 1)

such that Ênt(ŝβ) < ε for all β < β0; in particular, since Ênt(ŝβ) ≥ 1
2∥ŝβ∥

2
∞ we get that

∥ŝβ∥∞ ≤
√
2ε.

Proof. We proceed by contradiction. Suppose that there exists ε > 0 and a sequence
(βk)k≥1 with limk→∞ βk = 0 such that Ênt(ŝβk

) ≥ ε. Using (3.10), we have

0 ≤ T̂βk
≤ sup

s∈D,Ent(s)≤d/2

{
π(s)

}
− ε

βk
. (3.13)

By Lemma 3.2, the right hand side becomes negative as k gets large, which leads to a
contradiction.

We can now deduce that there exists βc > 0 such that T̂β = 0 if β < βc. Let ε > 0 and

β0 = β0(ε) ∈ (0, 1) as in Lemma 3.6, that is Ênt(ŝβ) < ε for all β < β0. Moreover define

ε̂β := Ênt(ŝβ) ≤ ε. Then, since Ênt(s) ≥ 1
dEnt(s), we get that if β < β0

T̂β ≤ sup
s∈D, Ênt(s)≤ε̂β

{
π(s)

}
− ε̂β

β
≤ sup

s∈D,Ent(s)≤dε̂β

{
π(s)

}
− ε̂β

β
. (3.14)

For any ε > 0, since P(β0(ε) > 0) = 1, we can find some δ > 0 such that P(β0(ε) > δ) >

1− ε. Then with probability large than 1− ε,

T̂δ ≤ sup
s∈D,Ent(s)≤dε̂δ

{
π(s)

}
− ε̂δ

δ
. (3.15)

Now, if ε̂δ = 0, then βc ≥ δ > 0. Otherwise, if ε̂δ > 0, we use the following union bound
for P(T̂δ > 0)

P

(
sup

s,Ent(s)≤dε̂δ

{
π(s)

}
> ε̂δ/δ

)
=

∞∑
k=0

P

(
sup

s,Ent(s)≤dε̂δ

{
π(s)

}
> ε̂δ/δ , ε̂δ ∈ (2−(k+1), 2−k] ε

)
≤

∞∑
k=0

P

(
sup

s,Ent(s)≤d2−kε

{
π(s)

}
> 2−(k+1)ε/δ

)
.

(3.16)

Now, setting t = 2−1−k(1−d/2α)ε1−d/2α/δ and εk = 2−kε, we get that for any k ≥ 0

P

(
sup

s,Ent(s)≤d2−kε

{
π(s)

}
> 2−(k+1)ε/δ

)
= P

(
sup

s,Ent(s)≤dεk

{
π(s)

}
> t(εk)

d/(2α)
)
≤ ct−α/2 ,

where for the last inequality we used the scaling ϕa above with a =
√
εk to get that

supEnt(s)≤dεk
π(s) has the same law as ε

d/(2α)
k supEnt(s)≤d π1(s), together with Lemma 3.2.

With the definition of t, we end up with

P

(
sup

s,Ent(s)≤dε̂

{
π(s)

}
≥ ε̂

δ

)
≤ cδα/2ε

α
2 ( d

2α−1)
∞∑
k=0

2k
α
2 (1− d

2α ) ≤ c′αδ
α/2εd−α/2 , (3.17)

where we used that α < d/2 to see that the sum is finite. Finally, we have

P(βc > 0) ≥ 1− ε− c′αδ
α/2εd/4−α/2 . (3.18)

Letting first δ → 0 and then ε → 0, we conclude that P(βc > 0) = 1 for α ∈ (0, d
2 ).
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3.3 Well-posedness of X
We now prove Proposition 2.10. Notice that the condition α > d/(d− 2) ensures that

α > 1 so in particular µ := E[ω0] exists. Let us denote ω̄x := ωx − µ for simplicity. We
prove that X =

∑
x∈Zd ω̄xP(x ∈ R∞) converges P-a.s., using Kolmogorov’s three-series

theorem.
Before we turn to the control of the three series, let us stress that when α > d/(d− 2)

we have ∑
x∈Zd

P(x ∈ R∞)α ≤
∑
x∈Zd

G(x)α < +∞ , (3.19)

where G(x) =
∑∞

n=0 P(Sn = x) is the Green function. The fact that the sum is finite is
due to the fact that G(x) ∼ c∥x∥2−d as x → ∞ in dimension d ≥ 3 and that α > d/(d− 2).

We now control the three series in Kolmogorov’s three-series theorem.
(i) The first series is∑

x∈Zd

P
(
|ω̄x|P(x ∈ R∞) ≥ 1

)
≤ C

∑
x∈Zd

P(x ∈ R∞)α < +∞ ,

where we used Assumption (1.4) for the first inequailty.
(ii) The second series is∑

x∈Zd

∣∣∣E[ω̄xP(x ∈ R∞)1{|ω̄|P(x∈R∞)≤1}

]∣∣∣ ≤ C
∑
x∈Zd

P(x ∈ R∞)α < +∞ ,

where we used that E[ω̄] = 0 and E[ω̄1{|ω|>u}] ≤ cu1−α for any u ≥ 1.
(iii) The third series is

∑
x∈Zd

P(x ∈ R∞)2Var
(
ω̄x1{|ω̄|P(x∈R∞)≤1}

)
≤

{∑
x∈Zd P(x ∈ R∞)α < +∞ if α < 2 ,∑
x∈Zd P(x ∈ R∞)2 log 1

P(x∈R∞) < +∞ if α ≥ 2 .

where we used that E[ω̄2
1{|ω̄|≤u}] is bounded by a constant times u2−α if α < 2, by a

constant times log(1/u) if α = 2 and by a constant if α > 2. The fact that the second
series is finite comes from the fact that P(x ∈ R∞) ≤ G(x) with G(x) ∼ c∥x∥2−d as
x → ∞ and 2 > d

d−2 with d ≥ 5. This concludes the proof of Proposition 2.10.

3.4 Well-posedness of Wβ

In this part, we prove Propositions 2.11 and 2.14, starting with the second one. Let us
stress that by (2.4), f is a radially decreasing function, with the following asymptotics:

f(x) = O(e−c∥x∥2

), as x → ∞ . (3.20)

f(x) ∼ c

{
log(1/∥x∥), for d = 2,

∥x∥2−d, for d ≥ 3,
as x → 0 . (3.21)

Recall that W0 and Wβ are defined in (2.9) and (2.6) respectively.

Proof of Proposition 2.14. We start with the case α ∈ (0, 1). By [27, Theorem 10.15], W0

is finite if and only if the following integral is finite:∫
Rd×R+

(wf(x) ∧ 1)w−(α+1)dxdw =

∫
Rd

f(x)

∫ 1/f(x)

0

w−αdxdw +

∫
Rd

∫ ∞

1/f(x)

w−(1+α)dxdw

=
( 1

1− α
+

1

α

)∫
Rd

f(x)αdx ,
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where we used that α ∈ (0, 1) to compute both integrals on the first line. This is always
finite, thanks to the asymptotics (3.20)-(3.21) of f .

For the case α ∈ (1, 2),thanks again to [27, Theorem 10.15], W0 is finite if and only if∫
Rd×R+

(
w2f(x)2 ∧ wf(x)

)
w−(α+1)dxdw =

( 1

2− α
+

1

α− 1

)∫
Rd

f(x)αdx

is finite (the calculation is the same as above, using α ∈ (1, 2)). Thanks to the asymp-
totics (3.20)-(3.21) of f , this is finite if and only if α < d

d−2 .

Proof of Proposition 2.11. Recall that we deal here with the case α ∈ (d2 , 2) with dimen-
sions d = 2, 3. Recalling the definition (2.6) of Wβ , and using Proposition 2.14, we simply
need to show that ∫

Rd×R+

1

β

(
eβw − 1− βw

)
f(x)P(dx, dw) < +∞ .

To simplify notation, we only treat the case β = 1; the case β > 0 is identical. Now, by
[27, Theorem 10.15], we need to show that∫

Rd×R+

((
ew − 1− w

)
f(x) ∧ 1

)
w−(1+α)dxdw < +∞ . (3.22)

Note that when w ∈ [0, 1] we have ew − 1− w ≤ cw2: hence, the restriction of the above
intergral to Rd × [0, 1] is bounded by∫

Rd×[0,1]

(w2f(x) ∧ 1)w−(1+α)dxdw ≤
∫
Rd

f(x)

∫ 1

0

w1−αdwdx =
1

2− α

∫
Rd

f(x)dx ,

which is finite thanks to the asymptotics (3.20)-(3.21) of f .
On the other hand, using that ew − 1− w ≤ ew, we also get that the restriction of the

integral in (3.22) to Rd × (1,∞) is bounded by∫
Rd×(1,∞)

(ewf(x) ∧ 1)w−(1+α)dx dw

≤ C

∫ ∞

1

(∫
∥x∥2> 2w

c

ewe−c∥x∥2

dx
)
w−(1+α)dw +

∫ ∞

1

(∫
∥x∥2≤ 2w

c

dx
)
w−(1+α)dw

≤ C ′
∫ ∞

1

w−(1+α)dw + C ′′
∫ ∞

1

w
d
2−(α+1)dw .

(3.23)

For the first inequality we used that there are constants C, c such that f(x) ≤ Ce−c∥x∥2

for all ∥x∥2 ≥ 2/c. For the second inequality, we used that: (i) in the first term we have
ewe−c∥x∥2 ≤ e−

c
2∥x∥

2

, which is integrable on Rd; (ii) in the second term we bounded the
volume of the ball of radius

√
2w/c by a constant times wd/2. To conclude, we get that

the first integral in (3.23) is always finite, while we use that α > d/2 to get that the
second integral is finite.

4 Discrete approximation of the variational problems

In this section, we present the main auxiliary results that we use to prove Theo-
rems 2.2-2.7; they are also of independent interest. They extend analogous results
obtained in [8, 9] to the d-dimensional case. We start with the definition of important
quantities that are used throughout the rest of the article, then we state the convergence
result.
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4.1 Discrete energy-entropy variational problems

Let us introduce the discrete analogue of the variational problem in (2.2). It will
appear naturally when considering the log-partition function with trajectories restricted
to staying in a ball of radius rN ≪ N ; when the scale is rN = N some other entropy func-
tional need to be considered, analogously to (1.9) — we will treat that case afterwards.

Discrete entropy of a set of points.

For any set ∆ = (x1, . . . , xk) ∈ (Rd)k of ordered distinct points (with a slight abuse of
notation, we sometimes interpret ∆ as a subset of Rd), we define the entropy related to
the set ∆ by

Ent(∆) =
d

2

( k∑
i=1

∥xi − xi−1∥
)2

, (4.1)

where x0 = 0 by convention. Note that the entropy of a set ∆ depends on the order of
the points of ∆. Note also that if we consider s the linear interpolation of the points of
∆, we recover the continuous entropy (1.11).

We also introduce the entropy for a N -step random walk to visit ∆ (see Lemma B.4):

EntN (∆) := inf
0=t0<t1<···<tk≤N

k∑
i=1

d

2

∥xi − xi−1∥2

ti − ti−1
=

1

N
Ent(∆) , (4.2)

The second identity is due to the fact that the infimum is attained for ti − ti−1 =
∥xi−xi−1∥∑k
i=1 ∥xi−xi−1∥

N .

Energy (and truncated energy) of a set of points.

For r > 0, let

Λr = {x ∈ Zd : ∥x∥ ≤ r}

be the ball in Zd with radius r centered at the origin. We can write the random environ-
ment ω in Λr using its ordered statistic: we let M (r)

i be the i-th largest value of (ωx)x∈Λr

and Y
(r)
i its position. Then (Y

(r)
i )

|Λr|
i=1 is a random permutation of Λr and

(ωx, x)x∈Λr
= (M

(r)
i , Y

(r)
i )

|Λr|
i=1 . (4.3)

The energy collected by a set ∆ = (x1, . . . , xk) ⊂ Λr and its contribution from the ℓ

largest weights (1 ≤ ℓ ≤ |Λr|) are defined by

Ωr(∆) :=

|Λr|∑
i=1

M
(r)
i 1{Y (r)

i ∈∆}, Ω(ℓ)
r (∆) :=

ℓ∑
i=1

M
(r)
i 1{Y (r)

i ∈∆} , (4.4)

where {y ∈ ∆} means that there is some 1 ≤ i ≤ k such that xi = y, with a slight abuse

of notation. Let us also set Ω(>ℓ)
r (∆) := Ωr(∆)− Ω

(ℓ)
r (∆).

Discrete variational problem.

Let us now define the discrete variational problem

T β
N,r := max

∆⊂Λr

{
βΩr(∆)− EntN (∆)

}
. (4.5)
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We also define the analogous variational problems restricted to the ℓ largest weights and
beyond the ℓ-th largest weight by

T β,(ℓ)
N,r := max

∆⊂Λr

{
βΩ(ℓ)

r (∆)− EntN (∆)}, (4.6)

T β,(>ℓ)
N,r := max

∆⊂Λr

{
βΩ(>ℓ)

r (∆)− EntN (∆)
}
. (4.7)

The following result gives an explicit bound on the tail of the (discrete) variational
problem. It will be useful to prove that small weights have a negligible contribution to
the variational problems, uniformly in N . Its proof relies on E-LPP estimates and is very
similar to [8, Prop. 2.6]; its proof is included in Appendix A.

Proposition 4.1. The following hold true:

• There exists a constant c, such that for any N ≥ 1, r ≥ 1, β > 0, 1 ≤ ℓ ≤ |Λr| and
t > 1,

P

(
T β,(ℓ)
N,r ≥ tN × (βr

d
α−1)2

)
≤ c t−

αd
2(α+d) . (4.8)

• There exists a constant c, such that for any N ≥ 1, r ≥ 1, β > 0, 1 ≤ ℓ ≤ |Λr| and
t > 1,

P

(
T β,(>ℓ)
N,r ≥ tN × (βr

d
α−1ℓ

1
d−

1
α )2
)
≤ c t−

αℓd
2(αℓ+d) . (4.9)

Adaptation for trajectories at scale N .

We also define entropy arising when considering trajectories at a scale N instead of Nξ.
For ∆ = (x1, . . . , xk) ∈ Rd and N ≥ 1, let us define the N -step entropy

ÊntN (∆) := inf
0=t0<t1<···<tk≤N

k∑
i=1

(ti − ti−1)Jd

(xi − xi−1

ti − ti−1

)
, (4.10)

where Jd is the large deviation rate function for the random walk, see Lemma B.1. Also,
we let Ênt(∆) := Ênt1(∆). Note that if we consider s the linear interpolation of the points
of ∆, Ênt(∆) recovers the continuous entropy (1.11).

Let us stress that we have ÊntN (∆) ≥ 1
dEntN (∆) for all N ≥ 1, since Jd(x) ≥ d

2∥x∥
2,

cf. Lemma B.1. Then, we can define the analogous variational problems as in (4.5),
(4.6) and (4.7), replacing the entropy EntN (∆) with Ênt(∆). One difference here is that
we only consider trajectories at scale N : we therefore take r = N (notice also that
ÊntN (∆) = +∞ if ∆ has one point outside ΛN , recalling that Jd(x) = +∞ if ∥x∥1 > 1).
We define

T̂ β
N := max

∆⊂ΛN

{
βΩN (∆)− ÊntN (∆)

}
, (4.11)

T̂ β,(ℓ)
N := max

∆⊂ΛN

{
βΩ

(ℓ)
N (∆)− ÊntN (∆)

}
, (4.12)

T̂ β,(>ℓ)
N := max

∆⊂ΛN

{
βΩ(>ℓ)

r (∆)− ÊntN (∆
)
}. (4.13)

Using that ÊntN (∆) ≥ 1
dEntN (∆), we get that T̂ β

N ≤ 1
dT

dβ
N,N , and similarly for T̂ β,(ℓ)

N and

T̂ β,(>ℓ)
N . Proposition 4.1 therefore remains valid for the variational problems (4.12)-(4.13),

up to a change in the constants.

4.2 Convergence of the discrete variational problem to the continuous one

In this section, we prove that the discrete variational problems (4.5) and (4.11), when
properly rescaled, converge to their continuous counterparts (2.2) and (2.1).
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Recall the definition (3.1) of Dq, the set of paths staying in Λq (the ball of radius q),

and the definition (3.4) of π(ℓ)
q (s), the contribution to π(s) from the ℓ largest weights in

Λq. We have the following convergences

Proposition 4.2. Let α ∈ (d2 , d), let q > 0 and ξ > 0. Let βN be such that limN→∞ Ndξ/α−(2ξ−1)βN =

β ∈ (0,+∞). Then, for any ℓ ∈ N we have that

1

N2ξ−1
T βN ,(ℓ)

N,qNξ

(d)−−−−→
N→∞

T (ℓ)
β,q := sup

s∈Dq

{
βπ(ℓ)

q (s)− Ent(s)
}
. (4.14)

We also have that, for any fixed q > 0,

lim
ℓ→+∞

T (ℓ)
β,q = Tβ,q := sup

s∈Dq

{
βπ(s)− Ent(s)

}
a.s. (4.15)

Finally, by monotonicity, we have limq→∞ Tβ,q = Tβ almost surely.

We have the analogous statement for the discrete variational problem (4.12).

Proposition 4.3. Let α ∈ (d2 , d). We let βN such that limN→∞ N
d
α−1βN = β ∈ (0,+∞].

Then, for any ℓ ∈ N we have that

1

βNNd/α
T̂ βN ,(ℓ)
N

(d)−−−−→
N→∞

T̂ (ℓ)
β := sup

s∈D1,Ênt(s)<+∞

{
π
(ℓ)
1 (s)− 1

β Ênt(s)
}
. (4.16)

We also have that limℓ→+∞ T̂ (ℓ)
β = T̂β almost surely.

Notice that the restriction s ∈ D1 in (4.16) is harmless since we have Ênt(s) = +∞
for all s /∈ D1.

Proof of Propositions 4.2 and 4.3. Let us define rN = qNξ for simplicity. We label the

points ΛrN according to the ordered statistics (M
(rN )
i , Y

(rN )
i )

|ΛrN
|

i=1 , see (4.3). In the
same way, in the ball Λq we label the points of P according to the ordered statistic

(M
(q)
i ,Y

(q)
i )i≥1, cf. (3.3). Then, by the Skorokhod representation theorem (cf. [18,

Section 9.4], also in the same spirit of Remark 2.3), we have that for any fixed ℓ ∈ N,

1

Nξ
(Y

(rN )
1 , . . . , Y

(rN )
ℓ )

a.s.−−−−→
N→∞

(Y
(q)
1 , . . . ,Y

(q)
ℓ ),

1

Nξd/α
(M

(rN )
1 , . . . ,M

(rN )
ℓ )

a.s.−−−−→
N→∞

(M
(q)
1 , . . . ,M

(q)
ℓ ) .

Then, for each ∆N = (Y
(rN )
i1

, . . . , Y
(rN )
ik

), thanks to the continuous mapping theorem, we

get that N−(2ξ−1)βNΩ
(ℓ)
rN (∆N ) converges to βπℓ

q(s∆), where s∆ is the linear interpolation

of ∆ := (Yq
i1
, . . . ,Yq

ik
) (see the definitions (4.4) of Ω(ℓ)

rN and (3.4) of π(ℓ)
q (s)). We also obtain

that N−(2ξ−1)EntN (∆N ) converges to Ent(s∆). Since the maxima in (4.6) and (4.14)
are over finitely many terms (in fact 2ℓ), we get (4.14). The convergence (4.16) in
Theorem 4.3 follows from exactly the same argument taking rN = N (here q = 1), and
using that N−1ÊntN (∆N ) converges to Ênt(∆).

Finally, (4.15) simply follows from the monotonicity in ℓ, and the fact that Tβ,q ≤ Tβ
which is finite almost surely. The limits limq→∞ Tβ,q = Tβ and limℓ→∞ T̂ (ℓ)

β = T̂β also
follow by monotonicity.

5 Region A: proof of Theorem 2.2 and Proposition 2.4

In this section, we prove Theorem 2.2. First of all, notice that for any h ∈ R we have

e−NβN |h|Zω,h=0
N,βN

≤ Zω,h
N,βN

≤ eNβN |h|Zω,h=0
N,βN

.
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Hence, we get

− |h|
N

d−α
α

+
1

βNN
d
α

logZω,h=0
N,βN

≤ 1

βNN
d
α

logZω,h
N,βN

≤ |h|
N

d−α
α

+
1

βNN
d
α

logZω,h=0
N,βN

.

Since d > α, the terms |h|N−(d−α)/α go to 0 and we therefore only need to prove the
result for Zω,h=0

N,βN
. In the rest of this section, we will write ZN,βN

:= Zω,h=0
N,βN

for simplicity.

We only treat the case where limN→∞ βNN (d−α)/α = β ∈ (0,+∞) for notational clarity;
the case where β = +∞ follows in a similar manner.

5.1 Convergence of the rescaled log-partition function

Let us prove Theorem 2.2. Our strategy is based on three steps: Step 1. most of the
contribution to ZN,βN

comes from some large disorder weights; Step 2. the log-partition
function, when restricted to finitely many weights and rescaled by βNNd/α, has a weak
limit; Step 3. combine the first two steps to conclude the proof of the convergence.

Let us introduce some notation. Recall the order statistics defined in (4.3). For any
L ∈ N, we define, for ρ ∈ R+

Z
(L)
N,ρβN

:= E

[
exp

(
ρβN

L∑
i=1

M
(N)
i 1{Y (N)

i ∈RN}

)]
, (5.1)

Z
(>L)
N,ρβN

:= E

[
exp

(
ρβN

|ΛN |∑
i=L+1

M
(N)
i 1{Y (N)

n ∈RN}

)]
. (5.2)

Step 1. For any fixed L and η ∈ (0, 1), by Hölder’s inequality, we have

ZN,βN
≤
(
Z

(L)
N,(1+η)βN

) 1
1+η
(
Z

(>L)
N,(1+η−1)βN

) η
1+η

,

so that for any fixed L < N , since the disorder is positive, we get

logZ
(L)
N,βN

≤ logZN,βN
≤ 1

1 + η
logZ

(L)
N,(1+η)βN

+
η

1 + η
logZ

(>L)
N,(1+η−1)βN

. (5.3)

We now show that the last term in (5.3) can be made arbitrarily small compared with
βNNd/α by choosing L large: this is the content of the following lemma.

Lemma 5.1. Assume that limN→∞ βNN
d
α−1 = β > 0. For any ε > 0 and any ρ > 0, there

are some L0 > 0 and some N0 such that for any L > L0 and N ≥ N0 we have

P

( 1

βNNd/α
logZ

(>L)
N,ρβN

> ε
)
≤ ε .

Proof. Notice that for any realization RN of the range, we have

|ΛN |∑
i=L+1

MN
i 1{Y N

i ∈RN} ≤ sup
∆⊂ΛN ,EntN (∆)≤ d

2N

Ω
(>L)
N (∆) ,

where we recall the notation (4.4) for Ω(>L)
N (∆). We have used here that any set of points

(x1, . . . , xk) visited by the random walk before time N must verify
∑k

i=1 ∥xi − xi−1∥ ≤ N

and hence have a N -step entropy EntN (∆) ≤ d
2N (recall the definitions (4.1)-(4.2)). We

therefore get that

1

βNNd/α
logZ

(>L)
N,ρβN

≤ ρ

Nd/α
sup

∆ ,EntN (∆)≤ d
2N

Ω
(>L)
N (∆) .
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Now, we simply have to use Lemma A.4 (noting that EntN (∆) = N−1Ent(∆)), which
states that for any L and any t > 1

P

(
sup

∆ ,Ent(∆)≤ d
2N

2

Ω
(>L)
N (∆) ≥ tL

1
d−

1
αN

d
α

)
≤ t−

αLd
αL+d .

Fixing t large enough so that the upper bound is smaller than ε (uniformly for L ≥ 1)
and then choosing L large enough so that tL

1
d−

1
α ≤ ε/ρ, we obtain the conclusion of

Lemma 5.1.

Step 2. Once the number of weights is fixed, we can prove the following convergence
in distribution.

Proposition 5.2. For any positive integer L and real number ρ > 0, we have the following
convergence in distribution

1

βNNd/α
logZ

(L)
N,ρβN

(d)−→ T̂ (L)
ρβ ,

where T̂ (L)
β is defined in (4.16).

Proof. Let us denote ΥL := {Y (N)
1 , · · · , Y (N)

L } the set of the (random) positions of the L

largest weights in ΛN . Then, we can write

Z
(L)
N,ρβN

=
∑

∆⊂ΥL

exp
(
ρβNΩ

(L)
N,N (∆)

)
P (RN ∩ΥL = ∆) ,

where we used the convention that the points of ∆ are ordered, i.e. ∆ = (x1, . . . , xk),
and used some abuse of notation in writing ∆ ⊂ ΥL. Also, let us note that we use the
notation RN ∩ΥL = ∆ to state that the points in ∆ are visited in the correct order by
the random walk, and that no other point in ΥL is visited. We then have the following
lower and upper bounds:

Z
(L)
N,ρβN

≥ exp

(
sup

∆⊂ΥL

{
ρβNΩ

(L)
N,N + logP (RN ∩ΥL = ∆)

})
,

Z
(L)
N,ρβN

≤ 2LL! exp

(
sup

∆⊂ΥL

{
ρβNΩ

(L)
N,N + logP (∆ ⊂ RN )

})
,

where again we used the conventions that ∆ = (x1, . . . , xk) are ordered points in ΥL and
that we denoted ∆ ⊂ RN the fact that the points in ∆ are visited in the correct order by
the random walk. Recalling the definition (4.6) of the discrete variational problem T̂ β,(ℓ)

N ,
we can therefore rewrite

logZ
(L)
N,ρβN

− T̂ ρβN ,(L)
N ≥ inf

∆⊂ΥL

{
ÊntN (∆) + logP (RN ∩ΥL = ∆)

}
,

logZ
(L)
N,ρβN

− T̂ ρβN ,(L)
N ≤ log(2LL!) + sup

∆⊂ΥL

{
ÊntN (∆) + logP (∆ ⊂ RN )

}
.

(5.4)

In view of the convergence in Proposition 4.3, we therefore only have to prove that the
upper and lower bounds are negligible. More precisely, since there are only finitely
many terms in the infimum (or in the supremum) and since βNNd/α ∼ βN with β > 0,
we only have to prove that for any distinct indices i1, . . . , ik, the (random) subset ∆ =

(Y
(N)
i1

, . . . , Y
(N)
ik

) of ΥL verifies

1

N

∣∣ÊntN (∆) + logP (RN ∩ΥL = ∆)
∣∣ P−→ 0 and

1

N

∣∣ÊntN (∆) + logP (∆ ⊂ RN )
∣∣ P−→ 0 .

(5.5)
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Note that for any fixed L, for any ε > 0 we have

P

(
∃ 1 ≤ i, j ≤ L, s.t. ∥Y (N)

i − Y
(N)
j ∥ < εN

)
≤
(
L

2

)
P

(
∥Y (N)

1 − Y
(N)
2 ∥ < εN

)
≤ CLε

d.

The points in ΥL are therefore at distance at least εN from each other, with P-probability
larger than 1− cεd. Thanks to Lemma B.3 — and to the definition (4.10) of ÊntN (∆) —,
this shows that

1

N

∣∣ÊntN (∆) + logP (∆ ⊂ RN )
∣∣→ 0 (5.6)

with high P-probability. Notice also that P(RN ∩ΥL = ∆) = P(∆ ⊂ RN ,RN ∩ (ΥL \∆) =

∅) and that P(RN ∩ (ΥL \∆) = ∅ | ∆ ⊂ RN ) → 1 with high P-probability (using Lemma
B.4 and that the points in ΥL are distant by at least εN with high P-probability). From
(5.6), we therefore also get that

1

N

∣∣ÊntN (∆) + logP (RN ∩ΥL = ∆)
∣∣→ 0 ,

with high P-probability. This proves (5.5) and concludes the proof.

Step 3. Conclusion. Note that, as stressed in Proposition 4.3, we have limL→∞ T̂ (L)
ρβ =

T̂ρβ almost surely. Due to the continuity in β (see Section 3.2) we also have that

limρ→1 T̂ρβ = T̂β a.s.
The conclusion of the proof is then just a matter of combining the different steps in the

correct order. For any fixed ε > 0, (i) we choose η = ηε ∈ (0, 1) sufficiently small (in (5.3))

and then L0 > 0 so that for any L ≥ L0 both T̂ (L)
β and 1

1+η T̂
(L)
(1+η)β are at distance less than

ε from T̂β with P-probability larger than 1− ε; (ii) we fix some L large enough so that the
conclusion of Lemma 5.1 holds, with ρ = 1+η−1. The conclusion then follows by applying
Proposition 5.2 to both sides of the inequality (5.3) (by Skorokhod’s representation
theorem, cf. Remark 2.3, we can work as if the convergence in Proposition 5.2 is an
almost sure convergence).

5.2 Transversal fluctuations: proof of Proposition 2.4

Since the transversal fluctuations are at most N , we therefore only have to prove
that for any ε > 0 there exists some η > 0 such that for all N large enough

Pω,h
N,βN

(
max

1≤n≤N
∥Sn∥ ≤ η N

)
≤ ε ,

with large P-probability conditionally on T̂β > 0.
The same proof as above can easily be adapted to show that we have the following

convergence in distribution (it can be upgraded to an almost sure convergence by
Skorokhod’s representation theorem)

1

βNNd/α
logZω,h

N,βN

(
max

1≤n≤N
∥Sn∥ ≤ η N

) (d)−→ T̂β,η := sup
s∈Dη,Ênt(s)<+∞

{
π(s)− 1

β Ênt(s)
}
,

(5.7)
where we set Zω,h

N,βN
(A) = E

[
exp

(∑
x∈RN

βN (ωx − h)
)
1A
]
, and Dη is defined in (3.1).

This shows in particular, using Skorokhod’s representation theorem (see Remark 2.3),
that

1

βNNd/α
logPω,h

N,βN

(
max

1≤n≤N
∥Sn∥ ≤ η N

)
=

1

βNNd/α
logZω,h

N,βN

(
max

1≤n≤N
∥Sn∥ ≤ η N

)
− 1

βNNd/α
logZω,h

N,βN
−→ T̂β,η − T̂β a.s.

(5.8)
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Noting that limη↓0 T̂β,η = 0 a.s., then conditionally on having T̂β > 0 we can choose η

small enough so that T̂β,η−T̂β is negative, with high (conditional) P-probability. From the

convergence in (5.8), on the event T̂β,η−T̂β < 0 we have that logPω,h
N,βN

(max1≤n≤N ∥Sn∥ ≤
η N) goes to −∞, that is Pω,h

N,βN
(max1≤n≤N ∥Sn∥ ≤ η N) goes to 0 (exponentially fast).

This concludes the proof.

6 Region B: proof of Theorem 2.7

In this section we prove Theorem 2.7. Recall that we choose h = µ: we denote
Pω,h=µ

N,βN
and Zω,h=µ

N,βN
by PN,βN

and Z̄N,βN
respectively. Recall that α ∈ (d2 , d) and that

limN→∞ βNN−γ = β ∈ (0 +∞) with γ ∈ (d−α
α , d

2α ). Define ξ := α(1−γ)
2α−d , which turns out

to be the end-to-end critical exponent, and note that we have ξ ∈ ( 12 , 1) for the range of
parameters considered.

Let MN := max1≤n≤N ∥Sn∥∞ (this notation is used in the rest of the paper). For
any q > 0, we split Z̄N,βN

as follows

Z̄N,βN
= Z̄N,βN

(
MN > qNξ

)
+ Z̄N,βN

(
MN ≤ qNξ

)
, (6.1)

where Z̄N,βN
(A) = E

[
exp

(∑
x∈RN

βN (ωx − µ)
)
1A
]
.

We divide the proof into three parts: Step 1. we show that Z̄N,βN
(MN > qNξ) is small

for q large with high P-probability, which shows that Z̄N,βN
(MN > qN ξ) is negligible

compared with Z̄N,βN
; Step 2. we show that log Z̄N,βN

(MN ≤ qNξ), when suitably
rescaled, converges in distribution to Tβ,q; Step 3. we let q → ∞ and we conclude our
main result.

The main difference here with respect to Section 5 is the fact that we need to control
the partition function with trajectories MN ≥ qNξ (we had ξ = 1 in the previous section):
this brings many additional technical difficulties and makes the first step much more
difficult.

6.1 Step 1. Controlling Z̄N,βN
(MN ≥ qNξ)

We prove the following estimate, slightly more general than what we need.

Proposition 6.1. Suppose that βNNdξ/α ≤ cN2ξ−1 for all N , for some constant c. There
exist positive constants c1, c2 and ν > 0, such that for any sequence AN ≥ 1, we can find
N0 such that for any N ≥ N0 we have

P

(
Z̄N,βN

(
MN ≥ AN Nξ

)
≥ e−c1A

2
NN2ξ−1

)
≤ c2A

−ν
N

Proof. We partition the interval [ANNξ, N ] into blocks

Bk,N := [2k−1Nξ, 2kNξ], k = log2 AN + 1, · · · , log2(N1−ξ) (6.2)

and we divide the partition function according to the value of MN :

Z̄N,βN

(
MN ≥ ANNξ

)
=

log2(N
1−ξ)∑

k=log2 AN+1

Z̄N (MN ∈ Bk,N ) . (6.3)

By applying Cauchy–Schwarz inequality, we have(
Z̄N,βN

(MN ∈ Bk,N )
)2 ≤ P

(
MN ≥ 2k−1Nξ

)
× Z̄N,2βN

(
MN ≤ 2kNξ

)
. (6.4)

Then, a simple random walk estimate gives that there are some constants Cd, cd such
that for all N ≥ 1 and all k ≥ 1

P
(
MN ≥ 2k−1Nξ

)
≤ Cd e

−cd2
2k+1N2ξ−1

. (6.5)
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To obtain this, we can for instance use a union bound on the different coordinates,
to reduce to one-dimensional random walk estimates, for which such an inequality is
classical, see e.g. [22].

Let c1 > 0 sufficiently small such that

+∞∑
k=log2 AN+1

C
1/2
d e−cd2

2k−1N2ξ−1

≤ e−c1A
2
N N2ξ−1

. (6.6)

By a union bound, we obtain

P

(
Z̄N,βN

(
MN ≥ ANNξ

)
≥ e−c1A

2
N N2ξ−1

)
≤

log2(N
1−ξ)∑

k=log2 AN+1

P

(
Z̄N,βN

(MN ∈ Bk,N ) > C
1/2
d e−cd2

2k−1N2ξ−1
)

≤
+∞∑

k=log2 AN+1

P

(
Z̄N,2βN

(
MN ≤ 2kNξ

)
> ecd2

2k−1N2ξ−1
)
,

(6.7)

where we used (6.4) and (6.5) for the last inequality. The result then follows directly
from Lemma 6.2 below.

We formulate the following result in a general manner, since it will also be useful
when α ∈ (0, d

2 ). We still write Z̄N,βN
= Zω,h=µ

N,βN
, with µ = E[ω0] when α > 1 and µ any

real number when α ∈ (0, 1).

Lemma 6.2. Assume that α ∈ (0, d) and let (hN )N≥1 be a sequence verifying limN→∞ h2
N/N =

+∞ and hN ≤ N . Define εN := NβNh
d/α−2
N . For any constant c0, there exist constants

c > 0 and ν > 0 such that for N sufficiently large

P

(
Z̄N,βN

(
MN ≤ hN

)
> ec0h

2
N/N

)
≤ c ενN +

(h2
N

N

)−ν

. (6.8)

As a consequence, when α > d
2 , if βNNξd/α ≤ cN2ξ−1 then letting hN = qNξ we get that

εN ≤ cq
d
2−α. Hence, one can choose q0 ≥ 1 such that for any q ≥ q0 we have

P

(
Z̄N,2βN

(
MN ≤ qNξ

)
> ec0q

2N2ξ−1
)
≤ c q−ν(2− d

α ). (6.9)

The proof is analogous to that of Lemma 4.1 in [7]; let us warn the reader that it is
quite technical.

Proof of Lemma 6.2. Let us note that the bound is trivial if εN ≥ 1. We will therefore
assume that εN ≤ 1 for all N ; in particular we have βNh

d/α
N ≤ h2

N/N .
Let us split Z̄N,βN

(MN ≤ hN ) into three pieces, that we will control separately. By
Hölder’s inequality (using also that µ > 0), we have

log Z̄N,βN

(
MN ≤ hN

)
≤ 1

3
logZ

(>Q)
N,3βN

+
1

3
logZ

((1,Q])
N,3βN

+
1

3
log Z̄

(≤1)
N,3βN

(6.10)

where we defined, for any ρ ∈ R+,

Z
(>Q)
N,ρβN

:= E
[
exp

( ∑
x∈RN

ρβNωx1{βNωx>Q}

)
1{MN≤hN}

]
, (6.11)

Z
(1,Q]
N,ρβN

:= E
[
exp

( ∑
x∈RN

ρβNωx1{βNωx∈(1,Q]}

)
1{MN≤hN}

]
, (6.12)

Z̄
(≤1)
N,ρβN

:= E
[
exp

( ∑
x∈RN

ρβN (ωx − µ)1{βNωx≤1}

)
1{MN≤hN}

]
, (6.13)
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where Q := QN is a constant depending on N and will be chosen later (it will be of the
form (h2

N/N)ζ for some ζ ∈ (0, 1)). We now deal with the three terms separately.

First term: (6.11).

We want to show that by properly choosing Q of the form (h2
N/N)ζ for a well chosen

ζ ∈ (0, 1), we have for N large enough

P

(
logZ

(>Q)
N,3βN

≥ c0
h2
N

N

)
≤ cενN +

(h2
N

N

)−ν

. (6.14)

Let ℓ := ℓN = (h2
N/N)1−δ, where δ is fixed (small enough). We consider the partition

function restricted to the ℓ largest weights, as follows

Z
(ℓ)
N,3βN

:= E

[
exp

( ℓ∑
i=1

3βNM
(hN )
i 1{Y (hN )

i ∈RN}

)]
, (6.15)

where (M
(hN )
i , Y

(hN )
i )i≥0 is the ordered statistics introduced in (4.3).

Now, since βNh
d/α
N ≤ ch2

N/N , we have that

P

(
βNM

(hN )
ℓ > Q

)
≤ P

(
M

(hN )
ℓ > cβQNh−2

N h
d/α
N

)
≤
(
cℓ1/αNQ/h2

N

)−αℓ

. (6.16)

where we have used Lemma 5.1 in [8] for the last inequality (see (A.12) in Appendix).

We now choose Q = ℓ−
1
α (1−δ)1/2 h2

N

N ; recall that ℓ =
(h2

N

N

)(1−δ)
. In particular, note that

Q = (h2
N/N)ζ for some ζ ∈ (0, 1), and so it goes to infinity as N → ∞.

Since ℓ1/αNQ/h2
N ≤ ℓδ/3α if δ has been fixed small enough, we therefore get that

with probability larger than 1− (cℓδ/3α)−αℓ we have{
x ∈ RN : βNωx > Q

}
⊂ Υ

(hN )
ℓ =

{
Y

(hN )
1 , . . . , Y

(hN )
ℓ

}
. (6.17)

We stress that on this event we have Z
(>Q)
N,3βN

≤ Z
(ℓ)
N,3βN

, and we now turn to Z
(ℓ)
N,3βN

. Recall

the notation (4.4) of Ωℓ(∆). By Lemma B.4, we have that

Z
(ℓ)
N,3βN

=
∑

∆⊂Υ
(hN )

ℓ

e
3βNΩ

(ℓ)
hN

(∆)
P(∆ ⊂ RN ) ≤

∑
∆⊂Υ

(hN )

ℓ

(C1)
|∆| exp

(
6βNΩ

(ℓ)
hN

(∆)−C2EntN (∆)
)

(recall that we view ∆ = (x1, . . . , xk) as an ordered subset of Υ(hN )
ℓ ). Therefore, recalling

the definition (4.6) of the variational problem T β,(ℓ)
N,r , we have, setting C3 := 6/C2

Z
(ℓ)
N,3βN

≤ ℓ!(2C1)
ℓ exp

(
C2T C3βN ,(ℓ)

N,hN

)
. (6.18)

Then for N large enough, using the definition of ℓ = (h2
N/N)1−δ, we get

logZ
(ℓ)
N,3βN

≤ ℓ
(
log ℓ+ log(2C1)

)
+ C2T C3βN ,(ℓ)

N,hN
≤ c0

2

h2
N

N
+ C2T C3βN ,(ℓ)

N,hN
, (6.19)

where c0 is a fixed constant (appearing in (6.14)). Recalling the definition εN :=

NβNh
d/α−2
N , we therefore get that

P

(
logZ

(ℓ)
N,3βN

≥ c0
h2
N

N

)
≤ P

(
T C3βN ,(ℓ)
N,hN

≥ c0
2C2

h2
N

N

)
≤ P

(
T C3βN ,(ℓ)
N,hN

≥ c0
2C2C2

3

ε−2
N N

(
C3βN (hN )

d
α−1

)2)
.

(6.20)

Then, one simply needs to use Proposition 4.1 to get that the last term is bounded by a
constant times ε

αd/(α+d)
N . This, together with (6.16), establishes (6.14).
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Second term: (6.12).

We now show that there exists some ζ ∈ (0, 1), such that for any C > 0 and N large
enough,

P

(
logZ

((1,Q])
N,3βN

≥ C
(h2

N

N

)ζ)
≤ c
(h2

N

N

)−ν

. (6.21)

We again decompose Z
((1,Q])
N,3βN

, according to the contribution of different ranges of
values in the environment. We fix δ (appearing in the definition of Q and ℓ above) small
enough so that θ := (1− δ) dα > 1 (recall α < d). Then, for j ≥ 0, we set

ℓj :=
(h2

N

N

)θj(1−δ)

= (ℓ)θ
j

, (6.22)

Qj :=
(h2

N

N

)
(ℓj)

− 1
α (1−δ)1/2 =

(h2
N

N

)1− θj

α (1−δ)3/2

, (6.23)

where we used the definition of ℓ above. Note that ℓ0 = ℓ, Q0 = Q and that each pair
(ℓj , Qj) has a similar form to (ℓ,Q), and let us stress that ℓj−1 < ℓj and Qj−1 > Qj for
any j ≥ 1. Now, let κ be the smallest integer such that θκ(1− δ)3/2 ≥ α, and note that for
such κ we have Qκ ≤ 1.

Then, thanks to Hölder’s inequality, we have

logZ
((1,Q])
N,3βN

≤ 1

κ

κ∑
j=1

logZ
(j)
N,3κβN

, (6.24)

where we have set

Z
(j)
N,3κβN

:= E

[
exp

( ∑
x∈RN

3κβNωx1{βNωx∈(Qj ,Qj−1]}

)
1{MN≤hN}

]
. (6.25)

Thanks to an union bound we only need to show that for any j = 1, . . . , κ,

P

(
logZ

(j)
N,3κβN

≥ C
(h2

N

N

)ζ)
≤ c
(h2

N

N

)−ν

. (6.26)

to get (6.21).
By the same argument used for Z

(>Q)
N,3βN

, see (6.16)-(6.17), we get that

{x ∈ RN : βNωx > Qj} ⊂ Υℓj :=
{
Y

(hN )
1 , · · · , Y (hN )

ℓj

}
. (6.27)

with probability larger than 1 − (cℓ
δ/3α
j )−αℓj . Hence, as above, we are reduced to

controlling

Z
(j)
N,3κβN

≤ E

[
exp

(
3κQj−1

ℓj∑
k=1

1{Y (hN )

k ∈RN}

)]
=

ℓj∑
k=0

∑
∆⊂Υℓj

,|∆|=k

e3κQj−1kP(RN∩Υℓj = ∆).

(6.28)
We split the sum in (6.28) at some level K = Kj := (ℓj)

1/d+δ/6d (this is needed in (6.30)
below) and we use Lemma B.4 to bound the probability P(∆ ⊂ RN ) ≥ P(RN ∩Υℓj = ∆)

for k ≥ K. We get

Z
(j)
N,3κβN

≤ e3κQj−1K +

ℓj∑
k=K

∑
∆⊂Υℓj

,|∆|=k

(C1)
k exp

(
3κQj−1k − C2EntN (∆)

)
≤ e3κQj−1K +Hj ,

(6.29)
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where we have set

Hj :=

ℓj∑
k=K

k!

(
ℓj
k

)
(C1)

k exp
(
6κQj−1k − C2 inf

∆⊂Υℓj
,|∆|≥k

EntN (∆)
)
.

We now use Entropic LPP estimates to control the last infimum. We let

Bk :=
12κ

C2
Qj−1k =

12κ

C2

h2
N

N
ℓ
− 1

d (1−δ)−1/2

j k ,

where we used the definition (6.23) and the fact that ℓj−1 = ℓ
1/θ
j together with the

definition θ = (1− δ) dα . Then, thanks to Theorem A.1 in Appendix, we obtain

P

(
inf

∆⊂Υℓj
,|∆|≥k

EntN (∆) ≤ Bk

)
= P

(
L
(NBk)
ℓj

(hN ) ≥ k
)
≤
(
C ′ (NBk)

1/2ℓ
1/d
j

hNk

)dk

,

so that using the definition of Bk, we end up with

P

(
inf

∆⊂Υℓj
,|∆|≥k

EntN (∆) ≤ Bk

)
≤
(
c(ℓj)

1
d−

1

2d(1−δ)1/2 k−1/2
)dk

≤ (cℓj)
−kδ/4 ,

where we have used in the last inequality that k ≥ K := (ℓj)
1/d+δ/6d (and took δ small

enough). By a union bound, this leads to

P

(
inf

∆⊂Υℓj
,|∆|≥k

Ent(∆) > Bk ,∀K ≤ k ≤ ℓj

)
≥ 1−

∞∑
k=K

(cℓj)
−kδ/4 ≥ 1−(cℓj)

−cδℓ
1/d
j . (6.30)

Moreover, on this event, we get that for N large enough

Hj ≤
∞∑

k=K

k!

(
ℓj
k

)
(C1)

ke−6κQj−1k ≤
∞∑
k=1

ℓkj exp
(
− 4κk(h2

N/N)ϑ
)
,

where we used in the last inequality that Qj−1 ≥ Qκ−1 = (h2
N/N)ϑ for some ϑ = ϑκ > 0

(recall (6.23)), and that (h2
N/N)ϑ goes to infinity. Now using that ℓj ≤ ℓκ ≤ (h2

N/N)θ
κ(1−δ),

we get that for N large enough

Hj ≤
∞∑
k=1

exp
(
− 2κk(h2

N/N)ϑ
)
≤ exp

(
− κ(h2

N/N)ϑ
)
. (6.31)

Note also that KQj−1 ≤ (h2
N/N)ℓ

−δ/4d
j ≤ (h2

N/N)ℓ−δ/4d goes to 0 as N → ∞: going back
to (6.29), we therefore get that on the event considered in (6.30), for N large enough
we have Z

(j)
N,3κβN

≤ c(h2
N/N)ζ .

Combining this with (6.27) and (6.30), we therefore obtain that

P

(
Z

(j)
N,3κβN

≥ 2
)
≤ (cℓj)

−δℓj/3 + (cℓj)
−cδℓ

1/d
j , (6.32)

which proves (6.26), recalling that ℓj ≥ ℓ =
(
h2
N/N

)1−δ
.

Third term: (6.13)

We now show that there exists a constant C such that

P

(
log Z̄

(≤1)
N,3βN

> c0
h2
N

N

)
< C

(h2
N

N

)−ν

. (6.33)
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To bound (6.33) we note that there is some C > 0 such that ex ≤ 1 + x + Cx2 for
|x| ≤ 4. Therefore, for N large enough (so that 3βNµ ≤ 1), we obtain

Z̄
(≤1)
N,3βN

≤ E
[ ∏
x∈RN

(
1 + 3βN (ω − µ)1{βNωx≤1} + C ′β2

N (ωx − µ)21{βNωx≤1}
) ]

. (6.34)

Note that E[(ω − µ)1{βNω≤1}] ≤ 0 as soon as β−1
N ≥ µ (our assumption implies that

βN → 0). Hence, using also that |RN | ≤ N , we get that

E
[
Z̄

(≤1)
N,3βN

]
≤
(
1 + C ′β2

NE
[
(ω − µ)21{βNω≤1}

])N
≤

{
exp (CNβα

N ) if α < 2 ,

exp
(
CNβ2

N log(1/βN )
)

if α ≥ 2 ,
(6.35)

where we used that the truncated expectation is bounded by a constant times (1/βN )2−α

if α < 2, by a constant times log(1/βN ) if α = 2, and by a constant if α > 2.
Then by Markov’s inequality and (6.35), we have that

P

(
log Z̄

(≤1)
N,3βN

> c0
h2
N

N

)
≤ e−c0

h2
N
N E

[
Z

(≤1)
N,3βN

]
≤ e−c0

h2
N
N ×

{
exp(CNβα

N ), if α < 2,

exp(CNβ2
N log(1/βN )), if α ≥ 2.

(6.36)

It suffices to show that h−2
N N2β2∧α

N log(1/βN )1{α≥2} N→∞−→ 0. Since βNh
d/α
N ≤ ch2

N/N , we
get that:

∗ If α < 2 then
N2

h2
N

βα
N ≤ c′

(h2
N

N

)α−2

h2−d
N ≤ c′

(h2
N

N

)α−2

, (6.37)

because d ≥ 2.
∗ If on the other hand α ≥ 2, we can choose ε > 0 sufficiently small, such that

N2

h2
N

β2
N log(1/βN ) ≤ c

N2

h2
N

β2−ε
N ≤ ch

2(1− d
α )+ d

α ε

N

(h2
N

N

)−ε

≤ N1− d
α+ d

2α ε ≤
(h2

N

N

)1− d
α+ d

2α ε

(6.38)
using that hN ≫ N1/2 for the third inequality and that h2

N/N ≤ N for the last inequality.
All together, this proves (6.33).

The conclusion of Lemma 6.2 then simply follows by combining (6.14), (6.21) and
(6.33).

6.2 Step 2: convergence of log Z̄N (MN ≤ qNξ)

We now prove the following convergence.

Proposition 6.3. Assume that limN→∞ βNNdξ/αN−(2ξ−1) = β ∈ (0,+∞). Then for all
q ∈ (0,+∞) we have the following convergence in distribution

1

N2ξ−1
log Z̄N,βN

(MN ≤ qNξ)
(d)−→ Tβ,q ,

where Tβ,q is defined in (4.15).

Once trajectories are restricted to staying in a ball of radius qNξ, the proof of the
convergence is very similar to the proof in Section 5. We follow the same steps: (i) first
we show that most of the contribution to the partition function comes from large disorder
weights; (ii) we prove that the log-partition function, when restricted to finitely many
weights, converges in distribution; (iii) we send the number of weights to infinity.

Step 2.(i)-a. First of all, we show that we can restrict the partition function to weights
ωx ≥ 1/βN . Recall the notations Z̄

(≤1)
N,ρβ in (6.13), and define analogously Z̄

(>1)
N,ρβ by
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replacing 1{βNωx≤1} with 1{βNωx>1} inside (6.13); take hN = qNξ. For any η ∈ (0, 1), by
Hölder’s inequality, we have

Z̄N,βN
(MN ≤ qNξ) ≤

(
Z̄

(>1)
N,(1+η)βN

) 1
1+η
(
Z̄

(≤1)
N,(1+η−1)βN

) η
1+η

, (6.39)

and by applying Hölder’s inequality to Z̄
(>1)
N,(1−η)βN

, we also have for any η ∈ (0, 1)

Z̄N,βN
(MN ≤ qNξ) ≥

(
Z̄

(>1)
N,(1−η)βN

) 1
1−η

(
Z̄

(≤1)
N,(1−η−1)βN

) η
η−1

. (6.40)

Note that if βNω > 1 and N large enough, we have

(1− 2η)βNω < (1− η)βN (ω − µ) and (1 + η)βN (ω − µ) ≤ (1 + η)βNω,

so that we can replace Z̄
(>1)
N,(1+η)βN

and Z̄
(>1)
N,(1−η)βN

by Z
(>1)
N,(1+η)βN

and Z
(>1)
N,(1−2η)βN

respec-
tively, where

Z
(>1)
N,ρβN

:= E

[
exp

(
ρβN

∑
x∈RN

ωx1{βNωx>1}

)
1{MN≤qNξ}

]
. (6.41)

We need to control the upper bound for (6.39) and the lower bound for (6.40) (note
that 1− η−1, η− 1 < 0). Now notice that adapting (6.36), we easily get that for any ρ > 0,
any ε > 0

P
(
N−(2ξ−1) log Z̄

(≤1)
N,ρβN

> ε
)
≤ exp(CρNβ2∧α

N log(1/βN )− εN2ξ−1),

which goes to 0 as N → ∞ (the proof of (6.35) is carried out for ρ = 3 but it is easily
adapted to any ρ > 0). For ρ < 0, a slight modification in (6.34)-(6.35) is needed. Note
that we have E[−βN (ω − µ)1{βNωx≤1}] = E[βN (ω − µ)1{βNωx>1}] ≤ Cβα

N , which gives an
extra term in (6.35) for ρ < 0 and it follows that

P
(
−N−(2ξ−1) log Z̄

(≤1)
N,ρβN

< −ε
)
≤ exp(CρNβ2∧α

N log(1/βN )− εN2ξ−1)
N→∞−→ 0.

From (6.39)-(6.40) we simply need to prove the convergence in distribution of
N−(2ξ−1) logZ

(>1)
N,ρβN

to Tρβ,q.
Notice also that thanks to (6.21), we also have that for any ρ > 0

1

N2ξ−1
logZ

(1,Q]
N,ρβN

−→ 0 , in probability.

Using Hölder’s inequality as in (6.39) and (6.40), we are therefore reduced to showing
that for any ρ > 0 we have the following convergence in distribution

1

N2ξ−1
logZ

(>Q)
N,ρβN

(d)−→ Tρβ,q . (6.42)

Step 2.(i)-b. We now show that we can restrict the partition function to a finite number
of weights. Analogously to Section 5 (see (5.1)-(5.2)), we define for any L ∈ N,

Z
(L)
N,ρβN

:= E

[
exp

(
ρβN

L∑
i=1

M
(qNξ)
i 1

{Y (qNξ)
i ∈RN}

)]
, (6.43)

Z
(L,ℓ)
N,ρβN

:= E

[
exp

(
ρβN

ℓ∑
i=L+1

M
(qNξ)
i 1

{Y (qNξ)
n ∈RN}

)]
, (6.44)
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where we consider the order statistics (M
(qNξ)
i , Y

(qNξ)
i ) in the (discrete) ball of radius

qNξ. Recall that ℓ := (h2
N/N)1−δ = (q2N2ξ−1)1−δ.

Thanks to Hölder’s inequality, we get that for any η ∈ (0, 1), analogously to (5.3), then
for N large enough we have

logZ
(L)
N,ρβN

≤ logZ
(>Q)
N,ρβN

≤ 1

1 + η
logZ

(L)
N,(1+η)βN

+
η

1 + η
logZ

(L,ℓ)
N,(1+η−1)βN

(6.45)

with probability going to 1 as N → ∞ (more precisely on the event {βNM
(qNξ)
L ≥ Q >

βNM
(qNξ)
ℓ }. Recall (6.16) and N−dξ/αM

(qNξ)
L −→M

(q)
L in Proposition 4.3). We now prove

the analogous of Lemma 5.1 to show that the last term is negligible.

Lemma 6.4. For any ε > 0 and any ρ > 0, we have

lim sup
L→∞

lim sup
N→+∞

P

( 1

N2ξ−1
logZ

(L,ℓ)
N,ρβN

> ε
)
= 0 .

Proof. Note that we easily have, as in the calculation leading to (6.18),

Z
(L,ℓ)
N,ρβN

≤
∑

∆⊂Υ
(qNξ)
ℓ

e
ρβNΩ

(>L)

qNξ P (∆ ⊂ RN ) ≤ ℓ!(2C1)
ℓ exp

(
C2T

CρβN ,(>L)

N,qNξ

)
. (6.46)

Then

N−(2ξ−1) logZ
(L,ℓ)
N,ρβN

≤ ℓN−(2ξ−1) log(ℓ2C1) + C2N
−(2ξ−1)T

ρβN
C2

,(>L)

N,qNξ .

Note that since ℓ = (q2N2ξ−1)1−δ with q fixed, the first term goes to 0 as N → ∞ (recall
ξ > 1/2). For the second term, using that βN ∼ βN2ξ−1−dξ/α we get that for any ε > 0

P

(
T CρβN ,(>L)

N,qNξ > (2C2)
−1εN2ξ−1

)
= P

(
T CρβN ,(>L)

N,qNξ > C ′εL2( 1
α− 1

d )N ×
(
CρβN (qNξ)

d
α−1L

1
d−

1
α

)2)
,

where the constant C ′ depends on ρ, q, β. Then, using Proposition 4.1-(4.9), provided
that L is large enough so that C ′εL2( 1

α− 1
d ) > 1, we get

P

(
C2T

CρβN ,(>L)

N,qNξ > 1
2εN

2ξ−1
)
≤ c

(
C ′εL2( 1

α− 1
d )
)− αLd

2(αL+d) ≤ cεL
−a,

for some exponent a > 0. This concludes the proof of Lemma 6.4.

Step 2.(ii). Once the number of weights is fixed, we can prove the following convergence
in distribution. The proof is identical to that of Proposition 5.2 (replacing Ênt with Ent)
and is omitted.

Proposition 6.5. For any positive integer L and any ρ > 0, we have the following
convergence

1

N2ξ−1
logZ

(L)
N,ρβN

(d)−→ T (L)
ρβ,q ,

where T (L)
β,q is defined in (4.14).

Step 2.(iii). As mentioned in Proposition 4.2, we have that T (L)
ρβ,q converges to Tρβ,q

as L → ∞. Thanks to the continuity in β, we also have that Tρβ,q converges to Tρβ,q
as ρ → 1. The conclusion of the proof of Proposition 6.3 then follows from combining
Proposition 6.5 with Lemma 6.4 (and Step 2.(i)-a), letting L → ∞ then ρ to 1.
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6.3 Step 3: letting q → ∞
Going back to (6.1), the conclusion of the convergence in Theorem 2.7 simply follows

from Step 1 (Proposition 6.1) and Step 2 (Proposition 6.3). Indeed, thanks to Proposition
6.1, we get that if q has been fixed large enough, then with probability 1− cq−ν we have
for N large enough

Z̄N,βN
(MN ≤ qNξ) ≤ Z̄N,βN

≤ Z̄N,βN
(MN ≤ qNξ) + 1 .

Using Proposition 6.3 and noting that Tβ > 0 a.s. and then letting q → ∞ concludes the
proof of (2.1) (recall that Tβ,q converges to Tβ as q → ∞, by monotonicity).

6.4 Transversal fluctuations

Let us first prove that the transversal fluctuations are at least of order Nξ, analogously
to what is done in Section 5.2. Notice that for any η > 0 we have thanks to Proposition 6.3
and (2.1) (using Skorokhod’s representation theorem, cf. Remark 2.3)

1

N2ξ−1
logPN,βN

(
MN ≤ η Nξ

)
=

1

N2ξ−1

(
log Z̄N,βN

(
MN ≤ η Nξ

)
−log Z̄N,βN

)
−→ Tβ,η−Tβ a.s.

(6.47)
Since we have Tβ > 0 and limη↓0 Tβ,η = 0 a.s., we can choose η small enough so that
Tβ,η − Tβ is negative with high P-probability. From (6.47), on the event Tβ,η − Tβ < 0

we have that P̄N (MN ≤ η Nξ) goes to 0: this concludes the proof that transversal
fluctuations are at least of order Nξ.

Then we prove that the transversal fluctuations are at most of order Nξ. We have
that

1

N2ξ−1
logPN,βN

(
MN ≥ 1

η
Nξ

)
=

1

N2ξ−1
log Z̄N,βN

(
MN ≥ 1

η
Nξ

)
− 1

N2ξ−1
log Z̄N,βN

.

The second term above converges to Tβ, which is positive a.s.. For the first term, we
have that Z̄N,βN

(MN ≥ η−1Nξ) < exp(−c1η
−2N2ξ−1) with P-probability larger than

1− ην by Proposition 6.1. Therefore, P(MN ≥ η−1Nξ) vanishes exponentially fast with
P-probability close to 1 for small enough η, which concludes the result.

7 Region C: proof of Theorems 2.12

We will prove the result in the case limN→∞ βNN
d
2α = β ∈ [0,+∞). We start with the

case α > 2 before we turn to the case α < 2. We again use the notation Z̄N,βN
for Zω,h=µ

N,βN
.

7.1 The case α ∈ (2 ∨ d
2 , d)

We first focus on the convergence (2.7) of Theorem 2.12. For simplicity, we treat the
case where βN decays at most polynomially; the case where βN decays faster (and thus
β = 0) is even simpler. Note that the condition α ∈ (2 ∨ d

2 , d) implies in particular that
d ≥ 3, and recall the definition (2.5) of X in dimension d ≥ 5.

To simplify the notation, let us suppose that Var(ωx) = 1 and observe that the
convergence (2.7) is equivalent to

1

aNβN

(
e−

1
2β

2
NE[|RN |]Z̄N,βN

− 1
)

(d)−−→

{
N (0, σ2

d) if d = 3, 4 ,

X if d ≥ 5 .
(7.1)

since both imply that e−
1
2β

2
NE[|RN |]Z̄N,βN

converges to 1 in probability.

Step 1. Truncation of the environment. Let us set

kN := (logN)ηN
d
2α (7.2)
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where η ∈ ( d
2α , 1) and let us define the truncated environment

ω̃ = (ω − µ)1{ω≤kn} . (7.3)

Let us also define λN = logE[eβN ω̃0 ]. The next lemma compares the partition function
Z̄N,βN

with its counterpart with the truncated environment ω̃.

Lemma 7.1. Let α ∈ (2 ∨ d
2 , d) . Assume that βN ≤ cN−d/2α for some constant c. Then

for any a > 0, we have that Na(Z̄N,βN
− Zω̃

N,βN
) → 0 in P-probability.

Proof. First, we show that we can reduce the partition function to trajectories with
transversal fluctuations at most

√
N logN . Assume that βNNd/2α ≤ c, with α > d/2, then

for any AN ≥ 1

P

(
Z̄N,βN

(
MN ≥ AN

√
N logN

)
≥ e−c1A

2
N logN

)
≤ c2A

−ν
N . (7.4)

This result is identical to Proposition 6.1, replacing Nξ with
√
N logN (so N2ξ−1 is

replaced with logN ): the proof is identical and relies on Lemma 6.2 (in which we can
take hN =

√
N logN ), so we omit it. Thanks to (7.4), we can therefore choose a sequence

AN going to infinity (let us take AN = log logN ) in order to get that for any a > 0,
NaZω,h=µ

N,βN
(MN ≥ AN

√
N logN) goes to 0 in probability.

On the other hand, using Cauchy-Swartz inequality we also have that

E
[
Zω̃
N,βN

(
MN > AN

√
N logN

)]
= E

[
eλN |RN |

1{MN>AN

√
N logN}

]
≤ E

[
e2λN |RN |]1/2P(MN > AN

√
N logN

)1/2
.

(7.5)

Now, since α > 2, λN ∼ 1
2β

2
N (see Lemma C.1). In particular, since βN ≤ cN−d/2α, we get

that |λN | ≤ C ′N−d/α, so λN |RN | ≤ λNN goes to 0 as N → ∞ since α < d. Also, the last
probability in (7.5) is bounded by exp(−cA2

N logN) = N−cA2
N . By Markov’s inequality,

we therefore get that NaZω̃
N,βN

(
MN > AN

√
N logN

)
goes to 0 in probability, using again

that AN → ∞.
All together, it remains to prove that

Na
(
Z̄N,βN

(
MN ≤ AN

√
N logN

)
−Zω̃

N,βN

(
MN ≤ AN

√
N logN

))
→ 0 in P-probability.

(7.6)
But a union bound simply gives that

P

(
∃x, ∥x∥ ≤ AN

√
N logN , ω̃x ̸= ωx − µ

)
≤ Ad

N (N logN)d/2P(ω > kN )

≤ c′Ad
N (N logN)d/2(logN)−αηN−d/2 .

(7.7)

where we used that kN = (logN)ηNd/2α and our assumption (1.4). Since η > d/2α,
choosing AN = log logN we have that this probability goes to 0. This proves (7.6) and
concludes the proof of Lemma 7.1

Step 2. Convergence of the partition function with truncated environment.
To conclude the proof of Theorem 2.12-(2.7), and in view of (7.1) and Lemma 7.1
(recall we assumed that βN decays at most polynomially), we simply need to show the
following lemma. For simplicity, let us assume that Var(ω) = 1 and let us denote ΞN :=
1
2Var(ω)β2

NE[|RN |] the centering term in Theorem 2.12-(2.7); note that (cf. Remark 2.13)
limN→∞ eΞN = 1. Recall the definition (2.5) of X , and recall that we have set aN = N1/4

for d = 3, aN = (logN)1/2 for d = 4 and aN = 1 for d ≥ 5.
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Lemma 7.2. Assume that βN ≤ cN−d/2α. If α ∈ (2 ∨ d
2 , d), then we have the following

convergence in distribution

1

aNβN

(
Zω̃
N,βN

− eΞN

)
(d)−→

{
N (0, σ2

d) if d = 3, 4,

X if d ≥ 5 .
(7.8)

If d ≥ 5 and α ∈ ( d
d−2 ,

d
2 ), then we have 1

βN
(Zω̃

N,βN
− 1)

(d)−→ X .

Remark 7.3. We included here the result for α ∈ ( d
d−2 ,

d
2 ) since the proof is identical to

that of (7.8); this will be useful to treat the case α < d/2.

As a preliminary to the proof of Lemma 7.2, let us collect some important estimates.
Thanks to Lemma C.1, we get that |eλN − 1| ≤ Cβ2

N and λN ∼ 1
2β

2
N when α > 2 and

|eλN − 1| ≤ Cec(logN)ηβα
N when α ∈ (1, 2]. In particular, we have

λN ≤ Cβ2
N if α ∈ (2, d) , λN ≤ CeβNkNβα

N if α ∈ (1, 2] . (7.9)

Note that (7.9) implies that limN→∞ λNN = 0.
Also, define εx := exp(βN ω̃x − λN )− 1, which will be used in both lemmas. Note that

E[εx] = 0 and that thanks to Lemma C.1, we get as for λN

E[(ε0)
2] ≤ Cβ2

N if α ∈ (2, d) , E[(ε0)
2] ≤ CeβNkNβα

N if α ∈ (1, 2] . (7.10)

In fact, we have that E[(ε0)2] ∼ β2
N when α > 2. The bounds (7.9)-(7.10), combined with

the fact that βNkN ≤ c(logN)η, will be used extensively throughout the proof.

Proof of Lemma 7.2. Note that eu1{x∈RN} = 1 + (eu − 1)1{x∈RN} for any u ∈ R. Writing
this with u = βN ω̃x − λN so that eu − 1 = εx, we expand the product in the partition
function as follows:

Zω̃
N,βN

= E
[
eλN |RN |

∏
x∈Zd

(1 + εx1{x∈RN})
]
= E

[
eλN |RN |]+ ∑

x∈Zd

εxE
[
eλN |RN |

1{x∈RN}
]
+YN ,

(7.11)

where we set

YN :=
∑
k≥2

∑
(x1,...,xk)∈(Zd)k

xi ̸=xj , i,j=1,...,k

( k∏
i=1

εxi

)
E
[
eλN |RN |

1{(x1,...,xk)∈RN}

]
, (7.12)

where (x1, . . . , xk) ∈ RN means that the points x1, . . . , xk are visited in this given order;
in particular, we do not have the combinatorial term k!.

We now control all terms, starting with YN .

Last term in (7.11). We show that 1
βNaN

YN converges in probability to zero. Since
E[εx] = 0, we only need to control the second moment of YN . Because the εx are
independent, we easily get that

E
[
(YN )2

]
=
∑
k≥2

∑
(x1,...,xk)∈(Zd)k

xi ̸=xj , i,j=1,...,k

E
[
(ε0)

2
]k
E
[
eλN |RN |

1{(x1,...,xk)∈RN}

]2
. (7.13)

Now, using the fact that |RN | ≤ N and Markov’s property, we get∑
(x1,...,xk)∈(Zd)k

xi ̸=xj , i,j=1,...,k

E
[
eλN |RN |

1{(x1,...,xk)∈RN}

]2
≤ e2NλN

∑
(x1,...,xk)∈(Zd)k

xi ̸=xj , i,j=1,...,k

P((x1, . . . , xk) ∈ RN )2

≤ C
( ∑

x∈Zd

P(x ∈ RN )2
)k

,
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where we also used that λNN goes to 0, as seen above. We denote JN :=
∑

x∈Zd P(x ∈
RN )2. Then, we have JN ∼ cda

2
N as N → ∞, as outlined in Lemma B.5 in the appendix.

Using the bound (7.10) on E[(ε0)2], we conclude that by E[(εx)2]JN → 0,

1

β2
Na2N

E
[
(YN )2

]
≤ C

β2
Na2N

∑
k≥2

(
E
[
(ε0)

2
]
JN
)k ≤ C

{
β2
NJN if α ∈ (2, d) ,

e2c(logN)ηβ
2(α−1)
N JN if α ∈ (1, 2] .

(7.14)
This readily goes to 0 as N → ∞.

First term in (7.11). We now show that

lim
N→∞

1

aNβN

∣∣∣E[eλNRN
]
− eΞN1{α>2}

∣∣∣ = 0 . (7.15)

Let us start with the case α > 2. Lemma C.1 gives in that case that |λN − 1
2β

2
N | ≤

Cec
′(logN)ηβ3∧α

N . Hence, we get

1

βNaN

∣∣∣E[eλN |RN |]−E
[
e

1
2β

2
N |RN |]∣∣∣ ≤ 1

βNaN

∣∣λN − 1
2β

2
N

∣∣N ≤ Cec
′(logN)η 1

aN
β
2∧(α−1)
N N ,

which goes to 0 as N → ∞. Indeed, if α ∈ (2, 3), we have that βα−1
N ≤ cN− d(α−1)

2α : in
dimension d ≥ 4 we get that βα−1

N N ≤ cN1−2(α−1)/α which goes to 0 since α > 2; in
dimension d = 3, using that aN = N1/4 we get that a−1

N βα−1
N N ≤ N

3
4 (1−2(α−1)/α) which

also goes to 0 since α > 2. If α ∈ [3, d), we simply use that β2
NN ≤ CN1−d/α, which goes

to 0 since α < d. Additionnally, recalling that ΞN = 1
2β

2
NE[|RN |], we have

1

βNaN

∣∣∣E[e 1
2β

2
N |RN |

]
− eΞN

∣∣∣ ≤ C

βNaN
e

1
2β

2
NE[|RN |] × β4

NVar
(
|RN |

)
≤ C ′β3

NN logN ,

where we expanded e
1
2β

2
N (|RN |−E[|RN |])−1 to get the first inequality (recall that β2

NN goes
to 0), and used that Var(|RN |) ∼ c3N logN in dimension d = 3 and Var(|RN |) ∼ c4N in
dimension d ≥ 4 (see [26]), together with the definition of aN . This proves (7.15) in the
case α ∈ (2, d).

In the case α ∈ ( d
d−2 , 2] (in particular d ≥ 5), we use (7.9) to get that

1

βN

∣∣∣E[eλN |RN |]− 1
∣∣∣ ≤ cβ−1

N λNN ≤ Cec(logN)ηβα−1
N N ,

which goes to 0 as N → ∞, because d
2α (α − 1) > 1. This proves (7.15) in the case

α ∈ ( d
d−2 , 2].

Second term in (7.11). Let us rewrite it as

1

aN

∑
x∈Zd

εx
βN

P(x ∈ RN ) +
1

βNaN

∑
x∈Zd

εxE
[(
eλN |RN | − 1

)
1{x∈RN}

]
. (7.16)

The second term in (7.16) goes to zero in probability. Indeed, it is centered in
expectation, and its second moment is bounded by

1

β2
Na2N

∑
x∈Zd

E[(ε0)
2]
(
eλNN − 1

)2
P(x ∈ RN )2 ≤ C

E[(ε0)
2](λNN)2JN
β2
Na2N

.

Using that JN ∼ cda
2
N as N → ∞ (cf. Lemma B.5) and that λN ,E[(ε0)

2] ≤ Cec(logN)ηβα∧2
N ,

see (7.9) and (7.10), this is bounded by a constant times ec(logN)ηβ
3(α∧2)−2
N N2. If α > 2
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this is bounded by No(1)(β2
NN)2 so this goes to 0; if α ∈ ( d

d−2 , 2] this is bounded by

No(1)(βα−1
N N)2, so this also goes to 0, as seen above.

We now rewrite the first term in (7.16) as

1

aN

∑
x∈Zd

(ωx − µ)P(x ∈ RN ) +
1

aNβN

∑
x∈Zd

(
εx − βN (ωx − µ)

)
P(x ∈ RN ) , (7.17)

and we now show that the second term goes to 0 in probability.
If α ∈ ( d

d−2 , 2] (d ≥ 5), we control the expectation of its absolute value. Using that

|βN ω̃x| ≤ βNkN ≤ c(logN)η and recalling that εx = eβN ω̃x−λN − 1, we can perform a
Taylor expansion to get that

1

βN
E
[∣∣εx − βN (ωx − µ)

∣∣] ≤ 1

βN

(
βNE[|ωx − µ|1{ωx>kN}] + λN + Ce2c(logN)η (β2

NE[ω̃
2
x] + λ2

N )
)

≤ k1−α
N + ec

′(logN)ηβα−1
N ,

where we used that E[ω̃2
x] ≤ Ck2−α

N log kN ≤ C ′βα−2
N (logN)C , together with a similar

bound on λN , see (7.9). Therefore, the expectation of the absolute value of the second
term in (7.17) is bounded by a constant times k1−α

N N + ec
′(logN)ηβα−1

N N : this goes to 0

as N → ∞, thanks to the condition α > d/(d − 2). By Markov’s inequality, the second
term in (7.17) goes to 0 in probability.

If α ∈ (2, d), since the expectation of the second term in (7.17) is 0, we control its
second moment: by independence of the ωx, it is equal to

1

a2Nβ2
N

∑
x∈Zd

E

[(
εx − βN (ωx − µ)

)2]
P(x ∈ RN )2 ≤ C

β2
N

E

[(
εx − βN (ωx − µ)

)2]
,

where we have used that JN =
∑

x∈Zd P(x ∈ RN ) ≤ ca2N , see Lemma B.5. Now, we can
use the same Taylor expansion as above, to get that

1

β2
N

E

[(
εx − βN (ωx − µ)

)2] ≤ C

β2
N

(
β2
NE
[
(ωx − µ)21{ωx>kN}

]
+ λ2

N + Ce4c(logN)η
(
β4
NE[ω̃

4
x] + λ4

N

))
≤ Ck2−α

N + Cec
′(logN)ηβα∧4−2

N .

where we used here that λN ∼ 1
2β

2
N as N → ∞ and thatE[ω̃4

x] is bounded by Ck4−α
N log kN ≤

Cβα−4
N (logN)C

′
if α ≤ 4 and by a constant if α > 4. This shows that the variance of the

second term in (7.17) goes to 0, so this term goes to 0 in probability.

All together, combining (7.11) with (7.14)-(7.15) and (7.16)-(7.17), we have shown
that

1

aNβN

(
Zω̃
N,βN

− eΞN1{α>2} −
∑
x∈Zd

βN (ωx − µ)P(x ∈ RN )
)
P−→ 0 .

It therefore only remains to show that

1

aN

∑
x∈Zd

(ωx − µ)P(x ∈ RN )
(d)−−→

{
N (0, σ2

d) if d = 3, 4,

X it d ≥ 5 .
(7.18)

Note that in Lemma 7.2, when d ≥ 5 and α ∈ (2, d
2 ) we used a centering equal to 1 instead

of eΞN . This is not an issue since in that case we have that β−1
N (eΞN − 1) ≤ cβNN goes to

0 as N → ∞.

In dimension d ≥ 5, (7.18) follows simply by monotone convergence, recalling that X
is a.s. finite if α > d

d−2 , see Proposition 2.10.

In dimension d = 3, 4, the random variables a−1
N (ωx − µ)P(x ∈ RN ) are independent,

centered and have variance a−2
N P(x ∈ RN )2. Since aN → ∞, this goes to 0 uniformly for

x ∈ Zd. Hence, we directly get (7.18), for instance with a characteristic function analysis
with the constant σ2

d := limN→∞ a−2
N

∑
x∈Zd P(x ∈ RN )2, recall Lemma B.5.
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7.2 The case α ∈ (d2 , 2)

Note that this regime is nonempty only for d = 2, 3. Also, since α > d
2 ≥ 1, we have

µ := E[ω0] < +∞. Let us stress that, similarly as (7.1) above, the convergence (2.8) is
equivalent to the convergence in distribution

vN

βNN
d
2α

(
Z̄N,βN

− 1
) (d)−−→ Wβ . (7.19)

The steps are the same as in Section 7.1. The case of the dimension d = 3 is very similar,
but some adaptations are needed in dimension d = 2.

Step 1. Truncation of the environment. Let us set

kN :=

{
(logN)ηN

d
2α if d = 3 ,

(log logN)ηN
d
2α if d = 2 ,

(7.20)

where η ∈ ( d
2α , 1). We again define the truncated environment ω̃ = (ω − µ)1{ω≤kn} and

we set λN = logE[eβN ω̃0 ]. The next lemma is analogous to Lemma 7.1.

Lemma 7.4. Let α ∈ (2, d
2 ). Assume that βN ≤ cN−d/2α for some constant c. Then for

any a > 0, we have that:

(i) if d = 3, Na(Z̄N,βN
− Zω̃

N,βN
) → 0 in P-probability;

(ii) if d = 2, (logN)a(Z̄N,βN
− Zω̃

N,βN
) → 0 in P-probability.

Before we start the proof, let us stress that Lemma C.1 gives some estimates on λN :
since α ∈ (1, 2), we have

λN ≤ CeβNkNβα
N ≤ CeβNkNN−d/2 , with βNkN =

{
(logN)η if d = 3 ,

(log logN)η if d = 2 .
(7.21)

Proof. In the case of dimension d = 3, the proof is identical to that of Lemma 7.1: the only
difference here is that we do not have λN ≤ Cβ2

N . Instead, we use (7.21) instead which
gives that λNN ≤ Ce(logN)ηN1− d

2 goes to 0 as N → ∞; this was used to bound (7.5).
We therefore focus on the case of dimension d = 2; the idea of the proof is identical,

with some adaptation. First of all, analogously to (7.4), we get that for any sequence
AN ≥ 1

P

(
Z̄N,βN

(
MN ≥ AN

√
N log logN

)
≥ e−c1A

2
N log logN = (logN)−c1A

2
N

)
≤ c2A

−ν
N . (7.22)

Again, this is identical to Proposition 6.1, replacing Nξ with
√
N log logN : in particular,

this relies on Lemma 6.2 in which we can take hN =
√
N logN logN . Therefore, choosing

a sequence AN → ∞ (we take AN = log log logN ), we get that (logN)aZω,h=µ
N,βN

(MN ≥
AN

√
N log logN) goes to 0 in probability.

Then, as in (7.5), we have that

E
[
Zω̃
N,βN

(
MN > AN

√
N log logN

)]
≤ E

[
e2λN |RN |]1/2P(MN > AN

√
N log logN

)1/2
≤ E

[
e2λN |RN |]1/2e−cA2

N log logN .

(7.23)

The main difference here is that we cannot use the bound λN |RN | ≤ λNN since we
do not have λNN → 0 as N → ∞, see (7.21). However, we may use the fact that
|RN | is of the order N/ logN to obtain that λN |RN | → 0 with high P-probability. More
precisely, using that E[|RN |] ≤ CN/ logN (see e.g. [16, Eq. (5.3.39)]) we have that, for a
sufficiently large C ′

P
(
|RN | ≥ 2C ′ N

logN

)
≤ P

(
|RN | −E[|RN |] ≥ C ′N log logN

(logN)2

)
≤ e−c(logN)4 . (7.24)
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where we used [16, Thm. 8.5.1] for the last inequality. We therefore get that

E
[
e2λN |RN |] ≤ e4C

′λNN/ logN + e2λNNe−c(logN)4 .

Now, thanks to (7.21), we get that λNN = o(logN) as N → ∞. Hence, from (7.23), we
get that

E
[
Zω̃
N,βN

(
MN > AN

√
N log logN

)]
≤ C(logN)−cA2

N

so that (logN)aZω̃
N,βN

(
MN > AN

√
N log logN

)
→ 0 in P-probability thanks to Markov’s

inequality.
Finally, notice that similarly to (7.7), we have that

P

(
∃x, ∥x∥ ≤ AN

√
N log logN , ω̃x ̸= ωx−µ

)
≤ c′Ad

N (N log logN)d/2(log logN)−αηN−d/2 ,

(7.25)
which goes to 0 as N → ∞ since αη > d/2, and AN = log log logN . Therefore, we
get that Z̄N,βN

(
MN > AN

√
N log logN

)
is equal to Zω̃

N,βN

(
MN > AN

√
N log logN

)
with

P-probability going to 1. This concludes the proof of Lemma 7.4.

Step 2. Convergence of the partition function with truncated environment.
To conclude the proof of Theorem 2.12-(2.8), and in view of (7.19) and Lemma 7.4, it
remains to prove the following lemma. (In dimension d = 2, we need to assume that
βNNd/2α decays slower than any power of logN , but this does not hide anything deep;
one simply needs to use a more restrictive truncation, but this actually simplifies many
of the arguments so we do not treat this case.)

Lemma 7.5. Let α ∈ (d2 , 2). If limN→∞ βNNd/2α = β ∈ [0,+∞) then we have the
following convergence in distribution

vN
βNNd/2α

(
Zω̃
N,βN

− 1
) (d)−→ Wβ .

Proof. We use the same notation as in Step 2 of Section 7.1. Defining εx := exp(βN ω̃x −
λN )− 1, and using a polynomial chaos expansion similar to (7.11), we get

Zω̃
N,βN

− 1 = E
[
eλN |RN | − 1

]
+
∑
x∈Zd

εxE
[
eλN |RN |

1{x∈RN}
]
+YN . (7.26)

where we defined YN as in (7.12). We first prove that the last term is negligible: the
computation in d = 3 follows closely the computations (7.13)–(7.14), while dimension
d = 2 is more delicate. In the second part of the proof we show that the first two terms
give the main contribution to the convergence. This part is quite technical and we split
it into three steps.

Last term in (7.26). Let us prove that vNYN/(βNNd/2α) goes to 0 in probability.
We start with the case of dimension d = 3, which we essentially already treated.

Reasoning as in (7.13)–(7.14), we computed the second moment of YN in the case
α ∈ (1, 2): we have that

E[Y2
N ] ≤ C

∑
k≥2

(
E[ε20]JN

)k ≤ Ce2c(logN)ηβ2α
N N , (7.27)

where we bounded |RN | ≤ N , used that JN ≤ cN1/2 in dimension d = 3 (see Lemma B.5)
and the bound (7.10). Since vN = N1/2, we obtain( vN

βNNd/2α

)2
E[Y2

N ] ≤ Ce2(logN)ηN1− d
α β

2(α−1)
N ≤ C ′ec(logN)ηN2−d . (7.28)
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This term goes to 0, which concludes the proof in the case of dimension d = 3.
Turning to the case of dimension d = 2, we need to be more careful: we cannot

simply bound |RN | by N since we do not have λNN → 0 anymore. The calculation of
E[Y2

N ] in (7.13) remains valid. Then, decomposing the expectation according to whether
|RN | ≤ 2C ′N/ logN or not, we obtain

E
[
eλN |RN |

1{(x1,...,xk)∈RN}

]2
≤
(
e2C

′ λNN

log N P
(
(x1, . . . , xk) ∈ RN

)
+ eλNNP

(
(x1, . . . , xk) ∈ RN ; |RN | ≥ 2C ′N

logN

))2

≤ 2e4C
′ λNN

log N P
(
(x1, . . . , xk) ∈ RN

)2
+ 2e2λNNP

(
(x1, . . . , xk) ∈ RN

)
P
(
|RN | ≥ 2C ′N

logN

)
,

(7.29)

where for the last inequality we used that (a + b)2 ≤ 2(a2 + b2) together with Cauchy–
Schwarz inequality. Now, we have that λNN = o(logN) (recall (7.21)) and also that
P(|RN | ≥ 2C ′N/ logN) ≤ e−c(logN)4 if C ′ has been fixed large enough, thanks to (7.24).
Hence, summing (7.29) over (x1, . . . , xk) and using Markov’s property, we finally get that∑
(x1,...,xk)∈(Zd)k

xi ̸=xj , i,j=1,...,k

E
[
eλN |RN |

1{(x1,...,xk)∈RN}

]2
≤ C

( ∑
x∈Zd

P(x ∈ RN )2
)k

+ e−c′(logN)4
( ∑

x∈Zd

P(x ∈ RN )
)k

All together, going back to (7.13), we obtain that when d = 2 the bound (7.27) is replaced
with

E[Y2
N ] ≤ C

∑
k≥2

(
E[(ε0)

2]JN
)k

+ e−c′(logN)4
∑
k≥2

(
E[(ε0)

2]E[|RN |]
)k

.

Now, we have that E[(ε0)2] ≤ Ce(log logN)ηβα
N by Lemma C.1, that JN ≤ C N

(logN)2 by

Lemma B.5 and that E[|RN |] ≤ C N
logN by [16, Eq. (5.3.39)]. Using that vN = logN , we

obtain( vN

βNN
d
2α

)2
E[Y2

N ] ≤ C(logN)2e2(log logN)ηβ
2(α−1)
N N2− d

α

( 1

(logN)4
+e−c′(logN)4 1

(logN)2

)
,

(7.30)
and note that β2(α−1)

N N2−d/α ≤ c. This term goes to 0, which concludes the proof when
d = 2.

First terms in (7.26). We can rewrite these terms as

E
[
eλN |RN | − 1

]
+
∑
x∈Zd

εxE
[(
eλN |RN | − 1

)
1{x∈RN}

]
+
∑
x∈Zd

εxP(x ∈ RN )

= E
[
eλN |RN | − 1− (1− e−λN )|RN |

]
+
∑
x∈Zd

εxE
[(
eλN |RN | − 1

)
1{x∈RN}

]
(7.31)

+ e−λN

∑
x∈Zd

(eβN ω̃x − 1)P(x ∈ RN ) ,

where we used that εx = e−λN (eβN ω̃x − 1)− 1 + e−λN for the last identity. Let us denote
I, II and III the three terms in (7.31). We show that the first two terms are negligible.

Term I. For the first term in (7.31), let us first treat the case of dimension d = 3,
which is simpler. Using that λN → 0 and λN |RN | ≤ λNN → 0, a Taylor expansion gives
that it is bounded by a constant times (λNN)2. Hence, using that λN ≤ Cec(logN)ηβα

N ,
we get that

vN

βNN
d
2α

I ≤ C ′e2c(logN)ηvNβ2α−1
N N2− d

2α ≤ C ′ec(logN)ηN
5
2−d ,
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where we used that vN = N1/2 in dimension d = 3. This goes to 0 as N → ∞.
The case of dimension d = 2 is a bit more delicate. On the event {|RN | ≤ 2C ′N/ logN},

we can again use a Taylor expansion, since λNN/ logN → 0, so that the term inside
the expectation is bounded in absolute value by a constant times λ2

NN2/(logN)2. On
the event {|RN | > 2C ′N/ logN}, we bound the absolute value of the term inside the
expectation by eNλN − 1 + cλNN ≤ CλNNeo(logN). We therefore get that

|I| ≤ C
λ2
NN2

(logN)2
+ λNNeo(logN)P

(
|RN | > 2C ′ N

logN

)
≤ e2(log logN)η

(logN)2
β2α
N N2 + e−c′(logN)4βα

NN ,

where we used (7.24) for the last inequality. Since vN = logN , we get that

vN

βNN
d
2α

I ≤ e2(log logN)η

logN
β2α−1
N N2− d

2α + logNe−c′(logN)4βα−1
N N1− d

2α (7.32)

which goes to 0 as N → ∞, noticing that βα−1
N N1−d/2α ≤ c, β2α−1

N N2− d
2α ≤ c and

η ∈ ( d
2α , 1).

Term II. We prove that vNII/(βNNd/2α) goes to 0 in probability, by controlling its
second moment. Since the εx are centered and independent, we have

E[(II)2] ≤ E[ε20]
∑
x∈Zd

E
[(
eλN |RN | − 1

)
1{x∈RN}

]2
. (7.33)

We start with the simpler case of dimension d = 3. Using that eλN |RN | − 1 ≤ cλNN

and recalling the definition JN , we get that

E[(II)2] ≤ cE[(ε0)
2](λNN)2JN ≤ Ce3c(logN)ηβ3α

N N
5
2 ,

where we used the bounds (7.9)-(7.10) together with the fact that JN ≤ N1/2 in dimension
d = 3, see Lemma B.5. Hence, using also that vN = N1/2 we get that( vN

βNNd/2α

)2
E[(II)2] ≤ C ′ec

′(logN)ηβ3α−2
N N

7
2−

d
α ≤ C ′ec

′(logN)ηN
7
2−

3d
2 ,

which goes to 0 as N → ∞.
In the case of dimension d = 2, we proceed as above. Writing eλN |RN | − 1 ≤

λN |RN |eλN |RN | and decomposing according to whether we have |RN | ≤ 2C ′N/ logN or
not, we get similarly to (7.29)

E
[(

eλN |RN | − 1
)
1{x∈RN}

]2
≤ C

( λNN

logN

)2
P(x ∈ RN )2 + λNNeλNNP(x ∈ RN )P

(
|RN | ≥ 2C ′ N

logN

)
.

Summing over x and using the bound (7.24) together with λNN = o(logN) and E[|RN |] ≤
N , we get from (7.33) that

E[(II)2] ≤ CE[ε20]
(λNN)2

(logN)2
JN + CE[ε20]λNN2e−c(logN)4

≤ C ′e3(log logN)ηβ2α
N N2

(
(logN)−4 + e−c′(logN)4

)
.

For the second inequality, we used the bounds (7.9)-(7.10) (and also that βα
NN ≤ c) and

that JN ≤ CN/(logN)2, see Lemma B.5. Since vN = logN , we get that( vN
βNNd/2α

)2
E[(II)2] ≤ C ′e3(log logN)ηβ

2(α−1)
N N2− d

α

(
(logN)−2 + (logN)2e−c′(logN)4

)
,

(7.34)
which goes to 0 as N → ∞, using that βα−1

N N1−d/2α ≤ c

Term III. We show the following lemma to control the third term in (7.31).
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Lemma 7.6. Let d = 2, 3 and α ∈ (d2 , 2). We have the following convergence in distribu-
tion:

vN
βNNd/2α

∑
x∈Zd

(eβN ω̃x − 1)P(x ∈ RN )
(d)−−→ Wβ , (7.35)

with Wβ defined in (2.6).

Going back to (7.26), and combining (7.27)-(7.30) with (7.31) and the estimates (7.32)-
(7.34), then Lemma 7.6 concludes the proof of Lemma 7.5, noting also that e−λN goes to
1 as N → ∞.

Proof of Lemma 7.6. To prove (7.35), we adapt the method developed in [19, Thm. 1.4].
We consider only the case limN→∞ βNNd/2α = β ∈ (0,+∞); the case β = 0 can be dealt
with similarly, one simply needs to keep track of the dependence in β in all estimates
— note also that we have Wβ → W0 as β → 0. Also, for x ∈ Zd, we use the notation
fN (x) = vNP(x ∈ RN ).

We prove the convergence of
∑

x∈Zd(βNNd/2α)−1(eβN ω̃x−1)fN (x). As in Equation (39)
in [19], we fix ε > 0, K > 0, and we define ω̃ε

x = (ωx −µ)1{(ωx−µ)≤εNd/2α}. Recall the defi-

nition of ω̃x in (7.20). We use the following decomposition of
∑

x∈Zd(βNNd/2α)−1(eβN ω̃x −
1)fN (x):∑

∥x∥≤K
√
N

(ωx−µ)>εNd/2α

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x) +N−d/2α

E[ω̃ε
0]

∑
∥x∥≤K

√
N

fN (x)

+
∑

∥x∥≤K
√
N

1

βNNd/2α

(
eβN ω̃ε

x −E
[
eβN ω̃ε

0
])

fN (x)

+
1

βNNd/2α
E

[
eβN ω̃ε

0 − 1− βN ω̃ε
0

] ∑
∥x∥≤K

√
N

fN (x) +
∑

∥x∥>K
√
N

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x) .

(7.36)

We control each term separately: the first two terms bring the main contribution; we
show that the last three terms can be made arbitrarily small by taking ε small or K large.

1st term in (7.36). We split the term into∑
εα

√
N≤∥x∥≤K

√
N

(ωx−µ)>εNd/2α

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x)+

∑
∥x∥≤εα

√
N

(ωx−µ)>εNd/2α

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x).

(7.37)
For the first term we partition BK × (ε,∞) into rectangles with diameter δ > 0, where

BK := {x ∈ Rd : ∥x∥ ≤ K}. By denoting this partition Pδ, π a patch of Pδ and (xπ, wπ)

the center of π, we can write the first term above as∑
π∈Pδ

∑
εα

√
N≤∥x∥≤K

√
N

1

βNNd/2α
(eβN ω̃x − 1)fN (x)1{( x√

N
, ωx

Nd/2α
)∈π}

=
∑

π∈Pδ

(1 + oδ(1))
1

β
(eβwπ − 1)f(xπ)

∑
εα

√
N≤∥x∥≤K

√
N

1{( x√
N

, ωx

Nd/2α
)∈π} ,

(7.38)

where we also used that limN→∞ βNN−d/2α = β ∈ [0,∞) (with by convention 1
β (e

βwπ −
1) = wπ when β = 0) and limN→∞ fN (z

√
N) = f(z), see (2.4); here oδ(1) denotes errors

that are negligible as δ ↘ 0 for fixed ε.
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It is now not hard to check that (see [19, p. 4036])∑
0<∥x∥≤K

√
N

1{( x√
N

, ωx

Nd/2α
)∈π} −→ P(π) weakly, (7.39)

where P(π) is a Poisson point measure on π with intensity η(dx, dw) = αw−(α+1)dxdw.
Thus, by first sending N → ∞ and then letting δ → 0, we have the following

convergence in distribution:∑
εα

√
N≤∥x∥≤K

√
N

(ωx−µ)>εNd/2α

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x)

(d)−−→
∫
(BK\Bεα )×(ε,∞)

1

β
(eβw−1)f(x)P(dx, dw) .

(7.40)
Note that [27, Theorem 10.15] ensures that the integral is well-defined (in particular at
w = +∞, recall also the proof of Proposition 2.11 in Section 3.4).

For the second term in (7.37) we show that uniformly on N ∈ N

P

( ∑
∥x∥≤εα

√
N

ω̄x>εNd/2α

1

βNNd/2α

(
eβN ω̃x − 1

)
fN (x) > εα/2

)
≤ cαε

α/2 log(1/ε). (7.41)

Since ω̃x ≤ ω̄x, we replace ω̃x by ω̄x. Moreover, we consider the event A =
{

max
∥x∥≤εα

√
N
ω̄x ≤

Nd/2α
}

and split (7.41) according to A: the probability in the left-hand side of (7.41) is

bounded by

P

( ∑
∥x∥≤εα

√
N

1

βNNd/2α

(
eβN ω̄x − 1

)
1{ω̄x>εNd/2α}fN (x) > εα/2 ; A

)
+ P

(
Ac
)
. (7.42)

Since βNNd/2α ≤ c, we have that on A, (eβN ω̄x − 1) ≤ C βNNd/2α. Then, note that we
have

|fN (x)− f(x/
√
N)| =

∣∣∣vNP(x ∈ RN )− f(x/
√
N)
∣∣∣ ≤ cf(x/

√
N) (7.43)

for all x ∈ Zd \ {0} with ∥x∥ ≤ K
√
N by [32, Thm. 1.8] (in dimension d ≥ 3) and [32,

Thm. 1.6] (in dimension d = 2) and by a Riemann sum approximation (and dominated
convergence), we have

E

[ ∑
∥x∥≤εα

√
N

1{ω̄x>εNd/2α}fN (x)

]
≤ Cε−αN−d/2

∑
∥x∥≤εα

√
N

fN (x) ≤ C ′ε−α

∫
Bεα

f(x)dx,

where we used that P
(
ω̄x > εNd/2α

)
≤ Cε−αN−d/2. Then from asymptotic esti-

mates on f , see (3.21), we easily obtain that this is bounded by a constant times
ε2α log(1/ε). Therefore, by Markov’s inequality, the first term of (7.42) is bounded by
C ′′ε−αε3α/2 log(1/ε) ≤ εα/2 log(1/ε).

Finally, since P
(
Ac
)
= P

(
max

∥x∥≤εα
√
N
ω̄x > Nd/2α

)
≤ cεαd, we complete the proof of

(7.41).

2nd term in (7.36). Using that ω0 − µ is centered, we easily get from (1.4) that

N
d
2 (1−

1
α )
E[ω̃ε

0] = −N
d
2 (1−

1
α )
E
[
(ω0 − µ)1{(ω0−µ)>εNd/2α}

] N→∞−→ −α

∫ ∞

ε

w · w−(1+α)dw .
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Again by (7.43) and a Riemann-sum approximation (and dominated convergence), we
get that

lim
N→∞

N− d
2

∑
∥x∥≤K

√
N

fN (x) =

∫
∥x∥≤K

f(x)dx . (7.44)

All together, we get that the second term in (7.36) verifies

lim
N→∞

N−d/2α
E[ω̃ε

0]
∑

∥x∥≤K
√
N

fN (x) = −
∫
BK×(ε,+∞)

wf(x)η(dx, dw) . (7.45)

Combining (7.40) with (7.45), we obtain that the sum of the first term in (7.37) and the
second term in (7.36) converges in distribution to∫
(BK\Bεα )×(ε,+∞)

1

β
(eβw − 1− βw)f(x)P(dx,dw) +

∫
(BK\Bεα )×(ε,+∞)

wf(x)(P − η)(dx, dw)

−
∫
Bεα×(ε,∞)

ωf(x)η(dx, dω) .

(7.46)

Note that the third integral above is bounded by cαε
1+α log(1/ε). Letting ε ↓ 0 and

K ↑ +∞ and by (7.41), one recovers Wβ, see Proposition 2.11; when β = 0, the first
term is equal to zero. It therefore remains to control the remaining terms in (7.36).

3rd term in (7.36). We control the second moment of this term, since it has zero
mean. By a Taylor expansion, using that |βN ω̃ε

x| ≤ Cεβ, we have that

E

[(
eβN ω̃ε

0−E
[
eβN ω̃ε

0
])2]

= E
[
e2βN ω̃ε

0
]
−E

[
eβN ω̃ε

0
]2 ≤ Cβ2

NE
[
(ω̃ε

0)
2
]
≤ C ′ε2−αβ2

NN
d
2α (2−α) ,

where the last inequality holds since α < 2. Hence, recalling that fN (x) = vNP(x ∈ RN ),
we get that the third term of (7.36) has a second moment

E

[( ∑
∥x∥≤K

√
N

1

βNNd/2α

(
eβN ω̃ε

x −E
[
eβN ω̃ε

x
])

fN (x)
)2]

≤ cε2−αN− d
2 v2NJN ≤ c′ε2−α ,

(7.47)
where for the last inequality we used the definition of vN (see Section 2.3) together with
Lemma B.5 for d = 2, 3.

4th term in (7.36). Again, by a Taylor expansion, and usingE
[
(ω̃ε

0)
2
]
≤ cε2−αN

d
2α (2−α),

we have

1

βNNd/2α
E
[
eβN ω̃ε

0 − 1− βN ω̃ε
0

]
≤ C

βN

Nd/2α
E[(ω̃ε

0)
2] ≤ Cε2−αβNN

d
2α N− d

2 .

Now, using (7.44) and the fact that βNNd/2α ≤ c, we get that the 4th term in (7.36)
verifies

0 ≤ 1

βNNd/2α
E
[
eβN ω̃ε

0 − 1− βN ω̃ε
0

] ∑
∥x∥≤K

√
N

fN (x) ≤ Cε2−α . (7.48)

5th term in (7.36). Here, we follow the line of proof of [19, Lem. 5.1]: we prove that
(recall the notation ω̄x = ωx − µ)

P

( ∑
∥x∥>K

√
N

1

βNNd/2α

(
eβN ω̄x − 1

)
fN (x) > e−K

)
≤ CKd−2α , (7.49)

which can be made arbitrarily small by taking K large, since α > d/2. Note that since
ω̃x ≤ ω̄x, this enables us to control the last term in (7.36).
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To prove (7.49), we decompose the sum according to whether ω̄x is smaller or larger
than 1/βN .

To control the part of the sum with ω̄x ≤ 1/βN , we use Lemma C.1 to get that

E

[∣∣eβN ω̄x1{ω̄x≤1/βN} − 1
∣∣] ≤ c′βα

N .

Hence, the sum over the terms with ω̄x ≤ 1/βN has L1 norm bounded by

E

 ∑
∥x∥>K

√
N

1

βNNd/2α

∣∣eβN ω̄x1{ω̄x≤1/βN} − 1
∣∣fN (x)

 ≤ (βNNd/2α)α−1N− d
2

∑
∥x∥>K

√
N

fN (x)

≤ c′
∫
∥x∥>K

f(x)dx ,

where we used βN ≤ cN−d/2α and the same Riemann-sum approximation as in (7.44).
Then from asymptotic estimates on f , see (3.20), we easily obtain that this is bounded by
a constant times e−cK2

. Hence, applying Markov’s inequality, we get that the probability
that this part of the sum is larger than e−K/2 is bounded by ceKe−cK2 ≤ cKd−2α.

Let us now control the sum over the terms with ω̄x > 1/βN . We write

P

( ∑
∥x∥>K

√
N

1

βNNd/2α

(
eβN ω̄x − 1

)
1{ω̄x>1/βN}fN (x) > e−K/2

)

≤
K−1

√
N∑

j=1

P

( ∑
∥x∥∈(j,j+1]K

√
N

eβN ω̄x1{ω̄x>1/βN}fN (x) > βNNd/2αe−K2−j−2

)
. (7.50)

Now, we set NK
j =

∣∣{x ∈ Zd , ω̄x > 1/βN , ∥x∥ ∈ (j, j + 1]K
√
N}
∣∣, and we bound each

probability in the sum by

P

(
NK

j > eKj1+dβNNd/2α
)

+P

( ∑
∥x∥∈(j,j+1]K

√
N

eβN ω̄x1{ω̄x>1/βN}fN (x) > βNNd/2αe−K2−j−2 ; NK
j ≤ eKj1+dβNNd/2α

)
.

(7.51)

First of all, by Markov’s inequality, since the number of sites verifying ∥x∥ ∈ (j, j+1]K
√
N

is bounded by a constant times Kdjd−1Nd/2 and since P(ω̄x > 1/βN ) ≤ cβα
N , we get that

P

(
NK

j > eKjd+1βNNd/2α
)
≤ ce−Kj−(d+1)(βNNd/2α)−1 ×Kdjd−1N

d
2 βα

N ≤ c′Kde−Kj−2 ,

(7.52)
where we used that βα−1

N ≤ cNd(α−1)/2α. For the second probability in (7.51), we use that

fN (x) is bounded above by e−cj2K2

uniformly for ∥x∥ > jK
√
N (recall (3.20)), we bound

the number of terms in the sum by eKj1+dβNNd/2α (using the condition on NK
j ) and we

bound eβN ω̄x by its maximum. We then obtain that the second probability in (7.51) is
bounded by

P

(
eKj1+de−cj2K2

max
∥x∥∈(j,j+1]K

√
N

{
eβN ω̄x

}
> e−K2−j−2

)
.

Now, using that e−2Kj−(1+d)2−jecj
2K2 ≥ ec

′j2K2

uniformly in j ≥ 1 and noting that
Nd/2βα

N ≤ c, we get by a union bound that the above probability is bounded by

cjd−1KdN
d
2P
(
ecβN ω̄x > ec

′j2K2)
≤ cjd−1−2αKd−2αN

d
2 βα

N ≤ c′jd−1−2αKd−2α . (7.53)
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All together, summing over j for (7.52) and (7.53) (recall that α > d/2), we get that
the probability in (7.50) is bounded by a constant times Kde−K +Kd−2α. This concludes
the proof of (7.49).

Conclusion of the proof. Recall that the sum of the first two terms in (7.36) converge
to (7.46). Then, we let ε ↓ 0 and we use (7.47)-(7.48) to get that the 3rd and 4th term
in (7.36) become negligible. Finally, letting K ↑ ∞, (7.49) makes sure that the 5th term
in (7.36) goes to 0 in probability.

7.3 Transversal fluctuations

Let us first show that the transversal fluctuations are at least of order
√
N . Since

Z̄N,βN
(MN ≤ η

√
N) = Z̄N,βN

PN,βN
(MN ≤ η

√
N) and because Z̄N,βN

→ 1 inP-probability,
we can focus on Z̄N,βN

(MN ≤ η
√
N).

By the same argument as (7.6)-(7.7), Z̄N,βN
(MN ≤ η

√
N)− Zω̃

N,βN
(MN ≤ η

√
N) → 0

in P-probability. We then have

P
(
Z̄N,βN

(MN ≤ η
√
N) > ε

)
≤P
(∣∣Z̄N,βN

(MN ≤ η
√
N)− Zω̃

N,βN
(MN ≤ η

√
N)
∣∣ > ε

2

)
+P

(
Zω̃
N,βN

(MN ≤ η
√
N) >

ε

2

)
,

where the second term is bounded above by Cε(1 − e−cη2

), thanks to the Markov’s
inequality and reasoning as in (7.5), which can be made arbitrarily small by choosing
small enough η: this concludes the proof that transversal fluctuations are at least of
order

√
N .

The proof for transversal fluctuations are at most of order
√
N is very similar, where

one just needs to restrict the path to {MN ≤ AN

√
N logN} first (see Lemma 7.1 for more

details), so we omit it.

8 Region C: proof of Theorem 2.15

Here we have limN→∞ βNN
d
α−1 = β ∈ [0,+∞), and we work conditionally on the

event β ≤ βc, i.e. T̂β = 0 in Theorem 2.2. Recall that if α > 1 we set µ = E[ω0], whereas
when α < 1 we let µ be any real number; we again use the notation Z̄N,βN

= Zω,h=µ
N,βN

.

8.1 Preliminary: paths cannot stay at scale N nor at an intermediate scale

First of all, let us stress that conditionally on having T̂β = 0, paths cannot stay at
scale N . Indeed, similarly to what is done in Section 5 (see in particular (5.7)), we have
that for any η > 0

1

βNNd/α
logZω,h

N,βN

(
MN ≥ ηN

)
−→ T̂β,≥η := sup

s∈D,supt∈[0,1] ∥s(t)∥≥η,Ênt(s)<+∞

{
π(s)− 1

β Ênt(s)
}
.

Now, on the event that T̂β = 0 we have T̂β,≥η < 0 a.s., see Lemma A.5 in Appendix.
Hence, if limN→∞ βNNd/α−1 = β > 0, we get that for any η > 0,

lim
N→∞

P

(
Zω,h
N,βN

(
MN ≥ ηN

)
≥ e−N1/2 ∣∣ T̂β = 0

)
= 0 . (8.1)

If limN→∞ βNNd/α−1 = 0, in view of Remark 2.6, one has

lim
N→∞

1

N
logZω,h

N,βN

(
MN ≥ ηN

)
= lim

N→∞

1

N
logP

(
MN ≥ ηN

)
< 0 ,
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so the conclusion 8.1 remains valid.

Let us now prove here the analogous of Proposition 6.1, stating that paths cannot
stay at some intermediate scale between N1/2 and N .

Lemma 8.1. Assume that limN→∞ βNN
d−α
α = β ∈ [0,+∞). Then, there exists some

ν′ > 0 and a constant c1 such that for any AN ∈ [
√
logN,N1/4] and any η ∈ (0, 1) we have

that for N sufficiently large

P

(
log Z̄N,βN

(
MN ∈ [AN

√
N, ηN)

)
> −c1A

2
N

)
≤ cην

′
+ cA−ν′

N .

Proof. The proof is very similar to that of Proposition 6.1. First, we divide the partition
function as

Z̄N,βN

(
MN ∈ [AN

√
N, ηN)

)
= Z̄N,βN

(
MN ∈ [AN

√
N,N3/4)

)
+ Z̄N,βN

(
MN ∈ [N3/4, ηN)

)
.

(8.2)

For the first term, we divide the partition function as

Z̄N,βN

(
MN ∈ [AN

√
N,N3/4)

)
=

1
4 log2 N∑

k=log2 AN

Z̄N,βN

(
MN ∈ [2k

√
N, 2k+1

√
N)
)

≤
1
4 log2 N∑

k=log2 AN

e−c22k
√
Z̄N,βN

(
MN ≤ 2k+1

√
N
)
.

(8.3)

where we used Cauchy–Schwarz inequality for the second inequality, together with the
fact that P(MN ≥ 2k

√
N) ≤ exp(−c22k). Now, applying Lemma 6.2 with hN = 2k

√
N , we

get for the range of k considered that for any fixed constant c0 > 0

P

(
Z̄N,βN

(
MN ≤ 2k+1

√
N
)
≥ exp(c02

2k
))

≤ c′′N− 1
4 (

d
α−2)ν + c′2−2νk ,

where we used that εN = NβNh
d/α−2
N ≤ cβN

− 1
4 (d/α−2) since hN ≤ N3/4 and α < d

2 .

Together with (8.3), a union bound therefore shows that, provided that c1 has been
chosen small enough, we have

P

(
Z̄N,βN

(
MN ∈ [AN

√
N,N3/4)

)
≥ e−c1A

2
N

)
≤ c′′A−2ν

N + c(logN)N− 1
4 (

d
α−2) . (8.4)

Note that the second term is bounded by A−ν′

N since AN ≤ N1/4.

For the second term in (8.2), we proceed analogously: we decompose it as

Z̄N,βN

(
MN ∈ [N3/4, ηN)

)
=

1
4 log2 N∑

k=− log2 η

Z̄N,βN

(
MN ∈ [2−k−1N, 2−kN)

)

≤
1
4 log2 N∑

k=− log2 η

e−c2−2kN Z̄N,βN

(
MN ≤ 2−kN

)
.

(8.5)

Again, we can apply Lemma 6.2 with hN = 2−kN to get for the range of k considered
that

P

(
Z̄N,βN

(
MN ≤ 2−kN

)
≥ exp

(
c02

−2kN
))

≤ c2−k( d
α−2)ν +N−ν/2 , (8.6)

where we used εN = NβNh
d/α−2
N ≤ cβ2

−k(d/α−2, together with the fact that h2
N/N ≥

N1/2.
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Again, together with (8.5), a union bound therefore shows that, provided that c1 has
been chosen small enough, we have

P

(
Z̄N,βN

(
MN ∈ [N3/4, ηN)

)
≥ e−c1N

1/2
)
≤ c′′η(

d
α−2)ν + c(logN)N−ν/2 . (8.7)

Note again that the second term is bounded by A−ν′

N since AN ≤ N1/4. Combining (8.4)
and (8.7) therefore concludes the proof of Lemma 8.1.

8.2 The case α ∈ (0, 1)

We first prove (2.11), in the case α ∈ (0, 1). We show the following: if α ∈ (0, 1), then
for any h ∈ R,

vN
βNNd/2α

(
Zω,h
N,βN

− 1
)

(d)−→ W0 . (8.8)

Recall that vN = logN in dimension d = 2 and vN = N
d
2−1 in dimension d ≥ 3.

Proof of (8.8). First of all, using (8.1) and Lemma 8.1, we get that for any a > 0 there is
some A > 0 such that

lim
N→∞

P

(
Na
(
Zω,h
N,βN

− Zω,h
N,βN

(MN ≤ A
√
N logN)

)
> ε

∣∣∣ T̂β = 0
)
= 0 .

Therefore, we may focus on the convergence of Zω,h
N,βN

(MN ≤ A
√
N logN). We have

e−|h|βNN ≤
Zω,h
N,βN

(
MN ≤ A

√
N logN

)
Zω,h=0
N,βN

(
MN ≤ A

√
N logN

) ≤ e|h|βNN ,

so that, for any h ∈ R, noting that βNN ≤ cN2−d/α → 0, we have∣∣∣∣ Zω,h
N,βN

(
MN ≤ A

√
N logN

)
Zω,h=0
N,βN

(
MN ≤ A

√
N logN

) − 1

∣∣∣∣ ≤ C|h|βNN . (8.9)

Notice that vN/(βNNd/2α)× βNN ≤ N
d
2 (1−

1
α ) logN and goes to 0 as N → ∞ (the factor

logN factor is present only in dimension d = 2). Hence, in view of (8.9), we therefore
only have to prove the result for h = 0, that is

vN
βNNd/2α

(
Zω,h=0
N,βN

(
MN ≤ A

√
N logN

)
− 1
)

(d)−→ W0 , (8.10)

since it also implies that Zω,h=0
N,βN

(
MN ≤ A

√
N logN

)
goes to 1 in probability.

Now, since the ω’s are non-negative, on the event MN ≤ A
√
N logN we have

P

( ∑
x∈RN

ωx > N
d
2α (logN)

d
α

)
≤ P

( ∑
∥x∥≤A

√
N logN

ωx > N
d
2α (logN)

d
α

)
≤ (A

√
N logN)dP

(
ω0 > N

d
2α (logN)

d
α

)
≤ CAd(logN)−

d
2 ,

where we used a union bound for the second inequality. Hence, with P probability going
to 1, we have that βN

∑
x∈RN

ωx ≤ βNN
d
2α (logN)

d
α → 0 on the event AN := {MN ≤

A
√
N logN}. By a Taylor expansion, we therefore have∣∣∣Zω,h=0

N,βN

(
MN ≤ A

√
N logN)

)
−P(AN )−βNE

[ ∑
x∈RN

ωx1{MN≤A
√
N logN}

]∣∣∣ ≤ (βNN
d
2α (logN)

d
α

)2
,
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with P-probability going to 1 as N → ∞. Notice that since βN ≤ cN1−d/α and vN ≤
Nd/2−1 logN , we get that

vN
βNNd/2α

×
(
βNN

d
2α (logN)

d
α

)2 ≤ N
d
2 (1−

1
α )(logN)

2d
α ,

which goes to 0 as N → ∞ since α < 1.
Note that 1−P(AN ) ≤ N−cA2

and A is large enough. All together, it boils down to
proving that

vN
Nd/2α

E
[ ∑
x∈RN

ωx1{MN≤A
√
N logN}

]
(d)−−→ W0 . (8.11)

Recalling the notation fN (x) = vNP(x ∈ RN ), we have the following bound∣∣∣∣ vN
Nd/2α

∑
x∈RN

ωxP(x ∈ RN ,MN ≤ A
√
N logN

]
−

∑
∥x∥≤A

√
N logN

ωx

Nd/2α
fN (x)

∣∣∣∣
≤ vN

Nd/2α
max

∥x∥≤A
√
N logN

{ωx}E
[
|RN |1{MN>A

√
N logN}

]
≤ N

d
2 max
∥x∥≤A

√
N logN

{ ωx

Nd/2α

}(
P(MN > A

√
N logN) + logNP(|RN | > AN/ logN)1d=2

)
,

which goes to 0 in probability provided that A has been fixed large enough. Therefore,
the convergence (8.11) is equivalent to showing∑

∥x∥≤A
√
N logN

ωx

Nd/2α
fN (x)

(d)−−→ W0 =

∫
Rd×R+

wf(x)P(dx, dw) , (8.12)

with P a Poisson point process on Rd×R+ with intensity αw−α−1dxdw. The proof is very
similar to the proof of Lemma 7.6 — see in particular the method used in (7.38)-(7.39).

Since w−α is integrable around 0 when α ∈ (0, 1), by the same argument as in
(7.38)–(7.39), we have analogously to (7.40)∑

∥x∥≤K
√
N

ωx

Nd/2α
fN (x)

(d)−→
∫
BK×R+

wf(x)P(dx, dw). (8.13)

For the remaining term in (8.12), we get that it verifies

P

( ∑
K

√
N<∥x∥≤A

√
N logN

ωx

Nd/2α
fN (x) > K−1

)
≤

∞∑
k=1

P

( ∑
∥x∥∈(2k−1,2k]K

√
N

ωxfN (x) > 2−kK−1N
d
2α

)
.

(8.14)
Since fN (x) ≤ Ce−c∥x∥2/N , we get that this probability is bounded by a constant times

∞∑
k=1

2kdKdN
d
2P

(
ω0 > c′2−kK−1ec2

2(k−1)K2

N
d
2α

)
≤ c

∞∑
k=1

(2kK)d+αe−cα2kK2

≤ ce−c′K2

.

(8.15)
Combining this with (8.13) we obtain (8.12) by letting N → ∞ and then K → ∞.

8.3 The case α ∈ (1, d
2 )

We now prove (2.10) and (2.11) in the case α ∈ (1, d
2 ); in particular d ≥ 3. The proof

is similar to what is done in Section 7: first we truncate the environment and then we
prove the convergence of the partition function with truncated environment.

Step 1. Truncation of the environment. Let us define the truncation level

kN := (logN)
d
αN

d
2α , (8.16)
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and the truncated environment ω̃ = (ω − µ)1{ω≤kN}. Let us stress that βNkN ≤
c(logN)d/αN1−d/2α goes to 0 as N → ∞, since α < d/2. We again define λN :=

logE[eβN ω̃] and we notice that thanks to Lemma C.1 (in the case βNkN < 1) we have

λN ≤ CβNk1−α
N ≤ CN1− d

2−
d
2α (logN)C . (8.17)

In particular, λNN goes to 0 as N → ∞ since α < d/2.

Lemma 8.2. Let α ∈ (1, d
2 ). Assume that limN→∞ βNN

d−α
α = β ∈ [0,+∞). Then for any

a > 0, conditionally on T̂β = 0, Na
(
Z̄N,βN

− Zω̃
N,βN

)
goes to 0 in probability.

Proof. Using (8.1) and Lemma 8.1, we get that for any a > 0 there is some A > 0 such
that

lim
N→∞

P

(
Na
(
Z̄N,βN

− Z̄N,βN
(MN ≤ A

√
N logN)

)
> ε

∣∣∣ T̂β = 0
)
= 0 .

Now, using the definition (8.16), we have that

P

(
∃x, ∥x∥ ≤ A

√
N logN , ω̃x ̸= ωx − µ

)
≤ Ad(N logN)d/2P(ω > kN ) ≤ c′(logN)−

d
2

Therefore, we get that

lim
N→∞

P

(
Z̄N,βN

(MN ≤ A
√
N logN)

)
̸= Zω̃

N,βN
(MN ≤ A

√
N logN)

))
= 0 .

It therefore only remains to observe that, by Markov’s inequality,

P

(
NaZω̃

N,βN
(MN > A

√
N logN) > ε

)
≤ ε−1Na

E
[
Zω̃
N,βN

(MN > A
√

N logN)
]

≤ ε−1eλNNNaP
(
MN > A

√
N logN

)
.

Hence, we get that

P

(
NaZω̃

N,βN
(MN > A

√
N logN) > ε

)
≤ Cε−1NaP(MN > A

√
N logN),

which goes to zero provided A is fixed large enough. This concludes the proof.

Step 2. Convergence of the truncated partition function. Thanks to Lemma 8.2, it
therefore only remains to prove the convergence of the truncated partition function.

Let us stress that when d ≥ 5 and α ∈ ( d
d−2 ,

d
2 ), then we may apply Lemma 7.2:

the only requirement is to have βN ≤ cN−d/2α and βNkN ≤ c(logN)η for some η < 1

(to apply the bounds (7.9)-(7.10)), which is clearly the case here. This proves the
convergence (2.10) in Theorem 2.15.

We therefore focus on the case α ∈ (1, d
2 ∧ d

d−2 ): to conclude the proof of the conver-
gence (2.11) in Theorem 2.15, we need to prove the following:

vN
βNNd/2α

(
Zω̃
N,βN

− 1
) (d)−→ W0 , (8.18)

with W0 defined in (2.9). This is analogous to Lemma 7.5, and let us stress that this
lemma uses the condition α > d/2 only to control (7.49). Let us rapidly go over the
different steps of the proof, the main changes occuring in the proof of Lemma 8.3 below,
which is the analogous of Lemma 7.6.

Recall that we define λN := logE[eβN ω̃] and εx := eβN ω̃x−λN −1; let us stress that using
that βNkN goes to 0, a simple Taylor expansion gives that E[ε20] ≤ Cβ2

NE[ω̃
2
x] + Cλ2

N ≤
C ′β2

Nk2−α
N .
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We perform the same chaos expansion as (7.26) to get

Zω̃
N,βN

− 1 = E
[
eλN |RN | − 1

]
+
∑
x∈Zd

εxE
[
eλN |RN |

1{x∈RN}
]
+YN , (8.19)

where YN is defined as (7.12).
Note that YN is centered, and following the same computation as in (7.27)-(7.14),

we have that E[Y2
N ] ≤ C(E[(ε0)

2]JN )2 ≤ Cβ4
Nk4−2α

N J2
N Hence, in view of the definition

of kN = (logN)d/αNd/2α, of the definition of vN = Nd/2−1 and JN ≤ cN1/2 (recall d ≥ 3),
we get that ( vN

βNNd/2α

)2
E[Y2

N ] ≤ Cβ2
NN

d
α− 3

2 (logN)C ≤ C ′N
1
2−

d
α (logN)C , (8.20)

which goes to 0 as N → ∞ since α < d. Therefore, vNYN/βNNd/2α goes to 0 in
probability.

We now handle the first two terms on the right-hand side of (8.19): we use the same
decomposition as in (7.31) and the same notation I, II, III for the three terms. We now
control the different terms.

For the term I, using (8.17) (in particular λNN → 0) we have that I ≤ c(λNN)2 ≤
N2β2

Nk2−2ga
N . Using the definition of vN and kN and since βN ≤ cN1−d/α, we therefore

get that
vN

βNNd/2α
I ≤ CN2− d

2α− d
2 (logN)C ≤ C ′N

1
2−

d
α (logN)C , (8.21)

which goes to 0 since α < d.
For the term II, it is centered and we have E[(II)2] ≤ CE[(ε0)

2](λNN)2JN ≤
C ′β4

Nk4−3α
N N2JN . Using the definition of vN and kN , we therefore get that( vN

βNNd/2α

)2
E[(II)2] ≤ Cβ2

NN
d
α− d

2 JN (logN)C ≤ N2− d
2−

d
α (logN)C ≤ N2− d

2−(2∨d−2)+ε,

(8.22)
where we used that JN ≤ cN1/2 and α < d

2 ∧ d
d−2 . This goes to 0 as N → ∞ since d ≥ 3.

For the term III, it is easy to see that since βN ω̃0 ≤ βNkN → 0, we have by a Taylor
expansion ∣∣∣eλN III− βN

∑
x∈Zd

ω̃xP(x ∈ RN )
∣∣∣ ≤ cβ2

N

∑
x∈Zd

ω̃2
xP(x ∈ RN ) .

Hence, using that E[ω2
x] ≤ k2−α we obtain that

vN
βNNd/2α

E

[∣∣∣eλN III− βN

∑
x∈Zd

ω̃xP(x ∈ RN )
∣∣∣] ≤ c

vN
Nd/2α

βNk2−α
N N ≤ cN1− d

2α (logN)C ,

(8.23)
which goes to 0 as N → ∞ since α < d/2.

All together, the proof of (8.18) boils down to showing the following lemma

Lemma 8.3. If α ∈ (1, d
2 ) and d < 2α

α−1 (or equivalently α ∈ (1, d
2 ∧ d

d−2 ), we have the
convergence

vN
Nd/2α

∑
x∈Zd

ω̃xP(x ∈ RN )
(d)−→ W0 . (8.24)

Proof. The following procedure is similar to the proof of Lemma 7.6. Note that Lemma 7.6
uses the condition α > d/2, in particular to ensure that the limit Wβ is finite. Here, the
condition α > d/(d− 2) also appears naturally, in particular to ensure that the limit W0

is finite, see Proposition 2.14.
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We write fN (x) = vNP(x ∈ RN ) and we use the following decomposition: for a fixed
constant K (large)

vN
Nd/2α

∑
x∈Zd

ω̃xP(x ∈ RN ) =
1

Nd/2α

∑
∥x∥≤K

√
N

ω̃xfN (x) +
1

Nd/2α

∑
∥x∥>K

√
N

ω̃xfN (x) .

For the second term, we proceed as in (8.14)-(8.15) to get that it is bounded by K−1

with probability larger than 1− ce−c′K2

, uniformly in N .
For the first term, then defining ω̃ε

x := (ωx − µ)1{ωx≤εNd/2α}, we decompose it further
as

1

Nd/2α

∑
∥x∥≤K

√
N

(ωx−µ)>εNd/2α̃

ωxfN (x)+
1

Nd/2α

∑
∥x∥≤K

√
N

E[ω̃ε
x]fN (x)+

1

Nd/2α

∑
∥x∥≤K

√
N

(ω̃ε
x−E[ω̃ε

x])fN (x).

(8.25)
By the same argument as for (7.40) and (7.45) in Lemma 7.6, we get that the sum of

the first two terms converge in distribution to∫
BK×(ε,∞)

wf(x)(P − η)(dx, dw). (8.26)

Note that it is then valid to send ε ↓ 0 and K ↑ ∞ in (8.26), since α < d/(d − 2) (recall
Proposition 2.14). It therefore remains to prove that the last term in (8.25) is negligible.

To conclude the proof, we will show that for any ε > 0, there exists Mε which verifies
limε↓0 Mε = +∞, such that

P

( ∑
∥x∥≤K

√
N

N− d
2αωε

xfN (x) ≥ M
− 1

2 (α−1)
ε

)
≤ CM

− 1
2 (α−1)

ε , (8.27)

where we denoted ωε
x = ω̃ε

x −E[ω̃ε
x] for simplicity. Then, sending N → ∞ and then letting

ε ↓ 0 and K ↑ ∞, this concludes the proof of Lemma 8.3.
To prove (8.27), we split the sum according to whether ω̄εfn(x) is larger or smaller

than MεN
d/2α. For the first sum, we use Markov’s inequality to get that

P

( ∑
∥x∥≤K

√
N

N− d
2αωε

xfN (x)1{ωε
xfN (x)>MεNd/2α} ≥ 1

2
M

− 1
2 (α−1)

ε

)
≤ M

1
2 (α−1)
ε

∑
∥x∥≤K

√
N

fN (x)N− d
2αE

[
ωε
x1{ωε

x>MεNd/2αfN (x)−1}
]
.

(8.28)

Notice that fN (x) ≤ vN = Nd/2−1, so Nd/2αfN (x)−1 ≥ N1− d
2α (α−1) and goes to +∞ as

N → ∞ since we have d < 2α/(α− 1): hence we can use the following estimate

E
[
ωε
x1{ωε

x>MεNd/2αfN (x)−1}
]
≤ CM1−α

ε N
d
2α (1−α)fN (x)α−1 . (8.29)

This shows that (8.28) is bounded by

CM
− 1

2 (α−1)
ε N− d

2

∑
∥x∥≤K

√
N

fN (x)α ≤ CM
− 1

2 (α−1)
ε ,

where we have used an integral comparison, using that
∫
Rd f(x)

αdx < ∞ since α(d−2) <

d, recall (3.21)(3.20).
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It remains to control the sum with terms ω̄εfN (x) smaller than MεN
d/2α. With an

exponential Chernov’s bound (and using the independence of the different terms in the
sum), we get

P

( ∑
∥x∥≤K

√
N

N− d
2αωε

xfN (x)1{ωε
xfN (x)≤MεNd/2α} ≥ M

− 1
2 (α−1)

ε

)
≤ exp

(
−M

1
2 (α−1)
ε

) ∏
∥x∥≤K

√
N

E

[
exp

(
Mα−1

ε N− d
2αωε

xfN (x)1{ωε
xfN (x)≤MεNd/2α}

)]
.

(8.30)

We now estimate the exponential moment. Let ζ ∈ (1, 2) be such that α < ζ < d
d−2 . We

write that

E

[
exp

(
Mα−1

ε N− d
2αωε

xfN (x)1{ωε
xfN (x)≤MεNd/2α}

)]
≤ 1 +Mα−1

ε N− d
2α fN (x)E

[
ωε
x1{ωε

xfN (x)≤MεNd/2α}
]
+ CMζ(α−1)

ε N− d
2α ζ
E
[
|ωε

x|ζ
]
fN (x)ζ ,

≤ 1 + C ′M2(α−1)
ε εζ−αN− d

2 fN (x)ζ ,

where the first term is negative for large enough N , sinceE[ωε
x] = 0,E[ω̃ε

x] → 0 as N → ∞
by α > 1, and Nd/2αfN (x)−1 → ∞ as N → ∞, and that E

[
|ωε

x|ζ
]
≤ Cεζ−αN

d
2α (ζ−α) for

the second term. Going back to (8.30), and using that 1 + z ≤ ez for any z ∈ R, we get
that the probability in the left-hand side of (8.30) is bounded by

exp

(
−M

1
2 (α−1)
ε +C ′M2(α−1)

ε εζ−αN− d
2

∑
∥x∥≤K

√
N

fN (x)ζ
)

≤ c exp
(
−M

1
2 (α−1)
ε +C ′′M2(α−1)

ε εζ−α
)
,

where we used again a sum integral comparison together with the fact that
∫
Rd f(x)

adx <

+∞ for any a < d/(d − 2). Therefore, choosing Mε = ε−(ζ−α)/(α−1), the second term is

a constant and we get that (8.30) is bounded by exp(−M
(α−1)/2
ε ), which concludes the

proof of (8.27).

8.4 Transversal fluctuations

The proof for transversal fluctuations are of order
√
N is a mimic of Subsection 7.3

and we omit it.

A Entropy-controlled Last-Passage Percolation (E-LPP)

Recall that Λr is the ball of radius r in Rd, and that Λr = Λr ∩ Zd. For any m ∈ N, let
Υ

(r)
m denote a set of m independent random variables (Zi)

m
i=1 uniform in Λr, and let Υ(r)

m

denote a set of m distinct sites taken uniformly in Λr. We define the Entropy-controlled
Last-Passage Percolation (E-LPP) as the maximal cardinality of a subset ∆ of Υ(r)

m or Υ(r)
m

with entropy smaller than B (recall the definition 4.1).
More precisely, we define the continuous and discrete E-LPP as follows

L (B)
m (r) := max{|∆| : ∆ ⊂ Υ(r)

m ,Ent(∆) ≤ B},

L(B)
m (r) := max{|∆| : ∆ ⊂ Υ(r)

m ,Ent(∆) ≤ B} .
(A.1)

This continuous non-directed E-LPP has been considered in [9, Sec. 3], in dimension
d = 2. The generalization of [9, Thm. 3.1] to the discrete E-LPP and to higher dimensions
is straightforward (we give a brief proof below for the sake of completeness).

EJP 0 (2020), paper 0.
Page 55/66

https://www.imstat.org/ejp

https://doi.org/10.1214/YY-TN
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Non-directed polymers in dimension d ≥ 2

Theorem A.1. There exists a constant cd > 0 such that, for any B > 0 we have that for
any k ≥ 1

P

(
L (B)

m (r) > k
)
≤
(cd B1/2m1/d

rk

)dk
, P

(
L(B)
m (r) > k

)
≤
(cd B1/2m1/d

rk

)dk
. (A.2)

We have the following corollary, whose proof is also given below.

Corollary A.2. For any b ≤ d, there exists a constant cb,d, only depending on b and the
dimension d, such that for any B > 0, any m ≥ 1 and any r,

E

( L
(B)
m (r)

(B1/2m1/d/r) ∧m

)b
 ≤ cb,d, E

( L
(B)
m (r)

(B1/2m1/d/r) ∧m

)b
 ≤ cb,d. (A.3)

Proof of Theorem A.1. The proof relies on a first moment estimate. We prove the bound
only in the continuous setting, the computations being the same in the discrete setting,
using sum integral comparisons.

For any B > 0 we let Ek(B) =
{
∆ = (xi)

k
i=1 : Ent(∆) ≤ B

}
and we denote Nk the

number of sets ∆ ⊂ Υ
(r)
m with |∆| = k, that have entropy at most B. Markov’s inequality

gives that
P
(
L (B)

m (r) ≥ k
)
= P(Nk ≥ 1) ≤ E[Nk] .

By exchangeability of the points in Υ
(r)
m , we get that

E[Nk] =

(
m

k

)
P

(
∃ σ ∈ Sk s.t. (Zσ(1), . . . , Zσ(k)) ∈ Ek(B)

)
=

m!

(m− k)!

Vol(Ek(B))

(cdrd)k
,

(A.4)
where we used that Z1, . . . , Zk are independent uniform random variables in the domain
Λr, which has volume cdr

d. Then, we can compute the volume of Ek(B) by iteration, and
we find that

Vol(Ek(B)) =
( πd/2

Γ(d2 + 1)

)k Γ(d)k

Γ(dk + 1)
Bdk/2 ≤

(CdB
d/2

kd

)k
.

Going back to (A.4), and using that m!
(m−k)! ≤ mk, this concludes the proof.

Proof of Corollary A.2. We only prove the continuous case. The discrete case follows by
the same argument. Note that if m ≤ B1/2m1/d/r, the result is trivial. Hence, we assume
that m > B1/2m1/d/r. Choose cb such that cb ≥ cdk

(b−1)/k for all k, with cd the constant
in (A.2).

∗ If cbBd/2m/rd ≤ 1/2, then

E

[(
L (B)

m (r)
)b]

≤
∞∑
k=1

Ckb−1
P

(
L (B)

m (r) ≥ k
)
≤

∞∑
k=1

Ckb−1
(cdBd/2m

rdkd

)k
≤ C

∞∑
k=1

(
cb
Bd/2m

rdkd

)k
≤ 2Ccb

Bd/2m

rd
≤ 2C

(
cb
Bd/2m

rd

)b/d
.

(A.5)

∗ If cbBd/2m/rd ≥ 1/2, note that cbud/b > c ∨ 1 for large u, then

E

[(
L

(B)
m (r)

B1/2m1/d/r

)b]
=

∫ ∞

0

P

(
L

(B)
m (r)

B1/2m1/d/r
≥ u1/b

)
du ≤ C+

∫ ∞

C

(
cdu

−1/b
)du1/bB1/2m1/d/r

du .

(A.6)
Since du1/bB1/2m1/d/r ≥ c′du

1/b, we get that the last integral is bounded by a constant.
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A.1 Applications of E-LPP

We now apply Theorem A.1 to prove Lemma 3.2 and Proposition 4.1.

Proof of Lemma 3.2.

Let us start by recalling Remark 3.1: if s ∈ D is such that Ent(s) ≤ 2, then we have

s ∈ D2. For any m ∈ N, we denote Υ
(2)
m := {Y(2)

i , 1 ≤ i ≤ m}, where we recall that

(Y
(2)
i )i≥1 are the positions of the order statistics of (w, x) ∈ P2 = {(w, x) ∈ P, ∥x∥ ≤ 2}

and are i.i.d. uniform random variables in Λ2. Recalling that the ordered statistics of
weights (M

(2)
i )i≥1 is a.s. decreasing, using (3.2) we have that

π2(s) =
∑

(w,x)∈P2

w1{x∈s([0,1])} =

∞∑
j=0

2j+1∑
i=2j

M
(2)
i 1{Y(2)

i ∈s([0,1])} ≤
∞∑
j=0

M
(2)
2j L

(2)
2j+1(2) , (A.7)

where L
(2)
m (2) is the continuous E-LPP defined above in (A.1). Let δ > 0 be such that

1
α − 1

d > δ. A union bound gives that for any t > 0,

P

(
sup

s:Ent(s)<2

{π2(s)} > t
)
≤

∞∑
j=0

P

(
M

(2)
2j L

(2)
2j+1(2) > Ct2j(

1
d−

1
α+δ)

)
. (A.8)

where 1/C =
∑

j∈N 2j(
1
d−

1
α+δ). Then, (A.8) is smaller than

∞∑
j=0

[
P

(
L

(2)
2j+1(2) > C0 log2(2 + t)2(j+1)/d

)
+P

(
M

(2)
2j > C1

t

log2(2 + t)
2j(−

1
α+δ)

)]
, (A.9)

where C0 is a constant chosen (large enough) below, and C1 depends on C and C0. We
use (A.2) with m = 2j+1 and k = C0 log2 t2

(j+1)/d. Then if C0 is taken large enough, we
have

P

(
L

(2)
2j+1(2) > C0 log2(2 + t)2(j+1)/d

)
≤
(1
2

)dC0 log2(2+t)2(j+1)/d

.

For the second term in (A.9), we recall that M
(2)
i

(d)
= (2

√
2)d/αGamma(i)−1/α, so that

E
[
(M

(2)
i )α

]
≤ ci−1, where c is a constant independent of i. Therefore, using Markov’s

inequality we get that

P

(
M

(2)
2j > C1

t

log2(2 + t)
2j(−

1
α+δ)

)
≤ c log2(2 + t)αt−α2−jδα .

All together, we get that

P

(
sup

s:Ent(s)<2

{π2(s)} > t
)
≤

∞∑
j=0

(
c log2(2 + t)αt−α2−jδa + 2−dC0(log2(2+t))2(j+1)/d

)
≤ c′ log2(2 + t)αt−α + c′t−c′′C0 ≤ c′′′ log2(2 + t)αt−α ,

where the constant c′′ depends only on d, and C0 has been fixed large enough so that
c′′C0 > α. This concludes the proof, by replacing the exponent α by some a < α and
getting rid of the term log2(2 + t)α by adjusting the constant.

Proof of Proposition 4.1.

To prove Proposition 4.1, we start by bounding the tail of Ω(ℓ)
r (∆), Ω(>ℓ)

r (∆) in Lemmas
A.3 and A.4 respectively.
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Lemma A.3. Let α ∈ (0, d). There exists a constant c, such that for any B > 0, r > 0 and
t > 1,

P

(
sup

Ent(∆)≤B

Ω(ℓ)
r (∆) ≥ t× r

d
α−1 B1/2

)
≤ ct−αd/(α+d) .

Proof. The proof is the discrete version of Lemma 3.2 proven above: using the discrete
E-LPP defined in (A.1), we can write

sup
Ent(∆)≤B

Ω(ℓ)
r (∆) ≤

log2 ℓ∑
j=0

2j+1−1∑
i=2j

M
(r)
i 1{Y (r)

i ∈∆} ≤
log2 ℓ∑
j=0

M
(r)
2j L

(B)
2j+1(r) . (A.10)

The proof then follows the same lines as above, but we keep some details to help
keep track of the different parameters. Let δ > 0 be such that 1/α − 1/d > 2δ and let
1/C =

∑∞
j=0 2

j(1/d−1/α+2δ). For ε ∈ [0, 1], by two consecutive union bounds we get

P

(
sup

Ent(∆)≤B

Ω(ℓ)
r (∆) ≥ t× r

d
α−1B1/2

)
≤

log2 ℓ∑
j=0

P

(
M

(r)
2j

rd/α
L
(B)
2j+1(r)

B1/2/r
≥ Ct 2j(

1
d−

1
α+2δ)

)

≤
log2 ℓ∑
j=0

P

(
M

(r)
2j

rd/α
> C1t

1−ε2−
j
α+jδ

)
+

log2 ℓ∑
j=0

P

(
L
(B)
2j+1(r)

B
1
2 /r

> C2t
ε(2j+1)

1
d+δ

)
.

(A.11)

For the first term above, we can use Lemma 5.1 in [8] to get that tor any u > 0 and
ℓ ≤ |Λr|, we have

P

(
M

(r)
ℓ > urd/αℓ−1/α

)
< (cu)−αℓ. (A.12)

For the second term, we apply Makov’s inequality together with Corollary A.2 with b = d.
All together, we get that the left-hand side of (A.11) is bounded by

∞∑
j=0

(ct1−ε)−α2j2−j2jδα +

∞∑
j=0

c′(C22
(j+1)δtε)−d ≤ C ′t(1−ε)α + C ′t−εd . (A.13)

Finally, we choose ε = α/(α+ d) and the proof is completed.

Lemma A.4. For any ℓ ≤ |Λr|, there exists a constant c, such that for any B > 0, r > 0

and t > 1,

P

(
sup

Ent(∆)≤B

Ω(>ℓ)
r ≥ t× r

d
α−1 ℓ

1
d−

1
α B1/2

)
≤ ct−

αℓd
αℓ+d .

Proof. The proof is similar to that of the previous lemma. Similarly to (A.10), we can
write

sup
Ent(∆)≤B

Ω(>ℓ)
r (∆) ≤

log2(|Λr|/ℓ)∑
j=0

M
(r)
2jℓL

(B)
2j+1ℓ(r).

Using (A.12), we have

P

(
Mr

2jℓ

rd/αℓ1/α
> C1t

1−ε(2j)−
1
α+δ

)
≤ (ct1−ε)−2jαℓ2−j2jαδℓ (A.14)

and by Markov’s inequality and Corollary A.2

P

(
L
(B)
2j+1ℓ(r)

ℓ
1
dB

1
2 /r

> C2t
ε(2j+1)

1
d+δ

)
≤ (C22

(j+1)δ)−dt−εd. (A.15)

The result follows by a similar bound to (A.13).
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Proof of Proposition 4.1. Let us introduce

T β,(ℓ)
N,r ([a, b)) := max

∆⊂Λr,Ent(∆)∈[a,b)

{
βΩ(ℓ)

r (∆)− EntN (∆)
}
. (A.16)

For any b > 0, we can then decompose the variational problem as

T β,(ℓ)
N,r = max

{
T β,(ℓ)
N,r ([0, b)), sup

k≥0

{
T β,(ℓ)
N,r ([2kb, 2k+1b))

}}
≤ max

∆⊂Λr,Ent(∆)≤b
βΩ(ℓ)

r (∆) ∨ sup
k≥0

{
β max

∆⊂Λr,Ent(∆)≤2k+1b
Ω(ℓ)

r − 2kb

N

}
Choosing b = t(Nβr

d
α−1)2 and applying a union bound, we get

P

(
T β,(ℓ)
N,r ≥ tN × (βr

d
α−1)2

)
≤

∞∑
k=0

P

(
max

∆⊂Λr,Ent(∆)≤2kt(Nβr
d
α

−1)2
Ω(ℓ)

r ≥ 2k−1tNβ(r
d
α−1)2

)
Therefore, applying Lemma A.3 (with B = 2kt(Nβr

d
α−1)2 and t′ = 2k/2−1t1/2), we obtain

that

P

(
T β,(ℓ)
N,r ≥ tN × (βr

d
α−1)2

)
≤ c

+∞∑
k=0

t−
αd

2(α+d) 2−
αd

2(α+d)
k ≤ c′ t−

αd
2(α+d) . (A.17)

For (4.9) the proof follows the same lines as (A.16)-(A.17), by applying Lemma A.4
instead of Lemma A.3.

Let us now prove another technical result: we show that the paths that maximize
T̂β are concentrated around the argmax of the variational problem, which is needed to
get (8.1) — this is the analogous of Lemma 4.1 in [2].

Lemma A.5. On the event {T̂β = 0}, for any η ∈ (0, 1) we have that

T̂β,≥η := sup
s∈D1,sup ∥s∥≥η,Ênt(s)<+∞

{
π(s)− 1

β Ênt(s)
}
< 0, a.s. (A.18)

Proof. Recall the definition (3.1) of D1 and (3.4) of π
(ℓ)
1 (recall that Ênt(s) = +∞ if

sup[0,1] ∥s∥ > 1). For ℓ ≥ 1, we define

ρ(ℓ) := sup
s∈D1

∣∣π(s)− π(ℓ)(s)
∣∣ , T̂ (ℓ)

β,≥η := sup
s∈D1,sup ∥s∥≥η,Ênt(s)<+∞

{
π
(ℓ)
1 (s)− 1

β Ênt(s)
}
.

For all ℓ we have that T̂β,≥η ≤ T̂ (ℓ)
β,≥η + ρ(ℓ), so the proof is a consequence of the following:

lim
ℓ→+∞

ρ(ℓ) = 0, a.s., lim sup
ℓ→+∞

T̂ (ℓ)
β,≥η < 0 a.s. (A.19)

To prove the first part of (A.19), reasoning as in the proof of (4.13) in [8], an integra-
tion by part gives that

π(s)− π(ℓ)(s) ≤
∞∑

i=ℓ+1

Li(Mi −Mi+1) + lim sup
n→∞

MnLn. (A.20)

where Mi := M
(1)
i and Ln := L

(d/2)
n (1) are defined in (3.3) and (A.1) respectively; note

that the restriction Ênt(s) < +∞ implies that s has length at most 1, so Ent(s) ≤ d/2.
The law of large numbers gives limn→∞ n1/αMn = c1 a.s., and Theorem A.1 gives
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lim supn→∞ n−1/dLn < +∞ a.s. Since α < d, we therefore conclude that lim supn→∞ MnLn =

0 a.s.

To complete the proof of the first part of (A.19), we let Uℓ :=
∑

i>ℓ Li(Mi −Mi+1)

and we show that Uℓ < +∞ a.s., by showing that E[U2
ℓ ] is finite. For any ε > 0, by

Cauchy-Schwarz inequality we have that

Uℓ ≤
(∑

i>ℓ

(
i−

1
2−ε
)2)1/2(∑

i>ℓ

(
i
1
2+εLi(Mi −Mi+1)

2
)1/2

.

Then, we get that for ℓ large enough

E[U2
ℓ ] ≤ C

∑
i>ℓ

i1+2ε
E
[
(Li)

2
]
E
[
(Mi −Mi+1)

2
]
≤ C ′

∑
i>ℓ

i2ε+2/d−2/α−1 < +∞ ,

where we used Corollary A.2 and the fact that E
[
(Mi − Mi+1)

2
]
≤ ci−2−2/α (see for

instance Equation (7.2) in [24]). Provided ε is small enough so that ε + 1/d − 1/α < 0,
we obtain that E[U2

ℓ ] < ∞ so Uℓ < ∞ a.s. We therefore get that limℓ→∞ Uℓ = 0, which
proves the first part of (A.19).

We prove the second part of (A.19) by contradiction. Note that by (1.9)-(1.10), if
Ênt(s) < +∞, there exists some parametrization φ ∈ Φ such that (s ◦ φ)(t) is 1-Lipschitz
on [0, 1] and π(s) = π(s ◦φ) for all φ ∈ Φ. Hence, it is enough to consider only 1-Lipschitz
paths {s ∈ D1 : ∥s′∥ ≤ 1}. Let us suppose that there exists a sequence s̃(ℓ) such that

sup ∥s̃(ℓ)∥ ≥ η and lim supZ(ℓ)
β (s̃(ℓ)) ≥ 0, where we set Z(ℓ)

β (s) := π(ℓ)(s) − 1
β Ênt(s) (and

Zβ(s) when ℓ = +∞).

We observe that s 7→ Z(ℓ)
β (s) is upper semi-continuous because Ênt(s) is lower semi-

continuous (it is a rate function of a large deviation principle) and s 7→ π(ℓ)(s) is upper
semi-continuous by construction (we refer to Lemma 4.4 in [8] for more details). Since
the set of 1-Lipshitz functions on [0, 1] is compact for the uniform norm by Ascoli-Arzelà
theorem, we can suppose that s̃(ℓ) converges uniformly to s̃ as ℓ → +∞. Then, using the
upper semi-continuity we get

T̂β ≥ Zβ(s̃) ≥ lim sup
ℓ→+∞

Zβ(s̃
(ℓ)) ≥ lim sup

ℓ→+∞
Z(ℓ)

β (s̃(ℓ)) ≥ 0 .

Using that when T̂β = 0 the maximiser is unique and is given by ŝβ ≡ 0, we conclude that
s̃ = 0, which contradicts the fact that sup ∥s̃∥ ≥ η.

Remark A.6. In general, we can define

T̂β,∥s−ŝβ∥≥η := sup
s∈D, sup ∥s−ŝβ∥≥η, Ênt(s)<+∞

{
π(s)− 1

β Ênt(s)
}
,

where ŝβ is the maximiser of T̂β; and similarly for Tβ,∥s−sβ∥≥η with sβ the maximizer
of Tβ . This requires the existence and uniqueness of the maximisers ŝβ , sβ , which follows
similarly to Section 4.6 in [8]. Then, one has the analogous of Lemma A.5, that is
T̂β,∥s−ŝβ∥≥η < T̂β and Tβ,∥s−sβ∥≥η < Tβ a.s.

B Simple random walk estimates

Let us collect some technical results on d-dimensional simple random walks that we use
in the article.
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B.1 Large and moderate deviations for the simple random walk

Lemma B.1. Let (Sn)n≥0 be a simple symmetric random walk on Zd. Let ξ ∈ ( 12 , 1] be

fixed. Then, for any x ∈ Rd, denote x
(ξ)
N the element of Zd with the same parity as N

closest to xNξ. Then we have the local large deviation result.

lim
N→∞

− 1

N2ξ−1
logP

(
SN = x

(ξ)
N

)
=

{
Jd(x) if ξ = 1 ,
d
2∥x∥

2 if ξ ∈ ( 12 , 1) ,

where Jd(·) is a given rate function, which verifies J(∥x∥1) ≤ Jd(x) ≤ J(∥x∥1) + log d,
where J(t) = 1

2 (1+ t) log(1+ t) + 1
2 (1− t) log(1− t) is the large deviation rate function for

the random walk in dimension d = 1; in particular, we have Jd(x) < +∞ if ∥x∥1 ≤ 1 and
Jd(x) = +∞ if ∥x∥1 > 1. We also have Jd(x) ≥ 1

2∥x∥
2 for all x ∈ Rd, and Jd(x) ∼ d

2∥x∥
2

as ∥x∥ ↓ 0.

Proof. This is a standard result, that directly derives from local large deviation results
for the simple random walk in dimension d = 1, by decomposing over the number of
steps in each direction. Let us just treat the case of ξ = 1, the case ξ ∈ ( 12 , 1) being
analogous. The rate function Jd can be related to the rate function J in the following way,
decomposing over the proportion of the time spent in each direction

Jd(x) = inf
u1,...,ud∈[0,1]
u1+···+ud=1

d∑
i=1

ui

(
J
(
xi

ui

)
+ log(dui)

)
, (B.1)

where the term
∑d

i=1 ui log(dui) comes from the entropic cost of spending a proportion ui

of the time in direction i; more precisely, we have limN→∞ − 1
N log( N !

(u1N)!···(udN)!d
−N ) =∑d

i=1 ui log(dui).
The rate function Jd does not appear to have a nice expression, but some properties

can be derived. Note that J(·) being an even function we can replace J(xi/ui) by J(|xi|/ui)

in the above expression. Since J(·) is a convex function we get that

d∑
i=1

uiJ
( |xi|

ui

)
≥ J
( d∑

i=1

|xi|
)
= J(∥x∥1).

Hence, using also that
∑d

i=1 ui log(dui) ≥ 0 for all u1, . . . , ud ∈ [0, 1] with u1 + · · ·+ud = 1,

we get that Jd(x) ≥ J(∥x∥1). On the other hand, since
∑d

i=1 ui log(dui) ≤ log d, taking
ui = |xi|/∥x∥1 we obtain that Jd(x) ≤ J(∥x∥1) + log d.

To prove the last inequality, let us simply notice that J(t) ≥ 1
2 t

2 for all t ∈ R, so we get
that Jd(x) ≥ 1

2∥x∥
2
1 ≥ 1

2∥x∥
2. Also, notice that when ∥x∥ ↓ 0, we have that Jd(x) → 0: for

instance, taking ui =
1
d in (B.1), we get that Jd(x) ≤ 1

d

∑d
i=1 J(dxi). Since the infimum in

(B.1) goes to 0, it means that it is attained for some ui approaching 1
d (so that log(dui)

goes to 0), and we therefore get that Jd(x) ∼ 1
d

∑d
i=1 J(dxi) as ∥x∥ ↓ 0. Using that

J(t) ∼ 1
2 t

2 as t ↓ 0, we get that Jd(x) ∼ d
2∥x∥

2.

B.2 Probabilities that a given set of points is visited

Here, for clarity, we separate the cases ξ ∈ ( 12 , 1) and ξ = 1. For a set of (ordered)
points ∆ = (y1, . . . , yk) ∈ Zd, with some abuse of notation we write ∆ ⊂ RN to mean
that the points of ∆ are visited in their order by the random walk before time N : put
otherwise

{∆ ⊂ RN} =
{
∃ 0 < t1 < · · · < tk ≤ N, s.t. St1 = y1, · · · , Stk = yk

}
. (B.2)

We now state large deviation principles for events {∆ ⊂ RN}.
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Lemma B.2. Let ξ ∈ ( 12 , 1). For any ordered set ∆ = (x1, · · · , xk) ⊂ Rd of distinct points,
we have (omitting integer parts for notational simplicity)

lim
N→∞

− 1

N2ξ−1
logP

(
(x1N

ξ, . . . , xkN
ξ) ⊂ RN

)
= Ent(∆) ,

where the entropy Ent(∆) is defined in (4.1).

Proof. We only treat the case k = 2 to lighten notation; the general case is analogous.

Lower bound : By a local large deviation, see e.g. [30, Theorem 3], we get

P
(
∃ 1 ≤ s < t ≤ N, s.t. Ss = xNξ, St = yNξ

)
≥ max

1≤s<N
P(Ss = xNξ, SN = yNξ)

= max
0<u≤1

cd

(u(1− u))
d
2Nd

exp

(
−N2ξ−1 d

2

(∥x∥2
u

+
∥y − x∥2

1− u
+ o(1)

))

Now the term ∥x∥2

u + ∥y−x∥2

1−u is minimal for u = ∥x∥
∥x∥+∥y−x∥ and choosing that specific u

gives that

P
(
∃ 1 ≤ s < t ≤ N, s.t. Ss = xNξ, St = yNξ

)
≥ cd,x,y

Nd
e−N2ξ−1(1+o(1))Ent(∆) ,

which proves the lower bound. Note that if ∥x∥ and ∥y − x∥ are bounded away from 0

and ∞, then so is cd,x,y.

Upper bound : Using again [30, Theorem 3], we have that

P
(
∃ 1 ≤ s < t ≤ N, s.t. Ss = xNξ, St = yNξ

)
≤

N∑
s=1

N∑
t=s+1

P(Ss = xNξ, St = yNξ)

≤
N∑
s=1

N∑
t=s+1

cd

(s(t− s))
d
2

exp

(
−N2ξ−1 d

2

(∥x∥2
s/N

+
∥y − x∥2

(t− s)/N
+ o(1)

))
, (B.3)

where the o(1) is uniform in N . To get an upper bound for (B.3), we minimize the quantity
in the exponent, which is N2ξ−1Ent(∆) (as above). Then for any d ≥ 1, (B.3) is bounded
above by a constant times

e−(1+o(1))N2ξ−1Ent(∆)
N∑
s=1

N∑
t=s+1

1

(s(t− s))d/2
≤ cN e−(1+o(1))N2ξ−1Ent(∆) ,

which gives the upper bound.

Let us state the analogous result in the case ξ = 1. We do not prove it, since it is
analogous to Lemma B.2.

Lemma B.3. For any ordered set ∆ = (x1, · · · , xk) ⊂ R
d of distinct points, we have

(omitting integer parts for notational simplicity)

lim
N→∞

− 1

N
logP

(
(x1N, . . . , xkN) ⊂ RN

)
= Ênt(∆) ,

where the entropy Ênt(∆) is defined in (4.10).

Notice here that the definition (4.10) of the entropy Ênt(∆) includes the infimum over
the choices of times 0 < t1 < · · · < tk ≤ 1 at which the random walk visits the points.

To conclude, we give a uniform upper bound on the probability that a given set is
visited.
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Lemma B.4. There are positive constants C1 := C1(d) and C2 := C2(d) such that for any
set ∆ = (x1, · · · , xℓ) ⊂ Zd of distinct points, we have in dimension d ≥ 2

P(∆ ⊂ RN ) ≤ (C1)
ℓe−

C2
N Ent(∆),

where EntN (∆) is defined in (4.2).

Proof. We write x0 = 0 and k0 = 0 by convention. Let us start with the case of dimension
d ≥ 3. By a union bound (recalling (B.2)), we have

P
(
(x1, . . . , xℓ) ⊂ RN

)
≤

N∑
k1=1

· · ·
N∑

kℓ=kℓ−1+1

ℓ∏
i=1

P(Ski
− Ski−1

= xk − xk−1).

Now, by standard local large deviation results, there exist constants c1, c2 such that for
any t ≥ 1 and x ∈ Zd,

P(St = x) ≤ c1
td/2

e−c2∥x∥2/t .

Thus, since for all 0 = u0 < u1 < · · · < uℓ ≤ 1 we have

ℓ∑
i=1

∥xi − xi−1∥2

ui − ui−1
≥ Ent(∆) , (B.4)

we get that

P
(
(x1, . . . , xℓ) ⊂ RN

)
≤ cℓ1 e

−C2
N Ent(∆)

N∑
k1=1

· · ·
N∑

kℓ=kℓ−1+1

ℓ∏
i=1

1

(ki − ki−1)d/2
≤ (C1)

ℓe−
C2
N Ent(∆),

which concludes the proof in dimension d ≥ 3.
For the case of the dimension d = 2, instead of the union bound, we use that, by

Markov’a property

P
(
(x1, . . . , xℓ) ⊂ RN

)
≤

N∑
k1=1

· · ·
N∑

kℓ=kℓ−1+1

ℓ∏
i=1

P(Hxi−xi−1
= ki − ki−1),

where Hx = min{t ≥ 1, St = x} is the hitting time of the site x. Now, from Uchiyama’s
[32, Thm. 1.4], we get that uniformly for x ∈ Zd \ {0}

P(Hx = k) ≤ C
log(1 + ∥x∥)
k(log(1 + k))2

e−c∥x∥2/k
1{k≥c∥x∥} .

Using again (B.4), we get

P
(
(x1, . . . , xℓ) ⊂ RN

)
≤ cℓ1e

−C2
N Ent(∆)

ℓ∏
i=1

( N∑
ki=ki−1+c∥xi−xi−1∥

log(1 + ∥xi − xi−1∥)
(ki − ki−1) log(1 + ki − ki−1)2

)
.

All the sums are bounded, so this concludes the proof in the case of the dimension
d = 2.

Intersection of ranges of independent random walks

Recall that JN :=
∑

x∈Zd P(x ∈ RN )2.

Lemma B.5. We have the following asymptotics, as N → +∞,

JN = (1 + o(1))

{
c2

N
(logN)2 if d = 2 ,

c3
√
N if d = 3 ,

JN = (1 + o(1))

{
c4 logN if d = 4 ,

cd if d = 5 .
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Proof. First of all, we can rewrite JN = E⊗2[JN ], with JN := |R(1)
N ∩R(2)

N | the intersec-

tion of ranges R(1)
N and R(2)

N of two independent random walks S(1) and S(2). In Chen’s

book [16], the weak convergence of JN is considered: in dimension d = 2, (logN)2

N JN is
shown to converge in distribution, see [16, Thm. 5.3.4]; in dimension d = 3, 1√

N
JN is

shown to converge in distribution, see [16, Thm. 5.3.4]; in dimension d = 4, 1
logNJN is

shown to converge in distribution, see [16, Thm. 5.5.1]. The convergence of the expecta-
tion JN = E[JN ] then comes as a consequence of the uniformity in the integrability of
JN , see [16, § 6.2].

In dimension d = 5, JN converges to |R(1)
∞ ∩R(2)

∞ |, which is a.s. finite. The convergence

of its expectation JN follows by monotone convergence, the fact that E[|R(1)
∞ ∩R(2)

∞ |] <
+∞ being given in (3.19) (with α = 2).

C Technical estimate on the environment

We collect here some estimates that are needed along the paper.

Lemma C.1. For any non-negative integer p < α and any sequence kN ≥ 1, we have:

• If βNkN ≥ 1,

∣∣∣E[ exp(βN (ω−µ)1{ω≤kN})
]
−1−

p∑
i=1

βi
N

i!
E[(ω−µ)i]

∣∣∣ ≤ CeβNkN


βα
N if p+ 1 > α ,

βα
N log kN if p+ 1 = α ,

βp+1
N if p+ 1 < α ;

(C.1)

• If βNkN < 1, in the case α < p+ 1, we get∣∣∣E[ exp(βN (ω − µ)1{ω≤kN})
]
− 1−

p∑
i=1

βi
N

i!
E[(ω − µ)i]

∣∣∣ ≤ CβNk1−α
N (C.2)

with an extra factor log kN in the upper bound if α = p+ 1.

Proof. We can use that for any x ∈ R, we have |ex −
∑p

i=0
xi

i! | ≤ |x|p+1e|x|. Hence, we get
that∣∣∣E[ exp(βN (ω − µ)1{ω≤kN})

]
−1−

p∑
i=1

βi
N

i!
E
[
(ω − µ)i

]∣∣∣
≤

p∑
i=1

βi
N

i!
E
[
|ω − µ|i1{ω>kN}

]
+ eβNkNβp+1

N E
[
|ω − µ|p+1

1{ω≤kN}
]
.

And since p < α, we have for any i ≤ p E[|ω − µ|i1{ω>kN}] ≤ Cki−α
N . On the other hand,

if α > p + 1, then E[|ω − µ|p+1
1{ω≤kN}] ≤ C; if α < p + 1, then E[|ω − µ|p+1

1{ω≤kN}] ≤
Ckp+1−α

N ; if α = p+ 1, then E[|ω − µ|p+1
1{ω≤kN}] ≤ C log kN . We therefore get that

∣∣∣E[ exp(βN (ω − µ)1{ω≤kN})
]
− 1−

p∑
i=1

βi
N

i!
E
[
(ω − µ)i

]∣∣∣
≤ C

(
eβnkN − 1

)
k−α
N + CeβNkN (βNkN )p+1


k−α
N if p+ 1 > α ,

k−α
N log kN if p+ 1 = α ,

k
−(p+1)
N if p+ 1 < α .

Then, in the case where βNkN ≥ 1, bounding kp+1−α
N by βα−p−1

N in the case p+1 > α, we
get (C.1). On the other hand, if βNkN ≤ 1, considering only the case α < p+ 1, we get
(C.2).
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